JP4355928B2 - Manufacturing method of field emission cold cathode - Google Patents

Manufacturing method of field emission cold cathode Download PDF

Info

Publication number
JP4355928B2
JP4355928B2 JP2004046142A JP2004046142A JP4355928B2 JP 4355928 B2 JP4355928 B2 JP 4355928B2 JP 2004046142 A JP2004046142 A JP 2004046142A JP 2004046142 A JP2004046142 A JP 2004046142A JP 4355928 B2 JP4355928 B2 JP 4355928B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
nanotube film
cold cathode
field emission
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004046142A
Other languages
Japanese (ja)
Other versions
JP2004281388A (en
Inventor
尊 藤井
昌男 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004046142A priority Critical patent/JP4355928B2/en
Publication of JP2004281388A publication Critical patent/JP2004281388A/en
Application granted granted Critical
Publication of JP4355928B2 publication Critical patent/JP4355928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、均一な形状の配向性カーボンナノチューブ(以下、CNT)膜を電極上にパターン形成させることにより、低電圧で均一な強度の電界電子放出が得られる、冷陰極の製造に関する。本技術は例えばフィールド・エミッション・ディスプレイ(以下、FED)などの薄型画像表示装置に応用できる。 The present invention relates to the manufacture of a cold cathode in which uniform-shaped oriented carbon nanotube (hereinafter referred to as CNT) film is patterned on an electrode to obtain field electron emission with uniform intensity at a low voltage. The present technology can be applied to a thin image display device such as a field emission display (hereinafter referred to as FED).

CNTは、1991年に飯島澄男氏によって発見されたもので(非特許文献1参照)、一般的な形状は、直径0.5〜100nm、長さ1〜100μmであり、非常に細長い中空のチューブ状の炭素材料である。近年、CNTは電界電子放出型の電子源としての応用において期待されている。電界電子放出型の電子源が並んだ電極には負の電圧がかかり、さらに熱を放出しないため、冷陰極と呼ばれる。特に、FEDなどの画像表示装置の電子源としてCNTを用いる場合は、一本のCNTからでは電子放出量が不足なため、多数本が必要である。さらに、FEDの各画素を光らせる固有の電子源が必要なため、各々の電子源を絶縁させて制御回路に通電させる必要がある。 CNT was discovered by Sumio Iijima in 1991 (see Non-Patent Document 1). The general shape is 0.5-100 nm in diameter and 1-100 μm in length, and is a very elongated hollow tube. Carbon material. In recent years, CNTs are expected to be applied as field electron emission type electron sources. A negative voltage is applied to the electrode on which the field electron emission type electron sources are arranged, and further heat is not emitted, so it is called a cold cathode. In particular, when CNT is used as an electron source of an image display device such as an FED, a large number of electrons are required because the amount of emitted electrons is insufficient from one CNT. Furthermore, since a unique electron source for illuminating each pixel of the FED is required, it is necessary to insulate each electron source and energize the control circuit.

CNTを用いた電界電子放出型冷陰極の製造には様々な方法が知られており、別途調製したCNTを電極に付着させる方法と、電極に直接CNTを成長させる方法とがある。別途調製したCNTを電極に付着させる方法としては、CNTを導電性ペーストと混ぜ、スクリーン印刷で電極にパターン形成する方法(例えば、特許文献1参照)、CNTを溶剤やバインダーと混ぜ、滴下、塗布、または噴霧させることによって電極上にCNT層を形成する方法(例えば、特許文献2参照)、CNTを溶剤やバインダーと混ぜ、金属メッシュを通して電極上に押し出す方法(例えば、非特許文献2参照)、CNT懸濁液をフィルターに通すことでフィルター表面にCNT層を形成させ、該CNT層を電極に転写する方法(例えば、非特許文献3参照)、などが挙げられる。 Various methods are known for producing a field electron emission cold cathode using CNT, and there are a method of attaching CNT separately prepared to an electrode and a method of growing CNT directly on the electrode. Separately prepared CNTs can be attached to the electrode by mixing the CNT with a conductive paste and forming a pattern on the electrode by screen printing (for example, see Patent Document 1), mixing the CNT with a solvent or a binder, dropping and applying. Or a method of forming a CNT layer on an electrode by spraying (for example, see Patent Document 2), a method of mixing CNT with a solvent or a binder, and extruding the electrode through a metal mesh (for example, see Non-Patent Document 2), Examples include a method of forming a CNT layer on the filter surface by passing the CNT suspension through a filter, and transferring the CNT layer to an electrode (for example, see Non-Patent Document 3).

上述の非特許文献3に類する転写法としては、電界電子放出型冷陰極の製造方法には触れていないが、基板上に配向性のあるCNT膜を成長させ、該配向性CNT膜を第二の基板に転写する方法も開示されている(例えば、特許文献3参照)。また、電極に直接CNTを成長させる方法としては、電極基板表面の所定の位置に触媒を付着させCVDを行うことで、電極に垂直配向したCNTを成長させる方法がある(例えば、特許文献4、5参照)。 As a transfer method similar to the above-mentioned Non-Patent Document 3, although a manufacturing method of a field electron emission type cold cathode is not mentioned, an oriented CNT film is grown on a substrate, and the oriented CNT film is used as a second method. Also disclosed is a method of transferring to the substrate (for example, see Patent Document 3). Further, as a method for directly growing CNTs on an electrode, there is a method for growing CNTs vertically aligned on an electrode by attaching a catalyst to a predetermined position on the electrode substrate surface and performing CVD (for example, Patent Document 4, 5).

特開平11−260249号公報JP-A-11-260249 特開2000−340098号公報JP 2000-340098 A WO 00/73204号公報WO 00/73204 WO 00/30141号公報WO 00/30141 Publication 特開2001−15077号公報JP 2001-15077 A S.Iijima, "Helical microtubules of graphite carbon", Nature, 354, p56-58 (1991)S.Iijima, "Helical microtubules of graphite carbon", Nature, 354, p56-58 (1991) W.B.Choiら, "Fully sealed high-brightness carbon-nanotube field-emission display",Applied Physics Letters, 75, 20, p3129-3131 (1999)W.B.Choi et al., "Fully sealed high-brightness carbon-nanotube field-emission display", Applied Physics Letters, 75, 20, p3129-3131 (1999) W.A.de Heerら, "A Carbon Nanotube Field-Emission Electron Source", Science, 270, p1179-1180 (1995)W.A.de Heer et al., "A Carbon Nanotube Field-Emission Electron Source", Science, 270, p1179-1180 (1995)

先述の特許文献1または2、あるいは非特許文献2のように、CNTを溶剤やバインダーと混ぜ、電極に付着させる方法は、電極とCNTとの密着力を強くし電気的にも良く導通させるという方法ではある。しかしながらCNTのようなナノスケールの物質は他の流動性物質と混ぜようとしても凝集し易く、均一に混練させるのは難しい。CNTと他の流動性物質とが不均一に混ざったままの状態で電極に付着させると、電極上の各電子源に含まれるCNTの密度が一定でなく、また電子源の表面に凹凸が生じてしまうので画像表示装置としてはむらのある画像になってしまう。ここで、なるべく均一に混ざるように溶剤の比率を増やすという手段もあるが、電極に溶剤が残存すると、高真空中で電界電子放出を行う際の妨げとなるので、溶剤の使用は極力少なくすることが望ましい。 As described in Patent Document 1 or 2 or Non-Patent Document 2, the method of mixing CNT with a solvent or a binder and adhering to the electrode increases the adhesion between the electrode and the CNT and makes it electrically conductive. Is the way. However, nanoscale substances such as CNTs tend to aggregate even if they are mixed with other fluid substances, and it is difficult to uniformly knead them. If CNT and other fluid substances are attached to the electrode in an unevenly mixed state, the density of the CNT contained in each electron source on the electrode is not constant, and irregularities occur on the surface of the electron source. As a result, the image display device becomes uneven. Here, there is a means of increasing the ratio of the solvent so that it is mixed as uniformly as possible. However, if the solvent remains in the electrode, it becomes a hindrance when performing field electron emission in a high vacuum, so use of the solvent is minimized. It is desirable.

非特許文献3の転写方法では、バインダーを用いず、ろ過によって溶剤を除いている。しかしながら、この方法ではフィルター上のCNT膜を直に電極であるテフロン(登録商標)シートに付着させており、パターン形成には不向きである。また、電極とCNTとの密着力にも問題がある。 In the transfer method of Non-Patent Document 3, the solvent is removed by filtration without using a binder. However, in this method, the CNT film on the filter is directly attached to a Teflon (registered trademark) sheet as an electrode, and is not suitable for pattern formation. There is also a problem with the adhesion between the electrode and the CNT.

特許文献3には、上述したFEDの電界電子放出型冷陰極とするためには、該配向性CNT膜をパターン形成させ、各々を絶縁させて制御回路に通電させる必要があるが、電極基板表面に配向性CNT膜のパターンを形成する方法は開示されていない。 In Patent Document 3, in order to obtain the above-mentioned FED field electron emission type cold cathode, it is necessary to pattern-form the oriented CNT films and insulate each of them to energize the control circuit. No method for forming an oriented CNT film pattern is disclosed.

また、特許文献4あるいは5のように、電極基板上にCVDを施すことで、配向性CNT膜をパターン形成させる方法もあるが、これらの方法で用いられる電極基板は、高温の炭素析出条件下に曝されるため、電極基板の材質が劣化する場合がある。   In addition, as disclosed in Patent Document 4 or 5, there is a method of patterning an oriented CNT film by performing CVD on the electrode substrate. However, the electrode substrate used in these methods is subjected to high temperature carbon deposition conditions. As a result, the material of the electrode substrate may deteriorate.

ここで、電界電子放出型冷陰極を用いた画像表示装置を作動させるには、なるべく低電圧で、かつ均一な強度の電子放出をさせる方が有利である。そのため電界電子放出型冷陰極に用いられる多数本から成るCNT電子源の形状としては、電極に対して垂直方向に配向し高さが一定の膜を形成したものを単位とし、それらが互いに電気的に絶縁されているものが好ましい。垂直配向していれば、多数本から成るCNT電子源の総和として垂直方向に最大の電子放出強度が得られる。
各単位の表面の高さが一定で凹凸のない平滑な表面であれば、平面方向に対して均一な電子放出が得られる。また、電界電子放出の場合、CNTの先端と陽極との距離が近いほど電子を引き出す電圧を低くできる。そのため、各単位の電子源の高さが一定であれば、電子源の表面近くまで陽極を設置しても距離の均一性を保つことが可能で、同じ電子放出強度を得るのに引き出し電圧を低くできる。
Here, in order to operate the image display apparatus using the field electron emission type cold cathode, it is advantageous to emit electrons with as low voltage and uniform intensity as possible. Therefore, the shape of the CNT electron source consisting of a large number of CNT electron sources used for field electron emission type cold cathodes is a unit in which a film oriented in the vertical direction with respect to the electrode and having a constant height is formed, and these are electrically connected to each other. What is insulated is preferable. If it is vertically aligned, the maximum electron emission intensity can be obtained in the vertical direction as the sum of a plurality of CNT electron sources.
If the surface height of each unit is constant and the surface is smooth without unevenness, uniform electron emission can be obtained in the planar direction. In the case of field electron emission, the closer the distance between the tip of the CNT and the anode, the lower the voltage for extracting electrons. Therefore, if the height of the electron source of each unit is constant, it is possible to maintain the uniformity of the distance even if the anode is installed close to the surface of the electron source, and the extraction voltage is used to obtain the same electron emission intensity. Can be lowered.

本発明は上記に鑑み、多数本から成るCNTを電子源とした電界放出型冷陰極を製造する上で、垂直配向性があり表面が平滑で密度が均一のCNT膜を単位とした電子源を有し、各単位の高さが一定のまま互いに絶縁した状態でパターン形成することで、低電圧で均一な電子放出を可能とする、電界放出型冷陰極の製造方法を提供することを目的とする。   In view of the above, the present invention provides an electron source based on a CNT film having a vertical alignment, a smooth surface, and a uniform density in manufacturing a field emission cold cathode using a plurality of CNTs as an electron source. It is an object of the present invention to provide a method for manufacturing a field emission cold cathode, which enables uniform electron emission at a low voltage by forming a pattern in a state where each unit has a constant height and is insulated from each other. To do.

上記課題を解決するための手段として、本発明の電界放出型冷陰極の製造方法では、基板表面上に配向性のあるCNT膜を作製する工程と、電極基板表面に導電性バインダーをパターン形成させる工程と、該配向性CNT膜の表面と該導電性バインダーの表面とを接着する工程と、必要に応じて該導電性バインダーを硬化させる工程と、該配向性CNT膜のうち該導電性バインダーと接着した部分のみを作製した基板から剥離することを特徴としている。   As means for solving the above problems, in the method of manufacturing a field emission cold cathode according to the present invention, a step of forming an oriented CNT film on a substrate surface and a pattern formation of a conductive binder on the electrode substrate surface A step of bonding the surface of the oriented CNT film and the surface of the conductive binder, a step of curing the conductive binder as required, and the conductive binder of the oriented CNT film; Only the bonded portion is peeled off from the manufactured substrate.

すなわち、本発明の一は、電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成させる電界放出型冷陰極の製造方法において、(1)基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、(4)電極基板表面に導電性バインダーをパターン形成させる工程と、(5)該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、電界放出型冷陰極の製造方法(A法)である。   That is, according to one aspect of the present invention, in the method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on the electrode substrate surface, (1) an oriented carbon nanotube film is produced on the base substrate surface And (4) patterning a conductive binder on the electrode substrate surface, and (5) bonding the surface of the oriented carbon nanotube film and the surface of the conductive binder, and then bonding the conductive binder The method of manufacturing a field emission cold cathode (Method A) includes a step of transferring the oriented carbon nanotube film by peeling the base substrate while leaving the oriented carbon nanotube film portion.

また、A法において、(1)工程と(4)工程の間に、(2)該配向性カーボンナノチューブ膜の表面を可逆的接着性表面を有する可撓性基板の表面に接着後、該可逆的接着性表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程を介在させることも好ましい。すなわち、本発明の他の一は、電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成させる電界放出型冷陰極の製造方法において、(1)基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、(2)該配向性カーボンナノチューブ膜の表面を可逆的接着性表面を有する可撓性基板の表面に接着後、該可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、(4)電極基板表面に導電性バインダーをパターン形成させる工程と、(5’)該可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、電界放出型冷陰極の製造方法(B法)である。   In the method A, between the steps (1) and (4), (2) the surface of the oriented carbon nanotube film is bonded to the surface of a flexible substrate having a reversible adhesive surface, and then the reversible It is also preferable to intervene a step of transferring the oriented carbon nanotube film by peeling off the basic substrate while leaving the oriented carbon nanotube film adhered to the static adhesive surface. That is, another aspect of the present invention is a method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on the electrode substrate surface. (1) An oriented carbon nanotube film on the base substrate surface And (2) bonding the surface of the oriented carbon nanotube film to the surface of a flexible substrate having a reversible adhesive surface, and then attaching the oriented carbon nanotube film adhered to the surface of the flexible substrate. Leaving the base substrate peeled off and transferring the oriented carbon nanotube film; (4) patterning a conductive binder on the surface of the electrode substrate; and (5 ′) transferred to the flexible substrate. After adhering the surface of the oriented carbon nanotube film and the surface of the conductive binder, the flexible substrate is peeled off leaving the oriented carbon nanotube film part adhered to the conductive binder. Comprising the step of transferring the oriented carbon nanotube film Te, a field emission type cold cathode manufacturing method (B method).

さらに、B法において、(2)工程と(4)工程の間に、(3)第一の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面を第二の可逆的接着性表面を有する可撓性基板の表面に接着後、該第二の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して第一の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を介在させることがより好ましい。すなわち、本発明の他の一は、電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成させる電界放出型冷陰極の製造方法において、(1)基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、(2)該配向性カーボンナノチューブ膜の表面を第一の可逆的接着性表面を有する可撓性基板の表面に接着後、該可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、(3)該第一の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面を第二の可逆的接着性表面を有する可撓性基板の表面に接着後、該第二の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該第一の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、(4)電極基板表面に導電性バインダーをパターン形成させる工程と、(5’)該第二の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該第二の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、電界放出型冷陰極の製造方法(C法)である。C法には、(3)の工程を1回行う方法の他、(3)の工程を複数回行う方法も包含される。   Further, in the method B, between the steps (2) and (4), (3) the surface of the oriented carbon nanotube film transferred to the first flexible substrate is replaced with the second reversible adhesive surface. After bonding to the surface of a flexible substrate having a surface, the first flexible substrate is peeled off, leaving the oriented carbon nanotube film adhered to the second flexible substrate surface, and the oriented carbon nanotube film is transferred. More preferably, an intervening step is interposed. That is, another aspect of the present invention is a method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on the electrode substrate surface. (1) An oriented carbon nanotube film on the base substrate surface And (2) an oriented carbon bonded to the surface of the flexible substrate after bonding the surface of the oriented carbon nanotube film to the surface of the flexible substrate having the first reversible adhesive surface. Removing the base substrate leaving the nanotube film and transferring the oriented carbon nanotube film; and (3) transferring the surface of the oriented carbon nanotube film transferred to the first flexible substrate to the second After adhering to the surface of a flexible substrate having a reversible adhesive surface, the first flexible substrate is peeled off and oriented while leaving the oriented carbon nanotube film adhered to the second flexible substrate surface. Carbon nano And (4) patterning a conductive binder on the surface of the electrode substrate, and (5 ′) the surface of the oriented carbon nanotube film transferred to the second flexible substrate. And bonding the surface of the conductive binder to the surface of the conductive binder, and then transferring the oriented carbon nanotube film by peeling off the second flexible substrate leaving a portion of the oriented carbon nanotube film adhered to the conductive binder. And a method of manufacturing a field emission cold cathode (Method C). The method C includes a method in which the step (3) is performed once, as well as a method in which the step (3) is performed a plurality of times.

本発明の電界放出型冷陰極の製造方法によれば、外径が細く垂直配向性があり表面が平滑で密度が均一の多数本から成るCNTの膜を単位とした電子源を有し、各単位の表面が平滑で高さが一定のまま互いに絶縁した状態でパターン形成している、電界放出型冷陰極の製造が可能である。本発明の方法により製造された陰極を用いて、低電圧で作動し、均一な輝度の画像表示装置を得ることができる。   According to the method for producing a field emission cold cathode of the present invention, an electron source having a unit of a multi-walled CNT film having a thin outer diameter, a vertical alignment, a smooth surface, and a uniform density is provided. It is possible to manufacture a field emission cold cathode in which the surface of the unit is smooth and the pattern is formed in a state of being insulated from each other with a constant height. By using the cathode manufactured by the method of the present invention, it is possible to obtain an image display device that operates at a low voltage and has uniform luminance.

以下に本発明を詳しく説明する。本発明の一であるA法は、(1)基板表面上に配向性のあるCNT膜を作製する工程と、(4)電極基板表面に導電性バインダーをパターン形成させる工程と、(5)該配向性CNT膜の表面と該導電性バインダーの表面とを接着する工程と、必要に応じて該導電性バインダーを硬化させる工程と、該配向性CNT膜のうち該導電性バインダーと接着した部分のみを作製した基板から剥離する工程により実施できる。   The present invention is described in detail below. A method which is one of the present invention includes (1) a step of producing an oriented CNT film on the substrate surface, (4) a step of patterning a conductive binder on the electrode substrate surface, and (5) A step of bonding the surface of the oriented CNT film and the surface of the conductive binder, a step of curing the conductive binder as necessary, and only a portion of the oriented CNT film bonded to the conductive binder. It can implement by the process of peeling from the produced board | substrate.

まず、(1)成長用の基板表面に配向性CNT膜を成長させる工程としては、単独では触媒作用を持たない元素あるいは化合物を被覆し他の触媒作用を持つ金属元素あるいはその化合物を担持させた支持基板をCNT成長用基礎基板として用い、炭素化合物を分解することにより、該成長用基礎基板表面上に該基板と垂直方向に配向したCNT膜を成長させる。 First, (1) as a step of growing an oriented CNT film on the surface of a substrate for growth, an element or compound having no catalytic action alone was coated and a metal element having other catalytic action or a compound thereof was supported. By using the support substrate as a base substrate for CNT growth and decomposing the carbon compound, a CNT film oriented in a direction perpendicular to the substrate is grown on the surface of the base substrate for growth.

ここで、支持基板としては、セラミックス、石英、又はシリコンウエハなどから成る基板が使用でき、中でもシリカアルミナ、又はアルミナ等から成るセラミックスの基板が好ましい。 Here, as the support substrate, a substrate made of ceramics, quartz, silicon wafer or the like can be used, and among them, a ceramic substrate made of silica alumina, alumina or the like is preferable.

単独では触媒作用を持たない元素あるいは化合物、すなわち、不活性物質は、アルミニウムまたはゲルマニウム、あるいはそれらの酸化物であることが好ましい。また、それら単独では触媒作用を持たない元素あるいは化合物(不活性物質)を被覆する方法が、真空蒸着法、電析法、あるいはスパッタリング法であることが好ましい。また、より安価で大面積に被覆できる方法としては、ゾルゲル法が好ましい。
該成長用基礎基板に触媒作用を持つ遷移金属または遷移金属化合物を担持させる方法としては、含浸法、浸漬法、あるいはゾルゲル法等の、一般的な金属担持方法で良く、容易にかつ均等に触媒を大面積の基板上に担持させる方法が採用できる。触媒の金属種としては、Fe、Co、Ni、あるいはMo等の重金属が好ましい。
The element or compound which does not have a catalytic action by itself, that is, the inert substance is preferably aluminum or germanium, or an oxide thereof. Moreover, it is preferable that the method of coating | coated the element or compound (inert substance) which does not have a catalytic action by them alone is a vacuum evaporation method, an electrodeposition method, or a sputtering method. Further, the sol-gel method is preferable as a method that can be applied to a large area at a lower cost.
As a method of supporting the transition metal or transition metal compound having a catalytic action on the basic substrate for growth, a general metal supporting method such as an impregnation method, a dipping method, or a sol-gel method may be used. Can be employed on a large-area substrate. The metal species of the catalyst is preferably a heavy metal such as Fe, Co, Ni, or Mo.

CNT膜を形成させる際に使用される炭素化合物は、適当な触媒の存在下で、CNTを生じさせるものなら何でも良く、例えば、メタン、エタン、プロパンなどの飽和炭化水素化合物、エチレン、プロピレン、アセチレンなどの不飽和炭化水素化合物、ベンゼン、トルエンなどの芳香族炭化水素化合物、メタノール、エタノール、アセトンなどの含酸素炭化水素化合物などが良く、好ましくは、メタン、エチレン、プロピレン、アセチレンである。該炭素化合物の導入形態としては、ガス状のまま導入しても良いし、アルゴンのような不活性ガスと混合して導入しても良いし、あるいは不活性ガス中の飽和蒸気として導入しても良い。また、ナノチューブに組み込まれるホウ素、窒素などのヘテロ元素を含む化合物を混ぜることで、ヘテロ元素含有ナノチューブとすることも可能である。該炭素化合物の分解反応としては、熱分解が最も一般的で、好ましい反応温度は400〜1100℃(より好ましくは500〜700℃)、好ましい反応圧力は1kPa〜1MPa(より好ましくは10〜300kPa)である。 The carbon compound used in forming the CNT film may be any carbon compound that generates CNTs in the presence of a suitable catalyst, such as saturated hydrocarbon compounds such as methane, ethane, and propane, ethylene, propylene, and acetylene. An unsaturated hydrocarbon compound such as benzene, toluene and the like, an oxygen-containing hydrocarbon compound such as methanol, ethanol, and acetone are preferable, and methane, ethylene, propylene, and acetylene are preferable. The carbon compound may be introduced in the form of a gas, mixed with an inert gas such as argon, or introduced as a saturated vapor in the inert gas. Also good. Further, a hetero element-containing nanotube can be obtained by mixing a compound containing a hetero element such as boron or nitrogen incorporated into the nanotube. As the decomposition reaction of the carbon compound, thermal decomposition is most common, a preferable reaction temperature is 400 to 1100 ° C. (more preferably 500 to 700 ° C.), and a preferable reaction pressure is 1 kPa to 1 MPa (more preferably 10 to 300 kPa). It is.

以上の第一の工程で作製した配向性CNT膜を構成するCNTの外径は10nm以下で、電界電子放出に有利である。また、該配向性CNT膜の膜面は基板に対して平行で表面は平滑である。さらに、該配向性CNT膜の高さ、CNTの密度は一定である。 The outer diameter of the CNT constituting the oriented CNT film produced in the first step is 10 nm or less, which is advantageous for field electron emission. The film surface of the oriented CNT film is parallel to the substrate and the surface is smooth. Furthermore, the height of the oriented CNT film and the density of CNTs are constant.

次に、(4)電極基板表面に導電性バインダーをパターン形成させる工程において使用する導電性バインダーとしては、電極とCNTとを機械的に接着させて、さらに電気的に通じさせる機能が必要である。また、電界放出型冷陰極は高真空下で電子を放出し、真空度が低下すると電子放出の機能も下がる。そのため、導電性バインダーとしては揮発成分を含まないものが好ましい。あるいは揮発成分を含んだとしても、電極とCNTとを接着させた後は、乾燥、加熱または洗浄等の方法によってなるべく除去することが望ましい。   Next, (4) the conductive binder used in the process of patterning the conductive binder on the surface of the electrode substrate requires a function of mechanically bonding the electrode and the CNT and further electrically connecting them. . In addition, the field emission cold cathode emits electrons under a high vacuum, and the function of electron emission decreases when the degree of vacuum decreases. Therefore, the conductive binder preferably does not contain a volatile component. Or even if it contains a volatile component, after bonding an electrode and CNT, it is desirable to remove as much as possible by methods, such as drying, heating, or washing.

ここで、上述の接着力と電気導電性、さらにはパターン形成をさせやすい流動性等を考えあわせると、導電性バインダーとしては導電性ペーストが好ましい。パターン形成法としてはスクリーン印刷法が最も簡便な方法である。導電性ペーストは通常、電気伝導性を担う導電性フィラーと接着性を担う高分子樹脂、流動性を担う揮発性溶剤とで構成されている。導電性フィラーに用いられる材質によって導電性ペーストが類別される。本発明には、金、銀、銅などの金属、あるいはカーボンの導電性ペーストが適している。 Here, in consideration of the above-described adhesive force and electrical conductivity, as well as fluidity that facilitates pattern formation, a conductive paste is preferable as the conductive binder. As the pattern forming method, the screen printing method is the simplest method. The conductive paste is usually composed of a conductive filler responsible for electrical conductivity, a polymer resin responsible for adhesion, and a volatile solvent responsible for fluidity. The conductive paste is classified according to the material used for the conductive filler. For the present invention, a conductive paste of metal such as gold, silver or copper, or carbon is suitable.

また、揮発成分を全く含まない導電性バインダーとして、低融点金属も用いられる。低融点金属としては、インジウム、スズ、鉛、亜鉛、銅からなる群から選ばれた一種、あるいは、これら金属の一種以上を含む合金であることが好ましい。 A low melting point metal is also used as a conductive binder that does not contain any volatile components. The low melting point metal is preferably one kind selected from the group consisting of indium, tin, lead, zinc and copper, or an alloy containing one or more kinds of these metals.

導電性バインダーは、電極基板の表面上に所望のパターン形状にて付着させる。パターン形状は、公知の印刷方法等により任意に形成させることができ、互いに絶縁したブロック状とすることが好ましい。
導電性バインダーとして導電性ペーストを用いる場合は、流動性がある状態で該電極基板表面にパターン形成を行い、第一の工程で作製した該配向性CNT膜の表面と接触させ、該導電性ペーストの硬化特性に応じて、乾燥、圧着、加熱、あるいは熱圧着を施して接触面を接着する。
導電性バインダーとして低融点金属を用いる場合は、予め該低融点金属を所定の大きさに切り出し、該電極表面に並べ、第一の工程で作製した該配向性CNT膜の表面と接触させ、熱圧着を施して接触面を接着する。
The conductive binder is attached in a desired pattern shape on the surface of the electrode substrate. The pattern shape can be arbitrarily formed by a known printing method or the like, and is preferably a block shape insulated from each other.
When a conductive paste is used as the conductive binder, pattern formation is performed on the surface of the electrode substrate in a fluid state, and the conductive paste is brought into contact with the surface of the oriented CNT film prepared in the first step. Depending on the curing characteristics, the contact surface is bonded by drying, pressure bonding, heating, or thermocompression bonding.
When using a low-melting-point metal as the conductive binder, the low-melting-point metal is previously cut into a predetermined size, arranged on the electrode surface, brought into contact with the surface of the oriented CNT film prepared in the first step, Crimp and bond the contact surface.

本発明において製造される電界放出型冷陰極をFEDのような画像表示装置の電子源として使用する場合、電極基板としては絶縁性の板の表面に予め導電性の回路を形成させた板を用いるのが好ましい。絶縁性の板としては大面積でも安価なガラスが好ましい。さらに、電極基板の表面上で、予め形成した回路の端末に導電性バインダーが付着するようにパターン形成させておけば、次の工程で配向性CNT膜を導電性バインダーに接着させるので、パターン形成した配向性CNT膜が各々の導電性の回路の端末に通電させることができる。これに対し配向性CNT膜を電極基板に貼り付けた後で、パターン形成した各々の配向性CNT膜に通電するよう回路を形成する方法は非常に煩雑である。 When the field emission cold cathode manufactured in the present invention is used as an electron source of an image display device such as an FED, a plate in which a conductive circuit is previously formed on the surface of an insulating plate is used as the electrode substrate. Is preferred. As the insulating plate, glass which is inexpensive even in a large area is preferable. Furthermore, if the pattern is formed on the surface of the electrode substrate so that the conductive binder adheres to the terminal of the pre-formed circuit, the oriented CNT film is adhered to the conductive binder in the next step, so that the pattern is formed. The oriented CNT film can be energized to the terminal of each conductive circuit. On the other hand, a method of forming a circuit so as to energize each patterned CNT film after the alignment CNT film is attached to the electrode substrate is very complicated.

最後の(5)工程では、第一の工程で作製した配向性CNT膜を、表面に導電性バインダーをパターン形成させた電極基板上に貼り付ける。貼り付ける方法としては、該配向性CNT膜の膜面と該導電性バインダーの表面とを接触させて、乾燥、圧着、加熱、あるいは熱圧着を施して接触面を接着させた後、該配向性CNT膜を作製したから剥がすことで行う。配向性CNT膜は物理的に基礎基板に乗っているだけなので膜面が導電性バインダーと接着した部分は簡単に剥離することができる。一方、膜面が導電性バインダーと接着しなかった部分は剥離せずに残るので、導電性バインダーがパターン形成された形そのままに配向性CNT膜を貼り付けることができる。 In the last step (5), the oriented CNT film produced in the first step is attached on an electrode substrate having a conductive binder pattern formed on the surface. As a method of pasting, the surface of the oriented CNT film and the surface of the conductive binder are brought into contact with each other, and after drying, pressure bonding, heating, or thermocompression bonding, the contact surface is adhered, and then the orientation property is applied. This is done by peeling off the CNT film. Since the oriented CNT film is only physically on the basic substrate, the portion where the film surface is bonded to the conductive binder can be easily peeled off. On the other hand, since the part where the film surface did not adhere to the conductive binder remains without being peeled off, the oriented CNT film can be stuck as it is in the form in which the conductive binder is patterned.

ここで、導電性バインダーの表面すべてが、基礎基板表面に成長した配向性CNT膜の表面に接触する場合は、上述したA法でよい。しかしながら、該成長用の基板は通常セラミックスや石英など変形不可能な材料を基材としている。ゆえに、最後の工程で用いる電極基板表面が湾曲するなどの形状の場合は、該導電性バインダーの表面全体に第一の工程の一番目の方法で得られた該配向性CNT膜の表面を接触させることは難しい。これを補う手段として、変形可能なシート上に転写した配向性CNT膜を用いる。
すなわち、A法における(1)基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と(4)電極基板表面に導電性バインダーをパターン形成させる工程の間に、(2)該配向性カーボンナノチューブ膜の表面を可逆的接着性表面を有する可撓性基板の表面に接着後、該可逆的接着性表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程を介在させる、B法も好ましい。
Here, when the entire surface of the conductive binder is in contact with the surface of the oriented CNT film grown on the surface of the base substrate, the above-described A method may be used. However, the growth substrate is usually made of a non-deformable material such as ceramics or quartz. Therefore, if the electrode substrate surface used in the last step is curved, contact the entire surface of the conductive binder with the surface of the oriented CNT film obtained by the first method in the first step. It is difficult to let To compensate for this, an oriented CNT film transferred onto a deformable sheet is used.
That is, in the method A, (1) between the step of producing an oriented carbon nanotube film on the base substrate surface and (4) the step of patterning a conductive binder on the electrode substrate surface, (2) the orientation After the surface of the carbon nanotube film is bonded to the surface of a flexible substrate having a reversible adhesive surface, the oriented substrate is peeled off while leaving the oriented carbon nanotube film adhered to the reversible adhesive surface, and the oriented carbon A method B in which a step of transferring the nanotube film is interposed is also preferable.

(2)工程の実施方法としては、成長用の基礎基板表面に成長させた配向性CNT膜の表面を変形可能なシートからなる可撓性基板の表面と接触させ、乾燥、圧着、加熱、あるいは熱圧着を施して接触面を接着し、該配向性CNT膜を該基礎基板から剥離することにより、該可撓性基板シート上に配向性CNT膜を作製する。 (2) As a method for carrying out the process, the surface of the oriented CNT film grown on the surface of the base substrate for growth is brought into contact with the surface of a flexible substrate made of a deformable sheet, and drying, pressure bonding, heating, or By applying thermocompression bonding, the contact surfaces are adhered, and the oriented CNT film is peeled from the base substrate, thereby producing an oriented CNT film on the flexible substrate sheet.

ここで使用する可撓性基板シートとしては、可逆的接着性表面を有する可撓性基板が使用できる。可逆的接着性表面とは、その表面に弱い粘着性または接着性があれば良く、粘着剤または接着剤がシートに全面的またはパターンに合わせて部分的に塗布される。特に、EVA系またはアクリル系の粘着剤を印刷したシートが好ましい。その他、通常の環境下では接着性や粘着性がないシートでも、湿潤雰囲気や高温など特殊な環境下で接着性や粘着性を発現するシートも使用できる。
可撓性基板材料としては、電極基板に押圧した際に変形しうるシートが使用でき、接着性樹脂、熱硬化性樹脂、熱可塑性樹脂あるいは水溶性樹脂からなる単独または多層構造のシートが使用できる。
As the flexible substrate sheet used here, a flexible substrate having a reversible adhesive surface can be used. The reversible adhesive surface only needs to have weak adhesiveness or adhesiveness on the surface, and the adhesive or adhesive is applied to the sheet entirely or in a pattern. In particular, a sheet printed with an EVA or acrylic adhesive is preferred. In addition, even a sheet that does not have adhesiveness or tackiness under a normal environment, or a sheet that exhibits adhesiveness or tackiness under a special environment such as a humid atmosphere or high temperature can be used.
As the flexible substrate material, a sheet that can be deformed when pressed against the electrode substrate can be used, and a single or multilayer sheet made of an adhesive resin, a thermosetting resin, a thermoplastic resin, or a water-soluble resin can be used. .

変形可能なシートを使用することによって、(5’)可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着する際に配向性カーボンナノチューブ膜を導電性バインダーに完全に密着させることができ、電極基板に良好に接着することができる。
具体的な可撓性基板としては、熱可塑性樹脂からなる単層シート、粘着性アクリル樹脂/熱可塑性樹脂の二層構造シート及び粘着性EVA/熱可塑性樹脂の接着性二層構造シートが挙げられ、熱可塑性樹脂としてはポリオレフィン、ポリエステル、ポリカーボネート、ポリアミド、ポリイミドが例示される。また、エポキシ樹脂、フェノール樹脂に例示される熱硬化性樹脂からなるシート、ポリビニルアルコールに例示される水溶性樹脂からなるシートも使用できる。(5’)工程で導電性バインダーとして熱硬化性導電性ペーストを用いる場合は、その硬化処理温度に耐えられるシートであることが好ましい。これら可逆的接着性表面を有する二層以上からなる多層シートも使用できる。
By using a deformable sheet, (5 ') the oriented carbon nanotube film is electrically conductive when bonding the surface of the oriented carbon nanotube film transferred to the flexible substrate and the surface of the conductive binder. The adhesive binder can be completely adhered to the electrode substrate, and can be satisfactorily adhered to the electrode substrate.
Specific examples of the flexible substrate include a single-layer sheet made of thermoplastic resin, a two-layer structure sheet of adhesive acrylic resin / thermoplastic resin, and an adhesive two-layer structure sheet of adhesive EVA / thermoplastic resin. Examples of the thermoplastic resin include polyolefin, polyester, polycarbonate, polyamide, and polyimide. Moreover, the sheet | seat which consists of a thermosetting resin illustrated by an epoxy resin and a phenol resin, and the sheet | seat which consists of water-soluble resin illustrated by polyvinyl alcohol can also be used. When a thermosetting conductive paste is used as the conductive binder in the step (5 ′), the sheet is preferably a sheet that can withstand the curing temperature. A multilayer sheet having two or more layers having a reversible adhesive surface can also be used.

また、前記B法における(2)工程と(4)工程の間に、(3)第一の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面を第二の可逆的接着性表面を有する可撓性基板の表面に接着後、該可逆的接着性表面と接着した配向性カーボンナノチューブ膜を残して第一の可撓性基板を剥離して配向性カーボンナノチューブ膜を第二の可撓性基板表面に転写する工程を介在させる方法(C法)も好ましい。
第一及び第二の可逆的接着性表面を有する可撓性基板としては、前記B法の可逆的接着性表面を有する可撓性基板と同様のシートが使用でき、(3)工程で配向性カーボンナノチューブ膜との接着性に差をつけて転写性を高くするために、異なる種類のシートを用いることが好ましい。また、第二の可逆的接着性表面を有する可撓性基板は、(5’)工程で導電性バインダーとして熱硬化性導電性ペーストを用いる場合は、その硬化温度に耐えられる耐熱性シートであることが好ましい。
In addition, between the steps (2) and (4) in the method B, (3) the surface of the oriented carbon nanotube film transferred to the first flexible substrate is replaced with the second reversible adhesive surface. After adhering to the surface of the flexible substrate having the reversible adhesive surface, the first flexible substrate is peeled off, leaving the oriented carbon nanotube film adhered to the reversible adhesive surface, and the oriented carbon nanotube film is formed into the second possible carbon nanotube film. A method of interposing a step of transferring to the surface of the flexible substrate (Method C) is also preferable.
As the flexible substrate having the first and second reversible adhesive surfaces, the same sheet as the flexible substrate having the reversible adhesive surface of the above-mentioned method B can be used, and the orientation in the step (3) In order to increase the transferability by making a difference in the adhesion with the carbon nanotube film, it is preferable to use different types of sheets. The flexible substrate having the second reversible adhesive surface is a heat-resistant sheet that can withstand the curing temperature when a thermosetting conductive paste is used as the conductive binder in the step (5 ′). It is preferable.

上述した方法で電極基板上にパターン形成した配向性CNT膜の膜面は、電極表面に対して平行で平滑であり、膜厚は一定である。また、該配向性CNT膜を構成するCNTの密度は一定、各CNTの外径は10nm以下であり、電界電子放出に有利である。   The film surface of the oriented CNT film patterned on the electrode substrate by the method described above is parallel and smooth to the electrode surface, and the film thickness is constant. Further, the density of CNTs constituting the oriented CNT film is constant, and the outer diameter of each CNT is 10 nm or less, which is advantageous for field electron emission.

以上、本発明の電界放出型冷陰極の製造方法によると、密度が均一で外径が細く垂直配向性のある多数本から成るCNTを電子源とした電界放出型冷陰極で、その電子源が互いに絶縁した状態でブロック状にパターン形成しており、各ブロックの表面が電極基板に対して平行で平滑であることから、低電圧で均一な電子放出を可能とする、電界放出型冷陰極の製造方法が提供できる。   As described above, according to the method for manufacturing a field emission cold cathode of the present invention, a field emission type cold cathode having an electron source of a large number of CNTs having a uniform density, a small outer diameter, and a vertical alignment is used. The field-emission type cold cathode enables uniform electron emission at a low voltage because the blocks are patterned in a state of being insulated from each other, and the surface of each block is parallel and smooth to the electrode substrate. A manufacturing method can be provided.

以下に実施例をあげて本発明の方法を更に詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1)A法
[配向性CNT膜を成長させる工程]
シリカ25%、アルミナ75%の組成で、厚さ2mm、一辺75mmの角型シリカアルミナ板を支持基板として選び、真空蒸着法にてアルミニウムを蒸着により被覆した。この際のアルミニウム薄膜の厚さは0.5μmであった。次いで、濃度0.2mol/lの硝酸コバルト水溶液に2時間浸漬した。基板を引き上げた後、400℃、3時間空気中で焼成し、基礎基板を得た。焼成後、アルミニウム蒸着側を水平上向きにして、基礎基板を石英管状炉内に設置した。水平方向にアルゴンを1000cm3/minで送風しながら管状炉を700℃まで昇温した。続いて、700℃に保持したまま、1000cm3/minのアルゴンにプロピレンを300cm3/minで混合させて管状炉内に送風した。プロピレン/アルゴン混合ガスを20分間流した後、再びアルゴンのみに切り替えて流しながら、管状炉の加熱を止めて、室温まで放冷した。反応終了後、基礎基板表面を走査型電子顕微鏡(SEM)観察した結果、基礎基板上側に厚さ100μmの配向性CNT膜が形成されたことが確認できた。
当該膜は、垂直方向に配向したCNTからなっており、厚さは一定で膜の表面は平滑である。また、この配向膜の透過型電子顕微鏡(TEM)観察を行ったところ、配向膜を構成するCNTは、外径5〜8nm、5〜7層程度の多層CNTであった。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1 Method A [Step of Growing Oriented CNT Film]
A square silica alumina plate having a composition of 25% silica and 75% alumina and a thickness of 2 mm and a side of 75 mm was selected as a support substrate, and aluminum was coated by vapor deposition by a vacuum deposition method. At this time, the thickness of the aluminum thin film was 0.5 μm. Subsequently, it was immersed in a cobalt nitrate aqueous solution having a concentration of 0.2 mol / l for 2 hours. After raising the substrate, the substrate was baked in air at 400 ° C. for 3 hours to obtain a basic substrate. After firing, the base substrate was placed in a quartz tube furnace with the aluminum deposition side facing up horizontally. The tubular furnace was heated up to 700 ° C. while blowing argon at 1000 cm 3 / min in the horizontal direction. Then, while holding 700 ° C., and blown into a tubular furnace of propylene to argon 1000 cm 3 / min was mixed with 300 cm 3 / min. The propylene / argon mixed gas was allowed to flow for 20 minutes, and then the heating of the tubular furnace was stopped while switching to only argon, and the mixture was allowed to cool to room temperature. After completion of the reaction, the surface of the basic substrate was observed with a scanning electron microscope (SEM). As a result, it was confirmed that an oriented CNT film having a thickness of 100 μm was formed on the upper side of the basic substrate.
The film is made of CNTs oriented in the vertical direction, and has a constant thickness and a smooth surface. When this alignment film was observed with a transmission electron microscope (TEM), the CNT constituting the alignment film was a multilayer CNT having an outer diameter of 5 to 8 nm and about 5 to 7 layers.

[電極基板表面に導電性バインダーをパターン形成させる工程と、該配向性CNT膜を成長させた基礎基板から該電極基板表面へ転写する工程]
電極基板として厚さ2mm、一辺100mmの角型の銅板を準備した。スクリーン印刷を用いて、導電性銀ペーストを銅板の表面にパターン形成した。導電性銀ペーストは、図1に示すようなパターンで10μmの厚さに塗布した。次に、前述した基礎基板上に成長させた配向性CNT膜と銅板上の導電性銀ペーストの表面とを接触させ、アルゴン雰囲気下で180℃まで加熱した。図2はこの様子を模式的に示した断面図である。冷却後、基礎基板を銅板から剥離すると、銅板の表面には導電性銀ペーストが塗布されていた場所にだけ、配向性CNT膜の配向性を保持して貼り付けることができた。この様子を図3に示す。各ブロックの配向膜の厚みは貼り付ける前と同じ100μm程度の厚さで一定であり、表面は平滑であった。このようにして、銅板表面上に配向性CNT膜をパターン形成させることができた。本実施例によって作製した銅板を冷陰極として、電界電子放出測定を行った。測定は10-6Paの真空下で行った。図4は電極を断面図として模式的に表したものである。図5は測定結果を記したもので、図4に示した電極間距離Lを横軸に、電流密度10mA/cm2を取り出すことができた時の電圧を縦軸に示している。
[Step of patterning conductive binder on electrode substrate surface and step of transferring from the base substrate on which the oriented CNT film is grown to the electrode substrate surface]
A square copper plate having a thickness of 2 mm and a side of 100 mm was prepared as an electrode substrate. A conductive silver paste was patterned on the surface of the copper plate using screen printing. The conductive silver paste was applied to a thickness of 10 μm in a pattern as shown in FIG. Next, the oriented CNT film grown on the basic substrate described above and the surface of the conductive silver paste on the copper plate were brought into contact with each other and heated to 180 ° C. in an argon atmosphere. FIG. 2 is a cross-sectional view schematically showing this state. When the base substrate was peeled off from the copper plate after cooling, the orientation of the oriented CNT film could be retained and pasted only on the surface of the copper plate where the conductive silver paste was applied. This is shown in FIG. The thickness of the alignment film of each block was constant at the same thickness of about 100 μm as before the pasting, and the surface was smooth. In this way, an oriented CNT film could be patterned on the copper plate surface. Field electron emission measurement was performed using the copper plate produced in this example as a cold cathode. The measurement was performed under a vacuum of 10 −6 Pa. FIG. 4 schematically shows an electrode as a cross-sectional view. FIG. 5 shows the measurement results, with the interelectrode distance L shown in FIG. 4 as the horizontal axis and the voltage when the current density of 10 mA / cm 2 can be taken out as the vertical axis.

(実施例2)B法
図6(a)〜(g)は本実施例に係る電界放出型冷陰極を製造方法の各工程を段階的に示す断面図である。まず、図6(a)に示すように、実施例1と同様な方法でシリカアルミナ板を支持基板とする基礎基板4上に高さ50μmの配向性CNT膜3を成長させた。次に図6(b)に示すように、配向性CNT膜3の表面と粘着性アクリル樹脂/ポリオレフィンから成る接着性シート9(可撓性基板)の表面とを接触させ、プレス機で2Kg/cm2かけて圧着した。接着性シート9を引っ張り、配向性CNT膜3を残して基礎基板4を剥離することにより、接着性シート9の表面に配向性CNT膜3を転写により作製した(図6(c))。別途、電極用基板としてガラス板10を準備し、表面に導電層11を形成した(図6(d))。次に、図6(e)に示すように、導電層表面に導電性カーボンペースト12を15μmの厚みにスクリーン印刷した。ここで、接着性シート9上に前記作製した配向性CNT膜3の表面と印刷した前記導電性カーボンペースト12を図6(f)に示すように接触させ、アルゴン雰囲気下で150℃まで加熱した。冷却後、図6(g)に示すように、導電性カーボンペースト12に接着した配向性CNT膜3を残して接着性シート9を剥離することにより、配向性CNT膜が転写された電界放出型冷陰極を得た。
(Example 2) Method B FIGS. 6A to 6G are cross-sectional views showing stepwise steps of a method for manufacturing a field emission cold cathode according to this example. First, as shown in FIG. 6A, an oriented CNT film 3 having a height of 50 μm was grown on a base substrate 4 using a silica alumina plate as a supporting substrate in the same manner as in Example 1. Next, as shown in FIG. 6 (b), the surface of the oriented CNT film 3 and the surface of the adhesive sheet 9 (flexible substrate) made of adhesive acrylic resin / polyolefin are brought into contact with each other, and 2 Kg / Crimping was performed over cm 2 . By pulling the adhesive sheet 9 and peeling off the base substrate 4 while leaving the oriented CNT film 3, the oriented CNT film 3 was produced on the surface of the adhesive sheet 9 by transfer (FIG. 6C). Separately, a glass plate 10 was prepared as an electrode substrate, and a conductive layer 11 was formed on the surface (FIG. 6D). Next, as shown in FIG. 6E, the conductive carbon paste 12 was screen-printed to a thickness of 15 μm on the surface of the conductive layer. Here, the surface of the prepared oriented CNT film 3 on the adhesive sheet 9 and the printed conductive carbon paste 12 were brought into contact as shown in FIG. 6 (f), and heated to 150 ° C. in an argon atmosphere. . After cooling, as shown in FIG. 6G, the field emission type in which the oriented CNT film is transferred by peeling the adhesive sheet 9 while leaving the oriented CNT film 3 adhered to the conductive carbon paste 12. A cold cathode was obtained.

(実施例3)C法
実施例1と同様な方法でシリカアルミナ板を支持基板とする基礎基板上に高さ50μmの配向性CNT膜を成長させた。次に、配向性CNT膜3の表面と、予め湿度90%雰囲気下で1時間湿潤させたポリビニルアルコールから成る水溶性シート(可撓性基板)の表面とを接触させ、プレス機で2Kg/cm2かけて圧着した。圧着、乾燥後、水溶性シートを引っ張り、配向性CNT膜を残して基礎基板を剥離することにより、水溶性シートの表面に配向性CNT膜を転写により作製した。さらに、水溶性シートに転写された配向性CNT膜の表面を、実施例2で用いた接着性シートと同様な可撓性基板の表面に接触させ、プレス機で2Kg/cm2かけて圧着した。圧着後、試料全体を湿度90%雰囲気下に1時間置き、水溶性シートを湿潤させて配向性CNT膜表面から剥離することにより、接着性シート表面に配向性CNT膜を転写により作製した。別途、ガラス板に導電層を形成した電極基板を準備し、導電層表面に導電性銀ペーストを15μmの厚みにスクリーン印刷した。ここで、接着性シート上に前記作製した配向性CNT膜の表面と印刷した前記導電性銀ペーストを接触させ、アルゴン雰囲気下で150℃まで加熱した。冷却後、導電性銀ペーストに接着した配向性CNT膜を残して接着性シートを剥離することにより、配向性CNT膜が転写された電界放出型冷陰極を得た。
Example 3 Method C In the same manner as in Example 1, an oriented CNT film having a height of 50 μm was grown on a base substrate having a silica alumina plate as a supporting substrate. Next, the surface of the oriented CNT film 3 is brought into contact with the surface of a water-soluble sheet (flexible substrate) made of polyvinyl alcohol that has been previously wetted in an atmosphere of 90% humidity for 1 hour, and is 2 Kg / cm with a press. Crimped over 2 . After crimping and drying, the water-soluble sheet was pulled to leave the oriented CNT film, and the base substrate was peeled off to produce an oriented CNT film on the surface of the water-soluble sheet. Furthermore, the surface of the oriented CNT film transferred to the water-soluble sheet was brought into contact with the surface of the flexible substrate similar to the adhesive sheet used in Example 2, and was pressed with a press at 2 Kg / cm 2 . . After the pressure bonding, the whole sample was placed in a 90% humidity atmosphere for 1 hour, and the water-soluble sheet was wetted and peeled off from the surface of the oriented CNT film, thereby producing an oriented CNT film on the surface of the adhesive sheet. Separately, an electrode substrate having a conductive layer formed on a glass plate was prepared, and a conductive silver paste was screen-printed to a thickness of 15 μm on the surface of the conductive layer. Here, the surface of the prepared oriented CNT film and the printed conductive silver paste were brought into contact with an adhesive sheet, and heated to 150 ° C. in an argon atmosphere. After cooling, the adhesive sheet was peeled off while leaving the oriented CNT film adhered to the conductive silver paste to obtain a field emission cold cathode having the oriented CNT film transferred thereto.

(比較例1)
まず、実施例1と同様に基礎基板上に配向性CNT膜を成長させた。次に、成長させた配向性CNT膜を基礎基板上からプラスチック製のヘラを使って剥離させた。次いで、剥離して得たCNTと導電性銀ペーストとトルエンを1:8:1の重量比で混合し丁寧に混練した。スクリーン印刷を用いて、得られた混合物を銅板の表面にパターン形成した。このようにして表面に混合物のパターンを印刷した銅板を、アルゴン雰囲気下で180℃まで加熱し揮発成分を除いた。得られた銅板上の各パターンの表面は凹凸が激しく、また銀粒子の中に配向性のないCNTが不均一に散在していた。図7は本比較例で得た銅板を冷陰極として実施例1と同様な電界電子放出測定を行った結果である。電極間距離Lを横軸に、電流密度10mA/cm2を取り出すことができた時の電圧を縦軸に示している。
(Comparative Example 1)
First, an oriented CNT film was grown on a basic substrate in the same manner as in Example 1. Next, the grown oriented CNT film was peeled off from the base substrate using a plastic spatula. Next, CNT obtained by peeling, conductive silver paste and toluene were mixed at a weight ratio of 1: 8: 1 and carefully kneaded. The resulting mixture was patterned on the surface of a copper plate using screen printing. Thus, the copper plate which printed the pattern of the mixture on the surface was heated to 180 degreeC in argon atmosphere, and the volatile component was removed. The surface of each pattern on the obtained copper plate was severely uneven, and non-oriented CNTs were scattered unevenly in the silver particles. FIG. 7 shows the results of field electron emission measurement similar to that of Example 1 using the copper plate obtained in this comparative example as a cold cathode. The voltage when the current density of 10 mA / cm 2 can be taken out is shown on the horizontal axis, and the vertical axis shows the distance L between the electrodes.

各実施例では、比較的低い印加電圧で一定の電界電子放出が均一に得られた。一方、比較例では、一定の電界電子放出を得るためには比較的高い印加電圧を要した。   In each example, constant field electron emission was uniformly obtained with a relatively low applied voltage. On the other hand, in the comparative example, a relatively high applied voltage was required to obtain constant field electron emission.

導電性銀ペーストをスクリーン印刷した銅板Copper plate screen-printed with conductive silver paste 導電性銀ペーストをスクリーン印刷した銅板と、シリカアルミナ板上に成長した配向性CNT膜の膜面とを接触させた模式図。The schematic diagram which contacted the copper plate which screen-printed the electroconductive silver paste, and the film surface of the orientation CNT film | membrane which grew on the silica alumina plate. 銅板上にパターン形成させた配向性CNT膜Oriented CNT film patterned on a copper plate 電界電子放出測定装置を示す断面図Sectional view showing a field electron emission measuring device 実施例1における電界電子放出特性を示すグラフ図The graph which shows the field electron emission characteristic in Example 1 実施例2における電界電子放出型冷陰極を製造する工程を示す断面図で、(a)〜(g)は各工程を段階的に示している。It is sectional drawing which shows the process of manufacturing the field electron emission cold cathode in Example 2, (a)-(g) has shown each process stepwise. 比較例1における電界電子放出特性を示すグラフ図The graph which shows the field electron emission characteristic in the comparative example 1

符号の説明Explanation of symbols

1:導電性銀ペースト
2:銅板
3:配向性CNT膜
4:シリカアルミナ板
5:陰極銅板
6:陽極銅板
7:電流計
8:直流電源
9:接着性シート
10:ガラス板
11:導電層
12:導電性カーボンペースト
L:陰極と陽極との距離
1: Conductive silver paste 2: Copper plate 3: Oriented CNT film 4: Silica alumina plate 5: Cathode copper plate 6: Anode copper plate 7: Ammeter 8: DC power source 9: Adhesive sheet 10: Glass plate 11: Conductive layer 12 : Conductive carbon paste L: Distance between cathode and anode

Claims (17)

電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成させる電界放出型冷陰極の製造方法において、
基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、
該配向性カーボンナノチューブ膜の表面を可逆的接着性表面を有する可撓性基板の表面に接着後、該可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、
電極基板表面に導電性バインダーをパターン形成させる工程と、
該可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、
電界放出型冷陰極の製造方法。
In the method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on the electrode substrate surface,
Producing an oriented carbon nanotube film on the base substrate surface;
After bonding the surface of the oriented carbon nanotube film to the surface of a flexible substrate having a reversible adhesive surface, the base substrate is peeled off leaving the oriented carbon nanotube film adhered to the surface of the flexible substrate. Transferring the oriented carbon nanotube film;
Forming a conductive binder pattern on the electrode substrate surface;
After bonding the surface of the oriented carbon nanotube film transferred to the flexible substrate and the surface of the conductive binder, the flexible substrate leaves the portion of the oriented carbon nanotube film bonded to the conductive binder. Including a step of peeling the oriented carbon nanotube film by peeling
Manufacturing method of field emission type cold cathode.
電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成させる電界放出型冷陰極の製造方法において、
基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、
該配向性カーボンナノチューブ膜の表面を第一の可逆的接着性表面を有する可撓性基板の表面に接着後、該第一の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、
該第一の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面を第二の可逆的接着性表面を有する可撓性基板の表面に接着後、該第二の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該第一の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、
電極基板表面に導電性バインダーをパターン形成させる工程と、
該第二の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該第二の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、
電界放出型冷陰極の製造方法。
In the method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on the electrode substrate surface,
Producing an oriented carbon nanotube film on the base substrate surface;
After the surface of the oriented carbon nanotube film is adhered to the surface of a flexible substrate having a first reversible adhesive surface, the oriented carbon nanotube film adhered to the surface of the first flexible substrate is left, Removing the base substrate and transferring the oriented carbon nanotube film;
After the surface of the oriented carbon nanotube film transferred to the first flexible substrate is bonded to the surface of the flexible substrate having a second reversible adhesive surface, the surface of the second flexible substrate Removing the first flexible substrate leaving the oriented carbon nanotube film adhered to and transferring the oriented carbon nanotube film;
Forming a conductive binder pattern on the electrode substrate surface;
After the surface of the oriented carbon nanotube film transferred to the second flexible substrate and the surface of the conductive binder are bonded, the first portion of the oriented carbon nanotube film bonded to the conductive binder is left, Peeling off the second flexible substrate and transferring the oriented carbon nanotube film,
Manufacturing method of field emission type cold cathode.
基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程が、不活性物質を被覆した支持基板に遷移金属又は遷移金属化合物からなる触媒を担持させてなる基礎基板の存在下、気体状の炭素化合物を分解することにより、該基礎基板表面上に該基礎基板と垂直方向に配向したカーボンナノチューブ膜を成長させる、請求項1又は2に記載の電界放出型冷陰極の製造方法。 The step of producing an oriented carbon nanotube film on the surface of the base substrate is carried out in the presence of a base substrate formed by supporting a catalyst made of a transition metal or a transition metal compound on a support substrate coated with an inert substance. The method of manufacturing a field emission cold cathode according to claim 1 or 2 , wherein a carbon nanotube film oriented in a direction perpendicular to the basic substrate is grown on the surface of the basic substrate by decomposing a carbon compound. 支持基板に被覆される不活性物質がアルミニウム、ゲルマニウム及びそれらの酸化物から選ばれた一種である請求項に記載の電界放出型冷陰極の製造方法。 The method for producing a field emission cold cathode according to claim 3 , wherein the inert substance coated on the support substrate is one selected from aluminum, germanium and oxides thereof. 支持基板に不活性物質を被覆する方法が、真空蒸着法、電析法、スパッタリング法又はゾルゲル法であることを特徴とする請求項に記載の電界放出型冷陰極の製造方法。 4. The method of manufacturing a field emission cold cathode according to claim 3 , wherein the method of coating the support substrate with an inert substance is a vacuum deposition method, an electrodeposition method, a sputtering method, or a sol-gel method. 不活性物質を被覆した支持基板に遷移金属又は遷移金属化合物からなる触媒を担持する方法が、含浸法、浸漬法、又はゾルゲル法である、請求項に記載の電界放出型冷陰極の製造方法。 The method for producing a field emission cold cathode according to claim 3 , wherein the method of supporting a catalyst made of a transition metal or a transition metal compound on a support substrate coated with an inert substance is an impregnation method, an immersion method, or a sol-gel method. . 炭素化合物が、飽和炭化水素化合物、不飽和炭化水素化合物、芳香族炭化水素化合物、含酸素炭化水素化合物からなる群から選ばれる少なくとも1種の混合物であることを特徴とする、請求項に記載の電界放出型冷陰極の製造方法。 Carbon compounds, characterized in that a saturated hydrocarbon compound, an unsaturated hydrocarbon compound, an aromatic hydrocarbon compound is at least one mixture selected from the group consisting of oxygenated hydrocarbon compounds, according to claim 3 A method for producing a field emission cold cathode. 配向性カーボンナノチューブ膜を構成するカーボンナノチューブの外径が10nm以下である、請求項1又は2に記載の電界放出型冷陰極の製造方法。 The manufacturing method of the field emission cold cathode of Claim 1 or 2 whose outer diameter of the carbon nanotube which comprises an oriented carbon nanotube film | membrane is 10 nm or less. 配向性カーボンナノチューブ膜の表面を可逆的接着性表面を有する可撓性基板の表面に接着する工程が、配向性カーボンナノチューブ膜の表面と該可撓性基板の可逆的接着性表面とを接着させて、乾燥、圧着、加熱又は熱圧着を施して接着させる、請求項1又は2に記載の電界放出型冷陰極の製造方法。 The step of bonding the surface of the oriented carbon nanotube film to the surface of the flexible substrate having a reversible adhesive surface causes the surface of the oriented carbon nanotube film to adhere to the reversible adhesive surface of the flexible substrate. The method for producing a field emission cold cathode according to claim 1 , wherein the field emission type cold cathode is bonded by drying, pressure bonding, heating or thermocompression bonding. 電極基板が、絶縁性の板の表面に予め導電性の回路を形成させた板であることを特徴とする、請求項1又は2に記載の電界放出型冷陰極の製造方法。 3. The method of manufacturing a field emission cold cathode according to claim 1, wherein the electrode substrate is a plate in which a conductive circuit is previously formed on the surface of an insulating plate. 電極基板表面に導電性バインダーをパターン形成させる工程が、導電性の回路に導電性バインダーを付着させることを特徴とする、請求項1又は2に記載の電界放出型冷陰極の製造方法。 3. The method of manufacturing a field emission cold cathode according to claim 1, wherein the step of patterning the conductive binder on the electrode substrate surface causes the conductive binder to adhere to the conductive circuit. 配向性カーボンナノチューブ膜の表面と導電性バインダーの表面とを接着する工程が、該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接触させて、乾燥、圧着、加熱、又は熱圧着を施して接触面を接着させることを特徴とする、請求項1又は2に記載の電界放出型冷陰極の製造方法。 The step of adhering the surface of the oriented carbon nanotube film and the surface of the conductive binder is performed by bringing the surface of the oriented carbon nanotube film and the surface of the conductive binder into contact with each other and drying, pressing, heating, or thermocompression bonding. and wherein the adhering the contact surface is subjected to field emission cold cathode method according to claim 1 or 2. 導電性バインダーが導電性ペーストである、請求項1又は2に記載の電界放出型冷陰極の製造方法。 The method of manufacturing a field emission cold cathode according to claim 1 or 2 , wherein the conductive binder is a conductive paste. 導電性ペーストが、導電性銀ペースト、導電性金ペースト、導電性カーボンペースト、又は導電性銅ペーストである、請求項13に記載の電界放出型冷陰極の製造方法。 The method for producing a field emission cold cathode according to claim 13 , wherein the conductive paste is a conductive silver paste, a conductive gold paste, a conductive carbon paste, or a conductive copper paste. 導電性バインダーが低融点金属であることを特徴とする、請求項1又は2に記載の電界放出型冷陰極の製造方法。 The method for producing a field emission cold cathode according to claim 1 or 2 , wherein the conductive binder is a low melting point metal. 低融点金属が、インジウム、スズ、鉛、亜鉛、銅からなる群から選ばれた一種、又は、これらの一種以上を含む合金であることを特徴とする、請求項15に記載の電界放出型冷陰極の製造方法。 The field emission type cold according to claim 15 , wherein the low melting point metal is one selected from the group consisting of indium, tin, lead, zinc and copper, or an alloy containing one or more of these. Manufacturing method of cathode. 可逆的接着性表面を有する可撓性基板が、粘着剤を表面に塗布した樹脂シートである、請求項1又は2に記載の電界放出型冷陰極の製造方法。 The manufacturing method of the field emission type cold cathode of Claim 1 or 2 whose flexible substrate which has a reversible adhesive surface is a resin sheet which apply | coated the adhesive to the surface.
JP2004046142A 2003-02-26 2004-02-23 Manufacturing method of field emission cold cathode Expired - Fee Related JP4355928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046142A JP4355928B2 (en) 2003-02-26 2004-02-23 Manufacturing method of field emission cold cathode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003049195 2003-02-26
JP2004046142A JP4355928B2 (en) 2003-02-26 2004-02-23 Manufacturing method of field emission cold cathode

Publications (2)

Publication Number Publication Date
JP2004281388A JP2004281388A (en) 2004-10-07
JP4355928B2 true JP4355928B2 (en) 2009-11-04

Family

ID=33301768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046142A Expired - Fee Related JP4355928B2 (en) 2003-02-26 2004-02-23 Manufacturing method of field emission cold cathode

Country Status (1)

Country Link
JP (1) JP4355928B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067328B2 (en) * 2003-09-25 2006-06-27 Nanosys, Inc. Methods, devices and compositions for depositing and orienting nanostructures
CN100437880C (en) * 2004-11-22 2008-11-26 财团法人精密机械研究发展中心 Cathode plate of nanometer carbon tube field effect transmissive display device and production of display device
CN100446157C (en) * 2004-11-22 2008-12-24 财团法人精密机械研究发展中心 Cathode plate of nanometer carbon tube field effect transmissive display device and production of display device
JP5019564B2 (en) * 2005-06-30 2012-09-05 古河電気工業株式会社 Method for producing member with functional material
CN1897205B (en) 2005-07-15 2010-07-28 清华大学 Carbon-nano-tube array transmitting element and its production
CN1959896B (en) * 2005-11-04 2011-03-30 鸿富锦精密工业(深圳)有限公司 Field emission of Nano carbon tube, and preparation method
JP2007200564A (en) * 2006-01-23 2007-08-09 Mitsubishi Electric Corp Manufacturing method of electron emission source
WO2009101664A1 (en) 2008-02-15 2009-08-20 Fujitsu Limited Method for manufacturing semiconductor device
CN101811658B (en) * 2009-02-20 2012-09-19 清华大学 Carbon nano tube array sensor and preparation method thereof
KR101094453B1 (en) 2009-06-11 2011-12-15 고려대학교 산학협력단 fabrication method of electron emission source and device adopting the source
KR101106121B1 (en) 2010-04-22 2012-01-20 고려대학교 산학협력단 Electron emitter and method for manufacturing the same
WO2013039156A1 (en) * 2011-09-14 2013-03-21 株式会社フジクラ Structure for forming carbon nanofiber, carbon nanofiber structure and method for producing same, and carbon nanofiber electrode
CN112242279B (en) * 2019-07-16 2022-03-18 清华大学 Carbon nanotube field emitter and preparation method thereof

Also Published As

Publication number Publication date
JP2004281388A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
KR100944828B1 (en) Process for producing cold field-emission cathodes
CN1959896B (en) Field emission of Nano carbon tube, and preparation method
JP4355928B2 (en) Manufacturing method of field emission cold cathode
JP2006008473A (en) Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
US7993180B2 (en) Manufacturing method of field emission element having carbon nanotubes
EP1594151A2 (en) Method of manufacturing carbon nanotube field emission device
US20090170394A1 (en) Method for making thermionic electron source
US8513870B2 (en) Electron emission source, electric device using the same, and method of manufacturing the electron emission source
JP2001319560A (en) Electron emitting element, electron source, field-emission image display device and fluorescent lamp using electron emitting element and their manufacturing methods
JP2006120636A (en) Composition for forming electron emission source, method for manufacturing electron emission source using the same, and electron emission source
JP4484047B2 (en) Method for producing patterned columnar aggregate of oriented carbon nanotubes and field emission cold cathode
US7915797B2 (en) Thermionic electron source
US8801487B2 (en) Method for making emitter having carbon nanotubes
JP2007188662A (en) Method of manufacturing field emission type cold cathode
JP3890470B2 (en) Electrode material for electron-emitting device using carbon nanotube and method for producing the same
TWI386971B (en) Field emitter and method for making the same
KR100990231B1 (en) fabrication method the electron emission source
CN112930578A (en) Carbon-metal structure and method for producing carbon-metal structure
JP2007287478A (en) Manufacturing method of oriented carbon nanotube wiring
JP2007073217A (en) Manufacturing method of field emission type cold cathode
TWI401209B (en) Field emission componet and method for making same
JP4236627B2 (en) Method for manufacturing cold cathode image display device
JP4984130B2 (en) Nanocarbon emitter, manufacturing method thereof, and surface light emitting device
KR101013604B1 (en) fabrication method of electron emission source source
KR101046775B1 (en) electron emission source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees