JP4325065B2 - Rotating electric machine for vehicles - Google Patents

Rotating electric machine for vehicles Download PDF

Info

Publication number
JP4325065B2
JP4325065B2 JP2000091850A JP2000091850A JP4325065B2 JP 4325065 B2 JP4325065 B2 JP 4325065B2 JP 2000091850 A JP2000091850 A JP 2000091850A JP 2000091850 A JP2000091850 A JP 2000091850A JP 4325065 B2 JP4325065 B2 JP 4325065B2
Authority
JP
Japan
Prior art keywords
rotor
stator
peripheral surface
core
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000091850A
Other languages
Japanese (ja)
Other versions
JP2001275308A (en
Inventor
繁則 米田
瀬口  正弘
請司 香田
雄一 今仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000091850A priority Critical patent/JP4325065B2/en
Priority to EP00125139A priority patent/EP1102385B1/en
Priority to DE60027840T priority patent/DE60027840T2/en
Priority to US09/714,875 priority patent/US6590312B1/en
Publication of JP2001275308A publication Critical patent/JP2001275308A/en
Application granted granted Critical
Publication of JP4325065B2 publication Critical patent/JP4325065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02T10/6226
    • Y02T10/641

Description

【0001】
【発明の属する技術分野】
本発明は、車輪の駆動に好適な車両用回転電機に関する。
【0002】
【従来の技術】
従来のラジアルエアギャップ型の回転電機は、固定子鉄心の外周面をハウジングの内周面に固定するのが通常である。
【0003】
【発明が解決しようとする課題】
しかし、ラジアルエアギャップ型の回転電機において、回転子の軸方向一端部を回転軸に結合し、更に、固定子鉄心を回転子の径内側に配置する固定子鉄心一端支持構造では、回転子鉄心の軸方向一端をロ−タフレ−ムを通じて回転軸で支持し、固定子鉄心の軸方向他端をハウジングで支持するため、固定子及び回転子といった高発熱部材をハウジングやロ−タフレ−ムといった部材で囲覆する必要が生じ、その結果、固定子及び回転子が過熱することが新たに生じることがわかった。
【0004】
この問題は、ハウジングの内周面に固定子鉄心の外周面に固定する従来のラジアルエアギャップ型の回転電機では、固定子鉄心及び回転子鉄心の両端面が、外部に露出されるためにハウジングの開口を通じて外部から取り込んだ冷却空気流に接触冷却されることができ、大きな問題とならなかった点である。
【0005】
本発明は上記の問題点に鑑みなされたものであり、回転子及び固定子の冷却性、特に、回転子及び固定子のロ−タフレ−ム側の部分の冷却性に優れた固定子鉄心一端支持構造のラジアルエアギャップ型の回転電機を用いた車両用回転電機を提供することを、その目的としている。
【0006】
【課題を解決するための手段】
上記課題を解決する請求項1記載の車両用回転電機は、回転軸に固定される回転子鉄心を有する回転子と、前記回転子の周面に対面する周面を有する固定子鉄心と前記固定子鉄心に巻装される固定子巻線とを有してハウジングに固定される固定子とを備える車両用回転電機において、
前記回転子は、内周面が前記固定子の外周面に電磁結合する外側ロータ部と、外周面が前記固定子の内周面に電磁結合する内側ロータ部と、前記両ロータ部の軸方向反ハウジング側にて前記外側ロータ部及び前記内側ロータ部を前記回転軸に結合するロータフレームとを有し、前記固定子鉄心は、反ロータフレーム側にて前記ハウジングに固定され、前記ロータフレームは、前記固定子と前記ロータフレームとの間のギャップに外部から空気を流入させる空気吸入孔と、前記空気吸入孔よりも径外側に位置して固定子鉄心側の端面に形成されて前記空気吸入孔を通じて吸入された空気を径外側へ付勢する遠心翼を有することを特徴としている。
【0007】
すなわち、本構成では、ロータフレームは、回転子及び固定子とロータフレームとの間の略径方向へ延在するギャップに外部から空気を取り入れる空気吸入孔をもつので、回転子及び固定子、特にそれらのロータフレームに面し、かつ、最も冷却性が劣り高温化しやすい部分を良好に空気流接触冷却することができる。また、このようにすれば、簡単な構成で冷却効果を向上することができ、かつ、ロータフレームと翼とを一体成形することにより製造も容易となる。
【0017】
また、請求項1記載の構成によれば前記ロ−タフレ−ムは、前記空気吸入孔よりも径内側に位置して反固定子鉄心側の端面に形成されて冷却空気を前記空気吸入孔に送り込む翼を有することを特徴としている。
【0018】
このようにすれば、簡単な構成で冷却効果を向上することができ、かつ、ロータフレームと翼とを一体成形することにより製造も容易となる。請求項2記載の構成によれば請求項1記載の車両用回転電機において、前記ロータフレームは、前記空気吸入孔よりも径内側に位置して反固定子鉄心側の端面に形成されて冷却空気を径外側へ付勢し前記空気吸入孔に送り込む翼を有し、前記空気吸入孔は、前記送り込む翼により送り込まれた内部の空気を前記ギャップ側へ付勢することを特徴としている。このようにすれば、空気吸入孔の開口方向を設定することにより容易に空気を軸方向又は径方向へ付勢することができ、いわゆるファンを兼ねることができる。さらに、簡単な構成で冷却効果を向上することができ、かつ、ロータフレームと翼とを一体成形することにより製造も容易となる。
【0019】
請求項3記載の車両用回転電機によれば請求項1又は2記載の車両用回転電機において、前記固定子鉄心は、軸方向に貫設された貫通孔と、前記貫通孔に挿入されて前記ハウジングに達する熱移動部材とを有することを特徴としている。
【0020】
このようにすれば、上記理由により冷却が不足しがちな固定子鉄心を良好に冷却することができ、かつ、この熱移動部材により固定子鉄心とハウジングとを一体化することができるので、固定子鉄心の耐振性を向上することができる。
【0021】
熱移動部材としては、金属又は熱伝導性に優れた棒材やヒ−トパイプを採用することができるが、渦電流を低減するために絶縁被膜を有する良熱伝導性の細線を集合してもよい。
【0022】
【発明の実施の形態】
本発明の車両用回転電機の好適な実施形態を図面を参照して以下に説明する。
【0023】
【実施例1】
本発明の車両用回転電機を内燃機関駆動車に適用した実施例を以下に説明する。
【0024】
(全体構造)
図1は、この内燃機関駆動車のパワートレインの車両用回転電機近傍を示す軸方向模式断面図を示す。
【0025】
100はハウジング、101はエンジンのクランクシャフト、400はクラッチ機構、500は図示しないギヤ機構の入力軸、1は車両用回転電機である。
【0026】
車両用回転電機1は、固定子2、外側ロータ部3、内側ロータ部4、回転子支持フレ−ム5、棒状支持部材7を有している。
【0027】
外側ロータ部3及び内側ロータ部4は本発明で言う回転子を構成しており、外側ロータ部3の内周面は小電磁ギャップを隔てて固定子2の外周面に電磁結合し、内側ロータ部4の外周面は小電磁ギャップを隔てて固定子2の外周面に電磁結合している。
【0028】
両ロ−タ部3、4はそれぞれ内部に永久磁石が埋設された積層電磁鋼板31、41からなる公知の埋め込み永久磁石型ロ−タである。ロータ部3の永久磁石は薄板状に形成されて、積層電磁鋼板31内に軸方向に周方向等ピッチで貫設された多数の永久磁石収容溝に個別に埋設され、ロータ部4の永久磁石は薄板状に形成されて、積層電磁鋼板41内に軸方向に周方向等ピッチで貫設された多数の永久磁石収容溝700(図5参照)に個別に埋設されている。
【0029】
両ロータ部3、4の永久磁石は厚さ方向すなわち略径方向に磁化されている。両ロータ部3、4の永久磁石は周方向等位置に埋設されており、周方向同位置の永久磁石は固定子2側に同極性の磁極を有する。これにより、積層電磁鋼板31の内周面及び積層電磁鋼板41の内周面には永久磁石と周方向同位置にて磁極面が周方向所定ピッチで生じ、外側ロータ部3の磁極面と内側ロータ部4の磁極面とは周方向同位置にて同一極性となっている。
【0030】
回転子支持フレ−ム5は、外側ロータ部3の外周面が固定される外側筒部51と、内側ロータ部4の内周面が固定される内側筒部52と、径方向へ延在して両筒部51、52のリア側の端部同士を連結する円盤部53とを有し、内側筒部52の前端はクランクシャフト101に締結されている。
【0031】
固定子2は、外側ロータ部3及び内側ロータ部4の間の径方向隙間に配置される固定子鉄心20に巻装されて両ロ−タ部3、4と電磁結合する固定子巻線(電機子コイル)21とからなる。
【0032】
固定子鉄心20は、輪板形状をもつ多数の電磁鋼板を軸方向に積層してなる積層電磁鋼板からなり、図2の部分展開図を参照して説明すれば、コアバック201と、コアバック201の径方向外側に周方向所定ピッチで形成された多数の外周側スロット202及びティース203と、コアバック201の径方向内側に周方向所定ピッチで形成された多数の内周側スロット204及びティース205とを有している。
【0033】
(固定子鉄心20及び棒状支持部材7の説明)
固定子鉄心20及び棒状支持部材7を図2、図3を参照して説明する。固定子鉄心20は、ティースの周方向所定位置において軸方向に貫設された7個の孔200を有し、その中の1個は他の全てに対する回転対称位置から1スロットピッチ反時計方向にずれている。
【0034】
各孔200には、ボルト状の棒状支持部材7が圧入されている。
【0035】
棒状支持部材7の先端部は、ハウジング100の径方向壁部100aに軸方向へ開口された貫通孔102を貫通して、その先端部に形成された螺子部70にはナット71が螺合している。
【0036】
棒状支持部材7は、径大部72を有し、径大部72は貫通孔102内に形成された段差部103に当接している。更に説明すると、径大部72の前端面部は段差部103の径方向に形成された座面(位置決め端面)に当接し、これにより、ナット71と径大部72の前端面部とでハウジング100の径方向壁部100aを軸方向に挟圧している。これにより固定子鉄心20の軸方向位置が決定される。
【0037】
径大部72の外周面は段差部103の内周面(位置決め周面)に当接し、これにより棒状支持部材7の径方向位置が決定される。径大部72よりも先端側の部分は径大部72よりも径小に形成され、容易に貫通孔102に挿通可能となっている。72aは、棒状支持部材7の径大頭部であり、固定子鉄心20のリア側端面に当接している。
(固定子巻線の巻装)
固定子巻線21は、図4の部分展開図を参照して説明すれば、周方向同位置の外周側スロット202及び内周側スロット204にそれぞれ集中巻きされた集中巻きコイル部210を外周側スロット202のスロット数(=内周側スロット204のスロット数)だけ有している。ただし、図4では、U相の集中巻きコイル部210だけを図示している。したがって、棒状支持部材7は、周方向に隣接する2つの集中巻きコイル部210の間に位置してコアバック201を貫通している。
【0038】
各集中巻きコイル部210の巻き初め端2101及び巻き終わり端2102は軸方向フロント側に突出され、星型接続の固定子巻線21の各相巻線は、同相のすべての集中巻きコイル部210を並列接続して構成されている(図4参照)。なお、U相の各集中巻きコイル部210は、3スロットごとに巻装されている。ただし、奇数番目の集中巻きコイル部210と偶数番目の集中巻きコイル部210との通電方向を逆とするために、図4に示すように、奇数番目の集中巻きコイル部210の巻き初め端2101及び偶数番目の集中巻きコイル部210の巻き終わり端2102がU相出力端部91に接続され、同様に偶数番目の集中巻きコイル部210の巻き初め端2101及び奇数番目の集中巻きコイル部の巻き終わり端2102が中性点をなす中性点端子部94に接続されている。
(動作)
次に、この車両用回転電機の動作を説明する。
【0039】
この車両用回転電機1は三相同期機であり、回転子の位置は図示しない回転センサで検出される。回転子の位置に応じた位相をもつ三相交流電圧を星型接続の固定子巻線21に印加すると、固定子巻線21がそれぞれ形成する回転磁界により外側ロータ部3及び内側ロータ部4にトルクが生じ、車両用回転電機1はクランクシャフト101を通じて内燃機関を始動する。その後、この車両用回転電機1は、トルクアシスト又は回生制動又は発電を行うのは従来の車両用回転電機と同じである。
【0040】
この実施例の車両用回転電機によれば、小型で高出力の車両用回転電機を実現することができ、特に、固定子鉄心20を分割することなく固定子巻線21のコイルエンド部を従来より格段に縮小することができ、固定子鉄心20の一端支持も容易となる。
(回転子及び固定子の冷却構造)
次にこの車両用回転電機の冷却構造を図5を参照して以下に説明する。
【0041】
回転子支持フレ−ム5は、円盤部53の径内側の部位に空気吸入孔601、602をもち、円盤部53の外周縁近傍に空気排出孔603をもち、各孔601〜603は、回転子3、3及び固定子2とロ−タフレ−ム5との間に形成された所定軸方向隙間(本発明で言うギャップ)gと外部とを連通している。
【0042】
ロ−タフレ−ム5の回転により、これら孔601〜603は、遠心ファン効果を奏し、空気を外部からギャップg内に吸入する。各孔601〜603は、径内側開口に比較して径外側開口が反回転方向に所定角度変位しており、これにより円滑な空気流を形成することができる。この空気流はギャップg内を回転子3及び固定子2の表面に対してらせん状に接触しつつそれらを冷却し、空気排出孔603から排出される。
【0043】
更に、この実施例では、2つの回転子鉄心(ロータコア)31は既述したようにそれぞれ軸方向に貫通する永久磁石収容溝(貫通孔)700をそれぞれ多数もつ。永久磁石収容溝(貫通孔)700は周方向一定間隔で形成されて、ギャップgの空気を軸方向に流す。これにより、回転子鉄心31も良好に冷却される。なお、永久磁石収容溝(貫通孔)700は永久磁石(図示せず)の周方向両側に形成されるが、この永久磁石収容溝(貫通孔)700の両端を固定子2側に湾曲させることにより、回転子鉄心31に磁気突極部を形成し、いわゆるリラクタンストルクを発生させることができる。
【0044】
また、既に説明した棒状支持部材7は、鋼鉄製で円筒状に形成され、中央部に貫通孔を有している。この貫通孔には熱を良好に伝達する銅が埋めこまれている。このようにすれば、棒状支持部材7は固定子鉄心20の熱を良好にハウジング100の径方向壁部100aに伝達する。
【0045】
なお、この棒状支持部材7の内部に軸方向に長い密閉空間を形成し、内部に数十℃で沸騰する液体を一部密閉することにより、棒状支持部材7にヒ−トパイプ機能を付与してもよい。
【0046】
また、棒状支持部材7の表面に周方向一定間隔で軸方向に延在する条溝を形成し、これら条溝を空気流通路としてもよい。また、これら条溝に銅線を埋めこんで棒状支持部材7の熱伝導性を改善してもよい。
【0047】
更に棒状支持部材7が配置されない位置かつ集中巻きコイル部210が配置されない周方向ティース位置にて、固定子鉄心20に軸方向に貫通孔を多数設け、これらの貫通孔を冷却空気通路としてもよく、これらの貫通孔に良熱伝導性の熱移動部材を埋めこんでもよい。
【0048】
【実施例2】
他の実施例を図6を参照して以下に説明する。
【0049】
この実施例では、ロ−タフレ−ム5の円盤部53の両面にはそれぞれ遠心翼800、801がそれぞれ周方向一定間隔で形成されている。遠心翼800は空気吸入孔602への空気送入を促進し、遠心翼801はギャップg内の空気流の径方向速度を向上する。これらにより、ギャップg内での空気による回転子3及び固定子2の冷却が促進される。
【図面の簡単な説明】
【図1】実施例1の車両用回転電機を用いたパワ−トレインの車両用回転電機近傍の軸方向断面図である。
【図2】図1に示す車両用回転電機の固定子近傍の拡大軸方向部分断面図である。
【図3】図1に示す車両用回転電機の固定子鉄心の径方向拡大断面図である。
【図4】図1に示す車両用回転電機の固定子の部分展開図である。
【図5】図1に示す車両用回転電機のロ−タフレ−ム近傍の拡大軸方向側面図である。
【図6】実施例2の車両用回転電機の軸方向部分断面図である。
【符号の説明】
1 車両用回転電機
2 固定子
3 外側ロータ部(回転子)
4 内側ロータ部(回転子)
5 回転子支持フレ−ム
6 固定子支持フレ−ム
7 棒状支持部材
100 ハウジング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicular rotating electrical machine suitable for driving wheels.
[0002]
[Prior art]
In a conventional radial air gap type rotating electrical machine, the outer peripheral surface of the stator core is usually fixed to the inner peripheral surface of the housing.
[0003]
[Problems to be solved by the invention]
However, in a radial air gap type rotating electrical machine, in the stator core one-end support structure in which one end of the rotor in the axial direction is coupled to the rotating shaft and the stator core is disposed inside the rotor diameter, the rotor core One end in the axial direction of the stator is supported by the rotating shaft through the rotor frame, and the other end in the axial direction of the stator core is supported by the housing. Therefore, a high heat generating member such as a stator and a rotor is used as a housing or a rotor frame. It was found that it was necessary to enclose with a member, and as a result, the stator and the rotor were newly overheated.
[0004]
In the conventional radial air gap type rotating electrical machine that is fixed to the outer peripheral surface of the stator core on the inner peripheral surface of the housing, the both ends of the stator core and the rotor core are exposed to the outside. This is the point that it can be contact-cooled by a cooling air flow taken from the outside through the opening, and does not become a big problem.
[0005]
The present invention has been made in view of the above-described problems, and is one end of a stator core excellent in the cooling performance of the rotor and the stator, particularly in the cooling performance of the rotor and the stator on the rotor frame side. An object of the present invention is to provide a vehicular rotating electrical machine using a radial air gap type rotating electrical machine having a support structure.
[0006]
[Means for Solving the Problems]
The rotating electrical machine for a vehicle according to claim 1, which solves the above problem, includes a rotor having a rotor core fixed to a rotating shaft, a stator core having a peripheral surface facing the peripheral surface of the rotor, and the fixing. In a rotating electrical machine for a vehicle having a stator winding wound around a core and a stator fixed to a housing,
The rotor includes an outer rotor portion whose inner peripheral surface is electromagnetically coupled to the outer peripheral surface of the stator, an inner rotor portion whose outer peripheral surface is electromagnetically coupled to the inner peripheral surface of the stator, and an axial direction of the two rotor portions. A rotor frame that couples the outer rotor portion and the inner rotor portion to the rotating shaft on the side opposite to the housing, and the stator core is fixed to the housing on the side opposite to the rotor frame, and the rotor frame is An air suction hole for allowing air to flow into the gap between the stator and the rotor frame, and an air suction hole formed on an end surface on the stator core side that is located outside the air suction hole. It is characterized by having a centrifugal blade for urging the air sucked through the hole outward .
[0007]
That is, in this configuration, the rotor frame has an air suction hole for taking in air from the outside in a gap extending between the rotor and the stator and the rotor frame in a substantially radial direction. The portion facing the rotor frame and having the lowest cooling ability and the highest temperature can be satisfactorily cooled by airflow contact. In this way, the cooling effect can be improved with a simple configuration, and the manufacture is facilitated by integrally forming the rotor frame and the blades.
[0017]
Further, according to the configuration of claim 1, wherein B - Tafure - arm, the air suction hole of the cooling air are formed positioned radially inward than the air suction hole to the end surface of the anti stator core side It is characterized by having a wing that feeds into the.
[0018]
If it does in this way, a cooling effect can be improved with simple composition, and manufacture will also become easy by integrally forming a rotor frame and a wing. According to the configuration of the second aspect of the present invention, in the rotating electrical machine for a vehicle according to the first aspect, the rotor frame is formed on the end face on the side opposite to the stator core and located on the inner side of the air suction hole. The air suction hole is configured to urge the air inside the air suction hole to the gap side. In this way, air can be easily urged in the axial direction or the radial direction by setting the opening direction of the air suction hole, and it can also serve as a so-called fan. Further, the cooling effect can be improved with a simple configuration, and the manufacture is facilitated by integrally forming the rotor frame and the blades.
[0019]
The vehicle rotary electric machine according to claim 1 or 2, wherein according to the vehicle electric rotating machine according to claim 3, wherein the stator core is inserted and a through hole formed through axially in the through hole wherein And a heat transfer member reaching the housing.
[0020]
In this way, the stator core that is likely to be insufficiently cooled due to the above reason can be satisfactorily cooled, and the stator core and the housing can be integrated by this heat transfer member. The vibration resistance of the core can be improved.
[0021]
As the heat transfer member, a metal or a bar or a heat pipe excellent in thermal conductivity can be adopted. However, even if fine heat conductive thin wires having an insulating coating are gathered to reduce eddy currents. Good.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of a vehicular rotating electrical machine of the present invention will be described below with reference to the drawings.
[0023]
[Example 1]
An embodiment in which the vehicular rotating electrical machine of the present invention is applied to an internal combustion engine driven vehicle will be described below.
[0024]
(Overall structure)
FIG. 1 is a schematic cross-sectional view in the axial direction showing the vicinity of a rotating electrical machine for a vehicle of a power train of this internal combustion engine driven vehicle.
[0025]
Reference numeral 100 denotes a housing, 101 denotes an engine crankshaft, 400 denotes a clutch mechanism, 500 denotes an input shaft of a gear mechanism (not shown), and 1 denotes a vehicular rotating electrical machine.
[0026]
The vehicular rotating electrical machine 1 includes a stator 2, an outer rotor portion 3, an inner rotor portion 4, a rotor support frame 5, and a rod-like support member 7.
[0027]
The outer rotor portion 3 and the inner rotor portion 4 constitute a rotor referred to in the present invention, and the inner peripheral surface of the outer rotor portion 3 is electromagnetically coupled to the outer peripheral surface of the stator 2 with a small electromagnetic gap therebetween. The outer peripheral surface of the portion 4 is electromagnetically coupled to the outer peripheral surface of the stator 2 with a small electromagnetic gap.
[0028]
Both rotor parts 3 and 4 are known embedded permanent magnet type rotors composed of laminated electromagnetic steel sheets 31 and 41 in which permanent magnets are embedded. The permanent magnets of the rotor unit 3 are formed in a thin plate shape and individually embedded in a number of permanent magnet housing grooves that are provided in the laminated electromagnetic steel sheet 31 so as to penetrate in the axial direction in the circumferential direction. Is formed in a thin plate shape, and is individually embedded in a number of permanent magnet housing grooves 700 (see FIG. 5) penetrating in the laminated electromagnetic steel plate 41 in the axial direction at a constant pitch in the circumferential direction.
[0029]
The permanent magnets of both rotor parts 3 and 4 are magnetized in the thickness direction, that is, in the substantially radial direction. The permanent magnets of both rotor parts 3 and 4 are embedded at equal positions in the circumferential direction, and the permanent magnets at the same position in the circumferential direction have magnetic poles of the same polarity on the stator 2 side. As a result, magnetic pole surfaces are formed at a predetermined pitch in the circumferential direction on the inner circumferential surface of the laminated electromagnetic steel sheet 31 and the inner circumferential surface of the laminated electromagnetic steel sheet 41 at the same circumferential position as the permanent magnet. It has the same polarity as the magnetic pole surface of the rotor portion 4 at the same position in the circumferential direction.
[0030]
The rotor support frame 5 extends in the radial direction, an outer cylindrical portion 51 to which the outer peripheral surface of the outer rotor portion 3 is fixed, an inner cylindrical portion 52 to which the inner peripheral surface of the inner rotor portion 4 is fixed. And the disc part 53 which connects the end parts on the rear side of both the cylinder parts 51 and 52, and the front end of the inner cylinder part 52 is fastened to the crankshaft 101.
[0031]
The stator 2 is wound around a stator core 20 disposed in a radial gap between the outer rotor portion 3 and the inner rotor portion 4 and is electromagnetically coupled to the rotor portions 3 and 4 (stator winding ( Armature coil) 21.
[0032]
The stator core 20 is made of a laminated electromagnetic steel sheet obtained by laminating a large number of electromagnetic steel sheets having a ring shape in the axial direction. If described with reference to a partial development view of FIG. A large number of outer peripheral slots 202 and teeth 203 formed at a predetermined pitch in the circumferential direction on the radially outer side of 201, and a plurality of inner peripheral slots 204 and teeth formed at a predetermined circumferential direction on the inner side in the radial direction of the core back 201. 205.
[0033]
(Description of the stator core 20 and the rod-like support member 7)
The stator core 20 and the rod-like support member 7 will be described with reference to FIGS. The stator core 20 has seven holes 200 that are axially penetrated at predetermined positions in the circumferential direction of the teeth, one of which is one slot pitch counterclockwise from the rotationally symmetric position with respect to all the others. It is off.
[0034]
In each hole 200, a bolt-shaped rod-like support member 7 is press-fitted.
[0035]
The distal end portion of the rod-like support member 7 passes through the through hole 102 opened in the axial direction in the radial wall portion 100a of the housing 100, and a nut 71 is screwed into the screw portion 70 formed at the distal end portion. ing.
[0036]
The rod-shaped support member 7 has a large-diameter portion 72, and the large-diameter portion 72 is in contact with a stepped portion 103 formed in the through hole 102. More specifically, the front end surface portion of the large-diameter portion 72 abuts against a seating surface (positioning end surface) formed in the radial direction of the stepped portion 103, whereby the nut 71 and the front end surface portion of the large-diameter portion 72 are in contact with the housing 100. The radial wall portion 100a is clamped in the axial direction. Thereby, the axial position of the stator core 20 is determined.
[0037]
The outer peripheral surface of the large-diameter portion 72 is in contact with the inner peripheral surface (positioning peripheral surface) of the stepped portion 103, whereby the radial position of the rod-like support member 7 is determined. The portion on the tip side of the large diameter portion 72 is formed to be smaller in diameter than the large diameter portion 72 and can be easily inserted into the through hole 102. Reference numeral 72 a denotes a large-diameter head of the rod-like support member 7, which is in contact with the rear end surface of the stator core 20.
(Winding of stator winding)
If the stator winding 21 is described with reference to a partial development view of FIG. 4, the concentrated winding coil portion 210 concentratedly wound on the outer peripheral side slot 202 and the inner peripheral side slot 204 at the same position in the circumferential direction is arranged on the outer peripheral side. The number of slots 202 is equal to the number of slots (= the number of slots of the inner peripheral side slot 204). However, FIG. 4 shows only the U-phase concentrated winding coil portion 210. Therefore, the rod-shaped support member 7 is located between two concentrated winding coil portions 210 adjacent in the circumferential direction and penetrates the core back 201.
[0038]
The winding start end 2101 and the winding end end 2102 of each concentrated winding coil part 210 are projected to the front side in the axial direction, and each phase winding of the star-connected stator winding 21 is connected to all concentrated winding coil parts 210 of the same phase. Are connected in parallel (see FIG. 4). Each U-phase concentrated winding coil section 210 is wound every three slots. However, in order to reverse the energization direction of the odd-numbered concentrated winding coil portion 210 and the even-numbered concentrated winding coil portion 210, as shown in FIG. 4, the winding start end 2101 of the odd-numbered concentrated winding coil portion 210 is provided. And the winding end end 2102 of the even-numbered concentrated winding coil portion 210 is connected to the U-phase output end portion 91, and similarly the winding start end 2101 of the even-numbered concentrated winding coil portion 210 and the winding of the odd-numbered concentrated winding coil portion The end end 2102 is connected to a neutral point terminal portion 94 that forms a neutral point.
(Operation)
Next, the operation of this vehicular rotating electrical machine will be described.
[0039]
The vehicular rotating electrical machine 1 is a three-phase synchronous machine, and the position of the rotor is detected by a rotation sensor (not shown). When a three-phase AC voltage having a phase corresponding to the position of the rotor is applied to the star-connected stator winding 21, the outer rotor portion 3 and the inner rotor portion 4 are applied to the outer rotor portion 3 and the inner rotor portion 4 by the rotating magnetic fields respectively formed by the stator windings 21. Torque is generated, and the vehicular rotating electrical machine 1 starts the internal combustion engine through the crankshaft 101. Thereafter, the vehicular rotating electrical machine 1 performs torque assist, regenerative braking, or power generation in the same manner as a conventional vehicular rotating electrical machine.
[0040]
According to the vehicle rotary electric machine of this embodiment, a small and high-output vehicle rotary electric machine can be realized, and in particular, the coil end portion of the stator winding 21 is conventionally divided without dividing the stator core 20. Further reduction can be achieved, and one end support of the stator core 20 is facilitated.
(Cooling structure of rotor and stator)
Next, the cooling structure of the rotating electrical machine for a vehicle will be described below with reference to FIG.
[0041]
The rotor support frame 5 has air suction holes 601 and 602 in the radially inner portion of the disk portion 53 and air discharge holes 603 in the vicinity of the outer peripheral edge of the disk portion 53, and each of the holes 601 to 603 rotates. A predetermined axial gap (gap in the present invention) g formed between the cores 3 and 3 and the stator 2 and the rotor frame 5 communicates with the outside.
[0042]
By the rotation of the rotor frame 5, these holes 601 to 603 have a centrifugal fan effect and suck air from the outside into the gap g. In each of the holes 601 to 603, the outer diameter opening is displaced by a predetermined angle in the counter-rotating direction as compared with the inner diameter opening, so that a smooth air flow can be formed. The air flow cools the gap g while contacting the surfaces of the rotor 3 and the stator 2 in a spiral manner, and is discharged from the air discharge hole 603.
[0043]
Further, in this embodiment, the two rotor cores (rotor cores) 31 each have a large number of permanent magnet accommodation grooves (through holes) 700 that penetrate in the axial direction as described above. The permanent magnet housing grooves (through holes) 700 are formed at regular intervals in the circumferential direction, and allow air in the gap g to flow in the axial direction. Thereby, the rotor core 31 is also cooled well. In addition, although the permanent magnet accommodation groove | channel (through-hole) 700 is formed in the circumferential direction both sides of a permanent magnet (not shown), both ends of this permanent magnet accommodation groove | channel (through-hole) 700 are curved to the stator 2 side. Thus, a magnetic salient pole portion can be formed on the rotor core 31 to generate a so-called reluctance torque.
[0044]
Further, the already described rod-like support member 7 is made of steel and formed in a cylindrical shape, and has a through hole in the center. The through hole is embedded with copper that transfers heat well. If it does in this way, the rod-shaped support member 7 will transmit the heat | fever of the stator core 20 to the radial direction wall part 100a of the housing 100 favorably.
[0045]
A rod-shaped support member 7 is provided with a heat pipe function by forming a long sealed space in the axial direction inside the rod-shaped support member 7 and partially sealing a liquid boiling at several tens of degrees Celsius. Also good.
[0046]
Further, grooves that extend in the axial direction at regular intervals in the circumferential direction may be formed on the surface of the rod-shaped support member 7, and these grooves may be used as an air flow passage. In addition, the thermal conductivity of the rod-like support member 7 may be improved by embedding a copper wire in these grooves.
[0047]
Furthermore, a large number of through holes may be provided in the stator core 20 in the axial direction at positions where the rod-like support member 7 is not disposed and at the circumferential teeth position where the concentrated winding coil portion 210 is not disposed, and these through holes may be used as cooling air passages. These heat transfer members may be embedded in these through holes.
[0048]
[Example 2]
Another embodiment will be described below with reference to FIG.
[0049]
In this embodiment, centrifugal blades 800 and 801 are respectively formed at regular intervals in the circumferential direction on both surfaces of the disk portion 53 of the rotor frame 5. The centrifugal blade 800 promotes air feeding into the air suction hole 602, and the centrifugal blade 801 improves the radial velocity of the air flow in the gap g. As a result, cooling of the rotor 3 and the stator 2 by air in the gap g is promoted.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in the axial direction of a power train using a vehicular rotating electrical machine according to a first embodiment in the vicinity of the rotating electrical machine for a vehicle.
2 is a partial sectional view in the enlarged axial direction in the vicinity of a stator of the vehicular rotating electrical machine shown in FIG. 1; FIG.
3 is a radially enlarged cross-sectional view of a stator core of the vehicular rotating electrical machine shown in FIG.
4 is a partial development view of a stator of the rotating electrical machine for a vehicle shown in FIG. 1. FIG.
FIG. 5 is an enlarged axial side view of the vicinity of a rotor frame of the vehicular rotating electrical machine shown in FIG. 1;
6 is a partial cross-sectional view in the axial direction of a rotating electrical machine for a vehicle according to Embodiment 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating electric machine for vehicles 2 Stator 3 Outer rotor part (rotor)
4 Inner rotor (rotor)
5 Rotor Support Frame 6 Stator Support Frame 7 Rod Support Member 100 Housing

Claims (3)

回転軸に固定される回転子鉄心を有する回転子と、前記回転子の周面に対面する周面を有する固定子鉄心と前記固定子鉄心に巻装される固定子巻線とを有してハウジングに固定される固定子と、を備える車両用回転電機において、
前記回転子は、内周面が前記固定子の外周面に電磁結合する外側ロータ部と、外周面が前記固定子の内周面に電磁結合する内側ロータ部と、前記両ロータ部の軸方向反ハウジング側にて前記外側ロータ部及び前記内側ロータ部を前記回転軸に結合するロータフレームとを有し、
前記固定子鉄心は、反ロータフレーム側にて前記ハウジングに固定され、
前記ロータフレームは、前記固定子と前記ロータフレームとの間のギャップと外部とを連通して前記ギャップに空気を流入させる空気吸入孔と、前記空気吸入孔よりも径外側に位置して固定子鉄心側の端面に形成されて前記空気吸入孔を通じて吸入された空気を径外側へ付勢する遠心翼を有し、
前記ロータフレームは、前記空気吸入孔よりも径内側に位置して反固定子鉄心側の端面に形成されて冷却空気を前記空気吸入孔に送り込む翼を有することを特徴とする車両用回転電機。
A rotor having a rotor core fixed to a rotating shaft; a stator core having a peripheral surface facing the peripheral surface of the rotor; and a stator winding wound around the stator core. In a vehicular rotating electrical machine comprising a stator fixed to a housing,
The rotor includes an outer rotor portion whose inner peripheral surface is electromagnetically coupled to the outer peripheral surface of the stator, an inner rotor portion whose outer peripheral surface is electromagnetically coupled to the inner peripheral surface of the stator, and an axial direction of the two rotor portions. A rotor frame that couples the outer rotor portion and the inner rotor portion to the rotating shaft on the non-housing side;
The stator core is fixed to the housing on the side opposite to the rotor frame,
The rotor frame communicates with a gap between the stator and the rotor frame and the outside to allow air to flow into the gap, and the stator is located on the outer side of the air suction hole. have a centrifugal impeller for urging the air sucked is formed on the end face of the core side through the air suction hole to the radially outer side,
The rotating electrical machine for a vehicle according to claim 1, wherein the rotor frame includes blades that are positioned on an inner side of the air suction hole and are formed on an end face on the side opposite to the stator core to feed cooling air into the air suction hole .
回転軸に固定される回転子鉄心を有する回転子と、前記回転子の周面に対面する周面を有する固定子鉄心と前記固定子鉄心に巻装される固定子巻線とを有してハウジングに固定される固定子と、を備える車両用回転電機において、
前記回転子は、内周面が前記固定子の外周面に電磁結合する外側ロータ部と、外周面が前記固定子の内周面に電磁結合する内側ロータ部と、前記両ロータ部の軸方向反ハウジング側にて前記外側ロータ部及び前記内側ロータ部を前記回転軸に結合するロータフレームとを有し、
前記固定子鉄心は、反ロータフレーム側にて前記ハウジングに固定され、
前記ロータフレームは、前記固定子と前記ロータフレームとの間のギャップと外部とを連通して前記ギャップに空気を流入させる空気吸入孔と、前記空気吸入孔よりも径外側に位置して固定子鉄心側の端面に形成されて前記空気吸入孔を通じて吸入された空気を径外側へ付勢する遠心翼を有し、
前記ロータフレームは、前記空気吸入孔よりも径内側に位置して反固定子鉄心側の端面に形成されて冷却空気を前記空気吸入孔に送り込む遠心翼を有し、前記空気吸入孔は、前記遠心翼により送り込まれた内部の空気を前記ギャップ側へ付勢することを特徴とする車両用回転電機。
A rotor having a rotor core fixed to a rotating shaft; a stator core having a peripheral surface facing the peripheral surface of the rotor; and a stator winding wound around the stator core. In a vehicular rotating electrical machine comprising a stator fixed to a housing,
The rotor includes an outer rotor portion whose inner peripheral surface is electromagnetically coupled to the outer peripheral surface of the stator, an inner rotor portion whose outer peripheral surface is electromagnetically coupled to the inner peripheral surface of the stator, and an axial direction of the two rotor portions. A rotor frame that couples the outer rotor portion and the inner rotor portion to the rotating shaft on the non-housing side;
The stator core is fixed to the housing on the side opposite to the rotor frame,
The rotor frame communicates with a gap between the stator and the rotor frame and the outside to allow air to flow into the gap, and the stator is located on the outer side of the air suction hole. have a centrifugal impeller for urging the air sucked is formed on the end face of the core side through the air suction hole to the radially outer side,
The rotor frame includes a centrifugal blade that is located on the inner surface of the air suction hole and is formed on an end surface on the side opposite to the stator core, and sends cooling air to the air suction hole. A rotating electrical machine for a vehicle , wherein internal air fed by a centrifugal blade is urged toward the gap .
請求項1又は2記載の車両用回転電機において、前記固定子鉄心は、軸方向に貫設された貫通孔と、前記貫通孔に挿入されて前記ハウジングに達する熱移動部材と、を有することを特徴とする車両用回転電機。3. The rotating electrical machine for a vehicle according to claim 1 , wherein the stator iron core includes a through hole that extends in an axial direction, and a heat transfer member that is inserted into the through hole and reaches the housing. A rotating electric machine for vehicles.
JP2000091850A 1999-11-18 2000-03-29 Rotating electric machine for vehicles Expired - Lifetime JP4325065B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000091850A JP4325065B2 (en) 2000-03-29 2000-03-29 Rotating electric machine for vehicles
EP00125139A EP1102385B1 (en) 1999-11-18 2000-11-17 Rotary electric machine for vehicle
DE60027840T DE60027840T2 (en) 1999-11-18 2000-11-17 Rotary electric machine for vehicles
US09/714,875 US6590312B1 (en) 1999-11-18 2000-11-17 Rotary electric machine having a permanent magnet stator and permanent magnet rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091850A JP4325065B2 (en) 2000-03-29 2000-03-29 Rotating electric machine for vehicles

Publications (2)

Publication Number Publication Date
JP2001275308A JP2001275308A (en) 2001-10-05
JP4325065B2 true JP4325065B2 (en) 2009-09-02

Family

ID=18607265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091850A Expired - Lifetime JP4325065B2 (en) 1999-11-18 2000-03-29 Rotating electric machine for vehicles

Country Status (1)

Country Link
JP (1) JP4325065B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289244A (en) * 2007-05-16 2008-11-27 Toyota Motor Corp Cooling structure of rotary electric machine
CN109921563A (en) * 2019-04-22 2019-06-21 弘允新能源(上海)有限公司 A kind of flywheel close coupled type generator
CN113162266B (en) * 2021-03-10 2023-07-25 安徽机电职业技术学院 Cooling device for automobile hub motor

Also Published As

Publication number Publication date
JP2001275308A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP4410159B2 (en) AC rotating electric machine
EP0587812B1 (en) Electrical machines
US7462968B2 (en) Electric wheel
JP3953503B1 (en) Brushless fan motor
JP5159228B2 (en) Magnetic inductor type synchronous rotating machine and automobile supercharger using the same
GB2358523A (en) Electronically commutated electrical machine
JP2007530850A (en) Electric camshaft adjuster with disk rotor type motor
JP2007282420A (en) Vehicle ac power generator
US9225207B2 (en) Rotating electric motor and internal combustion engine supercharger
JP2007228677A (en) Generating set and rotary electric machine
JP2009071924A (en) Rotary electric machine
JPH11146615A (en) Reluctance motor
JP2000050588A (en) Alternator for vehicle
JP2010514406A (en) Stator for multi-phase rotating electrical machine, multi-phase rotating electrical machine having the stator, and method for manufacturing the stator
JP4325065B2 (en) Rotating electric machine for vehicles
JP5304617B2 (en) Motor cooling structure
JP2016520278A (en) Rotor for reaction motors, in particular for synchronous reaction motors, method for producing such rotors, and reaction motors comprising such rotors
JP2000197290A (en) Permanent magnet rotary electric machine and electric motor car using the same
US6841901B2 (en) Electric machine
EP2609673B1 (en) Electric motor
JP2002136051A (en) Rotating machine and rotor thereof
JP3578308B2 (en) Vehicle drive system
JP2002171731A (en) Tandem rotating electric machine including lundell-type rotor
JP3379291B2 (en) Vehicle drive system
JP4374507B2 (en) Electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term