JP4324521B2 - Manufacturing method of carbonized board - Google Patents

Manufacturing method of carbonized board Download PDF

Info

Publication number
JP4324521B2
JP4324521B2 JP2004222849A JP2004222849A JP4324521B2 JP 4324521 B2 JP4324521 B2 JP 4324521B2 JP 2004222849 A JP2004222849 A JP 2004222849A JP 2004222849 A JP2004222849 A JP 2004222849A JP 4324521 B2 JP4324521 B2 JP 4324521B2
Authority
JP
Japan
Prior art keywords
board
wood
wood fiber
carbonized
steaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004222849A
Other languages
Japanese (ja)
Other versions
JP2006035792A (en
Inventor
勘二 今井
裕史 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004222849A priority Critical patent/JP4324521B2/en
Publication of JP2006035792A publication Critical patent/JP2006035792A/en
Application granted granted Critical
Publication of JP4324521B2 publication Critical patent/JP4324521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、住宅等建築物の天井材、壁下地材、畳床、パネル芯材等に用いることのできる、優れた断熱性と適度な強度と弾力性を有する炭化ボードの生産性の良い製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention is a productive production of carbonized board having excellent heat insulation, moderate strength and elasticity, which can be used for ceiling materials, wall base materials, tatami floors, panel core materials, etc. of buildings such as houses. Regarding the method.

従来から、断熱性や調湿性、VOC(揮発性有機化合物)等の吸着性の良い材料として、木質材料等の植物質材料を炭化処理したものが知られている。例えば、特許文献1には、新聞紙などの古紙を粉砕して得た木質繊維を炭化させた綿状の形態の炭化木質繊維断熱材が提案されている。また、特許文献2には、木質繊維と繊維状の炭類とを接着剤を介して成形一体化させた木質繊維板が提案されている。   2. Description of the Related Art Conventionally, a material obtained by carbonizing a plant material such as a wood material has been known as a material having good adsorbability such as heat insulation, humidity control, and VOC (volatile organic compound). For example, Patent Document 1 proposes a carbonized wood fiber heat insulating material in the form of cotton obtained by carbonizing wood fibers obtained by pulverizing used paper such as newspaper. Patent Document 2 proposes a wood fiber board in which wood fibers and fibrous charcoal are molded and integrated with an adhesive.

しかしながら、特許文献1に記載の炭化木質繊維断熱材は、綿状の形態であり、外壁や床の内部空間に吹き込んで用いるものであるため、取り扱い上自立したボードという形態で用いることができず、その建築用材料としての用途も著しく限定されるとともに、施工に特別な装置を必要とするという問題がある。   However, the carbonized wood fiber heat insulating material described in Patent Document 1 is in a cotton-like form and is used by blowing into the internal space of the outer wall or floor, and therefore cannot be used in the form of a self-supporting board for handling. In addition, its use as a building material is remarkably limited, and there is a problem that special equipment is required for construction.

また、特許文献2に記載の木質繊維板は、50重量%以下の繊維状の炭類が添加されているので、VOC等の吸着性能や調湿性能の向上はある程度期待できるが、その比重が0.35以上と高いため、強度的性質には優れているものの断熱性には乏しいという問題がある。   In addition, the wood fiberboard described in Patent Document 2 has 50% by weight or less of fibrous charcoal added thereto, so it can be expected to improve adsorption performance and humidity control performance such as VOC to some extent, but its specific gravity is Since it is as high as 0.35 or more, there is a problem that although it has excellent strength properties, it has poor heat insulation.

尚、上記特許文献1および2に記載されているような炭化させた木質繊維を用いて断熱性に優れた低比重のボードを形成することも考えられるが、この場合には繊維が炭化によって弾力性を消失して脆くなっており、特に断熱性に優れた低比重のボードに成形することが難しいという問題がある。   Although it is conceivable to form a low specific gravity board excellent in heat insulation using carbonized wood fibers as described in Patent Documents 1 and 2, in this case, the fibers are elasticized by carbonization. However, there is a problem that it is difficult to form a board having a low specific gravity excellent in heat insulation.

一方、JIS A 5905に規定されているインシュレーションボードと称される木質繊維板は、その密度が、例えば畳の芯に用いられるものが0.27g/cm3未満(通常0.20g/cm3〜0.25g/cm3程度)、断熱板用に用いられるA級のものが0.35未満(通常0.23g/cm3〜0.30g/cm3程度)と軽量で適度な強度や弾力性を備えているが、断熱性については、例えば密度が0.27g/cm3のA級インシュレーションボードの場合でも、その熱伝導率が0.049W/mK程度であり、充分とは言えなかった。
特開2003−251616 特許第3523624号
On the other hand, JIS A 5905 to defined by the insulation board are designated wood fiber board, its density, for example less than what is 0.27 g / cm 3 used in the tatami core (typically 0.20 g / cm 3 ˜0.25 g / cm 3 ), Class A materials used for heat insulating plates are less than 0.35 (usually about 0.23 g / cm 3 to 0.30 g / cm 3 ), light weight and appropriate strength and elasticity For example, even in the case of a Class A insulation board having a density of 0.27 g / cm 3 , the thermal conductivity is about 0.049 W / mK, which is not sufficient. It was.
JP 2003-251616 A Japanese Patent No. 3523624

本発明は係る問題点に鑑みなされたもので、断熱性に優れ、ボードとしての適度な強度と弾力性を有する炭化ボードを生産性良く製造することができる炭化ボードの製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and provides a method for producing a carbonized board that is excellent in heat insulation and can produce a carbonized board having moderate strength and elasticity as a board with high productivity. Objective.

請求項1の発明に係る炭化ボードの製造方法は、木質材料を蒸煮解繊して得た木質繊維を、アルカリ溶液中で蒸煮した後成形して全乾密度0.05kg/cm3〜0.35kg/cm3の木質繊維板に形成し、該木質繊維板を不活性ガス雰囲気下において加熱して炭化処理することを特徴とする。 In the method for producing carbonized board according to the invention of claim 1, the wood fiber obtained by steaming and defibrating the wood material is steamed in an alkaline solution and then molded, and the total dry density is 0.05 kg / cm 3 to 0.00. It is formed into a 35 kg / cm 3 wood fiber board, and the wood fiber board is heated and carbonized in an inert gas atmosphere.

請求項の発明に係る炭化ボードの製造方法は、請求項の発明において、アルカリ溶液中での蒸煮を、温度140℃〜190℃、圧力6kg/cm2〜9kg/cm2で行うことを特徴とする。 The method for manufacturing the board according to the invention of claim 2 is the invention of claim 1, the cooking in an alkaline solution, temperature 140 ° C. to 190 ° C., to make a pressure 6kg / cm 2 ~9kg / cm 2 Features.

請求項の発明に係る炭化ボードの製造方法は、請求項1又は2のいずれか1項の発明において、炭化処理を、最高温度400℃〜800℃の加熱下で行うことを特徴とする。 A method for producing a carbonized board according to a third aspect of the invention is characterized in that, in the invention according to any one of the first or second aspects, the carbonization treatment is performed under heating at a maximum temperature of 400 ° C to 800 ° C.

請求項1の発明によれば、蒸煮解繊して得た木質繊維を更にアルカリ溶液中で蒸煮し一旦成形して全乾密度0.05g/cm3〜0.35g/cm3の軽量な木質繊維板に形成した後、該木質繊維板を不活性ガス雰囲気下において加熱して炭化処理しているので、軽量で断熱性に非常に優れ、適度な強度を有する炭化木質繊維からなる炭化ボードを生産性よく製造することができる。また蒸煮解繊により予め木質材料成分中の蒸煮可溶成分の一部が除去され結晶質のセルロース分の割合が高くなっている木質繊維を成形した木質繊維板を炭化処理しているので、脆さが改善され適度な弾性を有する炭化ボードに形成することができる。 According to the invention of claim 1, the wood fiber obtained by steaming and defibrating is further steamed in an alkaline solution and once molded, and a light wood having a total dry density of 0.05 g / cm 3 to 0.35 g / cm 3. After forming the fiberboard, the wood fiberboard is heated and carbonized in an inert gas atmosphere, so a carbonized board made of carbonized wood fiber that is lightweight, has excellent heat insulation properties, and has an appropriate strength. It can be manufactured with high productivity. In addition, the wood fiber board formed from the wood fiber in which a part of the steam soluble component in the wood material component has been removed in advance by steaming defibration and the ratio of the crystalline cellulose content is high is carbonized. It can be formed into a carbonized board having improved elasticity and moderate elasticity.

また、蒸煮解繊して得た木質繊維を、更にアルカリ溶液中で蒸煮した木質繊維を用いているので更に結晶質のセルロース分の割合を高めることができ、請求項1の発明の効果に加えて、一層強度及び弾性に優れた炭化ボードを形成することができる。 Moreover, since the wood fiber obtained by steaming and defibrating the wood fiber further steamed in an alkaline solution can be used, the proportion of crystalline cellulose can be further increased. In addition to the effect of the invention of claim 1 Thus, a carbonized board having further excellent strength and elasticity can be formed.

請求項の発明によれば、請求項の発明において、アルカリ溶液中での蒸煮の最適な温度、圧力条件を採用したもので、請求項の発明の効果に加えてアルカリ溶液中での蒸煮処理をさらに生産性良く効率的に行うことができる。 According to the invention of claim 2, in the invention of claim 1 , the optimum temperature and pressure conditions for steaming in the alkaline solution are adopted. In addition to the effect of the invention of claim 1 , in the alkaline solution Steaming can be performed efficiently with high productivity.

請求項の発明によれば、請求項1又は2の発明において、炭化処理を最高温度400℃〜800℃の加熱下で行うようにしたもので、これにより請求項1又は2に記載の発明の効果に加えて、その炭化処理をさらに生産性良く行うことができる。 According to the invention of claim 3, in the invention of claim 1 or 2 , the carbonization treatment is performed under heating at a maximum temperature of 400 ° C. to 800 ° C., whereby the invention of claim 1 or 2 is performed. In addition to the above effect, the carbonization can be performed with higher productivity.

以下、本発明の実施の形態について説明する。尚、本発明は下記実施の形態に何等限定されるものではない。本発明は、先ず種々の針葉樹材、広葉樹材、間伐材、それに木質建築故材、木質端材、廃パレット、廃型枠などの木質産業廃材を、チッパーやフレーカー等を用いてチップ形状等の木質小片からなる木質材料にし、この木質小片を、常法に従いダイジェスターに投入して蒸煮液の存在下、高温高圧で処理して蒸煮し、この蒸煮した木質小片を、パルパーやリファイナーにより解繊して木質繊維を得る。   Embodiments of the present invention will be described below. In addition, this invention is not limited to the following embodiment at all. In the present invention, various kinds of coniferous wood, hardwood, thinned wood, wood construction waste, wood scraps, waste pallets, waste formwork, and other wooden industrial waste materials, such as chip shapes using chippers and flakers, etc. This wood piece is made of wood pieces, put into a digester according to a conventional method, steamed by processing at high temperature and high pressure in the presence of steaming liquid, and the cooked wood pieces are defibrated with a pulper or refiner. To obtain wood fiber.

ここにおいて、木質繊維はその長さが2.0mm〜30mm程度のものがその大部分を占めていることが望ましい。2.0mm未満や30mmを超えるものが多く含まれると後述する湿式、或いは乾式成形装置を用いて木質繊維板に形成するときの成形性が悪くなり、特に2.0mm未満の細かな木質繊維が多くなると、得られる炭化ボードの強度や弾力性が低下するので好ましくない。   In this case, it is desirable that wood fibers have a length of about 2.0 mm to 30 mm and occupy most of them. When many things less than 2.0 mm or more than 30 mm are contained, the moldability when forming into a wood fiber board using a wet or dry molding apparatus to be described later is deteriorated, and fine wood fibers particularly less than 2.0 mm are formed. If the number is increased, the strength and elasticity of the carbonized board obtained are lowered, which is not preferable.

次に、上記で得られた木質繊維を、ダイジェスター等の蒸煮装置に投入し、水酸化ナトリウム及び硫化ナトリウムの混合アルカリ水溶液に浸漬し、高温、高圧下で蒸煮する。アルカリ水溶液には上記混合アルカリ水溶液の他に、炭酸ナトリウム、硫酸ナトリウム、亜硫酸ナトリウム等を単独又は混合して調整したアルカリ水溶液を用いることもできる。アルカリ水溶液中の活性アルカリ濃度は、アルカリ水溶液1リットル当たり40g〜70g程度とするのが望ましい。また、この活性アルカリの木質繊維に対する割合は、木質繊維の全乾重量に対し10重量%〜25重量%程度とするのが望ましい。   Next, the wood fiber obtained above is put into a steaming apparatus such as a digester, immersed in a mixed alkaline aqueous solution of sodium hydroxide and sodium sulfide, and steamed at high temperature and high pressure. In addition to the mixed alkaline aqueous solution described above, an alkaline aqueous solution prepared by mixing sodium carbonate, sodium sulfate, sodium sulfite or the like alone or in combination can also be used as the alkaline aqueous solution. The active alkali concentration in the alkaline aqueous solution is desirably about 40 g to 70 g per liter of the alkaline aqueous solution. Further, the ratio of the activated alkali to the wood fibers is preferably about 10 to 25% by weight based on the total dry weight of the wood fibers.

アルカリ水溶液中の活性アルカリ濃度が、アルカリ水溶液1リットル当たり40g未満となると、処理時間を多く要して生産性が低くなるので好ましくなく、70gを超えると処理費用が高くなるので好ましくない。また、活性アルカリの全乾木質繊維に対する重量割合が、15重量%未満となると未反応な木質成分が多くなるので好ましくなく、25gを超えると逆に未反応なアルカリ成分が多くなるので好ましくない。   If the active alkali concentration in the aqueous alkali solution is less than 40 g per liter of the aqueous alkali solution, it is not preferable because much processing time is required and the productivity is lowered, and if it exceeds 70 g, the processing cost increases. Further, when the weight ratio of the active alkali to the total dry wood fiber is less than 15% by weight, the unreacted wood component is not preferable, and when it exceeds 25 g, the unreacted alkali component is increased.

また、上記木質繊維の蒸煮に際しての高温高圧処理は、ダイジェスター等密閉容器内の最高温度が140℃〜190℃好ましくは170℃〜180℃、最高圧力が6kg/cm2〜9kg/cm2好ましくは7kg/cm2〜8kg/cm2程度の条件で行う。上記最高温度が140℃未満であればリグニン等アルカリ蒸煮液による溶出成分の溶出が不十分となるので好ましくなく、190℃を超えるとセルロースの分解が進むので好ましくない。また、最高圧力が6kg/cm2未満となると処理時間を多く要するので好ましくなく、9kg/cm2を超えると高エネルギーを要するので好ましくない。 Also, high-temperature and high-pressure treatment of during cooking of the wood fibers, the maximum temperature of 140 ° C. to 190 ° C. preferably 170 ° C. to 180 ° C. digester such closed container, maximum pressure is 6kg / cm 2 ~9kg / cm 2 preferably It is carried out at 7kg / cm 2 ~8kg / cm 2 about the conditions. If the maximum temperature is less than 140 ° C., the elution of the eluted components by the alkaline cooking liquid such as lignin is not preferable, and if it exceeds 190 ° C., decomposition of cellulose proceeds, which is not preferable. Further, if the maximum pressure is less than 6 kg / cm 2 , it is not preferable because much processing time is required, and if it exceeds 9 kg / cm 2 , it is not preferable because high energy is required.

このようにして、木質小片を蒸煮解繊して得た木質繊維に対し、更にアルカリ水溶液で蒸煮することにより、木質繊維中のセルロース以外の成分の一部が更に除去されて一層セルロースリッチな繊維化が進み、後述する木質繊維板の炭化時に適度な強度と弾力性(柔軟性)、及び断熱性を発現できる良好な木質繊維に形成することができる。   In this way, the wood fibers obtained by steaming and defibrating the wood pieces are further steamed with an alkaline aqueous solution, so that some of the components other than cellulose in the wood fibers are further removed and the fibers are more cellulose-rich. Therefore, it can be formed into a good wood fiber capable of expressing appropriate strength and elasticity (flexibility) and heat insulation during carbonization of the wood fiber board described later.

尚、木質繊維としては、上記アルカリ水溶液で蒸煮せず、木質小片を蒸煮解繊して得たものを用いることもできる。また、古紙やダンボールをハイドロパルパー等で解繊した古紙繊維、椰子殻繊維、バガス繊維、ケナフ繊維等の植物質繊維も広義の木質繊維として、木質繊維と同様に用いることもできる。   In addition, as a wood fiber, what is obtained by steaming and defibrating a small piece of wood without steaming with the alkaline aqueous solution can also be used. In addition, waste paper fibers obtained by defibrating waste paper or cardboard with hydropulper, coconut shell fibers, bagasse fibers, kenaf fibers, and other plant fibers can also be used as wood fibers in a broad sense in the same manner as wood fibers.

次に、上記で得られた木質繊維に、必要に応じてバインダーなどの添加物を加えた木質繊維組成物を、公知の湿式抄造法、或いは乾式抄造法等を用いて成形し、木質繊維板に形成する。   Next, a wood fiber composition obtained by adding a wood fiber composition obtained by adding an additive such as a binder to the wood fiber obtained as described above, using a known wet papermaking method or dry papermaking method, etc. To form.

バインダーを用いる場合には、例えば湿式抄造法で木質繊維板を成形する場合、コーンスターチ等のデンプン類、ポリビニルアルコール、エチレンビニルアルコール等の熱可塑性樹脂、或いはフェノール樹脂、メラミン樹脂、尿素樹脂、尿素−メラミンイソシアネート樹脂等の熱硬化性樹脂、或いはそれらの混合樹脂からなるバインダーを木質繊維に対し通常1〜10重量%程度スラリー中に添加して用いることができる。また乾式抄造法で木質繊維板を成形する場合、上記デンプン類やメラミン樹脂等を木質繊維に対し通常5〜30重量%程度添加して用いることができる。尚、添加物としては、バインダーの他に難燃剤、耐水化剤、定着剤、撥水剤等を必要により添加することができる。   When using a binder, for example, when forming a wood fiber board by a wet papermaking method, starches such as corn starch, thermoplastic resins such as polyvinyl alcohol and ethylene vinyl alcohol, or phenol resins, melamine resins, urea resins, urea- A binder made of a thermosetting resin such as melamine isocyanate resin or a mixed resin thereof can be added to the slurry, usually about 1 to 10% by weight with respect to the wood fiber. Moreover, when shape | molding a wood fiber board with a dry-type papermaking method, the said starches, a melamine resin, etc. can be normally added and used about 5 to 30 weight% with respect to wood fiber. In addition to the binder, a flame retardant, a water resistant agent, a fixing agent, a water repellent, and the like can be added as necessary as additives.

このようにして成形される木質繊維板は、その全乾密度が0.05g/cm3〜0.35g/cm3特に0.10g/cm3〜0.35g/cm3の範囲にあるのが好適である。上記密度が0.05g/cm3未満になると、後述の炭化処理により得られる炭化ボードの強度的性質が低下し、破損し易くなるので好ましくなく、また、密度が0.35g/cm3を超えると、得られる炭化ボードの断熱性が低くなるので好ましくない。 Wood fiber board which is molded in this way, the entire dry density in the range of 0.05g / cm 3 ~0.35g / cm 3 particularly 0.10g / cm 3 ~0.35g / cm 3 Is preferred. When the density is less than 0.05 g / cm 3 , the strength properties of the carbonized board obtained by the carbonization process described later are deteriorated and are not easily damaged, and the density exceeds 0.35 g / cm 3 . And, since the heat insulation of the carbonized board obtained becomes low, it is not preferable.

尚、このような繊維板として、JIS A 5905に規定され、市販されているタタミボード、A級インシュレーションボード等のインシュレーションボードを用いることもできる。   As such a fiberboard, an insulation board such as a tatami board or a class A insulation board, which is specified in JIS A 5905 and is commercially available, can also be used.

次に、上記木質繊維板を、間接加熱式或いは直下加熱式などの公知の炭化炉に搬入し、炭化炉内の空気をチッソガス等の不活性ガスに置換した後加熱し、木質繊維板を充分に炭化させて炭化ボードを形成する。   Next, the wood fiber board is carried into a known carbonization furnace such as an indirect heating type or a direct heating type, and the air in the carbonization furnace is replaced with an inert gas such as nitrogen gas, followed by heating, and the wood fiber board is sufficiently To form a carbonized board.

炭化条件は特に限定されるものではないが、生産効率を良くするためにその最高到達温度が400℃〜800℃、好ましくは600℃〜800℃となるように加熱し、この最高到達温度或いはそれに近い温度を30分〜100分程度維持することにより、良好に炭化された木質繊維板製の炭化ボードを生産性良く製造することができる。   The carbonization conditions are not particularly limited, but in order to improve production efficiency, heating is performed so that the maximum temperature reaches 400 ° C to 800 ° C, preferably 600 ° C to 800 ° C. By maintaining the close temperature for about 30 minutes to 100 minutes, a carbonized board made of wood fiber board that is well carbonized can be produced with high productivity.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

(実施例1)
マツ、スギ等の針葉樹材からなる木材チップを蒸煮解繊して得た針葉樹木質繊維を、水酸化ナトリウム3.75重量%と硫化ナトリウム1.25重量%を含む蒸煮水溶液とともに密閉耐圧容器内に供給した。
Example 1
Coniferous wood fibers obtained by steaming and defibrating wood chips made of coniferous materials such as pine and cedar are placed in a sealed pressure vessel together with a steaming aqueous solution containing 3.75% by weight sodium hydroxide and 1.25% by weight sodium sulfide. Supplied.

ここにおいて、蒸煮水溶液は、該蒸煮水溶液1リットルに対し、活性アルカリの重量が50gとなるように調整されており、また全乾木質繊維の重量に対する活性アルカリの重量は20重量%、活性アルカリの硫化度は25重量%となるように、蒸煮水溶液量と木質繊維量を調整した。尚、硫化度とはアルカリ溶液中の硫化ナトリウムの含有量であり、Na2S/(NaOH+Na2S)×100(%)で導き出されるものである。 Here, the steaming aqueous solution is adjusted so that the weight of the active alkali is 50 g with respect to 1 liter of the steaming aqueous solution, and the weight of the active alkali with respect to the weight of the total dry wood fiber is 20% by weight. The amount of the steaming aqueous solution and the amount of wood fiber were adjusted so that the degree of sulfidation was 25% by weight. The degree of sulfidization is the content of sodium sulfide in the alkaline solution, and is derived from Na 2 S / (NaOH + Na 2 S) × 100 (%).

次いで、上記密閉容器内を加温、加圧して最高到達温度170℃、最高圧力7kg/cm2の高温高圧条件下で、最高到達温度170℃の状態を約90分間維持して木質繊維を蒸煮した。 Next, the inside of the sealed container is heated and pressurized to maintain the maximum temperature of 170 ° C. for about 90 minutes under the high temperature and high pressure conditions of the maximum temperature of 170 ° C. and the maximum pressure of 7 kg / cm 2. did.

次いで、上記で得られた木質繊維95重量部とコーンスターチ(日食コーンスターチY:日本食品化工株式会社製)5重量部とを大量の水と混合攪拌して木質繊維のスラリーに調整し、このスラリーを湿式抄造してウェットマットに形成した後、150℃〜170℃のドライヤーで乾燥して、厚さ12mm、密度0.07g/cm3の木質繊維板を得た。 Next, 95 parts by weight of the wood fiber obtained above and 5 parts by weight of corn starch (Nissan Corn Starch Y: manufactured by Nippon Shokuhin Kako Co., Ltd.) are mixed and stirred with a large amount of water to prepare a slurry of wood fiber. Was formed into a wet mat and dried with a dryer at 150 ° C. to 170 ° C. to obtain a wood fiber board having a thickness of 12 mm and a density of 0.07 g / cm 3 .

次に、得られた木質繊維板を間接加熱式の炭化炉に供給し、炭化炉内の空気をチッソガスで置換した後、5℃/1分の昇温速度で炭化炉内が600℃となるまで昇温し、しかるのち、炭化炉内を上記600℃前後の温度に約60分間維持して炭化ボードを作成した。   Next, the obtained wood fiberboard is supplied to an indirect heating type carbonization furnace, and after the air in the carbonization furnace is replaced with nitrogen gas, the temperature in the carbonization furnace becomes 600 ° C. at a temperature rising rate of 5 ° C./1 minute. After that, the inside of the carbonization furnace was maintained at the above-mentioned temperature of about 600 ° C. for about 60 minutes to prepare a carbonized board.

得られた実施例1に係る炭化ボードは、厚さ10mm、密度0.05g/cm3であった。そして、JIS A 1412−2に基づき熱伝導率を測定した。また、JIS L 1097に基づき圧縮弾性試験を行い、圧縮率とその回復率を測定した。その結果を表1に示す。 The obtained carbonized board according to Example 1 had a thickness of 10 mm and a density of 0.05 g / cm 3 . And thermal conductivity was measured based on JIS A 1412-2. Moreover, the compression elasticity test was done based on JISL1097, and the compression rate and its recovery rate were measured. The results are shown in Table 1.

(実施例2)
実施例1と同様にして得た針葉樹木質繊維を、実施例1と同条件の密閉耐圧容器内で、実施例1と同一のアルカリ蒸煮液で蒸煮処理し、実施例と同一のアルカリ蒸煮処理木質繊維を得た。
(Example 2)
The coniferous wood fiber obtained in the same manner as in Example 1 is steamed with the same alkali steaming solution as in Example 1 in a sealed pressure-resistant container under the same conditions as in Example 1, and the same alkali steaming treated wood as in Example 1. Fiber was obtained.

次いで、上記で得られた木質繊維85重量部と前記実施例1で用いたコーンスターチ15重量部とを混合し、乾式成形した後、150℃のスチーム及び熱風下に晒し、コーンスターチを硬化させて厚さ25mm、密度0.08g/cm3の木質繊維板を得た。 Next, 85 parts by weight of the wood fiber obtained above and 15 parts by weight of corn starch used in Example 1 were mixed and dried, and then exposed to 150 ° C. steam and hot air to cure the corn starch. A wood fiber board having a thickness of 25 mm and a density of 0.08 g / cm 3 was obtained.

次に、得られた木質繊維板を間接加熱式の炭化炉に供給し、炭化炉内の空気をチッソガスで置換した後、5℃/分の昇温速度で炭化炉内が800℃となるまで昇温し、しかるのち、炭化炉内を上記800℃前後の温度に約60分間維持して実施例2に係る炭化ボードを作成した。   Next, after supplying the obtained wood fiber board to an indirect heating type carbonization furnace and replacing the air in the carbonization furnace with nitrogen gas, until the inside of the carbonization furnace reaches 800 ° C. at a temperature rising rate of 5 ° C./min. The temperature was raised, and then the inside of the carbonizing furnace was maintained at the above temperature of about 800 ° C. for about 60 minutes to prepare a carbonizing board according to Example 2.

得られた炭化ボードは厚さ20mm、密度0.06g/cm3であった。そして、実施例1と同様にして、熱伝導率を測定した。その結果を表1に示す。 The obtained carbonized board had a thickness of 20 mm and a density of 0.06 g / cm 3 . Then, the thermal conductivity was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
実施例1で用いた木材チップを蒸煮解繊して得た針葉樹木質繊維を、実施例1のようにアルカリ水溶液による蒸煮処理を行わずに、実施例1と同様にして湿式抄造した後乾燥して、厚さ12mm、密度0.07g/cm3の木質繊維板を得た。
(Example 3)
The coniferous wood fiber obtained by steaming and defibrating the wood chips used in Example 1 was wet-made in the same manner as in Example 1 without being steamed with an alkaline aqueous solution as in Example 1, and then dried. Thus, a wood fiber board having a thickness of 12 mm and a density of 0.07 g / cm 3 was obtained.

得られた木質繊維板を、実施例1と同様にして炭化処理し、厚さ10mm、密度0.05g/cm3の実施例3に係る炭化ボードを得た。得られた炭化ボードは、実施例1と同様にして熱伝導率を測定し、圧縮弾性試験により圧縮率とその回復率を測定した。その結果を表1に示す。 The obtained wood fiberboard was carbonized in the same manner as in Example 1 to obtain a carbonized board according to Example 3 having a thickness of 10 mm and a density of 0.05 g / cm 3 . The obtained carbonized board was measured for thermal conductivity in the same manner as in Example 1, and the compression rate and its recovery rate were measured by a compression elasticity test. The results are shown in Table 1.

(比較例1)
実施例3で得た、炭化処理を行っていない、厚さ12mm、密度0.07g/cm3の木質繊維板を比較例1とし、この比較例1に係る木質繊維板について、実施例1と同様にして熱伝導率を測定した。その結果を表1に示す。
(Comparative Example 1)
The wood fiber board obtained in Example 3 that is not carbonized and has a thickness of 12 mm and a density of 0.07 g / cm 3 is referred to as Comparative Example 1, and the wood fiber board according to Comparative Example 1 is compared with Example 1 Similarly, the thermal conductivity was measured. The results are shown in Table 1.

(比較例2)
実施例2で得た、炭化処理を行っていない、厚さ25mm、密度0.08g/cm3の木質繊維板を比較例2とし、この比較例2に係る木質繊維板について、実施例1と同様にして熱伝導率を測定した。その結果を表1に示す。
(Comparative Example 2)
The wood fiber board obtained in Example 2 that has not been carbonized and has a thickness of 25 mm and a density of 0.08 g / cm 3 is referred to as Comparative Example 2, and the wood fiber board according to Comparative Example 2 is Similarly, the thermal conductivity was measured. The results are shown in Table 1.

1から明らかなように、実施例1〜3と比較例1、2とでは、密度がほぼ同程度にも拘らず、実施例1〜3の方が熱伝導率が顕著に小さくなっており、木質繊維板の断熱性は炭化処理によって大幅に向上していた。 As is clear from Table 1, in Examples 1 to 3 and Comparative Examples 1 and 2, the thermal conductivity is significantly smaller in Examples 1 to 3 although the densities are almost the same. The heat insulation of the wood fiber board was greatly improved by carbonization.

また、実施例の中では、実施例1と3の比較から、圧縮率は実施例3よりも実施例1の方が小さいにも拘らず、回復率は逆に実施例1の方が大きくなっており、このことから、通常得られる木質繊維を更にアルカリ液で蒸煮処理した木質繊維を用いて木質繊維板に形成し、この木質繊維板を炭化させた場合には、弾力性の良い炭化ボードを得ることができることが判った。   Further, in the examples, from the comparison between the examples 1 and 3, the recovery rate is higher in the example 1 although the compression rate is lower in the example 1 than in the example 3. Therefore, if the wood fiber that is usually obtained is steamed with an alkali solution and formed into a wood fiber board, and the wood fiber board is carbonized, the carbonized board has good elasticity. It turns out that you can get.

Figure 0004324521
Figure 0004324521

Claims (3)

木質材料を蒸煮解繊して得た木質繊維を、アルカリ溶液中で蒸煮した後成形して全乾密度0.05g/cm3〜0.35g/cm3の木質繊維板に形成し、該木質繊維板を不活性ガス雰囲気下において加熱して炭化処理することを特徴とする炭化ボードの製造方法。 The wood fiber obtained by steaming and defibrating the wood material is cooked in an alkaline solution and then molded to form a wood fiber board having a total dry density of 0.05 g / cm 3 to 0.35 g / cm 3. A carbonized board manufacturing method comprising heating a fiberboard in an inert gas atmosphere to perform carbonization. アルカリ溶液中での蒸煮を、温度140℃〜190℃、圧力6kg/cm2〜9kg/cm2で行うことを特徴とする請求項に記載の炭化ボードの製造方法。 The cooking in an alkaline solution, temperature 140 ° C. to 190 ° C., the method for manufacturing the board according to claim 1, characterized in that a pressure 6kg / cm 2 ~9kg / cm 2 . 炭化処理を、最高温度400℃〜800℃の加熱下で行うことを特徴とする請求項1又は2のいずれか1項に記載の炭化ボードの製造方法。 The carbonization board manufacturing method according to any one of claims 1 and 2 , wherein the carbonization is performed under heating at a maximum temperature of 400C to 800C.
JP2004222849A 2004-07-30 2004-07-30 Manufacturing method of carbonized board Expired - Fee Related JP4324521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222849A JP4324521B2 (en) 2004-07-30 2004-07-30 Manufacturing method of carbonized board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222849A JP4324521B2 (en) 2004-07-30 2004-07-30 Manufacturing method of carbonized board

Publications (2)

Publication Number Publication Date
JP2006035792A JP2006035792A (en) 2006-02-09
JP4324521B2 true JP4324521B2 (en) 2009-09-02

Family

ID=35901275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222849A Expired - Fee Related JP4324521B2 (en) 2004-07-30 2004-07-30 Manufacturing method of carbonized board

Country Status (1)

Country Link
JP (1) JP4324521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873720A (en) * 2012-10-10 2013-01-16 徐州加林木业有限公司 Carbonized wood board and production method and application thereof
CN108189184A (en) * 2018-02-11 2018-06-22 广西荔浦安吉利木业有限公司 A kind of processing method of water proofing property charing plank

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867005B2 (en) * 2006-07-19 2012-02-01 国立大学法人 鹿児島大学 Thermal insulation and moisture absorption / release sheet made of bamboo vascular sheath fiber
CN100392200C (en) * 2006-08-22 2008-06-04 南京林业大学 Charring wood composite floor and manufacturing method thereof
JP2010121058A (en) * 2008-11-20 2010-06-03 Nichiha Corp Environmentally-friendly wet process type hard fiberboard
CN102107447B (en) 2009-12-26 2013-07-24 浙江世友木业有限公司 Wood sectional material and manufacturing method thereof
CN102107446B (en) * 2009-12-26 2013-09-25 浙江世友木业有限公司 Surface-enhanced solid wood sectional material and manufacturing method thereof
CN107877646A (en) * 2017-11-06 2018-04-06 吉林省古道文化发展有限公司 A kind of carving root carbonization technique
CN108115798B (en) * 2017-12-04 2020-07-07 杨舜轲 Processing equipment and processing method of multilayer solid wood composite floor for floor heating
CN108453854B (en) * 2018-03-28 2021-03-12 中国科学院理化技术研究所 High-thermal-conductivity-coefficient wood based on water glass filling and preparation method and application thereof
KR102183151B1 (en) * 2019-06-28 2020-11-25 한남대학교 산학협력단 a method manufacturing bamboo for industrial materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873720A (en) * 2012-10-10 2013-01-16 徐州加林木业有限公司 Carbonized wood board and production method and application thereof
CN108189184A (en) * 2018-02-11 2018-06-22 广西荔浦安吉利木业有限公司 A kind of processing method of water proofing property charing plank
CN108189184B (en) * 2018-02-11 2020-01-10 台州中知英健机械自动化有限公司 Processing method of waterproof carbonized wood board

Also Published As

Publication number Publication date
JP2006035792A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
US8603231B2 (en) Phosphate bonded composites and methods
JP4324521B2 (en) Manufacturing method of carbonized board
AU2016231546A1 (en) Methods for producing biomass-based fuel with pulp processing equipment
JP4867005B2 (en) Thermal insulation and moisture absorption / release sheet made of bamboo vascular sheath fiber
CN113146789A (en) Preparation method of high-strength formaldehyde-free wood fiberboard, fiberboard and application
JP2005047140A (en) Flame-retardant woody fiberboard and its manufacturing method
JP2005336254A (en) Sheet-like nonflammable molded form
Young Wood and wood products
CN113386235B (en) Cellulose natural skeleton-based bamboo steel and processing technology thereof
RU138680U1 (en) THERMAL INSULATION WOOD FIBER BOARD
US2332369A (en) Method of making low density water resisting fibrous products
CN111962332A (en) Method for manufacturing fireproof core paper
JP2017100382A (en) Method for producing pellet
JP4852290B2 (en) Sheet-type non-combustible molding for building materials
CN110561570A (en) Complex bamboo, complex bamboo artificial board and preparation method thereof
KR102219220B1 (en) Semi-nonflammable sound absrobing panel using Kenaf non-woven fabric and manufacturing method thereof
JP2020059929A (en) Vegetable fiber bundle
JPH10183500A (en) Cellulosic molding product
Alpár et al. Energy Grass as Raw Material for MDF Production
JPH0647826A (en) Manufacture of fiber plate for building
JP2000102910A (en) Manufacture of fiber plate
Wang et al. Flame Retardant Material Based on Cellulose Scaffold Mineralized by Calcium Carbonate.
JP5245033B2 (en) Fiberboard and manufacturing method thereof
US3704201A (en) Method of making lignin containing groundwood by hydrolysis and alkali treatment of wood chips
KR100440592B1 (en) Method of the manufacture for porous carbon material by molded products with thermosetting resin impregnation of fibrous element from fibrous plant material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees