JP4329474B2 - Thin film formation method - Google Patents

Thin film formation method Download PDF

Info

Publication number
JP4329474B2
JP4329474B2 JP2003342953A JP2003342953A JP4329474B2 JP 4329474 B2 JP4329474 B2 JP 4329474B2 JP 2003342953 A JP2003342953 A JP 2003342953A JP 2003342953 A JP2003342953 A JP 2003342953A JP 4329474 B2 JP4329474 B2 JP 4329474B2
Authority
JP
Japan
Prior art keywords
film thickness
thickness distribution
set value
thin film
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003342953A
Other languages
Japanese (ja)
Other versions
JP2005109303A (en
Inventor
透 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003342953A priority Critical patent/JP4329474B2/en
Publication of JP2005109303A publication Critical patent/JP2005109303A/en
Application granted granted Critical
Publication of JP4329474B2 publication Critical patent/JP4329474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、半導体基板の主表面に薄膜を形成する薄膜形成方法に関する。   The present invention relates to a thin film forming method for forming a thin film on a main surface of a semiconductor substrate.

従来、基板の表面に薄膜を形成する方法としてCVD法(化学気相成長法)があり、半導体基板の主表面にエピタキシャル層を形成する薄膜形成装置などに適用されている。   Conventionally, there is a CVD method (chemical vapor deposition method) as a method for forming a thin film on the surface of a substrate, which is applied to a thin film forming apparatus for forming an epitaxial layer on the main surface of a semiconductor substrate.

このような薄膜形成装置として、図2(a)、(b)に示すように、枚葉式の気相成長装置2を備えた薄膜形成装置1がある(例えば、特許文献1参照)。気相成長装置2は、半導体基板(図示せず)が内部に配置される反応炉3を備えている。反応炉3の内部には、半導体基板が載置される円盤状のサセプタ20が回転可能に設けられている。また、反応炉3の一端部にはガス流通方向Xに開口する例えば4つの原料ガス供給口3dが設けられ、他端部にはガス排出口3eが設けられている。原料ガス供給口3dの下部には、サセプタ20の下方の空間にパージガスを供給するパージガス供給口(図示せず)が設けられている。   As such a thin film forming apparatus, as shown in FIGS. 2A and 2B, there is a thin film forming apparatus 1 including a single wafer type vapor phase growth apparatus 2 (see, for example, Patent Document 1). The vapor phase growth apparatus 2 includes a reaction furnace 3 in which a semiconductor substrate (not shown) is disposed. A disc-shaped susceptor 20 on which a semiconductor substrate is placed is rotatably provided inside the reaction furnace 3. In addition, for example, four source gas supply ports 3d that open in the gas flow direction X are provided at one end of the reaction furnace 3, and a gas discharge port 3e is provided at the other end. A purge gas supply port (not shown) for supplying purge gas to a space below the susceptor 20 is provided below the source gas supply port 3d.

また、上記反応炉3には、原料ガス供給口3dを介して原料ガス供給装置4が接続されている。原料ガス供給装置4は、原料ガスとキャリアガスとを含む混合ガスのガス流を半導体基板の表面に沿って形成するガス供給管40を備えている。ガス供給管40の一方の端部は原料ガス及びキャリアガスのそれぞれのガス源41,42に接続されており、原料ガス及びキャリアガスのそれぞれの流量はマスフローコントローラ43,44によって制御されている。また、ガス供給管40の他方の端部は互いに平行な4つの流路40a〜40dに分割され、各流路40a〜40dの末端は原料ガス供給口3dに接続されている。これら4つの流路40a〜40dのうち、内側の2つの流路40a,40bと外側の2つの流路40c,40dとはそれぞれ等しい流量の混合ガスを供給するようになっており、内側の流量と外側の流量とがバルブ45,46で調整されることにより、ガス流通方向Xの略直交方向Yにおける半導体基板上の流量分布が制御されるようになっている。   In addition, a raw material gas supply device 4 is connected to the reaction furnace 3 via a raw material gas supply port 3d. The source gas supply device 4 includes a gas supply pipe 40 that forms a gas flow of a mixed gas containing the source gas and the carrier gas along the surface of the semiconductor substrate. One end of the gas supply pipe 40 is connected to gas sources 41 and 42 of the source gas and carrier gas, and the flow rates of the source gas and carrier gas are controlled by mass flow controllers 43 and 44, respectively. The other end of the gas supply pipe 40 is divided into four parallel flow paths 40a to 40d, and the ends of the flow paths 40a to 40d are connected to the source gas supply port 3d. Among these four flow paths 40a to 40d, the inner two flow paths 40a and 40b and the outer two flow paths 40c and 40d supply mixed gas at the same flow rate, respectively, The flow rate distribution on the semiconductor substrate in the direction Y substantially orthogonal to the gas flow direction X is controlled by adjusting the flow rate on the outside and the flow rate on the outside by the valves 45 and 46.

ところで、上記のような枚葉式の気相成長装置2によって均一な膜厚の薄膜を形成するには、メンテナンスのために反応炉3の部品を交換する度ごとにキャリアガスの流量や半導体基板上での流量分布、パージガスの流量など、複数のパラメータの値を部品交換後の反応炉3に合わせて変更する必要がある。
特開2000−68215号公報
By the way, in order to form a thin film having a uniform film thickness by the single wafer type vapor phase growth apparatus 2 as described above, the flow rate of the carrier gas and the semiconductor substrate each time the components of the reaction furnace 3 are replaced for maintenance. It is necessary to change the values of a plurality of parameters such as the flow rate distribution and the purge gas flow rate in accordance with the reaction furnace 3 after the parts replacement.
JP 2000-68215 A

しかしながら、半導体基板の主表面上に形成される薄膜の膜厚分布を小さくして理想膜厚分布に近づけるには、従来、膜厚分布に影響を与えるパラメータを少しずつ変化させながら試行錯誤を繰り返して徐々に理想膜厚分布に近づけている。そのため、試行錯誤の間に使用される試行用の半導体基板が多数必要になる上、試行に長時間を要するために装置の稼働率を低下させる要因の1つになる。   However, in order to reduce the film thickness distribution of the thin film formed on the main surface of the semiconductor substrate and bring it closer to the ideal film thickness distribution, conventionally, trial and error are repeated while gradually changing parameters that affect the film thickness distribution. Gradually approaching the ideal film thickness distribution. For this reason, a large number of trial semiconductor substrates used during trial and error are required, and a long time is required for trials, which is one of the factors that reduce the operating rate of the apparatus.

本発明の課題は、膜厚分布の小さい薄膜を容易に形成することができる薄膜形成方法を提供することである。   The subject of this invention is providing the thin film formation method which can form the thin film with a small film thickness distribution easily.

本発明の薄膜形成方法は、気相成長により半導体基板の主表面に薄膜を形成する薄膜形成方法であって、
形成される薄膜の膜厚分布を変化させる複数のパラメータの値をそれぞれ変化させて組み合わせた複数の設定値群を適用して第1の反応炉内で別々の半導体基板の主表面に薄膜を形成し、形成された各薄膜の膜厚分布を測定することにより、前記複数の設定値群に対応した複数の膜厚分布からなる膜厚分布データを作成するデータ作成工程と、
第2の反応炉内で1組の設定値群を適用して半導体基板の主表面に薄膜を形成し、この薄膜の膜厚分布Mを実測する膜厚分布実測工程と、
前記第2の反応炉内で半導体基板の主表面に形成される薄膜の膜厚分布と理想膜厚分布Iとの距離d1を最小とすることができる予想最適設定値群Cを、前記膜厚分布データと前記膜厚分布Mの実測値とから算出する予想最適設定値群算出工程と、
前記予想最適設定値群Cを適用し、前記第2の反応炉内で気相成長により半導体基板の主表面に薄膜を形成する薄膜形成工程とを備え
前記予想最適設定値群算出工程は、
前記1組の設定値群を適用する場合に半導体基板の主表面に形成されるべき薄膜の仮想膜厚分布S1を前記膜厚分布データに基づいて算出する第1処理と、
他の1組の設定値群を適用する場合に形成されるべき薄膜の仮想膜厚分布S2を前記膜厚分布データに基づいて算出する第2処理と、
前記1組の設定値群から前記他の1組の設定値群へ前記パラメータを変化させることによる膜厚変化量分布Hを仮想膜厚分布S2と仮想膜厚分布S1との差から求め、前記膜厚変化量分布Hを前記膜厚分布Mに加算することにより、前記他の1組の設定値群を適用する場合の予想膜厚分布Rを予想する第3処理とを有し、
前記第2処理における前記他の1組の設定値群を変化させて前記第2処理及び前記第3処理を複数回行い、予想膜厚分布Rと前記理想膜厚分布Iとの距離d2が最小となる設定値群を求め、これを前記予想最適設定値群Cとするとともに、
前記第3処理の次に、
前記予想最適設定値群Cを適用して前記第2の反応炉内で気相成長により半導体基板の主表面に薄膜を形成し、この薄膜の膜厚分布M’を実測する第4処理と、
この膜厚分布M’と前記理想膜厚分布Iとの距離d3を算出する第5処理と、
前記予想最適設定値群Cを適用する場合に半導体基板の主表面に形成されるべき薄膜の仮想膜厚分布S1’と、他の1組の設定値群を適用する場合に形成されるべき薄膜の仮想膜厚分布S2’とを前記膜厚分布データに基づいて算出する第6処理と、
前記予想最適設定値群Cから前記他の1組の設定値群へ前記パラメータを変化させることによる膜厚変化量分布H’を仮想膜厚分布S2’と仮想膜厚分布S1’との差から求め、この膜厚変化量分布H’を前記膜厚分布M’に加算することにより、前記他の1組の設定値群を適用する場合の予想膜厚分布R’を予想する第7処理と、
この予想膜厚分布R’と前記理想膜厚分布Iとの距離d4を算出する第8処理と、
前記第6処理における前記他の1組の設定値群を変化させて前記第6処理〜前記第8処理を複数回行い、前記距離d4が最小となる設定値群C’を求め、このときの距離d4 min と前記距離d3とが所定基準を満たす場合には、前記設定値群C’を予想最適設定値群Cとして設定し直す第9処理とを有することを特徴とする。
The thin film formation method of the present invention is a thin film formation method of forming a thin film on the main surface of a semiconductor substrate by vapor phase growth,
A thin film is formed on the main surface of separate semiconductor substrates in the first reactor by applying a plurality of set value groups obtained by changing and combining values of a plurality of parameters that change the film thickness distribution of the thin film to be formed. A data creation step of creating film thickness distribution data consisting of a plurality of film thickness distributions corresponding to the plurality of set value groups by measuring a film thickness distribution of each formed thin film,
A film thickness distribution measuring step of applying a set of set values in the second reactor to form a thin film on the main surface of the semiconductor substrate and measuring the film thickness distribution M of the thin film;
The predicted optimum set value group C that can minimize the distance d1 between the film thickness distribution of the thin film formed on the main surface of the semiconductor substrate and the ideal film thickness distribution I in the second reactor is the film thickness. A predicted optimum set value group calculating step of calculating from distribution data and an actual value of the film thickness distribution M;
Applying the predicted optimum set value group C, and forming a thin film on the main surface of the semiconductor substrate by vapor phase growth in the second reactor ,
The predicted optimum set value group calculation step includes:
A first process of calculating a virtual film thickness distribution S1 of a thin film to be formed on the main surface of the semiconductor substrate based on the film thickness distribution data when applying the set of set value groups;
A second process of calculating a virtual film thickness distribution S2 of a thin film to be formed when another set of set value groups is applied, based on the film thickness distribution data;
A film thickness variation distribution H obtained by changing the parameter from the one set of set value groups to the other set of set value groups is obtained from a difference between the virtual film thickness distribution S2 and the virtual film thickness distribution S1, and A third process for predicting an expected film thickness distribution R when the other set of set value groups is applied by adding a film thickness change distribution H to the film thickness distribution M;
The second process and the third process are performed a plurality of times while changing the other set of set values in the second process, and the distance d2 between the expected film thickness distribution R and the ideal film thickness distribution I is minimized. A set value group to be obtained is set as the predicted optimum set value group C, and
Following the third process,
Applying the predicted optimum set value group C, forming a thin film on the main surface of the semiconductor substrate by vapor phase growth in the second reactor, and measuring the film thickness distribution M ′ of the thin film;
A fifth process for calculating a distance d3 between the film thickness distribution M ′ and the ideal film thickness distribution I;
A virtual film thickness distribution S1 ′ of a thin film to be formed on the main surface of the semiconductor substrate when the predicted optimum set value group C is applied, and a thin film to be formed when another set of set value groups is applied. A virtual film thickness distribution S2 ′ of the first processing based on the film thickness distribution data;
A film thickness change distribution H ′ obtained by changing the parameter from the predicted optimum set value group C to the other set of set values is determined from a difference between the virtual film thickness distribution S2 ′ and the virtual film thickness distribution S1 ′. And a seventh process for predicting an expected film thickness distribution R ′ when the other set of set values is applied by adding the film thickness change distribution H ′ to the film thickness distribution M ′. ,
An eighth process of calculating a distance d4 between the expected film thickness distribution R ′ and the ideal film thickness distribution I;
The other set of set value groups in the sixth process is changed and the sixth process to the eighth process are performed a plurality of times to obtain a set value group C ′ that minimizes the distance d4. And a ninth process for resetting the set value group C ′ as the predicted optimum set value group C when the distance d4 min and the distance d3 satisfy a predetermined criterion .

本発明によれば、第2の反応炉内で半導体基板の主表面に形成される薄膜の膜厚分布と理想膜厚分布Iとの距離d1を最小とすることができる予想最適設定値群Cを膜厚分布データと膜厚分布Mの実測値とから一義的に算出し、この予想最適設定値群Cを適用して気相成長を行うことにより、半導体基板の主表面に膜厚分布の小さい薄膜を形成することができる。従って、従来と異なり、薄膜を形成する度ごとにパラメータの値を変更する試行錯誤を重ねることがないため、半導体基板の消費量を抑えることができるとともに試行にかける時間を短縮することができる。つまり、膜厚分布の小さい薄膜を容易に形成することができる。 According to the present invention, the predicted optimum set value group C that can minimize the distance d1 between the film thickness distribution of the thin film formed on the main surface of the semiconductor substrate and the ideal film thickness distribution I in the second reactor . Is uniquely calculated from the film thickness distribution data and the actually measured value of the film thickness distribution M, and by applying the predicted optimum set value group C and performing vapor phase growth, the film thickness distribution on the main surface of the semiconductor substrate is calculated. Small thin films can be formed. Therefore, unlike the prior art, trial and error in which the parameter value is changed each time a thin film is formed is not repeated, so that the consumption of the semiconductor substrate can be suppressed and the time required for the trial can be shortened. That is, a thin film having a small film thickness distribution can be easily formed.

ここで、或る設定値群を適用したときに形成される膜厚と、他の設定値群を適用したときに形成される膜厚との膜厚変化量分布は、反応炉の異同に関わらず一致することが、多くの実験からわかっている。
そのため、本発明の薄膜形成方法における予想最適設定値群算出工程は、
1組の設定値群を適用する場合に半導体基板の主表面に形成されるべき薄膜の仮想膜厚分布S1を膜厚分布データに基づいて算出する第1処理と、
他の1組の設定値群を適用する場合に形成されるべき薄膜の仮想膜厚分布S2を膜厚分布データに基づいて算出する第2処理と、
1組の設定値群から他の1組の設定値群へパラメータを変化させることによる膜厚変化量分布Hを仮想膜厚分布S2と仮想膜厚分布S1との差から求め、膜厚変化量分布Hを膜厚分布Mに加算することにより、他の1組の設定値群を適用する場合の予想膜厚分布Rを予想する第3処理とを備え、
第2処理における他の1組の設定値群を変化させて第2処理及び第3処理を複数回行い、予想膜厚分布Rと理想膜厚分布Iとの距離d2が最小となる設定値群を求め、これを予想最適設定値群Cとする。
これにより、図1に示すように、半導体基板の主表面に形成される薄膜の膜厚分布を最小とすることができると予想される最適設定値群を算出することができる。従って、半導体基板の主表面に形成される薄膜の膜厚分布を容易に最小とすることができる。
Here, the film thickness variation distribution between the film thickness formed when a certain set value group is applied and the film thickness formed when another set value group is applied is related to the difference between the reactors. It is known from many experiments that they are consistent.
Therefore, the predicted optimum set value group calculation step in the thin film forming method of the present invention,
A first process of calculating a virtual film thickness distribution S1 of a thin film to be formed on the main surface of the semiconductor substrate based on the film thickness distribution data when applying a set of set value groups;
A second process for calculating a virtual film thickness distribution S2 of a thin film to be formed when another set of set value groups is applied, based on the film thickness distribution data;
A film thickness change distribution H by changing a parameter from one set of set value groups to another set of set value groups is obtained from the difference between the virtual film thickness distribution S2 and the virtual film thickness distribution S1, and the film thickness change amount A third process for predicting an expected film thickness distribution R when another set of set value groups is applied by adding the distribution H to the film thickness distribution M;
A set value group in which the distance d2 between the expected film thickness distribution R and the ideal film thickness distribution I is minimized by performing the second process and the third process a plurality of times while changing another set of set value groups in the second process. look, shall be the predicted optimal set value group C this.
Thereby , as shown in FIG. 1, it is possible to calculate an optimum set value group that is expected to minimize the film thickness distribution of the thin film formed on the main surface of the semiconductor substrate. Therefore, the film thickness distribution of the thin film formed on the main surface of the semiconductor substrate can be easily minimized.

また、本発明の薄膜形成方法における予想最適設定値群算出工程は、第3処理の次に、
予想最適設定値群Cを適用して前記第2の反応炉内で気相成長により半導体基板の主表面に薄膜を形成し、この薄膜の膜厚分布M’を実測する第4処理と、
この膜厚分布M’と理想膜厚分布Iとの距離d3を算出する第5処理と、
予想最適設定値群Cを適用する場合に半導体基板の主表面に形成されるべき薄膜の仮想膜厚分布S1’と、他の1組の設定値群を適用する場合に形成されるべき薄膜の仮想膜厚分布S2’とを膜厚分布データに基づいて算出する第6処理と、
予想最適設定値群Cから前記他の1組の設定値群へパラメータを変化させることによる膜厚変化量分布H’を仮想膜厚分布S2’と仮想膜厚分布S1’との差から求め、この膜厚変化量分布H’を膜厚分布M’に加算することにより、前記他の1組の設定値群を適用する場合の予想膜厚分布R’を予想する第7処理と、
この予想膜厚分布R’と理想膜厚分布Iとの距離d4を算出する第8処理と、
第6処理における他の1組の設定値群を変化させて第6処理〜第8処理を複数回行い、距離d4が最小となる設定値群C’を求め、このときの距離d4minと距離d3とが所定基準を満たす場合には、設定値群C’を予想最適設定値群Cとして設定し直す第9処理とを備える。
これにより、膜厚分布実測工程において測定誤差が生じた場合や、予想最適設定値群算出工程において予想誤差が生じた場合であっても、予想最適設定値群Cを設定し直すことにより、半導体基板の主表面に形成される薄膜の膜厚分布を最小とすることができる。
The predicted optimum set value group calculating step in the thin film forming method of the present invention is performed after the third process.
Applying a predicted optimum set value group C, forming a thin film on the main surface of the semiconductor substrate by vapor phase growth in the second reactor , and measuring the film thickness distribution M ′ of the thin film;
A fifth process for calculating a distance d3 between the film thickness distribution M ′ and the ideal film thickness distribution I;
The virtual film thickness distribution S1 ′ of the thin film to be formed on the main surface of the semiconductor substrate when the predicted optimum set value group C is applied, and the thin film to be formed when another set of set value groups are applied. A sixth process of calculating the virtual film thickness distribution S2 ′ based on the film thickness distribution data;
A film thickness change distribution H ′ obtained by changing the parameter from the predicted optimal set value group C to the other set of set values is obtained from the difference between the virtual film thickness distribution S2 ′ and the virtual film thickness distribution S1 ′. A seventh process for predicting an expected film thickness distribution R ′ when the other set of set value groups is applied by adding the film thickness variation distribution H ′ to the film thickness distribution M ′;
An eighth process for calculating a distance d4 between the expected film thickness distribution R ′ and the ideal film thickness distribution I;
By changing another set of set value groups in the sixth process and performing the sixth to eighth processes a plurality of times, a set value group C ′ that minimizes the distance d4 is obtained, and the distance d4 min and the distance at this time If the d3 and satisfies a predetermined criterion, Ru and a ninth process to reset the set value group C 'as expected optimal setting value group C.
As a result , even if a measurement error occurs in the film thickness distribution actual measurement step or a prediction error occurs in the predicted optimum set value group calculation step, the semiconductor device can be obtained by resetting the expected optimum set value group C. The film thickness distribution of the thin film formed on the main surface of the substrate can be minimized.

ここで、膜厚が各所で一定であることが重要な個別半導体素子用のエピタキシャルウェーハを形成する場合には、理想膜厚分布Iは一定値Tであることが好ましい。
また、表面の平坦性が重要な集積回路用のエピタキシャルウェーハを形成する場合には、理想膜厚分布Iは、一定値T’から半導体基板の厚さ分布を差し引いた分布であることが好ましい。
Here, when forming an epitaxial wafer for an individual semiconductor element in which it is important that the film thickness is constant in each place, the ideal film thickness distribution I is preferably a constant value T.
When forming an epitaxial wafer for an integrated circuit in which surface flatness is important, the ideal film thickness distribution I is preferably a distribution obtained by subtracting the thickness distribution of the semiconductor substrate from a constant value T ′.

また、本発明の薄膜形成方法におけるパラメータは、反応炉内の雰囲気を形成するキャリアガスの流量と、半導体基板を支持するサセプタよりも下方の空間をパージするパージガスの流量と、キャリアガスの流通方向の略直交方向における反応炉内のガス流量分布とであることが好ましい。   The parameters in the thin film forming method of the present invention are as follows: the flow rate of the carrier gas that forms the atmosphere in the reaction furnace; the flow rate of the purge gas that purges the space below the susceptor that supports the semiconductor substrate; and the flow direction of the carrier gas It is preferable that the gas flow rate distribution in the reactor in the substantially orthogonal direction.

本発明によれば、第2の反応炉内で半導体基板の主表面に形成される薄膜の膜厚分布と理想膜厚分布Iとの距離d1を最小とすることができる予想最適設定値群Cを膜厚分布データと膜厚分布Mの実測値とから一義的に算出し、この予想最適設定値群Cを適用して気相成長を行うことにより半導体基板の主表面に膜厚分布の小さい薄膜を形成することができる。従って、従来と異なり、薄膜を形成する度ごとにパラメータの値を変更する試行錯誤を重ねることがないため、半導体基板の消費量を抑えることができるとともに試行にかける時間を短縮することができる。つまり、膜厚分布の小さい薄膜を容易に形成することができる。 According to the present invention, the predicted optimum set value group C that can minimize the distance d1 between the film thickness distribution of the thin film formed on the main surface of the semiconductor substrate and the ideal film thickness distribution I in the second reactor . Is uniquely calculated from the film thickness distribution data and the actually measured value of the film thickness distribution M, and by applying the predicted optimum set value group C to perform vapor phase growth, the film thickness distribution is small on the main surface of the semiconductor substrate. A thin film can be formed. Therefore, unlike the prior art, trial and error in which the parameter value is changed each time a thin film is formed is not repeated, so that the consumption of the semiconductor substrate can be suppressed and the time required for the trial can be shortened. That is, a thin film having a small film thickness distribution can be easily formed.

以下、本発明に係る薄膜形成方法の実施の形態について、図を参照して説明する。なお、本実施の形態においては、薄膜形成方法を、シリコン単結晶からなる半導体基板の主表面にシリコンエピタキシャル層を形成する方法として説明する。   Hereinafter, embodiments of a thin film forming method according to the present invention will be described with reference to the drawings. In the present embodiment, the thin film forming method will be described as a method of forming a silicon epitaxial layer on the main surface of a semiconductor substrate made of silicon single crystal.

本発明の薄膜形成方法に用いる薄膜形成装置1の一例を図2に示す。この図に示すように、薄膜形成装置1は気相成長装置2を備えている。
この気相成長装置2は本実施の形態においては枚葉式であり、円盤状のサセプタ20を備えている。
サセプタ20の上面には座ぐり部20aが形成されており、この座ぐり部20a内にシリコン単結晶基板が載置されるようになっている。サセプタ20の下面には支持部材21が当接しており、これによりサセプタ20が支持されている。支持部材21には回転駆動装置(図示せず)が接続されており、この回転駆動装置の駆動によってサセプタ20が回転するようになっている。
このサセプタ20は、反応炉3の内部に配置されている。反応炉3の頂壁3a及び底壁3bは透光性の石英で形成されており、これら頂壁3a,底壁3bを通して反応炉3の内部に向かって輻射を行う加熱装置(図示せず)が反応炉3の上下に配設されている。
An example of the thin film formation apparatus 1 used for the thin film formation method of this invention is shown in FIG. As shown in this figure, the thin film forming apparatus 1 includes a vapor phase growth apparatus 2.
The vapor phase growth apparatus 2 is a single wafer type in the present embodiment, and includes a disk-shaped susceptor 20.
A counterbore 20a is formed on the upper surface of the susceptor 20, and a silicon single crystal substrate is placed in the counterbore 20a. A support member 21 is in contact with the lower surface of the susceptor 20, thereby supporting the susceptor 20. A rotation drive device (not shown) is connected to the support member 21, and the susceptor 20 is rotated by driving the rotation drive device.
The susceptor 20 is disposed inside the reaction furnace 3. The top wall 3a and the bottom wall 3b of the reaction furnace 3 are made of translucent quartz, and a heating device (not shown) that radiates toward the inside of the reaction furnace 3 through the top wall 3a and the bottom wall 3b. Are arranged above and below the reaction furnace 3.

反応炉3の側壁3cには、キャリアガスとともに原料ガスを供給する複数の原料ガス供給口3dと、サセプタ20の下方の空間をパージするパージガスを供給するパージガス供給口(図示せず)と、反応炉3内のガスを排出するガス排出口3eとが形成されている。原料ガス供給口3d、ガス排出口3eは、反応炉3の一端部、他端部に位置しており、全ての原料ガス供給口3dはガス流通方向Xに開口している。パージガス供給口は、原料ガス供給口3dの下方に位置している。なお、本実施の形態においては、側壁3cには4つの原料ガス供給口3dと2つのガス排出口3eとが形成されている。また、原料ガスとしてはトリクロロシラン等、キャリアガスとしてはH2ガス等、パージガスとしてH2ガス等を用いることができる。
原料ガス供給口3dには原料ガスを供給する原料ガス供給装置4が接続され、パージガス供給口にはパージガスを供給するパージガス供給装置(図示せず)が接続されている。
The side wall 3c of the reaction furnace 3 has a plurality of source gas supply ports 3d for supplying a source gas together with a carrier gas, a purge gas supply port (not shown) for supplying a purge gas for purging a space below the susceptor 20, and a reaction A gas discharge port 3e for discharging the gas in the furnace 3 is formed. The source gas supply port 3d and the gas discharge port 3e are located at one end and the other end of the reaction furnace 3, and all the source gas supply ports 3d are open in the gas flow direction X. The purge gas supply port is located below the source gas supply port 3d. In the present embodiment, four source gas supply ports 3d and two gas discharge ports 3e are formed in the side wall 3c. Further, trichlorosilane or the like can be used as the source gas, H 2 gas or the like can be used as the carrier gas, and H 2 gas or the like can be used as the purge gas.
A raw material gas supply device 4 for supplying a raw material gas is connected to the raw material gas supply port 3d, and a purge gas supply device (not shown) for supplying a purge gas is connected to the purge gas supply port.

原料ガス供給装置4は、原料ガスとキャリアガスとからなる混合ガスのガス流をシリコン単結晶基板の表面に沿って形成するガス供給管40を備えている。
ガス供給管40の一方の端部は原料ガス及びキャリアガスのそれぞれのガス源41,42に接続されており、原料ガス及びキャリアガスのそれぞれの流量はマスフローコントローラ43,44によって制御可能となっている。ここで、キャリアガスの流量はシリコンエピタキシャル層の膜厚分布を変化させるパラメータの1つであり、キャリアガスの流量が大きくなると、シリコン単結晶基板の中央部に形成されるシリコンエピタキシャル層の膜厚が大きくなる傾向がある。
また、ガス供給管40の他方の端部は互いに平行な4つの流路40a〜40dに分割され、各流路40a〜40dの末端は原料ガス供給口3dに接続されている。これら4つの流路40a〜40dのうち、内側の2つの流路40a,40bと外側の2つの流路40c,40dとはそれぞれ等しい流量の混合ガスを供給するようになっており、内側の流量と外側の流量とがバルブ45,46で調整されることにより、ガス流通方向Xと略直交する方向Yにおけるシリコン単結晶基板上の流量分布が制御可能となっている。ここで、この流量分布はシリコンエピタキシャル層の膜厚分布を変化させるパラメータの1つであり、具体的には、内側の流路40a,40bの流量に対する外側の流路40c、40dの流量の比が大きくなると、シリコン単結晶基板の中央部に形成されるシリコンエピタキシャル層の膜厚が小さく、外周部に形成されるシリコンエピタキシャル層の膜厚が大きくなる傾向がある。
The source gas supply device 4 includes a gas supply pipe 40 that forms a gas flow of a mixed gas composed of source gas and carrier gas along the surface of the silicon single crystal substrate.
One end of the gas supply pipe 40 is connected to the gas sources 41 and 42 of the source gas and the carrier gas, and the flow rates of the source gas and the carrier gas can be controlled by the mass flow controllers 43 and 44, respectively. Yes. Here, the flow rate of the carrier gas is one of the parameters for changing the film thickness distribution of the silicon epitaxial layer. When the flow rate of the carrier gas is increased, the thickness of the silicon epitaxial layer formed in the central portion of the silicon single crystal substrate is increased. Tend to be larger.
The other end of the gas supply pipe 40 is divided into four parallel flow paths 40a to 40d, and the ends of the flow paths 40a to 40d are connected to the source gas supply port 3d. Among these four flow paths 40a to 40d, the inner two flow paths 40a and 40b and the outer two flow paths 40c and 40d supply mixed gas at the same flow rate, respectively, The flow rate distribution on the silicon single crystal substrate in the direction Y substantially orthogonal to the gas flow direction X can be controlled by adjusting the flow rate on the outside and the flow rate on the outside by the valves 45 and 46. Here, this flow rate distribution is one of the parameters for changing the film thickness distribution of the silicon epitaxial layer. Specifically, the ratio of the flow rates of the outer flow paths 40c, 40d to the flow rates of the inner flow paths 40a, 40b. Increases, the film thickness of the silicon epitaxial layer formed in the central portion of the silicon single crystal substrate tends to be small, and the film thickness of the silicon epitaxial layer formed in the outer peripheral portion tends to increase.

パージガス供給装置は、パージガスの流量を制御可能となっている。ここで、パージガスの流量はシリコンエピタキシャル層の膜厚分布を変化させるパラメータの1つであり、パージガスの流量が大きくなると、シリコン単結晶基板の外周部に形成されるシリコンエピタキシャル層の膜厚が小さくなる傾向がある。   The purge gas supply device can control the flow rate of the purge gas. Here, the flow rate of the purge gas is one of the parameters for changing the film thickness distribution of the silicon epitaxial layer. When the flow rate of the purge gas increases, the film thickness of the silicon epitaxial layer formed on the outer peripheral portion of the silicon single crystal substrate decreases. Tend to be.

次に、本発明に係る薄膜形成方法について説明する。なお、本実施の形態における薄膜形成方法は、サセプタ20等の部品交換後の反応炉3(以下、便宜的に反応炉3Pとする)において均一な膜厚のシリコンエピタキシャル層を形成する方法である。   Next, the thin film formation method according to the present invention will be described. The thin film forming method in the present embodiment is a method of forming a silicon epitaxial layer having a uniform film thickness in the reaction furnace 3 (hereinafter referred to as the reaction furnace 3P for convenience) after replacement of parts such as the susceptor 20. .

まず、反応炉3(以下、反応炉3Pと区別するため、便宜的に反応炉3Qとする)において複数のシリコン単結晶基板の主表面にシリコンエピタキシャル層を形成する。
具体的には、まず、サセプタ20の座ぐり部20a内にシリコン単結晶基板を載置する。次に、載置されたシリコン単結晶基板を前記加熱装置により1100〜1200℃に加熱するとともに、支持部材21を介してサセプタ20とシリコン単結晶基板とを前記回転駆動装置により回転させる。そしてこの状態で、反応炉3Q内に所定の組成及び流量で原料ガスをキャリアガスとともに供給し、これによってシリコンエピタキシャル層を気相成長させる。このとき、シリコンエピタキシャル層の膜厚分布を変化させる複数のパラメータ、本実施の形態においてはキャリアガスの流量と、内側の流路40a,40bの流量に対する外側の流路40c、40dの流量の比と、パージガスの流量とを組み合わせた設定値群をシリコン単結晶基板毎でそれぞれ変化させる。具体的には、マスフローコントローラ43,44と、バルブ45,46と、前記パージガス供給装置とを制御することにより、これらパラメータの値を変化させる。
First, a silicon epitaxial layer is formed on the main surfaces of a plurality of silicon single crystal substrates in a reaction furnace 3 (hereinafter referred to as a reaction furnace 3Q for the sake of distinction from the reaction furnace 3P for convenience).
Specifically, first, a silicon single crystal substrate is placed in the counterbore 20a of the susceptor 20. Next, the mounted silicon single crystal substrate is heated to 1100 to 1200 ° C. by the heating device, and the susceptor 20 and the silicon single crystal substrate are rotated by the rotation driving device via the support member 21. In this state, a raw material gas is supplied into the reaction furnace 3Q with a predetermined composition and flow rate together with a carrier gas, thereby vapor-phase-growing the silicon epitaxial layer. At this time, a plurality of parameters for changing the film thickness distribution of the silicon epitaxial layer, in this embodiment, the flow rate of the carrier gas and the ratio of the flow rates of the outer flow paths 40c and 40d to the flow rates of the inner flow paths 40a and 40b. And a set value group that combines the flow rate of the purge gas is changed for each silicon single crystal substrate. Specifically, the values of these parameters are changed by controlling the mass flow controllers 43 and 44, the valves 45 and 46, and the purge gas supply device.

次に、形成された各シリコンエピタキシャル層の膜厚分布を測定することにより、図3に示すように、複数の設定値群に対応した複数の膜厚分布からなる膜厚分布データを作成する(データ作成工程)。これにより、あらゆる設定値群に対応した膜厚分布を補完的に求めることが可能となる。なお、この膜厚分布データは反応炉3Qに固有のデータであり、同一の設定値群を反応炉3Pに適用した場合であっても、形成されるシリコンエピタキシャル層の膜厚分布は必ずしも一致しない。また、図3では、パージガスの流量を一定とし、キャリアガスの流量と、内側の流路40a,40bの流量に対する外側の流路40c,40dの流量の比とを変化させた場合における膜厚分布の変化のみを拡大して詳細に示している。   Next, by measuring the film thickness distribution of each formed silicon epitaxial layer, as shown in FIG. 3, film thickness distribution data including a plurality of film thickness distributions corresponding to a plurality of set value groups is created ( Data creation process). Thereby, the film thickness distribution corresponding to every set value group can be obtained complementarily. This film thickness distribution data is data unique to the reactor 3Q, and even when the same set value group is applied to the reactor 3P, the film thickness distribution of the formed silicon epitaxial layer does not necessarily match. . Further, in FIG. 3, the film thickness distribution when the flow rate of the purge gas is constant and the flow rate of the carrier gas and the ratio of the flow rates of the outer flow paths 40c and 40d to the flow rates of the inner flow paths 40a and 40b are changed. Only the changes in are enlarged and shown in detail.

次に、反応炉3P内で1組の設定値群を適用してシリコン単結晶基板の主表面にシリコンエピタキシャル層を形成し、このシリコンエピタキシャル層の膜厚分布Mを実測する(膜厚分布実測工程)。なお、この膜厚分布実測工程は、上記データ作成工程よりも前に行うこととしても良い。   Next, a set of set values is applied in the reactor 3P to form a silicon epitaxial layer on the main surface of the silicon single crystal substrate, and the film thickness distribution M of the silicon epitaxial layer is measured (film thickness distribution measurement). Process). This film thickness distribution measurement step may be performed before the data creation step.

次に、反応炉3P内でシリコン単結晶基板の主表面に形成されるシリコンエピタキシャル層の膜厚分布と理想膜厚分布Iとの距離d1を最小とすることができる予想最適設定値群Cを、膜厚分布データと膜厚分布Mの実測値とに基づいて探索する(予想最適設定値群算出工程)。
具体的には、まず、反応炉3Qにおいて前記1組の設定値群を適用する場合にシリコン単結晶基板の主表面に形成されるべきシリコンエピタキシャル層の仮想膜厚分布S1を、膜厚分布データに基づいて算出する(第1処理)。
次に、反応炉3Qにおいて他の1組の設定値群を適用する場合に形成されるべきシリコンエピタキシャル層の仮想膜厚分布S2を、膜厚分布データに基づいて算出する(第2処理)。
次に、前記1組の設定値群から前記他の1組の設定値群へパラメータを変化させることによる膜厚変化量分布Hを、仮想膜厚分布S2と仮想膜厚分布S1との差から求める。なお、この膜厚変化量分布Hは、反応炉3Pと反応炉3Qとの異同に関わらず一定の値となる。次に、この膜厚変化量分布Hを、膜厚分布実測工程において実測された膜厚分布Mに加算する(第3処理)。これにより、図1に示すように、反応炉3Pにおいて前記他の1組の設定値群を適用する場合の予想膜厚分布Rが予想される。
以降、第2処理における前記他の1組の設定値群を変化させ、第2処理及び第3処理を複数回行う。このとき、第3処理を行う毎に予想膜厚分布Rと理想膜厚分布Iとの距離d2を算出し、この距離d2が小さくなるように次回の設定値群を決定する。そして、図4(b)に示すように、何れのパラメータを変更しても予想膜厚分布Rと理想膜厚分布Iとの距離d2が大きくなるとき、つまり距離d2が最小となるときの設定値群を予想最適設定値群Cとする。なお、予想膜厚分布Rと理想膜厚分布Iとの距離d2は、例えば次のように定義することができる。

Figure 0004329474
ここで、nは予想膜厚分布R及び理想膜厚分布Iから抽出した点(位置)の個数、iは抽出した点の番号であり、同じ添え字iが付されたRiとIiとは同じ位置の膜厚を示すものとする。 Next, an expected optimum set value group C that can minimize the distance d1 between the film thickness distribution of the silicon epitaxial layer formed on the main surface of the silicon single crystal substrate and the ideal film thickness distribution I in the reaction furnace 3P. The search is performed based on the film thickness distribution data and the actually measured value of the film thickness distribution M (predicted optimum set value group calculation step).
Specifically, first, when applying the set of set values in the reactor 3Q, the virtual film thickness distribution S1 of the silicon epitaxial layer to be formed on the main surface of the silicon single crystal substrate is represented by the film thickness distribution data. (First process).
Next, a virtual film thickness distribution S2 of the silicon epitaxial layer to be formed when another set of set value groups is applied in the reaction furnace 3Q is calculated based on the film thickness distribution data (second process).
Next, the film thickness change distribution H by changing the parameter from the one set of set value groups to the other set of set value groups is obtained from the difference between the virtual film thickness distribution S2 and the virtual film thickness distribution S1. Ask. The film thickness change distribution H is a constant value regardless of the difference between the reaction furnace 3P and the reaction furnace 3Q. Next, the film thickness variation distribution H is added to the film thickness distribution M actually measured in the film thickness distribution actual measurement step (third process). Thereby, as shown in FIG. 1, the expected film thickness distribution R in the case of applying the other set of set values in the reaction furnace 3P is expected.
Thereafter, the other set of set values in the second process is changed, and the second process and the third process are performed a plurality of times. At this time, every time the third process is performed, the distance d2 between the expected film thickness distribution R and the ideal film thickness distribution I is calculated, and the next set value set is determined so that the distance d2 becomes smaller. Then, as shown in FIG. 4B, setting is made when the distance d2 between the expected film thickness distribution R and the ideal film thickness distribution I increases, that is, when the distance d2 becomes minimum, regardless of which parameter is changed. A value group is set as a predicted optimum set value group C. The distance d2 between the expected film thickness distribution R and the ideal film thickness distribution I can be defined as follows, for example.
Figure 0004329474
Here, n is the number of points (positions) extracted from the expected film thickness distribution R and the ideal film thickness distribution I, i is the number of the extracted points, and Ri and Ii with the same subscript i are the same. The film thickness at the position shall be indicated.

そして、算出された予想最適設定値群Cを適用し、反応炉3P内でシリコン単結晶基板の主表面にシリコンエピタキシャル層を形成する(薄膜形成工程)。これにより、予想膜厚分布Rと同様の膜厚分布、つまり理想膜厚分布Iに近い膜厚分布M’を有するシリコンエピタキシャル層が形成される。しかし、このとき形成されるシリコンエピタキシャル層の膜厚分布M’は、膜厚分布実測工程における測定誤差や、予想最適設定値群算出工程における予想誤差などにより、更に理想膜厚分布Iに近づけられる可能性を残している。   Then, the calculated optimum set value group C is applied, and a silicon epitaxial layer is formed on the main surface of the silicon single crystal substrate in the reaction furnace 3P (thin film forming step). Thereby, a silicon epitaxial layer having a film thickness distribution similar to the expected film thickness distribution R, that is, a film thickness distribution M ′ close to the ideal film thickness distribution I is formed. However, the film thickness distribution M ′ of the silicon epitaxial layer formed at this time can be made closer to the ideal film thickness distribution I due to the measurement error in the film thickness distribution actual measurement process, the prediction error in the predicted optimum set value group calculation process, and the like. There is still a possibility.

そのため、本実施の形態においては、上記薄膜形成工程の前に、以下のようにして予想最適設定値群Cをより良好な設定値群に設定し直す。
即ち、まず予想最適設定値群Cを適用して反応炉3P内でシリコン単結晶基板の主表面にシリコンエピタキシャル層を形成し、その膜厚分布M’を実測する(第4処理)。
次に、この膜厚分布M’と理想膜厚分布Iとの距離d3を算出する(第5処理)。
次に、予想最適設定値群Cを適用する場合にシリコン単結晶基板の主表面に形成されるべきシリコンエピタキシャル層の仮想膜厚分布S1’と、他の1組の設定値群を適用する場合に形成されるべきシリコンエピタキシャル層の仮想膜厚分布S2’とを膜厚分布データに基づいて算出する(第6処理)。
次に、予想最適設定値群Cから他の1組の設定値群へパラメータを変化させることによる膜厚変化量分布H’を仮想膜厚分布S2’と仮想膜厚分布S1’との差から求め、この膜厚変化量分布H’を膜厚分布M’に加算することにより、他の1組の設定値群を適用する場合の予想膜厚分布R’を予想し(第7処理)、この予想膜厚分布R’と理想膜厚分布Iとの距離d4を算出する(第8処理)。
そして、第6処理における他の1組の設定値群を変化させて第6処理〜第8処理を複数回行い、距離d4が最小となる設定値群C’を求め、このときの距離d4minと距離d3とが所定基準を満たす場合には、設定値群C’を予想最適設定値群Cとして設定し直す(第9処理)。ここで、距離d4minと距離d3とが満たすべき所定基準としては、例えば次のような基準がある。

Figure 0004329474
Therefore, in the present embodiment, before the thin film formation step, the predicted optimum set value group C is reset to a better set value group as follows.
That is, first, the predicted optimum set value group C is applied to form a silicon epitaxial layer on the main surface of the silicon single crystal substrate in the reaction furnace 3P, and the film thickness distribution M ′ is actually measured (fourth process).
Next, a distance d3 between the film thickness distribution M ′ and the ideal film thickness distribution I is calculated (fifth process).
Next, when applying the predicted optimal set value group C, applying the virtual film thickness distribution S1 ′ of the silicon epitaxial layer to be formed on the main surface of the silicon single crystal substrate and another set of set value groups The virtual film thickness distribution S2 ′ of the silicon epitaxial layer to be formed is calculated based on the film thickness distribution data (sixth process).
Next, the film thickness variation distribution H ′ by changing the parameter from the predicted optimal set value group C to another set of set value groups is obtained from the difference between the virtual film thickness distribution S2 ′ and the virtual film thickness distribution S1 ′. By calculating and adding this film thickness change distribution H ′ to the film thickness distribution M ′, an expected film thickness distribution R ′ when another set of set value groups is applied is predicted (seventh process), A distance d4 between the expected film thickness distribution R ′ and the ideal film thickness distribution I is calculated (eighth process).
Then, another set of set value groups in the sixth process is changed, and the sixth to eighth processes are performed a plurality of times to obtain a set value group C ′ that minimizes the distance d4, and the distance d4 min at this time And the distance d3 satisfy the predetermined criterion, the set value group C ′ is reset as the predicted optimum set value group C (ninth process). Here, as a predetermined standard that the distance d4 min and the distance d3 should satisfy, for example, there are the following standards.
Figure 0004329474

以上の薄膜形成方法によれば、シリコン単結晶基板の主表面に膜厚分布の小さいシリコンエピタキシャル層を形成することができる予想最適設定値群Cを一義的に算出することができる。従って、従来と異なり、シリコンエピタキシャル層を形成する度ごとにパラメータの値を変更する試行錯誤を重ねることがないため、シリコン単結晶基板の消費量を抑えることができるとともに試行にかける時間を短縮することができる、つまり、膜厚分布の小さいシリコンエピタキシャル層を容易に形成することができる。   According to the above thin film formation method, the predicted optimum set value group C that can form a silicon epitaxial layer having a small film thickness distribution on the main surface of the silicon single crystal substrate can be uniquely calculated. Therefore, unlike the conventional case, since the trial and error of changing the parameter value every time the silicon epitaxial layer is formed is not repeated, the consumption of the silicon single crystal substrate can be suppressed and the time required for the trial can be shortened. That is, a silicon epitaxial layer having a small film thickness distribution can be easily formed.

また、予想最適設定値群Cを設定し直すことにより、膜厚分布M’を理想膜厚分布Iに可能な限り近づけることができるので、図4(a)に示す従来の場合と異なり、形成されるシリコンエピタキシャル層の膜厚分布が所定範囲内に納まった段階で設定値群の探索を終了してしまうことがない。従って、従来と比較して膜厚分布が良好なシリコンエピタキシャル層を形成することができる。   Further, by resetting the predicted optimum set value group C, the film thickness distribution M ′ can be made as close as possible to the ideal film thickness distribution I. Therefore, unlike the conventional case shown in FIG. The search for the set value group does not end when the film thickness distribution of the silicon epitaxial layer is within the predetermined range. Accordingly, it is possible to form a silicon epitaxial layer having a better film thickness distribution as compared with the conventional case.

なお、上記実施の形態においては、本発明に係る薄膜形成方法によって、シリコン単結晶基板の主表面にシリコンエピタキシャル層を形成することとして説明したが、他の半導体基板の主表面に薄膜を形成することとしても良い。   In the above embodiment, the silicon epitaxial layer is formed on the main surface of the silicon single crystal substrate by the thin film forming method according to the present invention. However, the thin film is formed on the main surface of another semiconductor substrate. It's also good.

予想膜厚分布の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of expected film thickness distribution. (a)は薄膜形成装置の概略構成を示す平面図であり、(b)は気相成長装置の縦断面図である。(A) is a top view which shows schematic structure of a thin film formation apparatus, (b) is a longitudinal cross-sectional view of a vapor phase growth apparatus. 膜厚分布データを説明するための図である。It is a figure for demonstrating film thickness distribution data. (a)は従来の最適設定値群の探索方法を説明するための図であり、(b)は本発明における最適設定値群の探索方法を説明するための図である。(A) is a figure for demonstrating the search method of the conventional optimal setting value group, (b) is a figure for demonstrating the search method of the optimal setting value group in this invention.

符号の説明Explanation of symbols

3(3P,3Q) 反応炉
20 サセプタ
X キャリアガスの流通方向
Y ガス流通方向と略直交する方向(略直交方向)
3 (3P, 3Q) Reactor 20 Susceptor X Flow direction of carrier gas Y Direction substantially orthogonal to gas flow direction (substantially orthogonal direction)

Claims (4)

気相成長により半導体基板の主表面に薄膜を形成する薄膜形成方法であって、
形成される薄膜の膜厚分布を変化させる複数のパラメータの値をそれぞれ変化させて組み合わせた複数の設定値群を適用して第1の反応炉内で別々の半導体基板の主表面に薄膜を形成し、形成された各薄膜の膜厚分布を測定することにより、前記複数の設定値群に対応した複数の膜厚分布からなる膜厚分布データを作成するデータ作成工程と、
第2の反応炉内で1組の設定値群を適用して半導体基板の主表面に薄膜を形成し、この薄膜の膜厚分布Mを実測する膜厚分布実測工程と、
前記第2の反応炉内で半導体基板の主表面に形成される薄膜の膜厚分布と理想膜厚分布Iとの距離d1を最小とすることができる予想最適設定値群Cを、前記膜厚分布データと前記膜厚分布Mの実測値とから算出する予想最適設定値群算出工程と、
前記予想最適設定値群Cを適用し、前記第2の反応炉内で気相成長により半導体基板の主表面に薄膜を形成する薄膜形成工程とを備え
前記予想最適設定値群算出工程は、
前記1組の設定値群を適用する場合に半導体基板の主表面に形成されるべき薄膜の仮想膜厚分布S1を前記膜厚分布データに基づいて算出する第1処理と、
他の1組の設定値群を適用する場合に形成されるべき薄膜の仮想膜厚分布S2を前記膜厚分布データに基づいて算出する第2処理と、
前記1組の設定値群から前記他の1組の設定値群へ前記パラメータを変化させることによる膜厚変化量分布Hを仮想膜厚分布S2と仮想膜厚分布S1との差から求め、前記膜厚変化量分布Hを前記膜厚分布Mに加算することにより、前記他の1組の設定値群を適用する場合の予想膜厚分布Rを予想する第3処理とを有し、
前記第2処理における前記他の1組の設定値群を変化させて前記第2処理及び前記第3処理を複数回行い、予想膜厚分布Rと前記理想膜厚分布Iとの距離d2が最小となる設定値群を求め、これを前記予想最適設定値群Cとするとともに、
前記第3処理の次に、
前記予想最適設定値群Cを適用して前記第2の反応炉内で気相成長により半導体基板の主表面に薄膜を形成し、この薄膜の膜厚分布M’を実測する第4処理と、
この膜厚分布M’と前記理想膜厚分布Iとの距離d3を算出する第5処理と、
前記予想最適設定値群Cを適用する場合に半導体基板の主表面に形成されるべき薄膜の仮想膜厚分布S1’と、他の1組の設定値群を適用する場合に形成されるべき薄膜の仮想膜厚分布S2’とを前記膜厚分布データに基づいて算出する第6処理と、
前記予想最適設定値群Cから前記他の1組の設定値群へ前記パラメータを変化させることによる膜厚変化量分布H’を仮想膜厚分布S2’と仮想膜厚分布S1’との差から求め、この膜厚変化量分布H’を前記膜厚分布M’に加算することにより、前記他の1組の設定値群を適用する場合の予想膜厚分布R’を予想する第7処理と、
この予想膜厚分布R’と前記理想膜厚分布Iとの距離d4を算出する第8処理と、
前記第6処理における前記他の1組の設定値群を変化させて前記第6処理〜前記第8処理を複数回行い、前記距離d4が最小となる設定値群C’を求め、このときの距離d4 min と前記距離d3とが所定基準を満たす場合には、前記設定値群C’を予想最適設定値群Cとして設定し直す第9処理とを有することを特徴とする薄膜形成方法。
A thin film forming method for forming a thin film on a main surface of a semiconductor substrate by vapor phase growth,
A thin film is formed on the main surface of separate semiconductor substrates in the first reactor by applying a plurality of set value groups obtained by changing and combining values of a plurality of parameters that change the film thickness distribution of the thin film to be formed. A data creation step of creating film thickness distribution data consisting of a plurality of film thickness distributions corresponding to the plurality of set value groups by measuring a film thickness distribution of each formed thin film,
A film thickness distribution measuring step of applying a set of set values in the second reactor to form a thin film on the main surface of the semiconductor substrate and measuring the film thickness distribution M of the thin film;
The predicted optimum set value group C that can minimize the distance d1 between the film thickness distribution of the thin film formed on the main surface of the semiconductor substrate and the ideal film thickness distribution I in the second reactor is the film thickness. A predicted optimum set value group calculating step of calculating from distribution data and an actual value of the film thickness distribution M;
Applying the predicted optimum set value group C, and forming a thin film on the main surface of the semiconductor substrate by vapor phase growth in the second reactor ,
The predicted optimum set value group calculation step includes:
A first process of calculating a virtual film thickness distribution S1 of a thin film to be formed on the main surface of the semiconductor substrate based on the film thickness distribution data when applying the set of set value groups;
A second process of calculating a virtual film thickness distribution S2 of a thin film to be formed when another set of set value groups is applied, based on the film thickness distribution data;
A film thickness variation distribution H obtained by changing the parameter from the one set of set value groups to the other set of set value groups is obtained from a difference between the virtual film thickness distribution S2 and the virtual film thickness distribution S1, and A third process for predicting an expected film thickness distribution R when the other set of set value groups is applied by adding a film thickness change distribution H to the film thickness distribution M;
The second process and the third process are performed a plurality of times while changing the other set of set values in the second process, and the distance d2 between the expected film thickness distribution R and the ideal film thickness distribution I is minimized. A set value group to be obtained is set as the predicted optimum set value group C, and
Following the third process,
Applying the predicted optimum set value group C, forming a thin film on the main surface of the semiconductor substrate by vapor phase growth in the second reactor, and measuring the film thickness distribution M ′ of the thin film;
A fifth process for calculating a distance d3 between the film thickness distribution M ′ and the ideal film thickness distribution I;
A virtual film thickness distribution S1 ′ of a thin film to be formed on the main surface of the semiconductor substrate when the predicted optimum set value group C is applied, and a thin film to be formed when another set of set value groups is applied. A virtual film thickness distribution S2 ′ of the first processing based on the film thickness distribution data;
A film thickness change distribution H ′ obtained by changing the parameter from the predicted optimum set value group C to the other set of set values is determined from a difference between the virtual film thickness distribution S2 ′ and the virtual film thickness distribution S1 ′. And a seventh process for predicting an expected film thickness distribution R ′ when the other set of set values is applied by adding the film thickness change distribution H ′ to the film thickness distribution M ′. ,
An eighth process of calculating a distance d4 between the expected film thickness distribution R ′ and the ideal film thickness distribution I;
The other set of set value groups in the sixth process is changed and the sixth process to the eighth process are performed a plurality of times to obtain a set value group C ′ that minimizes the distance d4. A thin film forming method comprising: a ninth process for resetting the set value group C ′ as the predicted optimum set value group C when the distance d4 min and the distance d3 satisfy a predetermined criterion .
前記理想膜厚分布Iは、一定値Tであることを特徴とする請求項1記載の薄膜形成方法。 The ideal film thickness distribution I are thin film forming method according to claim 1 Symbol mounting, characterized in that a constant value T. 前記理想膜厚分布Iは、一定値T’から半導体基板の厚さ分布を差し引いた分布であることを特徴とする請求項1または2に記載の薄膜形成方法。 The ideal film thickness distribution I is a thin film forming method according to claim 1 or 2, characterized in that the distribution obtained by subtracting the thickness distribution of the semiconductor substrate from a constant value T '. 前記パラメータは、前記反応炉内の雰囲気を形成するキャリアガスの流量と、前記半導体基板を支持するサセプタよりも下方の空間をパージするパージガスの流量と、前記キャリアガスの流通方向の略直交方向における前記反応炉内のガス流量分布とであることを特徴とする請求項1または2に記載の薄膜形成方法。 The parameters include a flow rate of a carrier gas that forms an atmosphere in the reaction furnace, a flow rate of a purge gas that purges a space below the susceptor that supports the semiconductor substrate, and a direction substantially orthogonal to the flow direction of the carrier gas. thin film forming method according to claim 1 or 2, characterized in that the gas flow rate distribution of the reactor.
JP2003342953A 2003-10-01 2003-10-01 Thin film formation method Expired - Fee Related JP4329474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342953A JP4329474B2 (en) 2003-10-01 2003-10-01 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342953A JP4329474B2 (en) 2003-10-01 2003-10-01 Thin film formation method

Publications (2)

Publication Number Publication Date
JP2005109303A JP2005109303A (en) 2005-04-21
JP4329474B2 true JP4329474B2 (en) 2009-09-09

Family

ID=34537058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342953A Expired - Fee Related JP4329474B2 (en) 2003-10-01 2003-10-01 Thin film formation method

Country Status (1)

Country Link
JP (1) JP4329474B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581868B2 (en) * 2005-06-28 2010-11-17 株式会社Sumco Epitaxial growth apparatus and manufacturing method thereof
JP5069424B2 (en) * 2006-05-31 2012-11-07 Sumco Techxiv株式会社 Film forming reaction apparatus and method
JP5151674B2 (en) * 2008-05-19 2013-02-27 信越半導体株式会社 Epitaxial wafer manufacturing method
JP5843070B2 (en) * 2012-12-04 2016-01-13 信越半導体株式会社 Thin film forming method and thin film forming system
JP6477381B2 (en) * 2015-09-16 2019-03-06 株式会社Sumco Epitaxial wafer deposition condition determination method, and epitaxial wafer manufacturing method and manufacturing apparatus
KR101912886B1 (en) * 2017-03-07 2018-10-29 에이피시스템 주식회사 Apparatus for spraying gas and facility for processing substrate having the same and method for treating substrate using the same

Also Published As

Publication number Publication date
JP2005109303A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US20090078197A1 (en) Substrate processing system, control method for substrate processing apparatus and program
US20040182316A1 (en) Processing equipment and processing method
TW201921607A (en) Method for manufacturing semiconductor device, method for loading substrate, and recording medium
US10128104B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
TW201923134A (en) Substrate processing apparatus method of manufacturing semiconductor device and medium
TW200406847A (en) Heat processing method and heat processing apparatus
US11587788B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR102491768B1 (en) Asymmetric wafer bow compensation
JP2006086177A (en) Vapor-phase epitaxial growth device and method for manufacturing semiconductor wafer
CN115491761B (en) Control device and control method for monolithic epitaxial growth device and epitaxial wafer manufacturing system
JPWO2020016914A1 (en) Semiconductor device manufacturing method, substrate processing device and program
US10032629B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6541599B2 (en) Control device, substrate processing system, substrate processing method and program
KR20230125281A (en) Systems and methods for a preheat ring in a semiconductor wafer reactor
JP4329474B2 (en) Thin film formation method
US20060099805A1 (en) Heat treating system and heat treating method
JP2009260261A (en) Thermal processing apparatus, method for regulating temperature of thermal processing apparatus, and program
US8372688B2 (en) Method for forming Ge-Sb-Te film and storage medium
US9187822B2 (en) Method for forming Ge-Sb-Te film and storage medium
JP2010132958A (en) Substrate treatment apparatus
JP2009038294A (en) Output adjustment method, manufacturing method of silicon epitaxial wafer, and susceptor
US7211514B2 (en) Heat-processing method for semiconductor process under a vacuum pressure
JP2005142355A (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP6630237B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2011060842A (en) Substrate processing apparatus, substrate holder, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4329474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees