JP4364583B2 - Method for producing UV-resistant glass material - Google Patents

Method for producing UV-resistant glass material Download PDF

Info

Publication number
JP4364583B2
JP4364583B2 JP2003299285A JP2003299285A JP4364583B2 JP 4364583 B2 JP4364583 B2 JP 4364583B2 JP 2003299285 A JP2003299285 A JP 2003299285A JP 2003299285 A JP2003299285 A JP 2003299285A JP 4364583 B2 JP4364583 B2 JP 4364583B2
Authority
JP
Japan
Prior art keywords
gas
porous body
glass
atmosphere
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003299285A
Other languages
Japanese (ja)
Other versions
JP2005067947A (en
Inventor
秀一 都甲
孝文 鹿嶋
充 上片野
光一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003299285A priority Critical patent/JP4364583B2/en
Publication of JP2005067947A publication Critical patent/JP2005067947A/en
Application granted granted Critical
Publication of JP4364583B2 publication Critical patent/JP4364583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • C03B19/1461Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering for doping the shaped article with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

本発明は、エキシマレーザ等の紫外域の高出力レーザ光を利用する光学装置に使用される、光学用ガラス、マスク材料、及びVUV、UV光伝送用光学レンズ、プリズム等の耐紫外特性を要求される光学材料の製造方法に関する。   The present invention requires UV-resistant characteristics such as optical glass, mask material, optical lenses for VUV and UV light transmission, and prisms used in optical devices that use high-power laser light in the ultraviolet region such as excimer lasers. The present invention relates to a method for producing an optical material.

エキシマレーザなど紫外域の高出力レーザ光を利用する光学装置に使用される光学ガラス部材、マスク部材、紫外光や遠紫外光を用いる光伝送用光学レンズ、プリズム、導光部材などでは、透明性、屈折率など光学ガラス一般に求められる特性に加えて長期間にわたる耐紫外光性が要求される。   Transparency in optical glass members, mask members, optical lenses for optical transmission using ultraviolet light and far ultraviolet light, prisms, light guide members, etc. used in optical devices that use high-power laser light in the ultraviolet region such as excimer lasers In addition to the characteristics generally required for optical glass such as refractive index, long-term ultraviolet light resistance is required.

これらの耐紫外光光学部材の材料としては従来からほとんどの場合石英ガラスが用いられている。しかしエキシマレーザなど高出力レーザ光への耐紫外光性を更に高めるために、SiO骨格を基本構造としながらその構造の一部をOH基(例えば特許文献1、特許文献2参照)やフッ素(例えば特許文献3参照)で置換したもの、石英ガラス内部に水素分子を溶存させたもの(例えば特許文献4参照)、不純物金属の濃度や塩素濃度などを極力制限したもの(例えば特許文献5参照)などが提案されている。
特開平8−259255号公報 特開平6−183752号公報 特開平7−291635号公報 特開平3−101282号公報 特開2001−48571号公報
Quartz glass has been used in most cases as a material for these ultraviolet light-resistant optical members. However, to further enhance the耐紫outside light of the excimer laser such as a high output laser beam, a part of OH groups of the structure with a basic structure of SiO 2 skeleton (for example, Patent Document 1, Patent Document 2) or fluorine ( (For example, see Patent Document 3), those in which hydrogen molecules are dissolved in quartz glass (see, for example, Patent Document 4), those in which the concentration of impurity metal, chlorine concentration, etc. is limited as much as possible (see, for example, Patent Document 5) Etc. have been proposed.
JP-A-8-259255 JP-A-6-183752 JP-A-7-291635 Japanese Patent Laid-Open No. 3-101282 JP 2001-48571 A

一方、ガラスの粘性を高めて耐熱性及び加工性を向上させる目的(例えば特許文献6参照)、発泡ガラスを製造する目的(例えば特許文献7参照)、あるいは屈折率を高める目的(例えば特許文献8参照)で、石英ガラス内に窒素を導入する技術も知られている。
特開平3−40929号公報 特開平5−345636号公報 特開2000−327348号公報 特開平5−97466号公報
On the other hand, the purpose of increasing the viscosity of glass to improve heat resistance and workability (for example, see Patent Document 6), the purpose of producing foamed glass (for example, see Patent Document 7), or the purpose of increasing the refractive index (for example, Patent Document 8). The technology for introducing nitrogen into quartz glass is also known.
Japanese Patent Laid-Open No. 3-40929 JP-A-5-345636 JP 2000-327348 A Japanese Patent Laid-Open No. 5-97466

これら従来の技術のうち、例えばSiO基本構造にフッ素や水素や窒素などガラス材の改質に有用なガスを導入する一般的な方法としては、先ず原料となるガラス基材の多孔質体を形成し、この多孔質体のブロックを電気炉などの加熱炉に入れ、この加熱炉内に前記水素、不活性ガス、窒素を供給して多孔質体ブロックの内奥部まて浸透させ、次いで当該水素、不活性ガス、窒素を含む雰囲気下に所定温度に加熱して溶解又は反応させ、最後に多孔質体を融解温度以上に加熱してガラス化させていた。 Among these conventional techniques, for example, as a general method for introducing a gas useful for reforming a glass material such as fluorine, hydrogen, or nitrogen into a SiO 2 basic structure, first, a porous material of a glass substrate as a raw material is first used. Formed, put the block of this porous body into a heating furnace such as an electric furnace, supply the hydrogen, inert gas, nitrogen into the heating furnace to penetrate the inner part of the porous body block, then In an atmosphere containing hydrogen, an inert gas, and nitrogen, the mixture was heated to a predetermined temperature to be dissolved or reacted, and finally the porous body was heated to a melting temperature or higher to be vitrified.

ガラス多孔質体の内部に水素、不活性ガス、窒素を導入してガラス材を改質しようとする場合に、従来のように電気炉など外部から加熱する方法ではさまざまな問題が起こっていた。例えば、ガラス多孔質体自体が高い断熱性を有するため、熱伝導のみに依存する外部加熱の方法では多孔質体の内奥部まで温度を均一化するのに極めて長時間を要し、特に多孔質体ブロックのサイズが生産に適する程度まで大きくなると、加熱処理に要する時間やエネルギー経費は膨大なものとなった。   When introducing hydrogen, inert gas, or nitrogen into the inside of a glass porous body to modify a glass material, various problems have occurred in the conventional method of heating from the outside such as an electric furnace. For example, because the glass porous body itself has high heat insulation properties, the external heating method that relies solely on heat conduction requires a very long time to equalize the temperature up to the inner part of the porous body. As the size of the mass block increased to a level suitable for production, the time and energy costs required for the heat treatment became enormous.

また水素、不活性ガス、窒素を含む雰囲気下で外部加熱すると、多孔質体ブロックの外周部では内奥部より先に温度が上昇するためガラス質と水素、不活性ガス、窒素との反応が外周部付近で促進され、内奥部へのガスの供給が滞り、外周部と内奥部とで反応程度に大きな差が生じてしまう。結果として、多孔質体ブロックの外周部と内奥部とで各種特性が不均一になり、全体としては十分な改質効果が上がらなくなる。また、多孔質体ブロックを融解温度以上に加熱して脱泡しガラス化する過程でも、外部加熱では外周部が先に融解するためガス成分がガラス内部に閉じこめられ、曇りや気泡混入の原因になりやすいという問題もあった。   In addition, when external heating is performed in an atmosphere containing hydrogen, inert gas, and nitrogen, the temperature of the outer periphery of the porous body block rises before the inner back, so that the reaction between vitreous, hydrogen, inert gas, and nitrogen occurs. It is promoted in the vicinity of the outer peripheral portion, the supply of gas to the inner back portion is stagnated, and a large difference in reaction degree occurs between the outer peripheral portion and the inner back portion. As a result, various characteristics are non-uniform between the outer peripheral portion and the inner back portion of the porous body block, and a sufficient reforming effect cannot be improved as a whole. Also, even in the process of heating the porous body block above the melting temperature to degas and vitrify it, the outer part melts first with external heating, so the gas component is confined inside the glass, causing cloudiness and bubble contamination There was also a problem that it was easy to become.

また、前記の各種方法で製造された耐紫外光性のガラス材は、その特性自体にも問題があった。例えば、SiO基本構造の一部をOH基やフッ素を高濃度でドープすると、基本構造が≡Si−OHや≡Si−Fで終端される割合が増えることにより、粘度や屈折率が下がるとともに、耐レーザ特性も悪くなる。また、ドープ量を下げた場合、3員環、4員環といった前駆体は生起しやすく、そしてこれら生起された前駆体は、レーザ照射によってNBOHC(Non-Bridge Oxygen Hole Center)やE’センタ−といった欠陥へ変化、進展するとされている。 Further, the ultraviolet light resistant glass material produced by the various methods described above has a problem in its characteristics itself. For example, if a part of the SiO 2 basic structure is doped with OH group or fluorine at a high concentration, the proportion of the basic structure terminated with ≡Si—OH or ≡Si—F increases, and the viscosity and refractive index decrease. Further, the laser resistance characteristics are also deteriorated. In addition, when the doping amount is lowered, precursors such as three-membered rings and four-membered rings are likely to be generated, and these generated precursors are generated by NBOHC (Non-Bridge Oxygen Hole Center) or E ′ center by laser irradiation. It is said that it will change and progress to such defects.

またOH基やフッ素の濃度を高くするとガラスの屈折率が低下するため、例えばレンズ材として使用する場合には開口数を大きくできず、レンズの厚みも薄くできないという問題があった。屈折率を調整しようとして例えばGeドーパントなどを導入すると、今度は240nm付近に光吸収が起こるので紫外光領域で使用する光学材料として不適当なものとなる。Geの代わりに他の金属材料を導入した場合も200nm付近に光吸収が起こるので、同様に紫外光領域で使用する光学材料として不適当であった。   Further, when the concentration of OH group or fluorine is increased, the refractive index of the glass is lowered. For example, when used as a lens material, the numerical aperture cannot be increased and the thickness of the lens cannot be reduced. If, for example, a Ge dopant is introduced in order to adjust the refractive index, light absorption occurs in the vicinity of 240 nm, which makes it unsuitable as an optical material used in the ultraviolet region. When another metal material is introduced instead of Ge, light absorption occurs in the vicinity of 200 nm, which is similarly unsuitable as an optical material used in the ultraviolet region.

一方、外部加熱によらず、多孔質体をマイクロ波を用いて加熱する方法も知られている(例えば特許文献9参照)。しかし従来のマイクロ波を用いる技術は、ガラス多孔質体の通孔内部に含まれている水分を乾燥又は脱水することを目的とするものであった。従って使われるマイクロ波の周波数は、通常の電磁調理器などと同じく、水分を加熱するのに好適な2450MHzであった。この周波数ではガラス材自体を加熱することはできないので、SiO基本構造に機能性ガスを導入したり、多孔質体を融解しガラス化するために使用することはできなかった。 On the other hand, a method of heating a porous body using microwaves is also known, regardless of external heating (see, for example, Patent Document 9). However, the conventional technique using microwaves is intended to dry or dehydrate moisture contained in the through holes of the glass porous body. Therefore, the frequency of the microwave used was 2450 MHz, which is suitable for heating moisture, as in an ordinary electromagnetic cooker. Since the glass material itself cannot be heated at this frequency, it could not be used to introduce a functional gas into the SiO 2 basic structure or to melt and vitrify the porous body.

本発明は前記の課題を解決するためになされたものであって、従ってその目的は、エキシマレーザなど紫外域の高出力レーザ光を長時間照射した場合にも高い耐紫外光性を有し、紫外光領域における透明性、透過率、複屈折、屈折率均質性などの光学特性にも優れた耐紫外光ガラス材の製造方法を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and therefore the object thereof is to have high ultraviolet light resistance even when irradiated with high-power laser light in the ultraviolet region such as an excimer laser for a long time, An object of the present invention is to provide a method for producing an ultraviolet-resistant glass material that is excellent in optical properties such as transparency, transmittance, birefringence, and refractive index homogeneity in the ultraviolet region.

前記の課題を解決するために本発明は、請求項1において、ガラス多孔質体を水素ガス雰囲気下でマイクロ波加熱処理した後、窒素ガス圧力10Pa〜10MPaの窒素ガス雰囲気下でフッ素ガス又はフッ化物ガスを導入することなくマイクロ波加熱処理することを特徴とする耐紫外光ガラス材の製造方法を提供する。 In order to solve the above-described problems, the present invention provides a glass porous body according to claim 1, which is subjected to microwave heat treatment in a hydrogen gas atmosphere and then fluorine gas or fluorine in a nitrogen gas atmosphere having a nitrogen gas pressure of 10 Pa to 10 MPa. Provided is a method for producing an ultraviolet-resistant glass material, which is characterized by performing microwave heat treatment without introducing a chemical gas .

ガラス材中の窒素はNとしてガラス組織中に溶存していてもよく、又は一部もしくは全部がSi−N結合を形成していてもよい。溶存窒素又はSi−N結合はSiO基本構造の結合角の歪を緩和し、3員環や4員環など新たな欠陥前駆体の生成や構造欠陥の生成を抑制することにより耐紫外光性を向上させると考えられる。 Nitrogen in the glass material may also be dissolved in a glass tissue as N 2, or a part or the whole may form a Si-N bond. Dissolved nitrogen or Si-N bond relaxes the distortion of the bond angle of the SiO 2 basic structure and suppresses the generation of new defect precursors such as three- and four-membered rings and the generation of structural defects. It is thought to improve.

また、本発明は、請求項において、ガラス多孔質体を水素ガス雰囲気下でマイクロ波加熱処理した後、窒素ガス圧力10Pa〜10MPaの窒素ガス雰囲気下でマイクロ波加熱処理し、次いで雰囲気を不活性ガス置換し、フッ素ガス又フッ化物ガス(以下、「フッ素ガス等」という)を導入しながらマイクロ波加熱処理してガラス化することを特徴とする耐紫外光ガラス材の製造方法を提供する。 Further, the present invention resides in that in Claim 2, after the microwave heating of the glass porous body under an atmosphere of hydrogen gas, and microwave heating in a nitrogen gas atmosphere of the nitrogen gas pressure 10Pa~10MPa, then the atmosphere not Provided is a method for producing an ultraviolet-resistant glass material characterized by vitrification by virtue of microwave heat treatment while introducing active gas and introducing fluorine gas or fluoride gas (hereinafter referred to as “fluorine gas”). .

多孔質体にフッ素又はCF、SiFなどのフッ化物ガスを導入すると、ガラス組織内にSi−F結合が生成する。このSi−F結合はSiO基本構造のNBOHC(Non-Bridge Oxygen Hole Center)やE’センタ−などの構造欠陥を安定化し、耐紫外光性を向上させる作用がある。また、屈折率を低下させる作用があるので、例えば窒素導入の影響などによって不適当に高くなった屈折率を、光学レンズなどとして好適な1.40〜1.60の範囲内に調整することもできる。 When fluorine or a fluoride gas such as CF 4 or SiF 4 is introduced into the porous body, Si—F bonds are generated in the glass structure. This Si-F bond stabilizes structural defects such as NBOHC (Non-Bridge Oxygen Hole Center) of the SiO 2 basic structure and E ′ center, and has an action of improving ultraviolet light resistance. Further, since it has an action of lowering the refractive index, for example, the refractive index that is inappropriately increased due to the influence of nitrogen introduction or the like can be adjusted within a range of 1.40 to 1.60 suitable for an optical lens or the like. it can.

また、本発明は、請求項において、ガラス多孔質体を水素ガス雰囲気下でマイクロ波加熱処理した後、雰囲気を不活性ガス置換し、不活性ガス圧力10Pa〜10MPa下、マイクロ波加熱処理し、さらに、フッ素ガス等を導入しながらマイクロ波加熱処理してガラス化することを特徴とする耐紫外光ガラス材の製造方法を提供する。 Further, the present invention is the method according to claim 3, wherein the glass porous body is subjected to microwave heat treatment in a hydrogen gas atmosphere, and then the atmosphere is replaced with an inert gas, and the microwave heat treatment is performed under an inert gas pressure of 10 Pa to 10 MPa. Furthermore, the present invention provides a method for producing an ultraviolet light resistant glass material characterized by vitrification by introducing microwave heat treatment while introducing fluorine gas or the like.

水素導入過程では、還元性水素が多孔質体ブロックの外周部と内奥部とを問わず均一に導入され、多孔質体が均一に加熱されることによってブロック全体に一様に反応部位が形成される。
不活性ガス導入過程では、不活性ガスが多孔質体ブロックの外周部と内奥部とを問わず均一に導入され、多孔質体が均一に加熱されることによって当該不活性ガスはブロック全体に一様な濃度で溶解し、一様に耐紫外光性を向上させる。不活性ガス雰囲気の圧力(当該不活性ガス分圧)が10Pa未満では溶存不活性ガスの濃度が不足して構造欠陥を抑制する効果が発揮されず、10MPaを越えると後のガラス化過程で過飽和の不活性ガスが気化し曇りや気泡混入の原因となり光透過率を低下させる可能性がある。
フッ素ガス等導入過程では、フッ素ガス等が多孔質体ブロックの外周部と内奥部とを問わず均一に導入され、多孔質体が均一に加熱されることによってブロック全体に一様な濃度でSi−F結合を生成し、耐紫外光性を向上させると共に屈折率を好適な範囲に調整する。このとき、フッ素ガス等導入過程で、不活性ガスを同時に導入してもよい。
In the hydrogen introduction process, reducing hydrogen is uniformly introduced regardless of the outer peripheral part and inner part of the porous body block, and the porous body is uniformly heated, so that the reaction sites are uniformly formed throughout the block. Is done.
In the inert gas introduction process, the inert gas is uniformly introduced regardless of the outer peripheral portion and the inner back portion of the porous body block, and the porous body is uniformly heated, so that the inert gas is introduced into the entire block. It dissolves at a uniform concentration and improves the UV light resistance uniformly. If the pressure of the inert gas atmosphere (partial pressure of the inert gas) is less than 10 Pa, the concentration of dissolved inert gas is insufficient and the effect of suppressing structural defects is not exhibited, and if it exceeds 10 MPa, it is supersaturated in the subsequent vitrification process. The inert gas may vaporize and cause fogging and bubbles to be mixed, which may reduce the light transmittance.
In the process of introducing fluorine gas etc., fluorine gas etc. is introduced uniformly regardless of the outer peripheral part and inner back part of the porous body block, and the porous body is uniformly heated, so that the entire block has a uniform concentration. A Si—F bond is generated, the ultraviolet light resistance is improved, and the refractive index is adjusted to a suitable range. At this time, an inert gas may be simultaneously introduced in the process of introducing fluorine gas or the like.

また、本発明は、請求項において、マイクロ波加熱処理を周波数20GHz〜300GHzで行うことを特徴とする請求項1〜3のいずれか1項に記載の耐紫外光ガラス材の製造方法を提供する Moreover, this invention provides the manufacturing method of the ultraviolet-resistant glass material of any one of Claims 1-3 characterized by performing microwave heat processing by the frequency 20GHz-300GHz in Claim 4 . Do

本発明では、酸水素火炎や電気炉を使用し加熱することは可能だが、ワーク内部に温度分布(温度勾配)が生じないよう、マイクロ波(特に近ミリ波〜ミリ波帯:20GHz〜300GHz)を使用することが好ましい。マイクロ波を用いることにより、ワーク内部の温度分布をほぼ均一に加熱または緻密化することができる。
ガラス多孔質体を上記周波数のマイクロ波により加熱すると、水を加熱する周波数である2450MHzのマイクロ波と異なり、マイクロ波がガラス材の分子そのものを励起し加熱する。そこでガラス多孔質体をフッ素、水素、窒素等のガスを含む雰囲気下に、前記周波数範囲内のマイクロ波で加熱すると、電気炉などで外部加熱する場合と異なり、多孔質体ブロックの外周部も内奥部も一斉に加熱され、多孔質体の通孔に浸透した上記ガスが一様にガラス材中に導入され、ブロック全体として特性が均一化される。
また上記ガスで処理した後に多孔質体を溶融してガラス化する際にも、前記周波数のマイクロ波で加熱すれば全体が一様に溶融するので、ガス成分がガラス内部に閉じこめられることなく、曇りや気泡の発生が抑制される。また加熱に要する時間も、マイクロ波による加熱では電気炉などの外部加熱とは異なり、熱伝導によらずブロック全体が一斉に加熱されるので極めて短時間に所定温度に到達し、作業時間やエネルギー経費が削減され、生産性が著しく向上する。
マイクロ波加熱によりガラスやガラスの多孔質体を加熱し脱水する方法は、特開平5-97466号にて提案されているが、マイクロ波加熱装置内をヘリウムや窒素ガスといった不活性ガス雰囲気にしての加熱脱水であり、マイクロ波が直接水分を加熱することによる脱水効果を謳っており、水素ガスによる還元作用を利用したものではない。該特許では、電子レンジなどに使用される周波数(2450MHz)のマイクロ波を使用しており、多孔質体自体をマイクロ波加熱することはできず、多孔質体を加熱するのに他の熱源を併用している。上記製造方法で使用するマイクロ波は、例えば28GHzという高周波のものであり、多孔質体自体をマイクロ波のみで加熱ガラス化できる。
In the present invention, it is possible to heat by using an oxyhydrogen flame or an electric furnace, but microwaves (particularly near millimeter wave to millimeter wave band: 20 GHz to 300 GHz) so as not to generate a temperature distribution (temperature gradient) inside the workpiece. Is preferably used. By using the microwave, the temperature distribution inside the workpiece can be heated or densified almost uniformly.
When the glass porous body is heated by the microwave having the above frequency, unlike the microwave of 2450 MHz which is the frequency for heating water, the microwave excites and heats the molecules of the glass material itself. Therefore, when the glass porous body is heated with microwaves within the above frequency range in an atmosphere containing a gas such as fluorine, hydrogen, nitrogen, etc., unlike the case of external heating in an electric furnace or the like, the outer peripheral portion of the porous body block is also The inner and inner portions are also heated all at once, and the gas that has permeated the through holes of the porous body is uniformly introduced into the glass material, and the characteristics of the entire block are made uniform.
In addition, even when the porous body is melted and vitrified after being treated with the gas, the whole is uniformly melted by heating with the microwave of the frequency, so that the gas component is not confined inside the glass, Clouding and generation of bubbles are suppressed. Also, the time required for heating differs from external heating such as in an electric furnace in microwave heating, and the entire block is heated all at once regardless of heat conduction. Costs are reduced and productivity is significantly improved.
A method of heating and dehydrating glass or a porous body of glass by microwave heating is proposed in Japanese Patent Laid-Open No. 5-97466, but the inside of the microwave heating apparatus is made an inert gas atmosphere such as helium or nitrogen gas. This is a dehydration effect by heating the moisture directly by the microwave, and does not utilize the reduction action by hydrogen gas. In this patent, a microwave having a frequency (2450 MHz) used for a microwave oven or the like is used, and the porous body itself cannot be heated by microwaves, and another heat source is used to heat the porous body. Used together. The microwave used in the above manufacturing method has a high frequency of, for example, 28 GHz, and the porous body itself can be heated and vitrified only by the microwave.

本発明の製造方法は、均質な機能性を有する耐紫外光ガラス材を短時間で製造することができる。   The production method of the present invention can produce an ultraviolet-resistant glass material having homogeneous functionality in a short time.

本発明の耐紫外光ガラス材の製造方法は、ガラス多孔質体を水素ガス雰囲気下でマイクロ波加熱処理し、脱水する(第1工程)。   In the method for producing an ultraviolet-resistant glass material of the present invention, a glass porous body is subjected to microwave heat treatment in a hydrogen gas atmosphere and dehydrated (first step).

ガラス基材の多孔質体を形成する方法としては、従来から知られているゾル−ゲル法やVAD法などが何れも使用できる。特に、VAD法が好適である。
上記熱処理として、該ガラス多孔質体をマイクロ波加熱装置(特に近ミリ波〜ミリ波帯:20GHz〜300GHz)に入れ、周囲を水素ガス雰囲気にする。このとき水素ガス雰囲気の圧力は、好ましくは約10〜100000Pa、特に好ましくは100〜500Paとする。水素ガス濃度が高いと(例えば1000Pa)、水素ガスの吸熱作用によりガラス多孔質体の温度上昇が妨げられてしまう場合がある。He等の不活性ガスと混合し使用しても良いが、Heでも水素同様に吸熱作用が大きいため、N、Ar等の不活性ガスと混合して使用するのが良い。
また、マイクロ波を使用した加熱により、ガラス多孔質体は内部、外部ともほぼ一様な温度で熱せられ、反応の傾きが起きにくく、一様な反応を示す。マイクロ波加熱を行うときの均熱温度は、100℃〜1000℃が好ましく、特に好ましくは600〜1000℃であり、加熱時間を1〜40時間の間で調整し実施することが好ましい。
Any conventionally known sol-gel method or VAD method can be used as a method for forming a porous material of a glass substrate. In particular, the VAD method is suitable.
As the heat treatment, the glass porous body is put into a microwave heating apparatus (particularly near millimeter wave to millimeter wave band: 20 GHz to 300 GHz), and the surroundings are made a hydrogen gas atmosphere. At this time, the pressure of the hydrogen gas atmosphere is preferably about 10 to 100,000 Pa, particularly preferably 100 to 500 Pa. When the hydrogen gas concentration is high (for example, 1000 Pa), the temperature rise of the glass porous body may be hindered by the endothermic action of hydrogen gas. It may be used by mixing with an inert gas such as He. However, since He also has a large endothermic effect like hydrogen, it may be used by mixing with an inert gas such as N 2 or Ar.
Moreover, the glass porous body is heated at a substantially uniform temperature both inside and outside by heating using microwaves, and the inclination of the reaction hardly occurs and a uniform reaction is exhibited. The soaking temperature when performing microwave heating is preferably 100 ° C. to 1000 ° C., particularly preferably 600 ° C. to 1000 ° C., and the heating time is preferably adjusted between 1 and 40 hours.

本発明の耐紫外光ガラス材の製造方法は、第1の工程の後、窒素ガス圧力10Pa〜10MPaの窒素ガス雰囲気下でマイクロ波で加熱処理し、ガラス多孔質体内の欠陥と窒素を反応させてSi−N結合を生成させ、均一に窒素を溶存させること(第2工程)が好ましい。   In the method for producing an ultraviolet light resistant glass material of the present invention, after the first step, heat treatment is performed with microwaves in a nitrogen gas atmosphere at a nitrogen gas pressure of 10 Pa to 10 MPa to cause defects in the glass porous body to react with nitrogen. It is preferable to generate Si—N bonds and to dissolve nitrogen uniformly (second step).

まず、雰囲気を窒素ガスで置換する。内部圧力を好ましくは10Pa〜lOMPa 、特に好ましくは100Pa〜O.lMPaで調整し、マイクロ波加熱を行う。このときあまり圧力を高くする(窒素の濃度を高くする)と、ガラス化後窒素が気泡化し不透明なガラスになる恐れがある。本発明の製造に使用するマイクロ波加熱装置は、近ミリ波〜ミリ波帯、具体的には20〜300GHzであることが好ましく、ガラス多孔質体を加熱しガラス化することが出来る。
マイクロ波を使用した加熱により、ガラス多孔質体は内部外部ともほぼ一様な温度で熱せられ、反応の傾きが起きにくく、一様な反応を示す。窒素ガス雰囲気でマイクロ波加熱を行うときは、一旦、好ましくは700℃〜1300℃、特に好ましくは800〜1100℃で、好ましくは約1〜40時間の範囲で均熱する。マイクロ波で加熱することにより、ガラス多孔質体の内部、外部ともほぼ一様な温度で熱せられ、反応の傾きが起きにくく、一様な反応を示す。
上記工程中、窒素ガスの代わりにNH(アンモニア)やNO(一酸化炭素)等の還元性ガスを使用することも可能だが、水素原子や酸素原子がガラス内に残り反応しやすくなるため好適とはいえない。
First, the atmosphere is replaced with nitrogen gas. The internal pressure is preferably adjusted to 10 Pa to lOMPa, particularly preferably 100 Pa to O.lMPa, and microwave heating is performed. At this time, if the pressure is increased too much (the concentration of nitrogen is increased), nitrogen may be bubbled after vitrification to become opaque glass. The microwave heating device used in the production of the present invention is preferably in the near millimeter wave to millimeter wave band, specifically 20 to 300 GHz, and can heat and vitrify the glass porous body.
By heating using microwaves, the porous glass body is heated at a substantially uniform temperature both inside and outside, and the inclination of the reaction hardly occurs and a uniform reaction is exhibited. When microwave heating is performed in a nitrogen gas atmosphere, the soaking is performed preferably at 700 ° C. to 1300 ° C., particularly preferably at 800 to 1100 ° C., and preferably in the range of about 1 to 40 hours. By heating with microwaves, the inside and outside of the glass porous body are heated at a substantially uniform temperature, and the inclination of the reaction hardly occurs and a uniform reaction is exhibited.
It is possible to use a reducing gas such as NH 3 (ammonia) or NO (carbon monoxide) instead of nitrogen gas during the above process, but it is preferable because hydrogen atoms and oxygen atoms remain in the glass and react easily. That's not true.

本発明の耐紫外光ガラス材の製造方法は、第2の工程の後、雰囲気を不活性ガス置換し、フッ素ガス等を導入しながらマイクロ波加熱処理してガラス化すること(第3工程)が好ましい。   In the method for producing an ultraviolet light resistant glass material of the present invention, after the second step, the atmosphere is replaced with an inert gas and vitrified by introducing a microwave heat treatment while introducing fluorine gas or the like (third step). Is preferred.

まず、マイクロ波加熱装置内を不活性ガス、好ましくはHe、N、Ar、特に好ましくはHeにて置換し、同不活性ガス(例えばHe)とフッ素ガス等、好ましくはF、CF、SiFなど、特に好ましくはSiFを混合したガスを導入し、マイクロ波加熱を行う。
マイクロ波を使用した加熱により、ガラス多孔質体は内部、外部ともほぼ一様な温度で熱せられ、反応の傾きが起きにくく、一様な反応を示す。マイクロ波加熱を行うときの均熱温度は、700℃〜1300℃が好ましく、特に好ましくは800〜1100℃であり、加熱時間を1〜40時間の間で調整し実施することが好ましい。不活性ガス雰囲気下マイクロ波加熱を行うと、例えばSiFが熱分解し、Si−F結合が生成する。上記熱処理後、1300〜1500℃に昇温し、ガラス化させる。昇温後、約0.5〜10時間の範囲で均熱処理を行う。本発明の製造に使用するマイクロ波加熱装置は、近ミリ波〜ミリ波帯、具体的には20〜300GHzであることが好ましく、ガラス多孔質体を加熱しガラス化することが出来る。
First, the inside of the microwave heating apparatus is replaced with an inert gas, preferably He, N 2 , Ar, particularly preferably He, and the inert gas (for example, He) and fluorine gas, etc., preferably F 2 , CF 4 , SiF 4 or the like, particularly preferably SiF 4 mixed gas is introduced and microwave heating is performed.
By heating using microwaves, the glass porous body is heated at a substantially uniform temperature both inside and outside, and the inclination of the reaction hardly occurs and a uniform reaction is exhibited. The soaking temperature when performing microwave heating is preferably 700 ° C. to 1300 ° C., particularly preferably 800 to 1100 ° C., and the heating time is preferably adjusted between 1 and 40 hours. When microwave heating is performed in an inert gas atmosphere, for example, SiF 4 is thermally decomposed to generate Si-F bonds. After the heat treatment, the temperature is raised to 1300-1500 ° C. to vitrify. After the temperature rise, soaking is performed in the range of about 0.5 to 10 hours. The microwave heating device used in the production of the present invention is preferably in the near millimeter wave to millimeter wave band, specifically 20 to 300 GHz, and can heat and vitrify the glass porous body.

本雰囲気にてマイクロ波加熱を行うと、例えばSiFが熱分解して下記のような反応が起こると考えられる。
≡Si-H H-Si≡ +2F(活性種) → ≡Si-Si≡ + 2HF
≡Si-H +2F(活性種) → ≡Si-F + HF
≡Si-OH HO-Si≡ + 2F(活性種) → ≡Si-F F-Si≡ +H
≡Si-OH H-Si≡ + 2F(活性種) → ≡Si-F F-Si≡ +HO又は
≡Si-OH H-Si≡ + 2F(活性種) → ≡Si-O-Si≡ +2HF
When microwave heating is performed in this atmosphere, it is considered that, for example, SiF 4 is thermally decomposed and the following reaction occurs.
≡Si-H H-Si≡ + 2F (active species) → ≡Si-Si≡ + 2HF
≡Si-H + 2F (active species) → ≡Si-F + HF
≡Si-OH HO-Si≡ + 2F (active species) → ≡Si-F F-Si≡ + H 2 O 2
≡Si-OH H-Si≡ + 2F ( active species) → ≡Si-F F-Si≡ + H 2 O or ≡Si-OH H-Si≡ + 2F ( active species) → ≡Si-O-Si≡ + 2HF

本発明は、第1工程の後、雰囲気を不活性ガス置換し、不活性ガス圧力10Pa〜10MPa下、マイクロ波加熱処理し、さらに、フッ素ガス等を導入しながらマイクロ波加熱処理してガラス化することもできる。   In the present invention, after the first step, the atmosphere is replaced with an inert gas, subjected to microwave heat treatment under an inert gas pressure of 10 Pa to 10 MPa, and further subjected to microwave heat treatment while introducing fluorine gas or the like to vitrify. You can also

フッ素ガス等導入前後のマイクロ波加熱を行うときの均熱温度は、700℃〜1300℃が好ましく、特に好ましくは800〜1100℃であり、加熱時間を1〜40時間の間で調整し実施することが好ましい。フッ素ガス等導入後、不活性ガス雰囲気下マイクロ波加熱を行うと、例えばSiFが熱分解し、Si−F結合が生成する。上記熱処理後、1300〜1500℃に昇温し、ガラス化させる。昇温後、約0.5〜10時間均熱処理を行う。本発明の製造に使用するマイクロ波加熱装置は、近ミリ波〜ミリ波帯、具体的には20〜300GHzであることが好ましく、ガラス多孔質体を加熱しガラス化することが出来る。 The soaking temperature when performing microwave heating before and after introduction of fluorine gas, etc. is preferably 700 ° C. to 1300 ° C., particularly preferably 800 to 1100 ° C., and the heating time is adjusted between 1 and 40 hours. It is preferable. When microwave heating is performed in an inert gas atmosphere after introducing fluorine gas or the like, for example, SiF 4 is thermally decomposed to generate Si-F bonds. After the heat treatment, the temperature is raised to 1300-1500 ° C. to vitrify. After the temperature rise, soaking is performed for about 0.5 to 10 hours. The microwave heating device used in the production of the present invention is preferably in the near millimeter wave to millimeter wave band, specifically 20 to 300 GHz, and can heat and vitrify the glass porous body.

上記方法にて出来上がったガラスは、ガラス多孔質体製造時は高純度原料を使用し、ターゲット上へ酸水素バーナにより多孔質体を作るので、金属不純物に汚染されることがない。次工程のマイクロ波加熱装置も、装置内はステンレス材で覆われ、マイクロ波加熱時もこのステンレス材部分は、ほとんど温度上昇しないため、金属不純物が被加熱物を汚染することも無く、きわめて金属不純物濃度の低いものとなる。また、ガラス多孔質体をマイクロ波加熱装置へ移動する際も、ガラス多孔質体を清浄な容器または袋へ入れ、人体や雰囲気からNa、K、Ca等付着しないよう工夫している。   The glass produced by the above method uses a high-purity raw material at the time of producing a porous glass body, and makes a porous body on the target with an oxyhydrogen burner, so that it is not contaminated by metal impurities. The microwave heating device in the next process is also covered with stainless steel, and the temperature of the stainless steel material hardly rises even during microwave heating. The impurity concentration is low. Also, when moving the porous glass body to the microwave heating device, the porous glass body is put into a clean container or bag so that Na, K, Ca, etc. do not adhere from the human body or atmosphere.

出来上がったガラス体の金属不純物濃度をICP-MS (誘導結合プラズマ・質量分析装置)で測定したところ、Li、Na、K、Ca、Mg、Ca、Ti、Cr、Fe、Ni、Cu、Ge、Alの金属不純物濃度は20ppb未満であった。
また、レーザラマン分光光度計で3員環、4員環の強度測定を行ったところ、窒素を溶存させなかった以前のサンプルと比較して、その量は、Si0に対する強度比で2/10以下と減っていた。これは、ガラス多孔質体からガラスに変化する際に溶存窒素が、Si0基本構造形成時に余分な空間を埋めることでSi0基本構造形成に無理な歪みがかかることなくボンディング進行したことによると考えられる。
この作用は、窒素以外の不活性ガスでも効果が期待できる。ただし、その分子サイズからAr,Ne,Xe等が好適である。
When the metal impurity concentration of the finished glass body was measured with ICP-MS (Inductively Coupled Plasma / Mass Spectrometer), Li, Na, K, Ca, Mg, Ca, Ti, Cr, Fe, Ni, Cu, Ge, The metal impurity concentration of Al was less than 20 ppb.
Further, 3-membered ring laser Raman spectrophotometer, was subjected to strength measurement of 4-membered rings, nitrogen compared to the previous sample did not dissolved, and the amount is 2/10 or less in the intensity ratio Si0 2 It was reduced. This is dissolved nitrogen at the time of changing the glass from the glass porous body, according to the bonding proceeds without consuming excessive distortion Si0 2 base structure formed by filling the excess space at Si0 2 basic structures formed Conceivable.
This effect can be expected even with an inert gas other than nitrogen. However, Ar, Ne, Xe and the like are preferable from the molecular size.

当該サンプルのエキシマレーザに対する耐性を評価するため、ArFエキシマレーザ(波長193.4nm)を80mJ/cm、lOOHz、1×10の条件にて連続照射を行ったところ、その劣化量は、初期透過率に対し1%以下であった。
さらに、真空紫外分光光度計(日本分光社製)にて内部透過率測定を行ったところ、波長193nmにおける内部透過率は約99.5%/cm以上であり、十分な特性と評価できる。波長300nm以下の透過率プロファイルは図1のようになり、Si0の透過限界波長付近まで良好な透過特性をもつことがわかる。
複屈折測定装置(Hind Instruments 社製)で測定したところ、10nm/cm(波長:633nm)以内に入っており、良好な特性をもつことがわかる。アニール等の熱処理を行うことなしに、良好な複屈折が得られる理由は、Si-F結合が高い濃度で存在していることにより、冷却時に歪が残留しにくいためと考えられる。
フィゾー式干渉計(富士写真光機社製)にて屈折率均質性を測定したところ、20×10−6(波長:633nm)以内に入っており、良好な特性を持つことがわかる。
In order to evaluate the resistance of the sample to the excimer laser, when ArF excimer laser (wavelength 193.4 nm) was continuously irradiated under the conditions of 80 mJ / cm 2 , lOOHz, 1 × 10 6 , the amount of degradation was initially transmitted. The rate was 1% or less.
Furthermore, when the internal transmittance was measured with a vacuum ultraviolet spectrophotometer (manufactured by JASCO Corp.), the internal transmittance at a wavelength of 193 nm was about 99.5% / cm or more, which can be evaluated as sufficient characteristics. Following transmission profile wavelength 300nm is as shown in FIG. 1, it can be seen that with good transmission characteristics up to the vicinity of transmission threshold wavelength of Si0 2.
When measured with a birefringence measuring apparatus (manufactured by Hind Instruments), it is within 10 nm / cm (wavelength: 633 nm), and it can be seen that it has good characteristics. The reason why a good birefringence can be obtained without performing a heat treatment such as annealing is considered to be because the strain hardly remains at the time of cooling because the Si-F bond exists at a high concentration.
When the refractive index homogeneity was measured with a Fizeau interferometer (manufactured by Fuji Photo Optical Co., Ltd.), it was found to be within 20 × 10 −6 (wavelength: 633 nm) and to have good characteristics.

次に本発明を実施例によって説明する。これらの実施例は本発明を何ら制限するものではない。   Next, the present invention will be described by way of examples. These examples do not limit the present invention in any way.

実施例1は、窒素とフッ素が導入された耐紫外光性のガラス材を製造する本発明方法の一実施形態である。
製造:
(多孔質体形成過程)
VAD法を用いて高純度の石英ガラス多孔質体を形成した。この多孔質体のサイズは直径200mm、高さ300mmの円柱状であり、かさ密度は約0.42g/cmであった。
(水素導入過程)
周波数28GHzのマイクロ波加熱炉内に前記多孔質体をセットし、水素ガス圧200Paの雰囲気下に徐々に加熱し、1時間を要して700℃に昇温し、同温度に2時間保持した。マイクロ波加熱炉は、内壁がステンレス鋼材で覆われたものを使用した。この炉壁は周波数28GHzのマイクロ波ではほとんど温度が上昇せず、炉壁から発生する金属不純物による汚染は認められなかった。
(窒素導入過程)
炉内の雰囲気を窒素ガスで置換し、炉内の窒素ガス圧を1MPaに調整した後、マイクロ波加熱を行い1000℃に10時間保持した。
(フッ素導入過程)
炉内の雰囲気をHeで置換した後、HeガスとSiFとを流量比で900:1として炉内に導入した。炉内圧を0.1MPaに保ち、この間にマイクロ波加熱を行って温度を1000℃に昇温し、その状態に30時間保持した。
(ガラス化過程)
フッ素導入を終了し、雰囲気をHe置換した後、3時間を要して1400℃に昇温し、同温度に1時間保持して多孔質体を溶融しガラス化させた。
ガラス化後の溶融体は、そのまま炉内で室温まで放冷した後、ガラス材のインゴットとして取り出した。
(試料作成)
得られたガラス材のインゴットはそのまま肉眼観察の試料とした後に輪切りにし、両面を研磨して成分分析及び評価試験の試料とした。
Example 1 is an embodiment of the method of the present invention for producing an ultraviolet-resistant glass material into which nitrogen and fluorine are introduced.
Manufacturing:
(Porous body formation process)
A high-purity quartz glass porous body was formed using the VAD method. The porous body had a cylindrical shape with a diameter of 200 mm and a height of 300 mm, and a bulk density of about 0.42 g / cm 3 .
(Hydrogen introduction process)
The porous body was set in a microwave heating furnace with a frequency of 28 GHz, heated gradually in an atmosphere of hydrogen gas pressure of 200 Pa, heated up to 700 ° C. over 1 hour, and kept at the same temperature for 2 hours. . A microwave heating furnace whose inner wall was covered with a stainless steel material was used. The temperature of the furnace wall hardly increased by microwaves with a frequency of 28 GHz, and no contamination by metal impurities generated from the furnace wall was observed.
(Nitrogen introduction process)
The atmosphere in the furnace was replaced with nitrogen gas, the nitrogen gas pressure in the furnace was adjusted to 1 MPa, microwave heating was performed, and the temperature was maintained at 1000 ° C. for 10 hours.
(Fluorine introduction process)
After replacing the atmosphere in the furnace with He, He gas and SiF 4 were introduced into the furnace at a flow rate ratio of 900: 1. The pressure inside the furnace was maintained at 0.1 MPa, and during this time, microwave heating was performed to raise the temperature to 1000 ° C., and this state was maintained for 30 hours.
(Vitrification process)
After the introduction of fluorine was completed and the atmosphere was replaced with He, the temperature was raised to 1400 ° C. over 3 hours and kept at the same temperature for 1 hour to melt and vitrify the porous body.
The melt after vitrification was allowed to cool to room temperature in the furnace as it was, and then taken out as an ingot of glass material.
(Sample preparation)
The obtained ingot of the glass material was used as it was as a sample for observation with the naked eye, and then cut into round pieces, and both surfaces were polished to prepare samples for component analysis and evaluation tests.

成分分析:
(窒素含有量) 窒素濃度測定用のサンプルを用意し、レーザラマン分光光度計を用いて溶存窒素濃度を測定し、その後ガスクロマトグラフ装置(Agilent Technologies)で全体の窒素濃度を測定した。Si−N結合濃度は、レーザラマン分光光度計の測定値とガスクロマトグラフ装置の測定値との差分をとり、求めた。Si−N結合濃度は、10000wtppmであった。
(Si−F結合含有量) 両面研磨試料について、レーザラマン分光光度計を用いてSi−F結合の濃度を測定した。実施例1の試料はSi−F結合の含有量が3800wtppmであった。
(OH基含有量) 両面研磨試料について、FT-IR(フーリエ変換赤外分光光度計)を用いてOH基の濃度を測定した。実施例1の試料はOH基の含有量が10wtppm以下であった。
(金属不純物含有量) 両面研磨試料について、ICP-MS(誘導結合プラズマ・質量分析計)を用いて、Li、Na、K、Ca、Ti、Cr、Fe、Ni、Cu、Ge、Alの各元素の含有量を測定した。実施例1の試料は何れの元素についても含有量が20ppb以下であった。
(欠陥前駆体) 両面研磨試料について、レーザラマン分光光度計を用いてSi3員環、4員環の強度を測定した。実施例1の試料は、窒素導入を行わなかった実施例2に比べ、3員環、4員環の強度がSiOに対する強度比で約30%であった。
Component analysis:
(Nitrogen content) A sample for measuring the nitrogen concentration was prepared, the dissolved nitrogen concentration was measured using a laser Raman spectrophotometer, and then the total nitrogen concentration was measured with a gas chromatograph (Agilent Technologies). The Si—N bond concentration was obtained by taking the difference between the measured value of the laser Raman spectrophotometer and the measured value of the gas chromatograph apparatus. The Si—N bond concentration was 10000 wtppm.
(Si-F bond content) About the double-sided polishing sample, the density | concentration of Si-F bond was measured using the laser Raman spectrophotometer. The sample of Example 1 had a Si-F bond content of 3800 wtppm.
(OH group content) About the double-sided polishing sample, the density | concentration of OH group was measured using FT-IR (Fourier transform infrared spectrophotometer). The sample of Example 1 had an OH group content of 10 wtppm or less.
(Metal impurity content) About double-sided polished samples, each of Li, Na, K, Ca, Ti, Cr, Fe, Ni, Cu, Ge, and Al using ICP-MS (inductively coupled plasma / mass spectrometer) Elemental content was measured. The sample of Example 1 had a content of 20 ppb or less for any element.
(Defect precursor) About the double-sided polishing sample, the intensity | strength of Si 3-membered ring and 4-membered ring was measured using the laser Raman spectrophotometer. In the sample of Example 1, the strength of the three-membered ring and the four-membered ring was about 30% in terms of the strength ratio to SiO 2 as compared with Example 2 in which nitrogen was not introduced.

評価試験:
(肉眼検査) インゴットの状態で透明性と曇り、気泡の混入状態を観察した。実施例1のガラスインゴットは透明であり、曇りや気泡は確認できなかった。
(屈折率) 両面研磨試料について、屈折率測定装置を用い、絶対屈折率を測定した。実施例1の試料は屈折率が1.4575(波長633nm)であった。
(紫外光透過率) 両面研磨試料について、真空紫外分光光度計(日本分光社製)を用いて透過率を測定した。実施例1の試料は波長193nmにおける紫外光透過率が99.80%/cmであった。
(複屈折) 両面研磨試料について、複屈折測定装置(Hide Instruments社製)を用いて複屈折を測定した。実施例1の試料は直径比約80%のエリアで2nm/cm(波長633nm)以内であった。
(屈折率均質性) 両面研磨試料について、フィゾー式干渉計(富士写真光機社製)を用いて屈折率均質性を測定した。実施例1の試料は直径比約80%のエリアで1×10−6(波長633nm)以内であった。
(耐紫外光性) 両面研磨試料について、ArFエキシマレーザ(波長193.4nm)を80mJ/cm、100Hz、1×10の条件で連続照射し、照射後の紫外光透過率を初期透過率と比較して劣化率を求めた。実施例1の試料は劣化率が1%以下であった。
Evaluation test:
(Visual inspection) In the state of the ingot, transparency and cloudiness, and the state of mixing of bubbles were observed. The glass ingot of Example 1 was transparent, and cloudiness and bubbles could not be confirmed.
(Refractive index) About the double-sided polishing sample, the absolute refractive index was measured using the refractive index measuring apparatus. The sample of Example 1 had a refractive index of 1.4575 (wavelength 633 nm).
(Ultraviolet light transmittance) About the double-sided polishing sample, the transmittance | permeability was measured using the vacuum ultraviolet spectrophotometer (made by JASCO Corporation). The sample of Example 1 had an ultraviolet light transmittance of 99.80% / cm at a wavelength of 193 nm.
(Birefringence) About the double-sided grinding | polishing sample, birefringence was measured using the birefringence measuring apparatus (made by Hide Instruments). The sample of Example 1 was within 2 nm / cm (wavelength 633 nm) in an area with a diameter ratio of about 80%.
(Refractive index homogeneity) The refractive index homogeneity of the double-sided polished sample was measured using a Fizeau interferometer (manufactured by Fuji Photo Optical Co., Ltd.). The sample of Example 1 was within 1 × 10 −6 (wavelength 633 nm) in an area having a diameter ratio of about 80%.
(Ultraviolet light resistance) The double-side polished sample was continuously irradiated with an ArF excimer laser (wavelength: 193.4 nm) under the conditions of 80 mJ / cm 2 , 100 Hz, and 1 × 10 6 , and the ultraviolet light transmittance after irradiation was the initial transmittance. The deterioration rate was calculated in comparison with The sample of Example 1 had a deterioration rate of 1% or less.

(比較例1)
実施例1と同様の過程に従って、ただしマイクロ波加熱炉を用いず、電気炉を用いてガラス材を製造した。
製造:
(多孔質体形成過程)
実施例1と同様にして石英ガラス多孔質体を形成した。この多孔質体のサイズは直径190mm、高さ2300mmの円柱状であり、かさ密度は0.39g/cmであった。
(水素導入過程)
電気炉内に前記多孔質体をセットし、水素ガス圧200Paの雰囲気下に徐々に加熱し、10時間を要して700℃に昇温し、同温度に10時間保持した。
(窒素導入過程)
炉内の雰囲気を窒素ガスで置換し、炉内圧を0.1MPaに調整した後、電気炉加熱により1000℃に40時間保持した。
(フッ素導入過程)
炉内の雰囲気をHeで置換した後、HeガスとSiFとを流量比で900:1として炉内に導入した。炉内圧を0.1MPaに保ち、温度を1000℃に昇温し、その状態に50時間保持した。
(ガラス化過程)
フッ素導入を終了し、雰囲気をHeに置換した後、15時間を要して1400℃に昇温し、同温度に5時間保持して多孔質体をガラス化させた。
ガラス化後の溶融体は、そのまま炉内で室温まで放冷した後、ガラス材のインゴットとして取り出した。
(試料作成)
得られたガラス材のインゴットはそのまま肉眼観察の試料とした後に輪切りにし、両面を研磨して成分分析及び評価試験の試料とした。
(Comparative Example 1)
According to the same process as in Example 1, a glass material was manufactured using an electric furnace without using a microwave heating furnace.
Manufacturing:
(Porous body formation process)
A quartz glass porous body was formed in the same manner as in Example 1. The porous body had a cylindrical shape with a diameter of 190 mm and a height of 2300 mm, and a bulk density of 0.39 g / cm 3 .
(Hydrogen introduction process)
The porous body was set in an electric furnace, gradually heated in an atmosphere with a hydrogen gas pressure of 200 Pa, heated to 700 ° C. over 10 hours, and held at the same temperature for 10 hours.
(Nitrogen introduction process)
The atmosphere in the furnace was replaced with nitrogen gas, the furnace pressure was adjusted to 0.1 MPa, and then maintained at 1000 ° C. for 40 hours by electric furnace heating.
(Fluorine introduction process)
After replacing the atmosphere in the furnace with He, He gas and SiF 4 were introduced into the furnace at a flow rate ratio of 900: 1. The furnace pressure was maintained at 0.1 MPa, the temperature was raised to 1000 ° C., and the state was maintained for 50 hours.
(Vitrification process)
After the introduction of fluorine was completed and the atmosphere was replaced with He, the temperature was raised to 1400 ° C. over 15 hours and kept at the same temperature for 5 hours to vitrify the porous body.
The melt after vitrification was allowed to cool to room temperature in the furnace as it was, and then taken out as an ingot of glass material.
(Sample preparation)
The obtained ingot of the glass material was used as it was as a sample for observation with the naked eye, and then cut into round pieces, and both surfaces were polished to prepare samples for component analysis and evaluation tests.

成分分析:
実施例1と同様にして成分分析を行った。
(溶存窒素含有量)22000wtppm
(Si−F結合含有量)4700wtppm
(OH基含有量)10wtppm以下
(金属不純物含有量)20ppb以下
Component analysis:
Component analysis was performed in the same manner as in Example 1.
(Dissolved nitrogen content) 22000wtppm
(Si-F bond content) 4700wtppm
(OH group content) 10 wtppm or less (metal impurity content) 20 ppb or less

実施例1と同様にして評価試験を行った。
評価試験:
(肉眼検査) 比較例1のインゴットは白濁した。
屈折率、紫外光透過率、複屈折率、屈折率均質性、耐紫外光性は、測定困難であった。
An evaluation test was conducted in the same manner as in Example 1.
Evaluation test:
(Visual examination) The ingot of Comparative Example 1 was clouded.
Refractive index, ultraviolet light transmittance, birefringence index, refractive index homogeneity, and ultraviolet light resistance were difficult to measure.

前記実施例1と比較例1との比較から以下の事実が認められる。
(1)実施例1の方法により、比較的短時間で優秀な耐紫外光性を有するガラス材が得られた。多孔質体を用いたことによって水素、不活性ガス、窒素が多孔質体ブロックの外周部から内奥部まで常に均一濃度を保つように供給され、かつ周波数28GHzのマイクロ波加熱炉を用いたことによって多孔質体ブロックの外周部と内奥部とを問わず一斉に加熱され、各機能性ガスがガラス基材全体に一様に導入されたためと考えられる。
(2)一方、従来の電気炉加熱を用いた比較例1は、各過程で比較的長時間をかけたにもかかわらず、耐紫外光光学材料として満足できる結果が得られなかった。これは多孔質体を用いたとしてもブロックの外周部から熱伝導により加熱されたために、水素、不活性ガス、窒素が主として外周部で消費され、内奥部ではガス濃度が低下し、その結果、全体としては必要量の機能性ガスがガラス材に十分導入されなかったためと考えられる。またインゴットが白濁したのも、外周部からの加熱により気泡が内奥部に閉じこめられたためと考えられる。
From the comparison between Example 1 and Comparative Example 1, the following facts are recognized.
(1) By the method of Example 1, a glass material having excellent ultraviolet light resistance was obtained in a relatively short time. By using a porous body, hydrogen, inert gas, and nitrogen were supplied so as to always maintain a uniform concentration from the outer periphery to the inner back of the porous body block, and a microwave heating furnace having a frequency of 28 GHz was used. This is considered to be because the functional gas was uniformly introduced into the entire glass base material by heating all at once regardless of the outer peripheral portion and the inner back portion of the porous body block.
(2) On the other hand, in Comparative Example 1 using conventional electric furnace heating, although a relatively long time was taken in each process, a satisfactory result as an ultraviolet-resistant optical material was not obtained. This is because even if a porous body is used, it is heated by heat conduction from the outer periphery of the block, so that hydrogen, inert gas, and nitrogen are mainly consumed at the outer periphery, and the gas concentration decreases at the inner back, resulting in the result. This is probably because the required amount of functional gas was not sufficiently introduced into the glass material. Moreover, it is thought that the ingot became cloudy because the bubbles were trapped in the inner back by heating from the outer periphery.

実施例2は、希ガスとフッ素が導入された耐紫外光性ガラス材を製造する本発明方法の一実施形態である。
製造:
(多孔質体形成過程)
VAD法を用いて高純度の石英ガラス多孔質体を形成した。この多孔質体のサイズは直径190mm、高さ300mmの円柱状であり、かさ密度は0.43g/cmであった。
(水素導入過程)
周波数28GHzのマイクロ波加熱炉内に前記多孔質体をセットし、水素ガス圧200Paの雰囲気下に徐々に加熱し、1時間を要して700℃に昇温し、同温度に2時間保持した。
(不活性ガス導入過程)
炉内の雰囲気をHeガスで置換し、炉内圧を1MPaに調整した後、マイクロ波加熱を作動し1000℃に10時間保持した。
(フッ素導入過程)
次いで、HeガスとSiFとを流量比で900:1として炉内に導入した。炉内圧を0.1MPaに保ち、この間にマイクロ波加熱を行い温度を1000℃に昇温し、その状態に30時間保持した。
(ガラス化過程)
フッ素導入を停止し、3時間を要して1400℃に昇温し、同温度に1時間保持して多孔質体をガラス化させた。
ガラス化後の溶融体は、そのまま炉内で室温まで放冷した後、ガラス材のインゴットとして取り出した。
(試料作成)
得られたガラス材のインゴットはそのまま肉眼観察の試料とした後に輪切りにし、両面を研磨して成分分析及び評価試験の試料とした。
Example 2 is an embodiment of the method of the present invention for producing an ultraviolet-resistant glass material into which a rare gas and fluorine are introduced.
Manufacturing:
(Porous body formation process)
A high-purity quartz glass porous body was formed using the VAD method. The porous body had a cylindrical shape with a diameter of 190 mm and a height of 300 mm, and a bulk density of 0.43 g / cm 3 .
(Hydrogen introduction process)
The porous body was set in a microwave heating furnace with a frequency of 28 GHz, heated gradually in an atmosphere of hydrogen gas pressure of 200 Pa, heated up to 700 ° C. over 1 hour, and kept at the same temperature for 2 hours. .
(Inert gas introduction process)
After the atmosphere in the furnace was replaced with He gas and the furnace pressure was adjusted to 1 MPa, microwave heating was activated and held at 1000 ° C. for 10 hours.
(Fluorine introduction process)
Next, He gas and SiF 4 were introduced into the furnace at a flow rate ratio of 900: 1. The pressure inside the furnace was maintained at 0.1 MPa, and during this period, microwave heating was performed to raise the temperature to 1000 ° C., and this state was maintained for 30 hours.
(Vitrification process)
The introduction of fluorine was stopped, the temperature was raised to 1400 ° C. over 3 hours, and maintained at the same temperature for 1 hour to vitrify the porous body.
The melt after vitrification was allowed to cool to room temperature in the furnace as it was, and then taken out as an ingot of glass material.
(Sample preparation)
The obtained ingot of the glass material was used as it was as a sample for observation with the naked eye, and then cut into round pieces, and both surfaces were polished to prepare samples for component analysis and evaluation tests.

実施例1と同様にして成分分析を行った。
成分分析:
(溶存Ar含有量) 9800wtppm
(Si−F結合含有量) 4200wtppm
(OH基含有量) 10wtppm以下
(金属不純物含有量) 20ppb以下
(欠陥前駆体) 実施例2の試料は、3員環、4員環の強度がSiOに対する強度比で約30%であった。
Component analysis was performed in the same manner as in Example 1.
Component analysis:
(Dissolved Ar content) 9800wtppm
(Si-F bond content) 4200wtppm
(OH group content) 10 wtppm or less (metal impurity content) 20 ppb or less (defect precursor) In the sample of Example 2, the strength of the three-membered ring and the four-membered ring was about 30% in terms of the strength ratio to SiO 2 . .

実施例1と同様にして評価試験を行った。
評価試験:
(肉眼検査) 実施例4のガラスインゴットは透明であり、気泡は確認できなかった。
(屈折率) 1.4558(波長633nm)
(紫外光透過率) 99.75%/cm(波長193nm)
(複屈折率) 直径比約80%のエリアで2nm/cm(波長633nm)以内
(屈折率均質性) 直径比約80%のエリアで4×10−6(波長633nm)以内
(耐紫外光性) 劣化率1%以下(波長193.4nm、80mJ/cm、100Hz、1×10時間)
An evaluation test was conducted in the same manner as in Example 1.
Evaluation test:
(Geoscopic examination) The glass ingot of Example 4 was transparent, and bubbles could not be confirmed.
(Refractive index) 1.4558 (wavelength 633 nm)
(Ultraviolet light transmittance) 99.75% / cm (wavelength 193 nm)
(Birefringence) Within an area with a diameter ratio of about 80%, within 2 nm / cm (wavelength 633 nm) (refractive index homogeneity) Within an area with a diameter ratio of about 80%, within 4 × 10 −6 (wavelength 633 nm) (ultraviolet light resistance) ) Deterioration rate 1% or less (wavelength 193.4 nm, 80 mJ / cm 2 , 100 Hz, 1 × 10 6 hours)

本発明は、耐紫外光ガラス材の製造に利用可能である。   The present invention can be used for the production of an ultraviolet resistant glass material.

本発明の一実施形態における紫外域透過スペクトルを示すグラフである。It is a graph which shows the ultraviolet region transmission spectrum in one Embodiment of this invention.

Claims (4)

ガラス多孔質体を水素ガス雰囲気下でマイクロ波加熱処理した後、窒素ガス圧力10Pa〜10MPaの窒素ガス雰囲気下でフッ素ガス又はフッ化物ガスを導入することなくマイクロ波加熱処理することを特徴とする耐紫外光ガラス材の製造方法。 The glass porous body is subjected to microwave heat treatment in a hydrogen gas atmosphere, and then subjected to microwave heat treatment in a nitrogen gas atmosphere having a nitrogen gas pressure of 10 Pa to 10 MPa without introducing fluorine gas or fluoride gas. A method for producing an ultraviolet resistant glass material. ガラス多孔質体を水素ガス雰囲気下でマイクロ波加熱処理した後、窒素ガス圧力10Pa〜10MPaの窒素ガス雰囲気下でマイクロ波加熱処理し、次いで雰囲気を不活性ガス置換し、フッ素ガス又フッ化物ガスを導入しながらマイクロ波加熱処理してガラス化することを特徴とする耐紫外光ガラス材の製造方法。 The glass porous body is subjected to a microwave heat treatment in a hydrogen gas atmosphere, and then subjected to a microwave heat treatment in a nitrogen gas atmosphere at a nitrogen gas pressure of 10 Pa to 10 MPa, and the atmosphere is then replaced with an inert gas to obtain a fluorine gas or a fluoride gas. A method for producing an ultraviolet light-resistant glass material, wherein the glass is vitrified by a microwave heat treatment while introducing . ガラス多孔質体を水素ガス雰囲気下でマイクロ波加熱処理した後、雰囲気を不活性ガス置換し、不活性ガス圧力10Pa〜10MPa下、マイクロ波加熱処理し、さらに、フッ素ガス又フッ化物ガスを導入しながらマイクロ波加熱処理してガラス化することを特徴とする耐紫外光ガラス材の製造方法。 After the glass porous body is subjected to microwave heat treatment in a hydrogen gas atmosphere, the atmosphere is replaced with an inert gas, the microwave heat treatment is performed under an inert gas pressure of 10 Pa to 10 MPa, and fluorine gas or fluoride gas is introduced. A method for producing an ultraviolet resistant glass material, characterized by vitrification by microwave heat treatment. マイクロ波加熱処理を周波数20GHz〜300GHzで行うことを特徴とする請求項1〜3のいずれか1項に記載の耐紫外光ガラス材の製造方法。 The method for producing an ultraviolet light resistant glass material according to any one of claims 1 to 3 , wherein the microwave heat treatment is performed at a frequency of 20 GHz to 300 GHz .
JP2003299285A 2003-08-22 2003-08-22 Method for producing UV-resistant glass material Expired - Fee Related JP4364583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299285A JP4364583B2 (en) 2003-08-22 2003-08-22 Method for producing UV-resistant glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299285A JP4364583B2 (en) 2003-08-22 2003-08-22 Method for producing UV-resistant glass material

Publications (2)

Publication Number Publication Date
JP2005067947A JP2005067947A (en) 2005-03-17
JP4364583B2 true JP4364583B2 (en) 2009-11-18

Family

ID=34404549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299285A Expired - Fee Related JP4364583B2 (en) 2003-08-22 2003-08-22 Method for producing UV-resistant glass material

Country Status (1)

Country Link
JP (1) JP4364583B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329347B2 (en) * 2009-08-27 2013-10-30 湖北工業株式会社 Optical fiber for ultraviolet transmission and method for manufacturing the same

Also Published As

Publication number Publication date
JP2005067947A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
EP1735249B1 (en) Synthetic silica glass optical material and method of producing it
EP2495220B1 (en) Optical member for deep ultraviolet and process for producing same
WO1993000307A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
IL180213A (en) Quartz glass jig for processing semiconductor wafers and method for producing the jig
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
EP1603843A2 (en) Optical synthetic quartz glass and method for producing the same
JP2003246641A (en) Quartz glass bland for optical member, manufacturing method thereof and application for the same
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
KR101740067B1 (en) OPTICAL MEMBER COMPRISING SILICA GLASS CONTAINING TiO
JP2000264650A (en) Production of optical quartz glass for excimer laser and vertical type heating furnace
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP4364583B2 (en) Method for producing UV-resistant glass material
JP2003183037A (en) Quartz glass blank for optical part and use thereof
JP2000191329A (en) Production of optical quartz glass for excimer laser
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
JP4302460B2 (en) Method for producing UV-resistant optical material
JP3926371B2 (en) Silica glass plate and method for producing the same
JP2005067946A (en) Ultraviolet resistant glass material
JP2003201124A (en) Synthetic quartz glass for optical member and its manufacturing method
JP2008189482A (en) Quartz glass and quartz glass formed article
JP4177078B2 (en) Synthetic quartz glass material for optical components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees