JP4329057B2 - Underground facility of high-level radioactive waste storage facility and its setting method - Google Patents

Underground facility of high-level radioactive waste storage facility and its setting method Download PDF

Info

Publication number
JP4329057B2
JP4329057B2 JP2000392144A JP2000392144A JP4329057B2 JP 4329057 B2 JP4329057 B2 JP 4329057B2 JP 2000392144 A JP2000392144 A JP 2000392144A JP 2000392144 A JP2000392144 A JP 2000392144A JP 4329057 B2 JP4329057 B2 JP 4329057B2
Authority
JP
Japan
Prior art keywords
facility
shaft
flow
radioactive waste
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000392144A
Other languages
Japanese (ja)
Other versions
JP2002196098A (en
Inventor
博夫 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2000392144A priority Critical patent/JP4329057B2/en
Publication of JP2002196098A publication Critical patent/JP2002196098A/en
Application granted granted Critical
Publication of JP4329057B2 publication Critical patent/JP4329057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高レベル放射性廃棄物貯蔵施設の地下施設とその設定方法に関し、特に、立坑の構築において地下水流が上昇することを防止して高レベル放射性廃棄物を処分する際の安全性を高める高レベル放射性廃棄物貯蔵施設の地下施設とその設定方法に関する。
【0002】
【従来の技術】
原子力発電所を中心にした核燃料サイクルは、使用済燃料を再利用するために、使用済燃料を直接あるいはリサイクル燃料備蓄センターを経由させて再処理工場に移して、ウランやプルトニウムを回収し、燃料に加工して再利用するように構成されている。
【0003】
この燃料サイクルから外れる放射性廃棄物については、安全に隔離処分されるように計画されている。その内、原子力発電所から排出される低レベルの放射性廃棄物は、低レベル放射性廃棄物埋設センターにおいて安全に処理されている。
【0004】
一方、再処理工場で発生する高レベルの放射性廃棄物については、高レベル放射性廃棄物貯蔵施設における地層処分施設において処分することが決められており、地層処分施設では、放射性廃棄物を処分するために、地下300m以深の地下施設として構築されている。
【0005】
この地層処分施設は、岩種により硬岩と堆積岩の二つを対象とした施設に分類されて、各施設に関する技術的な検討や計画が実施されている。
【0006】
これらに代表される地層処分施設10は、図3に示されるように地下施設11とこれに地上受入施設12を連絡している立坑13及び排気立坑14から構成されている。地下施設11は、複数の処分トンネル15とこれらを連絡している主要トンネル16から構成されており、立坑13は、キャニスター搬入立坑17、人員・資材立坑18、緊急用立坑19を擁している。
【0007】
高レベル放射性廃棄物貯蔵施設は、その役割として、処分後に廃棄体から放射性核種が、オーバーパックの腐食等によって周辺の地下水に溶出することで地下水の流動と共に、自然界への流出することによる環境破壊を防止することが求められており、この期間は1万年以上とも考えられ、非常に長い期間となっている。
【0008】
そして、核種の移行は、地下水の流動によるものが大きいと考えられていることから、高レベル放射性廃棄物貯蔵施設では、その設置位置として透水係数が低く、地下水の流動が小さな岩盤を選択しており、地下深部の地下水が流動によって地表到達するまでの距離を大きくすることによって、到達時間を長くすることで上記の状況に対処できる構築を考えている。
【0009】
しかして、高レベル放射性廃棄物貯蔵施設の設置位置が、透水係数が低く、地下水の流動の小さな岩盤に選択されたとしても、地下施設11と立坑13及び排気立坑14とが図4のような位置関係に配置され、地下水20の流動方向21が図示のように形成されている場合には、立坑13もしくは排気立坑14を伝った地下水20の流動方向21は上向きに変転された水流22になり、移行する核種が地表に到達する迄の時間が予期せぬ短縮されたものになってくる。
【0010】
一方、地下施設の建設においては、発破による損傷領域の発生や応力再配分によるゆるみ領域の発生等のように、坑道の掘削により坑道周辺の岩盤を乱してしまうことが知られており、このような乱された領域では、自然状態の透水性よりも透水係数で1桁〜1桁以上大きな高い値を示す透水性を持つ状態になっている。
【0011】
このような現象は、地表に直結している垂直方向の立坑や排気立坑においても例外でなく、坑道周辺の岩盤と同様にその周辺を乱すことで高い透水性を持つ状態になる。
【0012】
従って、主要坑道,処分坑道などの地下施設11の周辺に岩盤の乱れたゆるみ領域23が形成されて、上述した自然状態の岩盤に比べて透水係数で1桁〜1桁大きな値を示すことになるのと同様に、立坑13や排気立坑14の周辺領域にもゆるみ領域24が形成されて、流速の小さな地下水の水流25に比較して流水速度の大きな水流26が、図5に示されるように地下施設11に連続した状態で立坑等に沿って地上方向に形成されることになる。
【0013】
これらの増速した地下水流が地上・自然界に到達する速度は、透水係数が1桁〜1桁以上高くなることに比例して速くなると考えられることから、移行する核種の地表への到達時間は、透水性の低い岩盤内を地下水の流動と共に核種が移行する場合に比ベて予期せぬ程短縮されたものになり、高レベル放射性廃棄物を処分した後の安全性を評価する上で、重要な課題であると考えられる。
【0014】
これらの立坑の掘削に伴うゆるみ領域に対する対策として、図6(a)に示すように立坑13の中間部に拡幅部27を形成し、コンクリートあるいは透水性の低いベントナイトを用いたプラグ28を設置することで、部分的に透水性の高い部分に置換して、流水速度の大きな水流26から流速の小さな地下水の水流25に部分的に転換することが検討されている。
【0015】
しかして、この対策は、図6(b)に示されるように、坑道の掘削に透水性の高いゆるみ領域23が伴って生じることと同様に、その外側にも拡幅部27の掘削によって新たな透水性の高いゆるみ領域29を発生させるものであって、透水性の高いゆるみ領域24の改善に効果があるか否かについて疑問が残り、関連した実験においてプラグ28の外側に形成されるゆるみ領域29に地下水の流水速度が大きな水流26を残存させることも報告されている。
【0016】
又、プラグ28の部分に膨潤性の高いベントナイトを用いることによって、処分後においてプラグ28の部分を体積膨張させるようにして、周辺岩盤に圧縮応力を発生させることで掘削に伴って乱された領域を初期の状態へ近づけようとする試みもある。
【0017】
しかしながら、この対策も、掘削やプラグ部分の体積膨張に関連して発生する周辺岩盤の挙動を弾塑性材料として考えると、岩盤における緩みの発生は、塑性ひずみであって、永久ひずみが生じた結果であることを意味している。従って、当初の応力状態に仮に近づけ得たとしても、透水性の低い初期の岩盤状態に戻ることは想定できるものでなく、その作用、効果は余り期待できない可能性がある。
【0018】
【発明が解決しようとする課題】
即ち、高レベル放射性廃棄物貯蔵施設の立坑や地下施設の周辺には、透水性の高いゆるみ領域が掘削によって必然的に形成されるが、現状では人工的にそれを防ぐ方法は見いだされていない状況にあり、同様に、地下施設から立坑を経由して地上に向かう上向きの地下水の流動は、立坑周辺の掘削によって発生する単なる透水性の高いゆるみ領域によって生じるものではなく、立坑周辺の地形条件,地下水環境条件を主要因にしており、地下施設と立坑の位置関係によって形成されている。
【0019】
本発明は、以上の状況に鑑みて、安全性を向上させた高レベル放射性廃棄物貯蔵施設を提案するものであり、地下施設全体に対する地下水の流動を考慮し、地質調査を踏まえた地下水挙動解析によって透水性の高いゆるみ領域での地下水の流動方向に下向き水流の発生を確立して、地下水の挙動状態に基づいた立坑の位置を設定する高レベル放射性廃棄物貯蔵施設の地下施設とその施工法を提供している。
【0020】
【課題を解決するための手段】
本発明による高レベル放射性廃棄物貯蔵施設の地下施設は、基本的に、地上施設とその地上施設と複数の立坑で接合する地下施設から構成される高レベル放射性廃棄物貯蔵施設の地下施設において、立坑の構築位置を地下水流の方向に従って設定することを特徴としており、具体的に、立坑の構築位置を地下水流の下流向きの位置にしたり、地下水流的に地下施設の上流側にすることを特徴としている。
【0021】
これによって、立坑周辺の地形条件,地下水環境条件に基づいた地下施設と立坑の位置関係を選定することで、立坑周辺の透水性の高いゆるみ領域での下向き水流の発生を確立して、高レベル放射性廃棄物を処分した後の安全性を確立している。
【0022】
本発明による地下施設の設定方法は、請求項1乃至1のいずれかに記載の地下施設を設定する方法であり、地下施設の位置と立坑の位置とを設定し、その設定に基づいて関連する地形情報と地質データとから高レベル放射性廃棄物貯蔵施設全体の地下水流動を解析して、立坑の構築位置を地下水流の下流向きの位置に選定し、しかる後に、導水勾配と流動方向とを確認することで立坑の位置を特定しており、導水勾配と流動方向との確認で再選定することを特徴にしている。
【0023】
これによって、立坑周辺の地形条件,地下水環境条件に基づいた地下施設と立坑の位置関係を選定しながら確認することで、透水性の高いゆるみ領域での下向き水流の発生を確立して地下施設と立坑の位置関係を容易に確定している。
【0024】
【発明の実施の形態】
本発明による高レベル放射性廃棄物貯蔵施設の地下施設は、地上施設とその地上施設と複数の立坑で接合する地下施設から構成される高レベル放射性廃棄物貯蔵施設の地下施設において、立坑の構築位置を地下水流の方向に従って設定しており、他の実施の形態として、立坑の構築位置を地下水流の下流向きの位置にしたり、地下水流的に地下施設の上流側にすることを表示している。
【0025】
以下に、各発明の実施の形態を図面に基づいて説明するが、理解を容易にするために従来と同様の部分については同一の符号で表示している。
【0026】
図1は、本発明による高レベル放射性廃棄物貯蔵施設の地下施設の実施形態を示す概要断面図である。
【0027】
高レベル放射性廃棄物貯蔵施設の地下施設1は、構築する地盤1の地形条件,地下水の滞水条件に基づいた地下水20の流動方向21に従って設置されている。
【0028】
即ち、地下施設12とこれに地上受入施設を連絡している立坑12との位置関係は、立坑周辺の地形条件,地下水環境条件を勘案して選定された地盤1の位置に在って、地下施設11に対する立坑13の設置位置を地下水20が流動する方向21の上流側に位置付けている。
【0029】
しかして、地下施設11の周辺に形成された岩盤の乱れたゆるみ領域23と立坑13の周辺領域に形成されたゆるみ領域24は、上述したように自然状態の岩盤に比べて透水係数で1桁〜1桁以上大きな値を示すことになるが、そこを流れる地下水流は、自然状態の岩盤を流れる流速の小さな地下水の水流25に比較して流水速度の大きな水流26であっても、地下施設から立坑を経由して地上に向かう上向きの流動ではない。
【0030】
従って、高レベル放射性廃棄物貯蔵施設1は、処分後の廃棄体から放射性核種がオーバーパックの腐食等から周辺の地下水に溶出して、地下水の流動と共に地盤中に流出しても、地表に到達するまでの距離を大きく確保することで、その到達時間を長くするように構成されていることで自然界への流出を抑制している。
【0031】
以上のように、本発明による高レベル放射性廃棄物貯蔵施設の地下施設は、立坑周辺の地形条件,地下水環境条件に基づいた地下施設と立坑の位置関係を選定することで、立坑周辺の透水性の高いゆるみ領域での下向き水流の発生を確立して、高レベル放射性廃棄物を処分した後の安全性を確立している。
【0032】
次に、本発明による地下施設の設定方法に関する実施の形態について説明するが、本方法は、上記の地下施設を確実に設定するための調査・設計方法である。
【0033】
本発明による地下施設の設定方法は、先ず、地下施設の位置と立坑の位置とを設定し、その設定に基づいて関連する地形情報と地質データとから高レベル放射性廃棄物貯蔵施設全体の地下水流動を解析して、立坑の構築位置を地下水流の下流向きの位置に選定し、しかる後に、導水勾配と流動方向とをボーリング等によって実際に確認することで立坑の位置を特定しており、導水勾配と流動方向との確認によって再選定することを特徴にしている。
【0034】
以下に、本発明による地下施設の設定方法の実施の形態を図面に示すフローチャートに基づいて詳細に説明する。
【0035】
本フローチャートは、立坑の設置位置を図1で示したように、地下施設全体の地下水流動を考慮することで地下水流動の面から地下施設の上流側に設定して、立坑の位置では地下水の流動方向に上向きの成分が発生させないようにするために、問題の解決を図るための調査・設計の過程を示しており、地質調査やその調査を踏まえた地下水挙動解析で得られる地下水の挙動に基づく判断を円滑に実施できるように構成している。
【0036】
図2は、本発明による地下施設の設定方法に基づくフローチャートを示しており、立坑の設置位置を以下の過程を経て選定し、最終的な特定をしている。
▲1▼ 高レベル放射性廃棄物貯蔵施設における地下施設の位置とアクセス用立坑のレイアウトを設定する。
▲2▼ 同レイアウトの地下施設を含む大きな領域に対して、地形情報と地質データから三次元地下水流動解析を実施する。
▲3▼ 立坑位置において地下水流動が鉛直下向き成分を有するか否かで同レイアウトを再検討する。
解析結果からを判定して、下向きでない場合には、立坑位置のみの変更か、地下施設全体の移動が必要かを判定する。
▲4▼ 立坑位置として、地下水流動が鉛直下向き成分を有する位置を選定する。
▲5▼ 地下施設・立坑の位置にボーリングを実施して動水勾配や流向を実際に確認する。
▲6▼ 立坑位置において地下水流動が鉛直下向き成分を有するか否かで同レイアウトを再検討する。
実際の動水勾配や流向が、三次元地下水流動解析結果と異なる場合には、ボーリングによる地質データや地下水状況を考慮した三次元解析を実施し、立坑位置のみの変更か、地下施設全体の移動が必要かを判定する。
【0037】
以上のフローチャートに基づくことによって、地下施設と立坑の位置関係は、立坑周辺の地形条件,地下水環境条件に基づいて三次元地下水流動解析を実施しながら選定し、加えて実際の動水勾配や流向を確認することで、透水性の高いゆるみ領域での下向き水流の発生を容易に確定している。
【0038】
以上、本発明を実施の形態に基づいて詳細に説明してきたが、本発明による高レベル放射性廃棄物貯蔵施設の地下施設とその設定方法は、上記実施の形態に何ら限定されるものでなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能であることは当然のことである。
【0039】
【発明の効果】
本発明による高レベル放射性廃棄物貯蔵施設の地下施設は、基本的に、地上施設とその地上施設と複数の立坑で接合する地下施設から構成される高レベル放射性廃棄物貯蔵施設の地下施設において、立坑の構築位置を地下水流の方向に従って設定することを特徴としており、具体的に、立坑の構築位置を地下水流の下流向きの位置にしたり、地下水流的に地下施設の上流側にすることを特徴としているので、以下の効果を発揮している。
▲1▼ 立坑周辺の透水性の高いゆるみ領域に下向き水流を発生させて高レベル放射性廃棄物を処分した後の安全性を確立する。
▲2▼ 安全性に関して、建設に伴う高透水性のゆるみ領域の影響を回避できる。
▲3▼ 高透水性のゆるみ領域を回避するための建設への制限・規制を低減する。
▲4▼ 立坑などへ透水ゾーン防止のためのプラグが不要になり、経済性が向上する。
【0040】
本発明による地下施設の設定方法は、上記の地下施設を設定する方法であり、地下施設の位置と立坑の位置とを設定し、その設定に基づいて関連する地形情報と地質データとから高レベル放射性廃棄物貯蔵施設全体の地下水流動を解析して、立坑の構築位置を地下水流の下流向きの位置に選定し、しかる後に、導水勾配と流動方向とを確認することで立坑の位置を特定しており、導水勾配と流動方向との確認で再選定することを特徴にしているので、立坑周辺の地形条件,地下水環境条件に基づいた地下施設と立坑の位置関係を選定しながら確認することで、透水性の高いゆるみ領域での下向き水流の発生を確立して地下施設と立坑の位置関係を容易に確定する効果を発揮している。
【図面の簡単な説明】
【 図1】本発明による高レベル放射性廃棄物貯蔵施設の地下施設の実施形態を示す概要断面図
【 図2】本発明による地下施設の設定方法に基づくフローチャート図
【 図3】従来の高レベル放射性廃棄物貯蔵施設における地下施設の斜視図
【 図4】従来における地下施設と立坑との位置関係を示す概要断面図
【 図5】従来における地下施設と立坑における地下水流の流動を示す概要断面図
【 図6】従来の地下施設における遮水プラグの概要断面図
【符号の説明】
1 高レベル放射性廃棄物貯蔵施設、 2 地盤、
10 地層処分施設、 11 地下施設、 12 地上受入施設、
13 立坑、 14 排気立坑、 15 処分トンネル、
16 主要トンネル、 17 キャニスター搬入立坑、 18 資材立坑、
19 緊急用立坑、
20 地下水、 21 流動方向、 22 水流、
23、24 ゆるみ領域、 25 流速の小さな水流、
26 流速の大きな水流、 27 拡幅部、 28 プラグ、
29 ゆるみ領域、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underground facility of a high-level radioactive waste storage facility and a method for setting the underground facility, and in particular, to increase the safety when disposing high-level radioactive waste by preventing an increase in groundwater flow in the construction of a shaft. The present invention relates to an underground facility of high-level radioactive waste storage facility and its setting method.
[0002]
[Prior art]
In the nuclear fuel cycle centered on nuclear power plants, in order to recycle spent fuel, spent fuel is transferred directly or via a recycle fuel storage center to a reprocessing plant, where uranium and plutonium are recovered. It is configured to be processed and reused.
[0003]
Any radioactive waste that falls outside this fuel cycle is planned to be safely isolated. Among them, low-level radioactive waste discharged from nuclear power plants is safely processed at low-level radioactive waste burial centers.
[0004]
On the other hand, it is decided to dispose of high-level radioactive waste generated in the reprocessing plant at the geological disposal facility in the high-level radioactive waste storage facility, and the geological disposal facility will dispose of the radioactive waste. In addition, it is constructed as an underground facility with a depth of 300m or more.
[0005]
This geological disposal facility is classified into two facilities, hard rock and sedimentary rock, according to the rock type, and technical studies and plans for each facility are being carried out.
[0006]
As shown in FIG. 3, the geological disposal facility 10 represented by these is composed of an underground facility 11 and a vertical shaft 13 and an exhaust shaft 14 communicating with the ground receiving facility 12. The underground facility 11 is composed of a plurality of disposal tunnels 15 and a main tunnel 16 connecting them, and the shaft 13 includes a canister carry-in shaft 17, a personnel / material shaft 18, and an emergency shaft 19.
[0007]
The role of high-level radioactive waste storage facilities is to destroy the environment by disposal of radioactive nuclides from the waste after disposal into the surrounding groundwater due to overpack corrosion, etc. This period is considered to be 10,000 years or more, and is a very long period.
[0008]
And it is thought that the migration of nuclides is largely due to the flow of groundwater. Therefore, in high-level radioactive waste storage facilities, select rocks with low permeability and low groundwater flow as the installation location. Therefore, we are considering a construction that can cope with the above situation by increasing the time it takes for the groundwater in the deep underground to reach the ground surface by flowing.
[0009]
Even if the installation location of the high-level radioactive waste storage facility is selected as a bedrock having a low permeability coefficient and a small flow of groundwater, the underground facility 11, the shaft 13 and the exhaust shaft 14 are as shown in FIG. If the flow direction 21 of the groundwater 20 is arranged as shown in the figure, the flow direction 21 of the groundwater 20 that has passed through the shaft 13 or the exhaust shaft 14 becomes a water flow 22 that is transformed upward. , The time until the migrating nuclides reach the surface will be shortened unexpectedly.
[0010]
On the other hand, in the construction of underground facilities, it is known that the excavation of a mine shaft disturbs the rock around the mine, such as the occurrence of a damaged region due to blasting or the occurrence of a loose region due to stress redistribution. In such a disturbed region, the water permeability is in a state having a high value that is one digit to one digit greater than the water permeability in the natural state.
[0011]
Such a phenomenon is not an exception even in vertical shafts and exhaust shafts directly connected to the ground surface, and it becomes a state of high water permeability by disturbing the periphery like the rock around the shaft.
[0012]
Accordingly, a loosened rock region 23 is formed around the underground facility 11 such as the main tunnel and the disposal tunnel, and the permeability coefficient is one digit to one digit larger than that of the natural rock described above. Similarly, a loosened region 24 is also formed in the peripheral region of the shaft 13 and the exhaust shaft 14, and a water flow 26 having a higher flow rate than the groundwater flow 25 having a lower flow velocity is shown in FIG. It is formed in the ground direction along a shaft or the like in a state continuous to the underground facility 11.
[0013]
Since the speed at which these accelerated groundwater flows reach the ground and the natural world is thought to increase in proportion to the permeability coefficient increasing by one to one digit or more, the arrival time of migrating nuclides to the surface is In order to evaluate the safety after disposal of high-level radioactive waste, it will be unexpectedly shortened compared to the case where nuclides migrate with the flow of groundwater in the low-permeability rock mass. This is considered an important issue.
[0014]
As a countermeasure against the loosening region associated with the excavation of these shafts, a widened portion 27 is formed in the middle portion of the shaft 13 as shown in FIG. 6A, and a plug 28 using concrete or bentonite with low water permeability is installed. Thus, it is considered that the water flow 26 having a high flow velocity is partially replaced with the water flow 25 having a low flow velocity by partially replacing the high water permeability portion.
[0015]
Therefore, as shown in FIG. 6B, this countermeasure is newly developed by excavating the widened portion 27 on the outer side as well as when the digging of the mine tunnel is accompanied by a loose permeable region 23. There is a question as to whether or not the high-permeability slack region 29 is generated and is effective in improving the high-permeability slack region 24, and the slack region formed outside the plug 28 in a related experiment. In 29, it is also reported that the water flow 26 having a high groundwater flow rate remains.
[0016]
In addition, by using bentonite having high swellability for the plug 28, the portion of the plug 28 is subjected to volume expansion after disposal, and a compressive stress is generated in the surrounding rock mass, thereby disturbing the excavation. There is also an attempt to bring the to the initial state.
[0017]
However, this measure also considers the behavior of the surrounding rock mass that occurs in relation to the volume expansion of the excavation and plug part as an elastoplastic material, and the occurrence of loosening in the rock mass is a plastic strain and the result of permanent strain. It means that. Therefore, even if it can be brought close to the initial stress state, it cannot be expected to return to the initial bedrock state with low water permeability, and its action and effect may not be expected much.
[0018]
[Problems to be solved by the invention]
In other words, a high-permeability loose area is inevitably formed by excavation around shafts and underground facilities of high-level radioactive waste storage facilities, but at present there is no method for artificially preventing it. Similarly, the upward groundwater flow from the underground facility through the shaft to the ground is not caused by the mere high-permeability slack area generated by excavation around the shaft, but the topographical conditions around the shaft The groundwater environment conditions are the main factors, and it is formed by the positional relationship between underground facilities and shafts.
[0019]
In view of the above situation, the present invention proposes a high-level radioactive waste storage facility with improved safety, considering the flow of groundwater to the entire underground facility, and analyzing groundwater behavior based on geological surveys. The underground facility of the high-level radioactive waste storage facility that establishes the position of the shaft based on the behavior state of the groundwater by establishing the generation of downward water flow in the direction of groundwater flow in the loose area with high permeability and its construction method Is provided.
[0020]
[Means for Solving the Problems]
The underground facility of the high-level radioactive waste storage facility according to the present invention is basically an underground facility of a high-level radioactive waste storage facility composed of an above-ground facility and an underground facility joined to the above-ground facility by a plurality of shafts. The construction position of the shaft is set according to the direction of the groundwater flow. Specifically, the construction position of the shaft is set to the downstream direction of the groundwater flow, or the groundwater flow is set upstream of the underground facility. It is a feature.
[0021]
In this way, by selecting the positional relationship between underground facilities and shafts based on topographical conditions around the shafts and groundwater environmental conditions, it is possible to establish the generation of downward water flow in the highly permeable slack area around the shafts. Established safety after disposal of radioactive waste.
[0022]
A method for setting an underground facility according to the present invention is a method for setting an underground facility according to any one of claims 1 to 1, and sets a position of an underground facility and a position of a shaft, and relates to the setting based on the setting. Analyzing the groundwater flow of the entire high-level radioactive waste storage facility from topographical information and geological data, selecting the construction position of the shaft in the downstream direction of the groundwater flow, and then confirming the water conveyance gradient and flow direction By doing so, the position of the shaft is specified, and it is characterized by reselection by confirming the water conveyance gradient and the flow direction.
[0023]
In this way, by confirming the location of the underground facilities and shafts based on the topographical conditions around the shafts and the groundwater environmental conditions, it is possible to establish the generation of downward water flow in the highly permeable slack area. The position of the shaft is easily determined.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The underground facility of the high-level radioactive waste storage facility according to the present invention is a construction site of the shaft in the underground facility of the high-level radioactive waste storage facility composed of the ground facility and the underground facility joined with the ground facility by a plurality of shafts. Is set according to the direction of the groundwater flow, and as another embodiment, the construction position of the shaft is set to the downstream direction of the groundwater flow, or the groundwater flow is displayed upstream of the underground facility .
[0025]
Embodiments of the present invention will be described below with reference to the drawings. In order to facilitate understanding, the same parts as those in the prior art are denoted by the same reference numerals.
[0026]
FIG. 1 is a schematic cross-sectional view showing an embodiment of an underground facility of a high-level radioactive waste storage facility according to the present invention.
[0027]
The underground facility 1 of the high-level radioactive waste storage facility is installed according to the flow direction 21 of the groundwater 20 based on the topographic conditions of the ground 1 to be constructed and the groundwater stagnant conditions.
[0028]
That is, the positional relationship between the underground facility 12 and the vertical shaft 12 communicating with the ground receiving facility is in the position of the ground 1 selected in consideration of the topographical conditions and groundwater environmental conditions around the vertical shaft. The installation position of the shaft 13 with respect to the facility 11 is positioned on the upstream side in the direction 21 in which the groundwater 20 flows.
[0029]
Therefore, the loosened rock region 23 formed in the vicinity of the underground facility 11 and the loosened region 24 formed in the peripheral area of the vertical shaft 13 are one digit in terms of permeability compared to the natural rock as described above. Although it will show a value that is larger by one digit or more, even if the groundwater flow flowing there is a water flow 26 having a large flow velocity compared to the groundwater flow 25 having a small flow velocity flowing through the natural rock, It is not an upward flow toward the ground via a vertical shaft.
[0030]
Therefore, the high-level radioactive waste storage facility 1 reaches the ground surface even if radionuclides elute from the waste after disposal to the surrounding groundwater due to overpack corrosion, etc., and flow into the ground along with the groundwater flow. By ensuring a large distance to do so, it is configured to increase the arrival time, thereby suppressing the outflow to the natural world.
[0031]
As described above, the underground facility of the high-level radioactive waste storage facility according to the present invention has the permeability of the periphery of the shaft by selecting the positional relationship between the underground facility and the shaft based on the topographical conditions around the shaft and the groundwater environmental conditions. Establishing the generation of downward water flow in the high slack area, and establishing safety after disposal of high-level radioactive waste.
[0032]
Next, an embodiment related to a method for setting an underground facility according to the present invention will be described. This method is an investigation / design method for reliably setting the above underground facility.
[0033]
In the underground facility setting method according to the present invention, first, the position of the underground facility and the position of the shaft are set, and the groundwater flow of the entire high-level radioactive waste storage facility is determined from the related topographic information and geological data based on the setting. The shaft construction position is selected as the downstream position of the groundwater flow, and then the shaft position is identified by actually confirming the water gradient and flow direction by boring, etc. It is characterized by re-selection by checking the gradient and flow direction.
[0034]
Hereinafter, an embodiment of a method for setting an underground facility according to the present invention will be described in detail based on a flowchart shown in the drawings.
[0035]
In this flowchart, as shown in Fig. 1, the installation position of the vertical shaft is set on the upstream side of the underground facility in consideration of the groundwater flow of the entire underground facility. In order to prevent upward components from occurring in the direction, the investigation and design process to solve the problem is shown. Based on the groundwater behavior obtained from the geological survey and groundwater behavior analysis based on the survey It is configured so that the judgment can be carried out smoothly.
[0036]
FIG. 2 shows a flowchart based on the method for setting an underground facility according to the present invention, where the installation position of the shaft is selected through the following process and finally identified.
(1) Set the location of underground facilities and the layout of access shafts in high-level radioactive waste storage facilities.
(2) A three-dimensional groundwater flow analysis will be performed on the large area including underground facilities with the same layout from topographic information and geological data.
(3) Reexamine the layout based on whether the groundwater flow has a vertically downward component at the shaft position.
Judging from the analysis result, if it is not downward, it is determined whether it is necessary to change only the shaft position or to move the entire underground facility.
(4) Select the position where the groundwater flow has a vertically downward component as the vertical position.
▲ 5 ▼ Boring is conducted at the underground facilities and shafts to actually check the hydrodynamic gradient and flow direction.
(6) Reexamine the layout based on whether the groundwater flow has a vertically downward component at the shaft position.
If the actual hydrodynamic gradient and flow direction are different from the 3D groundwater flow analysis results, perform 3D analysis considering geological data and groundwater conditions by boring, and change only the shaft position or move the entire underground facility Determine if you need it.
[0037]
Based on the above flow chart, the positional relationship between underground facilities and shafts is selected based on topographical conditions and groundwater environmental conditions around the shafts while conducting a three-dimensional groundwater flow analysis, in addition to the actual hydrodynamic gradient and flow direction. By confirming the above, the generation of downward water flow in the loose area with high water permeability is easily determined.
[0038]
As mentioned above, although the present invention has been described in detail based on the embodiment, the underground facility of the high-level radioactive waste storage facility and the setting method thereof according to the present invention are not limited to the above embodiment at all. Naturally, various modifications can be made without departing from the spirit of the present invention.
[0039]
【The invention's effect】
The underground facility of the high-level radioactive waste storage facility according to the present invention is basically an underground facility of a high-level radioactive waste storage facility composed of an above-ground facility and an underground facility joined to the above-ground facility by a plurality of shafts. The construction position of the shaft is set according to the direction of the groundwater flow. Specifically, the construction position of the shaft is set to the downstream direction of the groundwater flow, or the groundwater flow is set upstream of the underground facility. Because it is a feature, it has the following effects.
(1) Establish safety after disposing of high-level radioactive waste by generating downward water flow in the highly permeable loose area around the shaft.
(2) With regard to safety, it is possible to avoid the influence of the loose area of high permeability due to construction.
(3) Reduce restrictions and restrictions on construction to avoid loose areas with high water permeability.
(4) Eliminates the need for plugs for preventing water permeable zones in vertical shafts, improving economic efficiency.
[0040]
The underground facility setting method according to the present invention is a method for setting the above-mentioned underground facility, and sets the position of the underground facility and the position of the shaft, and based on the setting, the high-level from the related topographic information and geological data. Analyzing the groundwater flow of the entire radioactive waste storage facility, selecting the construction position of the shaft as the downstream direction of the groundwater flow, and then identifying the position of the shaft by checking the water conveyance gradient and flow direction. It is characterized by reselection by confirming the water conveyance gradient and flow direction, so it is possible to confirm while selecting the positional relationship between underground facilities and shafts based on topographical conditions around the shafts and groundwater environmental conditions. It has the effect of easily establishing the positional relationship between underground facilities and shafts by establishing the generation of downward water flow in a loose area with high water permeability.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of an underground facility of a high-level radioactive waste storage facility according to the present invention. FIG. 2 is a flowchart based on a method for setting an underground facility according to the present invention. Perspective view of underground facility in waste storage facility [Figure 4] Outline sectional view showing the positional relationship between the underground facility and shafts in the past [Figure 5] Outline sectional view showing the flow of groundwater flow in the conventional underground facility and shafts [ [Fig.6] Cross-sectional view of a conventional water-insulating plug in an underground facility
1 high-level radioactive waste storage facility, 2 ground,
10 geological disposal facilities, 11 underground facilities, 12 ground receiving facilities,
13 shafts, 14 exhaust shafts, 15 disposal tunnels,
16 main tunnels, 17 canister loading shafts, 18 material shafts,
19 Emergency shafts,
20 groundwater, 21 flow direction, 22 water flow,
23, 24 Loose area, 25 Small water flow,
26 Water flow with large flow velocity, 27 Widening section, 28 Plug,
29 Loose area,

Claims (4)

地上施設と該地上施設と複数の立坑で接合する地下施設から構成される高レベル放射性廃棄物貯蔵施設の地下施設であって、立坑の構築位置が地下水流の方向に従って設定されていることを特徴とする高レベル放射性廃棄物貯蔵施設の地下施設。  An underground facility of a high-level radioactive waste storage facility composed of a ground facility and an underground facility joined to the ground facility by a plurality of shafts, and the construction position of the shaft is set according to the direction of the groundwater flow An underground facility for high-level radioactive waste storage facilities. 立坑の構築位置が、地下水流の下流向きの位置であることを特徴とする請求項1に記載の高レベル放射性廃棄物貯蔵施設の地下施設。  The underground facility of the high-level radioactive waste storage facility according to claim 1, wherein the construction position of the shaft is a position facing the downstream of the groundwater flow. 立坑の構築位置が、地下水流的に地下施設の上流側であることを特徴とする請求項1又は2に記載の高レベル放射性廃棄物貯蔵施設の地下施設。  The underground facility of the high-level radioactive waste storage facility according to claim 1 or 2, wherein the construction position of the shaft is upstream of the underground facility in terms of groundwater flow. 地下施設の位置と立坑の位置とを設定し、該設定に基づいて関連する地形情報と地質データとから高レベル放射性廃棄物貯蔵施設全体の地下水流動を解析して、立坑の構築位置を地下水流の下流向きの位置に選定し、しかる後に、該位置において導水勾配と流動方向とを実際に確認し、立坑の位置の可否を判断する請求項1乃至3のいずれかに記載する地下施設の設定方法。The position of the underground facility and the position of the shaft are set, and the groundwater flow of the entire high-level radioactive waste storage facility is analyzed from the relevant topographic information and geological data based on the setting, and the position of the shaft is determined The underground facility setting according to any one of claims 1 to 3, wherein a downstream direction position is selected, and then the water conveyance gradient and the flow direction are actually confirmed at the position to determine whether or not the shaft is located. Method.
JP2000392144A 2000-12-25 2000-12-25 Underground facility of high-level radioactive waste storage facility and its setting method Expired - Fee Related JP4329057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392144A JP4329057B2 (en) 2000-12-25 2000-12-25 Underground facility of high-level radioactive waste storage facility and its setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392144A JP4329057B2 (en) 2000-12-25 2000-12-25 Underground facility of high-level radioactive waste storage facility and its setting method

Publications (2)

Publication Number Publication Date
JP2002196098A JP2002196098A (en) 2002-07-10
JP4329057B2 true JP4329057B2 (en) 2009-09-09

Family

ID=18858175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392144A Expired - Fee Related JP4329057B2 (en) 2000-12-25 2000-12-25 Underground facility of high-level radioactive waste storage facility and its setting method

Country Status (1)

Country Link
JP (1) JP4329057B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552152B2 (en) * 2006-07-18 2010-09-29 清水建設株式会社 Vertical shaft construction of underground waste disposal facility and construction method of underground underground waste disposal facility
JP4904581B2 (en) * 2006-09-29 2012-03-28 清水建設株式会社 Vertical shaft construction of underground waste disposal facility and construction method of underground underground waste disposal facility

Also Published As

Publication number Publication date
JP2002196098A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
Wang On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China
Bäckblom Excavation damage and disturbance in crystalline rock-Results from experiments and analyses
Andersson et al. What requirements does the KBS-3 repository make on the host rock? Geoscientific suitability indicators and criteria for siting and site evaluation
Kwon et al. Concept development of an underground research tunnel for validating the Korean reference HLW disposal system
JP4329057B2 (en) Underground facility of high-level radioactive waste storage facility and its setting method
Cho et al. KURT, a small-scale underground research laboratory for the research on a high-level waste disposal
National Research Council The Waste Isolation Pilot Plant: A Potential Solution for the Disposal of Transuranic Waste
Pusch et al. Geologic Disposal of High-Level Radioactive Waste
Andersson et al. What requirements does the KBS-3 repository make on the host rock
Hoskins et al. Geologic and engineering dimensions of nuclear waste storage
Pigford Geological disposal of radioactive waste
JP2006035068A (en) Arrangement method for waste ground layer disposal field
JP5135706B2 (en) Geological disposal facility and its construction method
Wang et al. The Beishan URL for Geological Disposal of High-Level Radioactive Waste in China: Planning, Site Selection, Site Characterization and Design
Cole et al. Summary of four release consequence analyses for hypothetical nuclear waste repositories in salt and granite
Nataraja et al. Design, construction and performance considerations for shafts for high-level radioactive waste repositories
Hayashi et al. A Proposal of the Design Consideration in Construction and Operation of Direct Nuclear Waste Disposal Facilities
Kristiansen et al. Borehole Disposal of Nuclear Waste
Jonusan Analysis of the disposal of spent nuclear fuel in Brazil
Ingraham et al. High Fidelity Hybrid Method for In Situ Borehole Stress Determination Final Report
Kreie et al. Natural Gas Drilling near the Underground Nuclear Test Site of Rulison, Colorado-19571
McMullan et al. Excavation of a shaft destress slot at the Newmont Canada Golden Giant Mine
Pusch et al. Influence of rock properties on selection of design for a spent nuclear fuel repository
Fourney et al. Response to granular media to dynamic loading. Final report
Bonne Geoscicntific Investigations in the Belgian R&D Programme Concerning the Disposal of Radioactive Waste in Clay

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4329057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees