JP4331576B2 - Manufacturing method of inorganic fiber mat for vacuum heat insulating material - Google Patents

Manufacturing method of inorganic fiber mat for vacuum heat insulating material Download PDF

Info

Publication number
JP4331576B2
JP4331576B2 JP2003402506A JP2003402506A JP4331576B2 JP 4331576 B2 JP4331576 B2 JP 4331576B2 JP 2003402506 A JP2003402506 A JP 2003402506A JP 2003402506 A JP2003402506 A JP 2003402506A JP 4331576 B2 JP4331576 B2 JP 4331576B2
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
density
fiber mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003402506A
Other languages
Japanese (ja)
Other versions
JP2005163212A (en
Inventor
大介 近藤
慎一 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2003402506A priority Critical patent/JP4331576B2/en
Publication of JP2005163212A publication Critical patent/JP2005163212A/en
Application granted granted Critical
Publication of JP4331576B2 publication Critical patent/JP4331576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)

Description

本発明は、真空断熱材用無機繊維マットの製造方法に関する。   The present invention relates to a method for producing an inorganic fiber mat for a vacuum heat insulating material.

従来より、真空断熱材用の断熱芯材として、断熱効果が高いガラスウールやロックウールなどの無機繊維(以下ガラス繊維を代表例として説明する)マットが広く採用されている。該ガラス繊維マットを芯材とし、これを真空断熱材の外被内に充填する際に、該芯材の充填が容易であるように、ガラス繊維マットに有機バインダーを付与することが特許文献1および特許文献2に記載されている。   Conventionally, as a heat insulating core material for a vacuum heat insulating material, an inorganic fiber mat (hereinafter, glass fiber will be described as a representative example) such as glass wool or rock wool having a high heat insulating effect has been widely adopted. Patent Document 1 discloses that when the glass fiber mat is used as a core material and an inside of a vacuum heat insulating material is filled with the glass fiber mat, an organic binder is added to the glass fiber mat so that the core material can be easily filled. And Patent Document 2.

上記特許文献に記載の内容は、ガラス繊維マットを、通常、遠心法や火炎法により溶融した無機物を繊維化して堆積(集綿)させることによりマット状物を得た後、該マット状物にバインダーを吹き付け、加熱・加圧して成形することによりガラス繊維マット(芯材)とするものである。   The content described in the above-mentioned patent document is that after obtaining a mat-like material by fiberizing and depositing (cotton collecting) an inorganic material melted by a centrifugal method or a flame method, the glass fiber mat is then applied to the mat-like material. A glass fiber mat (core material) is formed by spraying a binder, heating and pressurizing to form.

しかしながら、上記の遠心法などによって得られるマット状物は、比較的長い繊維で引き出され、ガラス繊維が湾曲した状態で堆積されるため、繊維が3次元的に絡み合って配向されたものである。さらにこのマット状物にバインダーを付与して加圧・加熱して成形してガラス繊維マットを得ると、上記の状態でそのまま繊維同士が固着されるため、該ガラス繊維マットを外被材内に挿入して真空断熱材としたものを断熱筐体内に充填すると、繊維が伝熱方向に垂直に配向されていないことから、断熱性が劣るといった問題を有していた。   However, the mat-like material obtained by the above-described centrifugal method or the like is drawn with relatively long fibers and deposited in a curved state, so that the fibers are entangled and oriented three-dimensionally. Further, when a glass fiber mat is obtained by applying a binder to this mat-like material and pressing and heating to form a glass fiber mat, the fibers are fixed as they are in the above state. When the heat insulating casing is filled with what is inserted and made into a vacuum heat insulating material, there is a problem that the heat insulating property is inferior because the fibers are not oriented perpendicular to the heat transfer direction.

また、上記方法によって得られた真空断熱材は、表面が平滑でないという問題を有しており、該断熱材を断熱筐体に充填すると、断熱材の表面凹凸により筐体の内壁と断熱材との間に隙間を生じ、断熱材の断熱性が劣るといった問題を有していた。一方、繊維を伝熱方向に垂直に配向させる方法が、特許文献3に記載されているが、この方法は、長さ1mm以下の繊維を、水分散させて抄造する方法であり、手間がかかるといった問題を有していた。   Further, the vacuum heat insulating material obtained by the above method has a problem that the surface is not smooth, and when the heat insulating material is filled in the heat insulating housing, the inner wall of the housing and the heat insulating material are caused by surface irregularities of the heat insulating material. There was a problem that a gap was formed between the two, and the heat insulating property of the heat insulating material was poor. On the other hand, a method for orienting the fibers perpendicular to the heat transfer direction is described in Patent Document 3, but this method is a method in which a fiber having a length of 1 mm or less is dispersed in water to make paper, which is troublesome. There was a problem such as.

また、特許文献4には、無機質繊維板の製造方法として、接着剤が付与されて集積された無機質繊維の集合体を、完成品たる無機質繊維板の厚さよりやや厚い寸法と、前記厚さよりやや薄い寸法との間の、予め選定された厚さに圧縮した後、無孔の無端スチールベルトと、これに対峙する有孔無端ベルトとの間で、完成品たる無機質繊維板の厚さにまで圧縮し、同時に有孔無端ベルト側から熱風を吹き込み加熱硬化させることが記載されており、さらに、平均繊維径が5〜10μmの範囲内の無機質繊維の集合体が密度48kg/m3〜300kg/m3の範囲内で、少なくとも一方の面が平滑面の平板状に圧縮および成形され、硬化した接着剤で結合されていることが記載されている。 In addition, in Patent Document 4, as a method for producing an inorganic fiber board, an aggregate of inorganic fibers provided with an adhesive is collected, a dimension slightly thicker than the thickness of the inorganic fiber board as a finished product, and a little more than the above thickness. After compression to a pre-selected thickness between thin dimensions, between the endless steel belt without holes and the perforated endless belt facing it, to the thickness of the finished inorganic fiberboard It is described that hot air is blown from the perforated endless belt side and heated and cured at the same time, and an aggregate of inorganic fibers having an average fiber diameter in the range of 5 to 10 μm has a density of 48 kg / m 3 to 300 kg / In the range of m 3 , it is described that at least one surface is compressed and molded into a flat plate having a smooth surface and bonded with a cured adhesive.

これにより、成形室内での圧縮および加熱硬化時における無機質繊維ウエブに印加すべき必要圧縮荷重を減少させることができ、成形工程における無端コンベアに作用する張力の減少、駆動動力の低減などを図ることができ、装置の長時間の連続稼動を可能とし、生産効率の向上、生産コストの低減を図りうる効果を奏することが記載されている。   As a result, the necessary compressive load to be applied to the inorganic fiber web during compression and heat curing in the molding chamber can be reduced, and the tension acting on the endless conveyor in the molding process can be reduced and the driving power can be reduced. It is described that the apparatus can be operated continuously for a long time, and the production efficiency can be improved and the production cost can be reduced.

特開昭60−14695号公報Japanese Patent Laid-Open No. 60-14695 特開2001−108186公報JP 2001-108186 A 特開平9−4785号公報Japanese Patent Laid-Open No. 9-4785 特開2003−62847公報JP 2003-62847 A

しかしながら、特許文献4の発明は、無機質繊維の集合体を圧縮することにより接着剤を加熱硬化させ形状を保持させることによって得られる、いわゆる通常の無機質繊維板を製造するものであり、前記圧縮より接着剤を加熱硬化させ形状を保持させて無機質繊維板を得るためにはバインダーの付着量を多くする必要がある。前記無機質繊維板は、繊維同士の結合が強固でありそれ自体が剛直となるため、これを真空断熱材として使用する場合、有機バインダーの付着むらにより、減圧の際に剛直な個所における圧縮が不十分な個所と、剛直でない個所における圧縮が充分にされる個所とが混在し、真空断熱材の表面平滑性が劣り断熱性能が劣るといった問題を有するばかりでなく、過剰な有機分を有しているため、発生するガスにより断熱性能が劣るといった問題を有していた。   However, the invention of Patent Document 4 manufactures a so-called ordinary inorganic fiber board obtained by compressing an aggregate of inorganic fibers to retain the shape by heating and curing the adhesive. In order to obtain an inorganic fiber board by heating and curing the adhesive to maintain the shape, it is necessary to increase the amount of binder attached. Since the inorganic fiber board has strong bonding between fibers and becomes rigid per se, when it is used as a vacuum heat insulating material, due to uneven adhesion of the organic binder, compression in a rigid place is not possible during decompression. There are not only the problem that the surface is not smooth and the heat insulation performance is inferior due to a mixture of sufficient parts and parts that are sufficiently compressed in non-rigid parts. Therefore, there is a problem that the heat insulation performance is inferior due to the generated gas.

本発明は上記従来技術の問題点に鑑みてなされたものであり、本発明の目的は、繊維配向が伝熱方向に垂直であり、表面が平滑である断熱性に優れた真空断熱材用ガラス繊維マット(以下「真空断熱材用芯材」または「芯材」という場合がある)を提供し、また、通常のガラス繊維マットの製造設備を利用して簡便に真空断熱材を得ることが可能な真空断熱材用芯材の製造方法を提供することである。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is a glass for a vacuum heat insulating material excellent in heat insulating properties in which the fiber orientation is perpendicular to the heat transfer direction and the surface is smooth. Provides a fiber mat (hereinafter sometimes referred to as “core material for vacuum heat insulating material” or “core material”), and it is possible to easily obtain a vacuum heat insulating material by using an ordinary glass fiber mat manufacturing facility. It is providing the manufacturing method of the core material for a vacuum heat insulating material.

上記目的は以下の本発明によって達成される。すなわち、本発明は、未硬化の熱硬化性有機バインダーが固形分で0.5〜3.0質量%付着した無機繊維を集合してなる無機繊維マットを、密度が50〜1,000kg/m3となるように1対のローラーを用いて加圧する第一工程と、熱風通過式オーブン内の上下のコンベアの間で密度が50〜150kg/m3となるように加圧しながら加熱して成形する第二工程と、さらに第二工程の後に、1対のローラーを用いて密度が50〜1,000kg/m 3 となるように加圧する第三工程とをこの記載の順序に連続的に行い、密度20〜60kg/m3および上記第二工程の厚みに対して1.2倍以上の厚みを有する無機繊維マットを得ることを特徴とする真空断熱材用無機繊維マットの製造方法を提供する。 The above object is achieved by the present invention described below. That is, the present invention provides an inorganic fiber mat formed by collecting inorganic fibers to which an uncured thermosetting organic binder is attached in an amount of 0.5 to 3.0% by mass in a solid content, and has a density of 50 to 1,000 kg / m. Formed by heating while pressing so that the density is 50 to 150 kg / m 3 between the first step of pressing using a pair of rollers to be 3 and the upper and lower conveyors in the hot-air passing oven The second step to be performed and the third step to pressurize so as to have a density of 50 to 1,000 kg / m 3 using a pair of rollers after the second step are continuously performed in the order described herein. A method for producing an inorganic fiber mat for a vacuum heat insulating material is provided, wherein an inorganic fiber mat having a density of 20 to 60 kg / m 3 and a thickness of 1.2 times or more the thickness of the second step is obtained. .

上記本発明においては、前記第一工程で、密度が100〜300kg/m3となるように加圧すること;前記第二工程の加圧・加熱する時間を30秒〜200秒とすること;および前記第三工程で、密度が100〜300kg/m3となるように加圧すること;無機繊維マットが、無機繊維に未硬化の熱硬化性有機バインダーを付与した後に、無機繊維を集積してマット状としたものであることが好ましい。 In the above-described present invention, before Symbol first step, a density of 100 to 300 / m 3 and so as to pressurizing it; be the second step of the pressure-time heating 30 seconds to 200 seconds; And pressing in the third step so that the density is 100 to 300 kg / m 3 ; after the inorganic fiber mat imparts an uncured thermosetting organic binder to the inorganic fiber, the inorganic fiber is accumulated. It is preferable to use a mat.

以上の如き本発明によれば、繊維配向が伝熱方向に垂直であり、表面が平滑である断熱性に優れた真空断熱材用芯材を、簡便な装置で生産性よく提供できる。この芯材を用いることにより、断熱性能に優れた真空断熱材を作業性よく簡便に得ることができる。   According to the present invention as described above, the core material for vacuum heat insulating material excellent in heat insulating properties whose fiber orientation is perpendicular to the heat transfer direction and whose surface is smooth can be provided with a simple apparatus with high productivity. By using this core material, a vacuum heat insulating material excellent in heat insulating performance can be easily obtained with good workability.

次に好ましい実施の形態を挙げて本発明をさらに詳しく説明する。本発明でいう真空断熱材とは、ガラス繊維マットからなる芯材を、アルミニウム蒸着ポリエチレンフィルムなどのガスバリア性外被材で覆い、外被材内を真空(減圧)状態(例えば、1〜10Pa程度)に保持しているものである。   Next, the present invention will be described in more detail with reference to preferred embodiments. The vacuum heat insulating material referred to in the present invention covers a core material made of a glass fiber mat with a gas barrier outer covering material such as an aluminum vapor-deposited polyethylene film, and the inside of the outer covering material is in a vacuum (reduced pressure) state (for example, about 1 to 10 Pa). ).

上記真空断熱材は、ガラス繊維マットからなる真空断熱材用芯材を単に外被材により被覆していることから、該芯材中のガラス繊維の全てが真空断熱材の平面方向に水平になっておらず、そのために断熱性が不十分であった。また、同様な理由で、真空断熱材とした時に外被材の表面の平滑性が劣り、冷蔵庫、パソコンなどの種々の断熱性が要求される用途において、該断熱材が収納される筐体内において筐体の内面に空間が生じ、これも断熱性不良の原因となっていた。さらに、真空断熱材の製造に際して、嵩高のガラス繊維マットを外被材からなる袋内に挿入する際に作業性が劣るものであった。   In the vacuum heat insulating material, the core material for the vacuum heat insulating material made of the glass fiber mat is simply covered with the covering material, and therefore all the glass fibers in the core material are horizontal in the plane direction of the vacuum heat insulating material. Therefore, the heat insulating property was insufficient. For the same reason, the surface of the jacket material is inferior when used as a vacuum heat insulating material, and in a case where various heat insulating properties such as a refrigerator and a personal computer are required, in the casing in which the heat insulating material is stored. A space was created on the inner surface of the housing, which also caused poor heat insulation. Furthermore, when manufacturing a vacuum heat insulating material, workability is inferior when a bulky glass fiber mat is inserted into a bag made of a jacket material.

本発明は、上記課題を解決するものであり、ガラス繊維マットからなる真空断熱材用芯材を特定の方法で製造することにより、該芯材中のガラス繊維が真空断熱材の平面方向に実質的に水平に揃っており、かつ真空断熱材にしたときの、その表面が平滑であり、さらに作業性の良好な真空断熱材用芯材を提供するものである。   The present invention solves the above-mentioned problems, and by manufacturing a vacuum heat insulating core material made of a glass fiber mat by a specific method, the glass fibers in the core material are substantially in the plane direction of the vacuum heat insulating material. Therefore, it is intended to provide a core material for a vacuum heat insulating material that is horizontally aligned and has a smooth surface when it is made into a vacuum heat insulating material, and has good workability.

上記真空断熱材用芯材を構成する、後述の加圧−加熱加圧処理する前のガラス繊維マットそれ自体は公知であり、ガラス繊維を適当な未硬化の熱硬化性有機バインダーによってマット状に成形してなるものである。このようなガラス繊維マットは種々の密度のものが知られているが、本発明においては、ガラス繊維の平均径が1〜5μmであり、加圧−加熱加圧処理する前のガラス繊維マットの密度が3kg/m3以上であり、該マットの1枚の厚みが30〜500mmであることが好適である。 The glass fiber mat that constitutes the core material for vacuum heat insulating material and before the pressurizing-heating / pressurizing treatment described below is known per se, and the glass fiber is matted with a suitable uncured thermosetting organic binder. It is formed by molding. Such glass fiber mats are known to have various densities, but in the present invention, the average diameter of the glass fibers is 1 to 5 μm, and the glass fiber mat before the pressure-heating and pressure treatment is used. It is preferable that the density is 3 kg / m 3 or more and the thickness of one mat is 30 to 500 mm.

上記ガラス繊維の平均径が5μmを超える太さであると、得られる真空断熱材の熱性能が低下するなどの点で本発明の効果が十分には得られず、一方、1μm未満の太さのガラス繊維は製造自体が困難である。また、加圧−加熱加圧処理前のガラス繊維マットの密度が3kg/m3未満であると、加圧−加熱加圧処理する際のハンドリング性が劣り好ましくない。また、上記マットの1枚の厚みが30mm未満であると、真空断熱材用芯材の生産性が劣り、また、多数枚のマットを要するなどの点で好ましくなく、一方、厚さが500mmを超えると加圧または加熱・加圧後のローラーコンベアなどの設備にマットを導入しにくくなり好ましくない。 When the average diameter of the glass fiber is more than 5 μm, the effect of the present invention cannot be sufficiently obtained in that the thermal performance of the obtained vacuum heat insulating material is lowered, while the thickness is less than 1 μm. This glass fiber is difficult to manufacture. Further, if the density of the glass fiber mat before the pressure-heat pressure treatment is less than 3 kg / m 3 , the handling property during the pressure-heat pressure treatment is inferior. Further, if the thickness of one of the mats is less than 30 mm, the productivity of the core material for vacuum heat insulating material is inferior, and it is not preferable in that many mats are required. On the other hand, the thickness is 500 mm. If it exceeds, it is difficult to introduce the mat into equipment such as a roller conveyor after pressurization or heating / pressurization.

また、本発明で使用する有機バインダー自体は従来公知のガラス繊維マットに使用されている有機バインダーでよく、好ましくは、熱硬化性樹脂であるフェノール樹脂前駆体の水溶液などが使用できる。これらの有機バインダーは、有機バインダーの固形分が、該有機バインダーの固形分を含むガラス繊維の全量に対し、0.5〜3.0質量%の範囲の使用量を必須とし、0.5〜1.5質量%が好ましい。これら有機バインダーの使用量が0.5質量%未満であると、ガラス繊維マットが嵩張り、かつ該マットが柔軟性を有するため、該マットからなる芯材を外被材内に充填しにくいなど、ハンドリング性が劣るなど好ましくない。一方、上記使用量が3.0質量%を超えると、後述する第二工程でバインダーが加熱硬化されることにより繊維同士の結合が強固になるものの、バインダーの付着量ばらつきなどにより表面固さにばらつきを生じ、得られる真空断熱材用芯材および真空断熱材の表面平滑性が劣り、また、過剰のバインダーの付着により真空断熱材中においてガス発生が生じ易くなり、結果として断熱性能が劣り好ましくない。   Further, the organic binder itself used in the present invention may be an organic binder used in a conventionally known glass fiber mat, and preferably an aqueous solution of a phenol resin precursor which is a thermosetting resin can be used. These organic binders require a solid content of the organic binder to be in the range of 0.5 to 3.0% by mass with respect to the total amount of glass fibers containing the solid content of the organic binder, 1.5 mass% is preferable. When the amount of the organic binder used is less than 0.5% by mass, the glass fiber mat is bulky and the mat has flexibility, so that it is difficult to fill the core material made of the mat into the jacket material. The handling property is inferior. On the other hand, if the amount used exceeds 3.0% by mass, the binder is heated and cured in the second step to be described later, but the bonding between the fibers becomes stronger. The surface smoothness of the resulting vacuum insulation core material and vacuum insulation material is inferior, and gas is likely to be generated in the vacuum insulation material due to the adhesion of excess binder, resulting in poor insulation performance. Absent.

本発明では、上記の有機バインダーを含むガラス繊維マットを加圧−加熱・加圧処理する。すなわち、本発明では、ガラス繊維マットに有機バインダーが未硬化のままで付着している状態で、特定の加圧力で加圧−加熱・加圧することが重要である。これに対して有機バインダーが硬化した後のみに加圧すると、得られる真空断熱材用芯材を充填してなる真空断熱材の表面平滑性が十分に得られない。   In the present invention, the glass fiber mat containing the organic binder is subjected to pressure-heating / pressure treatment. That is, in the present invention, it is important to pressurize, heat, and pressurize with a specific pressure while the organic binder is adhered to the glass fiber mat in an uncured state. On the other hand, when the pressure is applied only after the organic binder is cured, the surface smoothness of the vacuum heat insulating material formed by filling the obtained core material for vacuum heat insulating material cannot be sufficiently obtained.

(第一工程)
本発明の真空断熱材用芯材は、ガラス繊維を、連続的に溶融紡糸しながらベルトコンベア上に連続的に堆積し、連続的に未硬化の熱硬化性有機バインダーを付与しつつ、第一工程として、図1に示すように、このガラス繊維マットを密度が50〜1,000kg/m3となるように、生産性の点から1対のローラーを用いて加圧する。さらにこの第一工程ではガラス繊維マットの密度が100〜300kg/m3となるようにすることが好ましい。
(First step)
The core material for a vacuum heat insulating material of the present invention is a method in which glass fibers are continuously deposited on a belt conveyor while continuously melt-spinning, and a continuous uncured thermosetting organic binder is applied. As a process, as shown in FIG. 1, this glass fiber mat is pressurized using a pair of rollers from the point of productivity so that a density may be set to 50-1,000 kg / m < 3 >. Further, in the first step, it is preferable that the density of the glass fiber mat is 100 to 300 kg / m 3 .

この第一工程の加圧の目的は、次の第二工程において、オーブン中でのベルトコンベア間におけるガラス繊維マットの押圧力の不足を補うものである。連続して芯材を製造するために、通常使用されるオーブンの押圧能力が低い場合や、オーブンに負荷をかけたくない場合に、オーブン中で低圧で押圧すると真空断熱材として充分な平滑性が得られない。低圧でガラス繊維マットを押圧圧縮する場合、製造速度を遅くすれば得られる芯材の表面平滑性は向上するが、時間を要するわりには該平滑性は不十分であり、かつ生産性に劣る。生産性を上げるためにオーブンを長くすることも考えられるが、オーブンを長くすることは設備費が上昇するという問題がある。本発明では、後記第二工程の前に1対のロールにより前記ガラス繊維マットを予め適当な密度(50〜1,000kg/m3)に圧縮しておくことにより、極めて簡便かつ効果的に第二工程におけるオーブン内の押圧力の不足を補い、オーブンの設備費の上昇を抑えることができる。 The purpose of pressurization in the first step is to compensate for the lack of pressing force of the glass fiber mat between the belt conveyors in the oven in the next second step. In order to continuously produce the core material, if the pressing ability of the oven that is normally used is low, or if you do not want to apply a load to the oven, pressing at low pressure in the oven will provide sufficient smoothness as a vacuum heat insulating material. I can't get it. When the glass fiber mat is pressed and compressed at a low pressure, the surface smoothness of the core material obtained can be improved by slowing the production rate. However, the smoothness is insufficient and the productivity is inferior when time is required. Although it is conceivable to lengthen the oven in order to increase productivity, there is a problem that the equipment cost increases when the oven is lengthened. In the present invention, the glass fiber mat is compressed to an appropriate density (50 to 1,000 kg / m 3 ) in advance by a pair of rolls before the second step to be described later. The shortage of the pressing force in the oven in the two steps can be compensated, and an increase in the equipment cost of the oven can be suppressed.

上記密度が50kg/m3未満であるとガラス繊維マットの圧縮が不足し、第二工程において加熱・加圧してもガラス繊維をマットの平面方向に水平に並べることが困難である。一方、1,000kg/m3を超えると、マットを構成するガラス繊維が破壊されるので好ましくない。 When the density is less than 50 kg / m 3 , the compression of the glass fiber mat is insufficient, and it is difficult to arrange the glass fibers horizontally in the plane direction of the mat even when heated and pressurized in the second step. On the other hand, if it exceeds 1,000 kg / m 3 , the glass fibers constituting the mat are broken, which is not preferable.

(第二工程)
上記で得られた加圧ガラス繊維マットを、第二工程として、密度が50〜150kg/m3となるように、好ましくは30〜200秒間で、好ましくはクリアランス(マットの厚み)が5〜30mmとなるように、加圧と加熱が同時にできる方式であり、図1に示すような熱風通過式オーブン内の上下のコンベアの間で行う。上記コンベアの長さはラインスピードにもよるが、10〜30mが好ましい。コンベアの長さが10m未満であると加圧や加熱が不十分となり、平滑な真空断熱材を与える真空断熱材用芯材を得ることができず、一方、コンベアの長さが30mを超えると装置が大掛かりとなるので好ましくない。
(Second step)
The pressure glass fiber mat obtained as described above is used in the second step so that the density is 50 to 150 kg / m 3 , preferably 30 to 200 seconds, and preferably the clearance (mat thickness) is 5 to 30 mm. In this way, pressurization and heating can be performed simultaneously, and it is performed between the upper and lower conveyors in the hot air passage type oven as shown in FIG. The length of the conveyor is preferably 10 to 30 m, although it depends on the line speed. When the length of the conveyor is less than 10 m, pressurization and heating become insufficient, and it is impossible to obtain a core material for vacuum heat insulating material that gives a smooth vacuum heat insulating material. On the other hand, when the length of the conveyor exceeds 30 m Since the apparatus becomes large, it is not preferable.

この第二工程において未硬化の熱硬化性樹脂が加熱硬化され、真空断熱材用芯材が成形される。上記密度が50kg/m3未満であると、ガラス繊維の配向をマットと水平面に一致させることが困難であり、一方、150kg/m3を超えると、真空断熱材の表面を平滑にし易くするものの、オーブンに負荷をかけたり、高圧にするための設備の増設が必要となる。 In this second step, the uncured thermosetting resin is heat-cured to form a vacuum heat insulating core material. When the density is less than 50 kg / m 3 , it is difficult to make the orientation of the glass fibers coincide with the mat and the horizontal plane. On the other hand, when the density exceeds 150 kg / m 3 , the surface of the vacuum heat insulating material is easily smoothed. It is necessary to install additional equipment to put a load on the oven and to increase the pressure.

また、加圧時間は30〜200秒間が好ましく、60〜150秒間が最も好ましい。また、加熱温度は一般的には、有機バインダーが硬化する温度以上の温度であり、具体的には160〜280℃の範囲が好ましい。この温度はコンベアそのものの温度ではなく、ガラス繊維マット内の温度である。従って上記加圧・加熱処理はオーブン内の温度を適当な温度に上げて行なうことができる。加圧・加熱が30秒未満あるいは160℃以下では、ガラス繊維の配向が不均一であり、かつバインダーによるガラス繊維の結着が不足する。一方、加圧・加熱が200秒を超えるか、あるいは280℃を超えると、生産速度が低下したり、バインダーが劣化する畏れがある。   The pressing time is preferably 30 to 200 seconds, and most preferably 60 to 150 seconds. Moreover, generally heating temperature is the temperature more than the temperature which an organic binder hardens | cures, and the range of 160-280 degreeC is specifically preferable. This temperature is not the temperature of the conveyor itself, but the temperature in the glass fiber mat. Therefore, the pressurizing / heating treatment can be performed by raising the temperature in the oven to an appropriate temperature. When the pressurization / heating is less than 30 seconds or 160 ° C. or less, the orientation of the glass fibers is not uniform, and the binding of the glass fibers by the binder is insufficient. On the other hand, if the pressurization / heating exceeds 200 seconds or exceeds 280 ° C., the production rate may decrease or the binder may deteriorate.

本発明では、前記第一工程および第二工程で真空断熱材として充分な平滑性を有する芯材を得ることが可能となるが、さらに第三工程として、上記の加圧・加熱処理されたガラス繊維マットの密度が50〜1,000kg/m3となるように再度加圧することが好ましい。この加圧は、ガラス繊維マットの密度が100〜300kg/m3となるようにすることがさらに好ましい。この加圧は何れの加圧方式でもよいが、図1に示すように、生産性の点から1対のローラーを用いて行なうことが好ましい。この第三工程の加圧の目的は、前記第一工程と同様であるのに加えて、第二工程で処理されたガラス繊維マット中のガラス繊維の配向を揃えかつ該マットの表面平滑性を向上させることである。上記密度が50kg/m3未満であると、上記の目的が達成されず、一方、1,000kg/m3を超えるとマットを構成しているガラス繊維が破壊される畏れがある。 In the present invention, it is possible to obtain a core material having sufficient smoothness as a vacuum heat insulating material in the first step and the second step. It is preferable to pressurize again so that the density of the fiber mat is 50 to 1,000 kg / m 3 . More preferably, the pressing is performed so that the density of the glass fiber mat is 100 to 300 kg / m 3 . This pressurization method may be any pressurization method, but as shown in FIG. 1, it is preferable to use a pair of rollers from the viewpoint of productivity. The purpose of the pressurization in the third step is the same as that in the first step. In addition, the orientation of the glass fibers in the glass fiber mat treated in the second step is aligned and the surface smoothness of the mat is improved. It is to improve. When the density is less than 50 kg / m 3 , the above-mentioned purpose is not achieved. On the other hand, when the density exceeds 1,000 kg / m 3 , the glass fibers constituting the mat may be broken.

以上の如く加圧−加圧・加熱処理された真空断熱材用芯材は、過剰に加圧されることで該芯材を構成しているガラス繊維は、芯材の平面方向に対して実質的に水平になりかつ適度なバインダー付着量により、第二工程または第三工程の処理後に圧力から解放されると厚みが増して厚み15〜100mm、密度20〜60kg/m3、第二工程でのマットの厚みに対して1.2倍以上で、より好ましくは2.0倍以上の厚みの真空断熱材用芯材が得られる。前記値が1.2倍未満であると剛直な芯材であり、表面平滑性が劣るため真空断熱材の断熱性能が劣り好ましくない。このような加圧−加圧・加熱−加圧処理によって芯材を構成しているガラス繊維は、その平面方向に対して実質的に水平になるばかりでなく、芯材の表面平滑性が向上し、かつ有機バインダーの熱硬化によって上記の状態が維持される。その結果、該加圧・加熱処理されたガラス繊維マットを真空断熱材用芯材として使用することによって、断熱性、表面平滑性および作業性に優れた真空断熱材が得られる。 As described above, the core material for vacuum heat insulating material that has been subjected to pressure-pressurization and heat treatment is substantially pressurized with respect to the planar direction of the core material. Level and a moderate amount of binder attached, when released from the pressure after the second or third step, the thickness increases to a thickness of 15 to 100 mm, a density of 20 to 60 kg / m 3 , A core material for a vacuum heat insulating material having a thickness of 1.2 times or more, more preferably 2.0 times or more the thickness of the mat is obtained. If the value is less than 1.2 times, it is a rigid core material, and since the surface smoothness is inferior, the heat insulating performance of the vacuum heat insulating material is inferior. The glass fibers constituting the core material by such pressurization-pressurization / heating-pressurization treatment are not only substantially horizontal to the plane direction but also improve the surface smoothness of the core material. In addition, the above-described state is maintained by thermosetting the organic binder. As a result, a vacuum heat insulating material excellent in heat insulating properties, surface smoothness and workability can be obtained by using the glass fiber mat subjected to pressure and heat treatment as a core material for a vacuum heat insulating material.

上記本発明によって得られた真空断熱材用芯材を用いて真空断熱材とする場合は、例えば、上記本発明によって得られた芯材をガスバリア性外被材で被覆し、該外被材内を脱気することによって得られる。ガスバリア性外被材としては、ポリエステル、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリプロピレンなどの樹脂フィルム、クラフト紙と上記フィルムをラミネートしたもの、上記フィルムにアルミニウム箔をラミネートしたもの、上記フィルムにアルミニウムを蒸着したものなどが好ましく用いられる。   When the vacuum heat insulating material obtained by the present invention is used as a vacuum heat insulating material, for example, the core obtained by the present invention is covered with a gas barrier outer covering material, Is obtained by degassing. Examples of gas barrier coating materials include polyester, polyethylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polypropylene, and other resin films, kraft paper laminated with the above film, the above film laminated with aluminum foil, and the above film Those obtained by vapor-depositing aluminum are preferably used.

また、真空断熱材の製造方法自体は公知の方法でよい。1例を示すと、上型と下型とからなり、何れか一方に真空ポンプによって排気される排気口を有する型を用意し、該型の上型および下型で形成されるキャビティ内面に、一方が排気および封止用チューブを有すガスバリア性外被材、例えば、アルミニウム蒸着高密度ポリエチレンフィルムを配置し、その間に本発明の真空断熱材用芯材を配置した後、型を閉じて上下2枚の外被材の周辺部を融着させ、上記チューブを介して脱気して、ガスバリア性外被材の内圧を10.0Pa以下にする。その後上記チューブを封止し、脱型することにより、真空断熱材が得られる。得られる真空断熱材のサイズや厚みなどは用途によって任意に変化させることができる。   Moreover, the manufacturing method itself of a vacuum heat insulating material may be a known method. As an example, an upper mold and a lower mold are used, and a mold having an exhaust port exhausted by a vacuum pump is prepared in either one of the molds, and an inner surface of a cavity formed by the upper mold and the lower mold is prepared. One is a gas barrier sheath material having an exhaust and sealing tube, for example, an aluminum-deposited high-density polyethylene film, and the vacuum insulation core material of the present invention is placed between them, and then the mold is closed and The peripheral portions of the two jacket materials are fused and deaerated through the tube, so that the internal pressure of the gas barrier jacket material is 10.0 Pa or less. The tube is then sealed and demolded to obtain a vacuum heat insulating material. The size and thickness of the obtained vacuum heat insulating material can be arbitrarily changed depending on the application.

また、真空断熱材の製造に際し、本発明の真空断熱材用芯材がある範囲の密度に加圧成形されているので、外被材で被覆する際の作業性が良好である。また、前記本発明によって得られた芯材を使用することにより、該芯材のガラス繊維が芯材の平面方向に配列していることから、真空断熱材の断熱性が顕著に向上し、さらに同様の理由で真空断熱材の表面が平滑であることから、該断熱材を使用した際、該断熱材を収納する筐体の壁面との間に空間が残ることなく、従ってこの点からも断熱性が顕著に向上している。   Further, when the vacuum heat insulating material is manufactured, the vacuum heat insulating core material of the present invention is pressure-molded to a certain range of density, so that the workability at the time of covering with the jacket material is good. Further, by using the core material obtained by the present invention, since the glass fibers of the core material are arranged in the plane direction of the core material, the heat insulating property of the vacuum heat insulating material is remarkably improved. For the same reason, since the surface of the vacuum heat insulating material is smooth, when the heat insulating material is used, there is no space between the wall surface of the housing for storing the heat insulating material, and thus heat insulation is also performed from this point. The property is remarkably improved.

次に実施例および比較例を挙げて本発明をさらに詳しく説明する。
実施例1
平均繊維径4μmのガラス繊維にフェノール樹脂バインダーをイグロスが1質量%となるように噴霧して得られたガラス繊維マット(厚さ約300mm、密度約3kg/m3)を、先ず一対のロールにて加圧時密度150kg/m3の条件で押圧し、続けて熱風通過式オーブンにて、上下約8mmのクリアランスを有するコンベアーで挟み込みながら260℃、オーブン滞留時間約90秒、加圧時密度120kg/m3の条件で加熱圧縮し、さらに一対のロールにて加圧時密度150kg/m3の条件で押圧した。これにより、厚さ約30mm、密度約35kg/m3の真空断熱材用芯材を得た。この芯材を3枚重ねガスバリアー性の高い被覆袋に挿入し、真空シール装置にて袋内の圧力が3.9Paとなるように20分間吸引した後に、袋の開口部を加熱圧着し、厚さ12mm、密度250kg/m3の真空断熱材を得た。
Next, the present invention will be described in more detail with reference to examples and comparative examples.
Example 1
First, a glass fiber mat (thickness of about 300 mm, density of about 3 kg / m 3 ) obtained by spraying a glass fiber having an average fiber diameter of 4 μm with a phenol resin binder so that Igros is 1% by mass is first put on a pair of rolls. Press at a density of 150 kg / m 3 when pressurized, and then continue to be sandwiched by a conveyor with a clearance of about 8 mm above and below in a hot air passing oven at 260 ° C., an oven residence time of about 90 seconds, and a density of 120 kg when pressurized / M 3 was heated and compressed, and further pressed with a pair of rolls under a pressure density of 150 kg / m 3 . As a result, a core material for a vacuum heat insulating material having a thickness of about 30 mm and a density of about 35 kg / m 3 was obtained. Three cores are stacked and inserted into a highly gas barrier coated bag and sucked with a vacuum seal device for 20 minutes so that the pressure in the bag is 3.9 Pa. Then, the opening of the bag is thermocompression bonded, A vacuum heat insulating material having a thickness of 12 mm and a density of 250 kg / m 3 was obtained.

実施例2
平均繊維径4μmのガラス繊維にフェノール樹脂バインダーをイグロスが1質量%となるように噴霧して得られたガラス繊維マット(厚さ約300mm、密度約3kg/m3)を、先ず一対のロールにて加圧時密度80kg/m3の条件で押圧し、続けて熱風通過式オーブンにて、上下約11mmのクリアランスを有するコンベアーで挟み込みながら260℃、オーブン滞留時間約90秒、加圧時密度80kg/m3の条件で加熱圧縮し、さらに一対のロールにて加圧時密度80kg/m3の条件で押圧した。これにより、厚さ約40mm、密度約26kg/m3の真空断熱材用芯材を得た。この芯材を使用し、実施例1と同様な方法で真空断熱材を得た。
Example 2
First, a glass fiber mat (thickness of about 300 mm, density of about 3 kg / m 3 ) obtained by spraying a glass fiber having an average fiber diameter of 4 μm with a phenol resin binder so that Igros is 1% by mass is first put on a pair of rolls. Pressing at a pressure density of 80 kg / m 3 , followed by a hot air passage oven, sandwiched by a conveyor having a clearance of about 11 mm above and below, 260 ° C., oven dwell time of about 90 seconds, pressure density of 80 kg / M 3 was heated and compressed, and further pressed with a pair of rolls under a pressure density of 80 kg / m 3 . As a result, a core material for a vacuum heat insulating material having a thickness of about 40 mm and a density of about 26 kg / m 3 was obtained. Using this core material, a vacuum heat insulating material was obtained in the same manner as in Example 1.

実施例3
平均繊維径4μmのガラス繊維にフェノール樹脂バインダーをイグロスが1質量%となるように噴霧して得られたガラス繊維マット(厚さ約300mm、密度約3kg/m3)を、先ず一対のロールにて加圧時密度150kg/m3の条件で押圧し、続けて熱風通過式オーブンにて、上下約11mmのクリアランスを有するコンベアーで挟み込みながら260℃、オーブン滞留時間約90秒、加圧時密度80kg/m3の条件で加熱圧縮し、さらに一対のロールにて加圧時密度150kg/m3の条件で押圧した。これにより、厚さ約35mm、密度約30kg/m3の真空断熱材用芯材を得た。この芯材を使用し、実施例1と同様な方法で真空断熱材を得た。
Example 3
First, a glass fiber mat (thickness of about 300 mm, density of about 3 kg / m 3 ) obtained by spraying a glass fiber having an average fiber diameter of 4 μm with a phenol resin binder so that Igros is 1% by mass is first put on a pair of rolls. Press at a density of 150 kg / m 3 under pressure, and continue to be sandwiched by a conveyer having a clearance of about 11 mm above and below in a hot air passing oven, at 260 ° C., an oven residence time of about 90 seconds, and a density of 80 kg under pressure / M 3 was heated and compressed, and further pressed with a pair of rolls under a pressure density of 150 kg / m 3 . As a result, a vacuum heat insulating core material having a thickness of about 35 mm and a density of about 30 kg / m 3 was obtained. Using this core material, a vacuum heat insulating material was obtained in the same manner as in Example 1.

比較例1
平均繊維径4μmのガラス繊維にフェノール樹脂バインダーをイグロスが1質量%となるように噴霧して得られたガラス繊維マットを熱風通過式オーブンにて、上下約8mmのクリアランスを有するコンベアーで挟み込みながら温度260℃、加圧時密度約120kg/m3、加圧時間5分間の条件で加熱圧縮した。これにより、厚さ約45mm、密度約23kg/m3の真空断熱材用芯材を得た。この芯材を使用し、実施例1と同様な方法で真空断熱材を得た。
Comparative Example 1
The glass fiber mat obtained by spraying a glass fiber having an average fiber diameter of 4 μm with a phenol resin binder so that the gloss is 1% by mass is sandwiched by a conveyor having a clearance of about 8 mm above and below in a hot air passing oven. Heat compression was performed under the conditions of 260 ° C., density at press time of about 120 kg / m 3 , and pressurization time of 5 minutes. As a result, a vacuum heat insulating core material having a thickness of about 45 mm and a density of about 23 kg / m 3 was obtained. Using this core material, a vacuum heat insulating material was obtained in the same manner as in Example 1.

比較例2
平均繊維径4μmのガラス繊維にフェノール樹脂バインダーをイグロスが1質量%となるように噴霧して得られたガラス繊維マットを熱風通過式オーブンにて、上下約11mmのクリアランスを有するコンベアーで挟み込みながら温度260℃、加圧時密度約80kg/m3、加圧時間5分間の条件で加熱圧縮した。これにより、バインダーがキュアーされ、厚さ約50mm、密度約21kg/m3の真空断熱材用芯材を得た。この芯材を使用し、実施例1と同様な方法で真空断熱材を得た。
Comparative Example 2
The glass fiber mat obtained by spraying a glass fiber having an average fiber diameter of 4 μm with a phenol resin binder so that the amount of gloss is 1% by mass is sandwiched by a conveyer having a clearance of about 11 mm above and below in a hot air passing oven. Heat compression was performed under the conditions of 260 ° C., density during pressing of about 80 kg / m 3 , and pressing time of 5 minutes. As a result, the binder was cured to obtain a core for vacuum heat insulating material having a thickness of about 50 mm and a density of about 21 kg / m 3 . Using this core material, a vacuum heat insulating material was obtained in the same manner as in Example 1.

比較例3
平均繊維径4μmのガラス繊維にフェノール樹脂バインダーをイグロスが1質量%となるように噴霧して得られたガラス繊維マット(厚さ約300mm、密度約3kg/m3)を熱風通過式オーブンにて、上下約8mmのクリアランスを有するコンベアーで挟み込みながら260℃、オーブン滞留時間約5分、加圧時密度120kg/m3の条件で加熱圧縮し、さらに一対のロールにて加圧時密度80kg/m3の条件で押圧した。これにより、厚さ約43mm、密度約24kg/m3の真空断熱材用芯材を得た。この芯材を使用し、実施例1と同様な方法で真空断熱材を得た。
Comparative Example 3
A glass fiber mat (thickness of about 300 mm, density of about 3 kg / m 3 ) obtained by spraying a phenol resin binder on glass fibers having an average fiber diameter of 4 μm so that the gloss is 1% by mass is heated in a hot air passing oven. While being sandwiched by a conveyor having a clearance of about 8 mm above and below, it is heated and compressed under the conditions of 260 ° C., oven residence time of about 5 minutes, density at pressurization of 120 kg / m 3 , and density at pressurization with a pair of rolls of 80 kg / m It pressed on condition of 3 . Thereby, a core material for vacuum heat insulating material having a thickness of about 43 mm and a density of about 24 kg / m 3 was obtained. Using this core material, a vacuum heat insulating material was obtained in the same manner as in Example 1.

比較例4
平均繊維径4μmのガラス繊維にフェノール樹脂バインダーをイグロスが6質量%となるように噴霧して得られたガラス繊維マット(厚さ300mm、密度約3kg/m3)を、先ず一対のロールにて加圧密度150kg/m3の条件で押圧し、続けて熱風通過式オーブンにて、上下約8mmのクリアランスを有するコンベアーで挟み込みながら260℃、オーブン滞留時間90秒間、加圧密度120kg/m3の条件で押圧した。これにより厚さ8mm、密度約35kg/m3の真空断熱材用芯材を得た。この芯材を使用し、実施例1と同様な方法で真空断熱材を得た。
Comparative Example 4
A glass fiber mat (thickness: 300 mm, density: about 3 kg / m 3 ) obtained by spraying a phenol resin binder on glass fibers having an average fiber diameter of 4 μm so that the gloss is 6% by mass is firstly used with a pair of rolls. Pressing at a pressure density of 150 kg / m 3 , followed by a hot air passage oven, sandwiched by a conveyor having a clearance of about 8 mm above and below, 260 ° C., oven dwell time 90 seconds, pressure density 120 kg / m 3 Pressed under conditions. As a result, a vacuum heat insulating core material having a thickness of 8 mm and a density of about 35 kg / m 3 was obtained. Using this core material, a vacuum heat insulating material was obtained in the same manner as in Example 1.

[評価]
上記実施例および比較例の真空断熱材の表面平滑性および熱伝導率を下記の評価方法で評価して下記表1に記載の結果を得た。
[評価方法]
1.真空装置:古川製作所製の真空装置(商品名FVS−500×150)
2.表面平滑性(測定方法は下記の通り):
◎:凹凸が少なく、凹部の深さが1mm未満
○:凹凸が僅かにあり、凹部の深さが1mm以上2mm未満
△:凹凸が若干大きく、凹部の深さが2mm以上3mm未満
×:凹凸が大きく、凹部の深さが3mm以上
[Evaluation]
The surface smoothness and thermal conductivity of the vacuum heat insulating materials of the above Examples and Comparative Examples were evaluated by the following evaluation methods, and the results shown in Table 1 below were obtained.
[Evaluation methods]
1. Vacuum device: Vacuum device manufactured by Furukawa Seisakusho (trade name FVS-500 × 150)
2. Surface smoothness (measurement method is as follows):
A: There are few irregularities and the depth of the concave portion is less than 1 mm. O: There are slight irregularities, the depth of the concave portion is 1 mm or more and less than 2 mm. Δ: The irregularity is slightly large and the depth of the concave portion is 2 mm or more and less than 3 mm. Large, depth of recess is 3mm or more

「表面平滑性の測定方法」
図2に示すように、硬質平板、試料である真空断熱材(200×200mm)、およびピン(直径3mmの丸棒で先端の尖ったもの)とゲージ(大きさ150mm×150mm、重量100±1g、中心につまみと直径3.5mmの穴のあるもの)とからなるピンゲージを用意する。硬質平板の上に上記試料を置き、ゲージの中心を試験片の端から約50mm以上内側に置きピンを落とす。ゲージを静かに試験片の上に降ろす。片方の手の親指と人差し指の先でゲージのツマミを掴みピンとゲージを固定し、一体となったピンゲージを試験片から取り上げる。ピンゲージのつまみをしっかりとつかんだまま直尺を当て、ゲージ下面とピン先端との距離を0.5mm単位で測定する。これを繰り返し10箇所の凹みを測定する。10箇所の平均値をその試験体の凹みとする。
3.熱伝導率:英弘精機社製熱伝導率計(HC−074−300)で測定
"Measurement method of surface smoothness"
As shown in FIG. 2, a hard flat plate, a sample vacuum heat insulating material (200 × 200 mm), a pin (a round bar with a diameter of 3 mm and a pointed tip) and a gauge (size 150 mm × 150 mm, weight 100 ± 1 g) A pin gauge comprising a knob and a hole having a diameter of 3.5 mm in the center is prepared. The sample is placed on a hard flat plate, the center of the gauge is placed about 50 mm or more inside from the end of the test piece, and the pin is dropped. Gently lower the gauge onto the specimen. Grab the gauge knob with the thumb of one hand and the tip of the index finger to fix the pin and gauge, and pick up the integrated pin gauge from the specimen. While holding the pin gauge knob firmly, apply a straight scale and measure the distance between the bottom of the gauge and the tip of the pin in units of 0.5 mm. This is repeated and ten dents are measured. The average value at 10 locations is defined as the dent of the test specimen.
3. Thermal conductivity: Measured with a thermal conductivity meter (HC-074-300) manufactured by Eihiro Seiki Co., Ltd.

Figure 0004331576
Figure 0004331576

以上の如き本発明によれば、繊維配向が伝熱方向に垂直であり、表面が平滑である断熱性に優れた真空断熱材用芯材を提供できる。この芯材を用いることにより、作業性よく簡便に断熱性能に優れた真空断熱材を得ることができる。   According to the present invention as described above, it is possible to provide a core material for a vacuum heat insulating material excellent in heat insulating properties in which the fiber orientation is perpendicular to the heat transfer direction and the surface is smooth. By using this core material, it is possible to obtain a vacuum heat insulating material excellent in heat insulating performance with good workability.

本発明の方法を図解的に説明する図。The figure which illustrates the method of this invention illustratively. 表面平滑性の測定を説明する図。The figure explaining the measurement of surface smoothness.

Claims (5)

未硬化の熱硬化性有機バインダーが固形分で0.5〜3.0質量%付着した無機繊維を集合してなる無機繊維マットを、密度が50〜1,000kg/m3となるように1対のローラーを用いて加圧する第一工程と、熱風通過式オーブン内の上下のコンベアの間で密度が50〜150kg/m3となるように加圧しながら加熱して成形する第二工程と、さらに第二工程の後に、1対のローラーを用いて密度が50〜1,000kg/m 3 となるように加圧する第三工程とをこの記載の順序に連続的に行い、密度20〜60kg/m3および上記第二工程の厚みに対して1.2倍以上の厚みを有する無機繊維マットを得ることを特徴とする真空断熱材用無機繊維マットの製造方法。 An inorganic fiber mat formed by collecting inorganic fibers to which an uncured thermosetting organic binder is attached in an amount of 0.5 to 3.0% by mass in a solid content is 1 so that the density is 50 to 1,000 kg / m 3. A first step of pressurizing using a pair of rollers, a second step of forming by heating while pressing so that the density is 50 to 150 kg / m 3 between the upper and lower conveyors in the hot-air passing oven , Further, after the second step, a third step of pressurizing so that the density is 50 to 1,000 kg / m 3 using a pair of rollers is continuously performed in this order, and the density is 20 to 60 kg / A method for producing an inorganic fiber mat for a vacuum heat insulating material, comprising obtaining an inorganic fiber mat having a thickness of 1.2 times or more of m 3 and the thickness of the second step. 前記第一工程で、密度が100〜300kg/m3となるように加圧する請求項1に記載の真空断熱材用無機繊維マットの製造方法。 The manufacturing method of the inorganic fiber mat for vacuum heat insulating materials of Claim 1 pressurized so that a density may be set to 100-300 kg / m < 3 > at said 1st process. 前記第二工程の加圧・加熱する時間を30秒〜200秒とする請求項1に記載の真空断熱材用無機繊維マットの製造方法。 The method for producing an inorganic fiber mat for a vacuum heat insulating material according to claim 1, wherein the pressure and heating time in the second step is 30 seconds to 200 seconds. 前記第三工程で、密度が100〜300kg/m3となるように加圧する請求項に記載の真空断熱材用無機繊維マットの製造方法。 The manufacturing method of the inorganic fiber mat for vacuum heat insulating materials of Claim 1 which pressurizes so that a density may be set to 100-300 kg / m < 3 > at a said 3rd process. 無機繊維マットが、無機繊維に未硬化の熱硬化性有機バインダーを付与した後に、無機繊維を集積してマット状としたものである請求項1に記載の真空断熱材用無機繊維マットの製造方法。 The method for producing an inorganic fiber mat for a vacuum heat insulating material according to claim 1, wherein the inorganic fiber mat is obtained by adding an uncured thermosetting organic binder to the inorganic fiber and then collecting the inorganic fibers into a mat shape. .
JP2003402506A 2003-12-02 2003-12-02 Manufacturing method of inorganic fiber mat for vacuum heat insulating material Expired - Fee Related JP4331576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402506A JP4331576B2 (en) 2003-12-02 2003-12-02 Manufacturing method of inorganic fiber mat for vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402506A JP4331576B2 (en) 2003-12-02 2003-12-02 Manufacturing method of inorganic fiber mat for vacuum heat insulating material

Publications (2)

Publication Number Publication Date
JP2005163212A JP2005163212A (en) 2005-06-23
JP4331576B2 true JP4331576B2 (en) 2009-09-16

Family

ID=34726053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402506A Expired - Fee Related JP4331576B2 (en) 2003-12-02 2003-12-02 Manufacturing method of inorganic fiber mat for vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP4331576B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426480B2 (en) * 2010-05-25 2014-02-26 パナソニック株式会社 Long fiber board and manufacturing method thereof
KR101657989B1 (en) 2012-07-12 2016-09-21 주식회사 케이씨씨 Vacuum insulation panel including annealed binderless glass fiber
KR101525297B1 (en) * 2013-01-16 2015-06-02 (주)엘지하우시스 Core material having glass wool for vacuum insulation, method for manufacturing the same and vacuum insulation using the same
JP2017133615A (en) * 2016-01-28 2017-08-03 日立アプライアンス株式会社 Heat insulation material, vacuum heat insulation material, method for manufacturing heat insulation material and equipment using heat insulation material or vacuum heat insulation material
CN106087073A (en) * 2016-08-16 2016-11-09 江苏常朔针纺纱科技有限公司 A kind of intelligence Cotton Gossypii press device

Also Published As

Publication number Publication date
JP2005163212A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4703134B2 (en) Manufacturing method of vacuum insulation core material
JP2006125631A (en) Vacuum insulation material and manufacturing method thereof
JPS63214444A (en) Multilayer composite structure with smooth surface
JP2006517156A (en) Thermal insulation structures consisting of layers of expanded graphite particles compressed to different densities, thermal insulation elements made from these structures
JP4331576B2 (en) Manufacturing method of inorganic fiber mat for vacuum heat insulating material
WO2005070664A1 (en) Multilayer product made out of a substrate and on either side at least one cover layer; process for the manufacture of a multilayer product and paiinted multilayer product and process for painting a multilayer product
CN104608447A (en) Continuous fiber-reinforced flame-retardant PP (polypropylene) board and preparation method thereof
JP2018062641A5 (en)
JP2014202322A (en) Vacuum heat insulating material
CN101224651A (en) Sheet metal and non-metal fiber film compound material
JP2006017169A (en) Vacuum heat insulating material, core material for vacuum heat insulating material and its producing method
JP2005106090A (en) Vacuum insulating panel and its manufacturing method
CN106715995B (en) Heat insulating material and method for producing same
CA2440946A1 (en) Low density oriented strand boards
WO2002026463A2 (en) Process of making simultaneously molded laminates
WO2014196526A1 (en) Heat insulation material and method of manufacturing heat insulation material
CN102765229B (en) Compound plastic cloth as well as application and application method thereof
KR100783901B1 (en) A method of preparing a mineral fiber panel comprising one or more shaped cavities
KR101539951B1 (en) Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same
JP2003151568A (en) Electrode material for solid high polymer fuel cell and its manufacturing method
JP7220448B2 (en) METHOD FOR MANUFACTURING FIBER REINFORCED COMPOSITE
KR102405001B1 (en) Unbaked insulation and/or sound insulation products and insulation blankets obtained therefrom
JP2001159617A (en) Inorganic fiber mat standard plate for measuring heat conductivity and method of manufacturing the same
JP2005133033A (en) Coating agent for heat insulating material and laminated body for heat insulating material using the same
CN113246576A (en) Preparation method of composite material laminate containing in-plane ripple defects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150626

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees