JP4311828B2 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP4311828B2
JP4311828B2 JP26535499A JP26535499A JP4311828B2 JP 4311828 B2 JP4311828 B2 JP 4311828B2 JP 26535499 A JP26535499 A JP 26535499A JP 26535499 A JP26535499 A JP 26535499A JP 4311828 B2 JP4311828 B2 JP 4311828B2
Authority
JP
Japan
Prior art keywords
plasma
plasma generation
space
plasma processing
generation space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26535499A
Other languages
English (en)
Other versions
JP2001093881A (ja
Inventor
利規 瀬川
清隆 石橋
俊久 野沢
正悟 猿丸
Original Assignee
株式会社エフオーアイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフオーアイ filed Critical 株式会社エフオーアイ
Priority to JP26535499A priority Critical patent/JP4311828B2/ja
Publication of JP2001093881A publication Critical patent/JP2001093881A/ja
Application granted granted Critical
Publication of JP4311828B2 publication Critical patent/JP4311828B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,プラズマ処理装置に係り,詳しくは,環状に形成されたプラズマ発生空間と,上記プラズマ発生空間近傍の壁面内に環状に埋設され,上記プラズマ発生空間に高周波電磁界を印加するアンテナと,上記プラズマ発生空間に隣接して連通可能に形成され,一対の電極で挟まれた平行平板型のプラズマ処理空間とを具備してなるプラズマ処理装置に関するものである。
【0002】
【従来の技術】
エッチング等のプラズマ処理に用いられるプラズマ処理装置としては,例えば特開平10−294307号公報に記載されているものが知られている。
上記公報に記載されているプラズマ処理装置Z0では,図8に示すように,不活性ガス(Arなど)のイオンを供給するプラズマ発生空間122と,反応性ガス(C4 8 などの反応ラジカルを形成するガス)を解離するプラズマ処理空間113とが,互いに隣接して連通可能に形成されており,上記不活性ガスや反応性ガスは分離された状態でそれぞれの空間に供給される。
上記プラズマ発生空間122は,絶縁物製のプラズマ発生チャンバ121に同心に彫り込まれた複数の(図8では4個の)環状溝として形成されている。また,上記プラズマ発生空間122を囲むようにコイル124及び永久磁石片125が環状に配されている。更に,上記プラズマ発生空間122の奥(図8では上部)には不活性ガス供給路123が環状に形成され,上記不活性ガス供給路123と上記プラズマ発生空間122とは多数の小穴で連通されている。
また,上記プラズマ処理空間113は,上記プラズマ発生空間122の開口側に,一対の平行平板型のアノード部111及びカソード部112とで挟まれて形成されており,上記プラズマ発生空間122とは連通口114によって連通している。上記アノード部111は上記プラズマ発生チャンバ121の下端部に取り付けられており,また,上記カソード部112上には非処理物であるウェハが載置される。更に,上記アノード部111には,上記プラズマ処理空間113に向けて開口した反応性ガス供給口115が形成されている。
以上のようなプラズマ処理装置Z0の動作を簡単に説明する。
RF電源32を作動させると,プラズマ発生空間122内にコイル24を介してRF交番磁界が印加され,上記不活性ガス供給路123から供給された不活性ガス(Arなど)の電子が上記RF交番電磁界を打ち消すように誘導磁界結合する交番電流を形成しつつ加減速運動を繰り返す。この時,電子は永久磁石片125による静磁界の拘束磁界によりプラズマ発生空間122内に長く留まり,環状空間内の不活性ガスの励起効率に寄与する。こうして発生した高密度プラズマ120は,上記連通口114を介してプラズマ処理空間113内に拡散し,反応性ガス供給口115からプラズマ処理空間113に供給された反応性ガス(C4 8 など)を励起・解離させ,反応性ラジカルを形成し,プラズマ処理空間113内に載置されたウェハは高密度プラズマ120より供給される不活性ガスのイオンと上記反応性ラジカルとのバランスによる反応性イオンアシスト反応に基づきエッチング処理される。
以上のように,上記プラズマ処理装置Z0では,プラズマ発生空間122とプラズマ処理空間113とを分離しつつ連通させて上記各空間にそれぞれ不活性ガスと反応性ガスとを分離供給するように構成されているため,プラズマ発生空間122内におけるイオンFlux量と,プラズマ処理空間113内における反応性ガスの活性度とをそれぞれ独立に制御することで,反応性ガスの解離度制御が可能となる。
【0003】
【発明が解決しようとする課題】
ところで,上記プラズマ処理装置Z0では,アノード接地電位を確保すると共に反応性ガスを各アノードに形成された反応性ガス供給口115に分離供給するため,図9に示すように,同心円状に分割された各アノード部111を接続すべくプラズマ発生空間122を横切るリブ状のガス供給経路140を設ける必要があった。
しかしながら,このようなリブ状のガス供給経路140を設けることにより,プラズマ発生空間122からプラズマ処理空間113に吹き出されるイオンFluxが遮られてしまう,高密度プラズマ被爆による熱膨張と収縮との繰り返しによってパーティクル発生源となってしまう,機械的な耐久性が劣る,といった種々の問題点が生じていた。
また,上記のような構成では,各アノード部に供給する反応性ガスの量は,ガス吹き出し穴数等で調整する必要があるため,オペレーション条件によって異なるアノードを使い分けなければならないといった問題点もあった。
更に,上記ガス供給経路140はプラズマ発生空間122から拡散吹き出しされるイオンFluxの流れを妨げないようになるべく細く形成する必要があるため,各アノード部の熱伝導に係る断面積は極めて小さく,全アノードを適切に温度制御することができないといった問題点もあった。
本発明は上記事情に鑑みてなされたものであり,その目的とするところは,反応性ガスをプラズマ処理空間に供給するためのガス供給経路がプラズマ発生空間とプラズマ処理空間の連通穴を遮らないように構成し,機械的耐久性を確保すると共に,プラズマ発生空間からプラズマ処理空間に吹き出されるイオンFluxを遮ったり,パーティクル発生源となることを防止し,更に反応性ガスの供給量制御やアノード部の温度制御を容易且つ適切に行うことが可能なプラズマ処理装置を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成するために,本発明は,環状に形成されたプラズマ発生空間と,上記プラズマ発生空間近傍の壁面内に環状に埋設され,上記プラズマ発生空間に高周波電磁界を印加するアンテナと,上記プラズマ発生空間に隣接して連通可能に形成され,一対の電極で挟まれた平行平板型のプラズマ処理空間とを具備してなるプラズマ処理装置において,上記プラズマ処理空間に導入される反応性ガスが,上記プラズマ発生空間の上方から上記プラズマ発生空間の側壁内に設けられた供給管を介して上記プラズマ発生空間側壁の上記プラズマ処理空間側端部から上記プラズマ処理空間に供給されるように構成されてなることを特徴とするプラズマ処理装置として構成されている。
これにより,上記従来のプラズマ処理装置Z0のようにプラズマ発生空間を横切って各アノードを接続するリブ状のガス供給経路を設ける必要がなく,プラズマ発生空間から拡散吹き出しされるイオンFluxが遮られてしまう,高密度プラズマ被爆による熱膨張と収縮との繰り返しによってパーティクル発生源となってしまう,機械的な耐久性が劣る,といった種々の問題点が解決できる。
【0005】
また,並列に設けられた複数のガス溜まり室を具備し,上記各供給管がいずれかのガス溜まり室に接続されるように構成すれば,各吹き出し口に異なるガス溜まり室から反応性ガスを供給できるため,反応性ガスの供給量を自在に制御することが可能である。
また,上記一対の電極を構成するアノード電極を上記プラズマ発生空間側壁の上記プラズマ処理空間側端部に環状に設置し,上記アンテナによって上記プラズマ発生空間に印加される高周波電磁界を上記プラズマ発生空間内にシールドするように構成すれば,アンテナの発生電磁界の電気的なシールド効果により,ICP型放電のプラズマ結合領域がプラズマ発生空間内に限定されて不活性ガスプラズマのローカライズが可能となり,これによって上記プラズマ発生空間内の不活性ガスプラズマとプラズマ処理空間内の反応性ガスプラズマは独立性が増し,反応性ガスの解離度制御がより行い易くなる。
【0006】
また,上記プラズマ発生空間側壁(即ちプラズマ発生キャビティの一部)の上記プラズマ処理空間側の端部と上記アノード電極とを熱的に連結すると共に,上記プラズマ発生空間を形成する構造物を直接的若しくは間接的に冷却する冷却手段を具備すれば,プラズマ発生空間を構成する構造物やアノード電極をムラなく冷却してプラズマに接する部位の温度上昇を抑制することができ,プロセス条件及び構造物の安定化を図ることができる。
またこの時,上記プラズマ発生空間を形成する構造物と上記アノード電極とを略等しい線膨張率の材料,又は同質の材料にて構成するのが望ましい。これにより,接着施工時及びプラズマ負荷時の熱流入に対して内部応力の発生による割れなどを誘発せず,機械構造的な安定性を向上させることが可能である。
更に,上記プラズマ発生空間を形成する構造物,若しくは該構造物と熱的に連結されている伝熱部材にヒータと温度センサとを挿入し,上記温度センサによる検出温度に基づいて上記ヒータによって温度制御を行うように構成すれば,プラズマ発生の強弱やプラズマ発生の有無(装置停止時を含む)といった熱負荷の変化に対する,より安定した温度制御が可能となる。
【0007】
また,上記プラズマ発生空間を形成する絶縁性の構造物を,熱的に結合される伝熱部材にて支持し,該伝熱部材を絶縁性材料よりなるベース構造物に埋設すると共に,上記アンテナを上記ベース構造物内に埋設すれば,誘導磁界との誘導結合ロス(即ち,上記アンテナ近傍に導体がある場合に,該導体と誘導結合して,その分余分な電力が消費されてしまうというロス)を低減できると共に,上記プラズマ発生空間を形成する構造物の交換作業が格段に容易になる。また,上記プラズマ発生空間を形成する構造物にアンテナ等の挿入用の溝等を形成する必要がないため,ガス供給用の細穴を形成する際の自由度が増し,また強度的にも有利である。
【0008】
また,上記プラズマ発生空間側壁の上記プラズマ処理空間側の端部に設置されたアノード電極に高周波電力を供給する高周波電力供給手段を具備し,上記高周波電力供給手段によって上記アノード電極及びその周辺部にバイアス電界を印加するように構成すれば,アノード周辺へ付着するデポ膜形成を抑制することができ,エッチング処理の安定性を向上させることが可能となる。
この時,更に上記プラズマ発生空間の側壁内に上記アノード電極と電気的に接続された導電性部材を埋設すれば,プラズマ発生空間の側壁部に,よりアノードバイアスが掛かりやすくなり,デポ膜の除去性能を向上させることができる。
更にこの時,上記導電性部材を,上記プラズマ発生空間を形成する構造物と略等しい線膨張率の材料にて構成し,上記アノード電極と熱的に連結するのが望ましい。これにより,熱負荷に対して内部応力の発生による割れなどを誘発せず,機械構造的な安定性を向上させることが可能である。
【0009】
また,上記アノード電極の少なくとも一部分を,プラズマ処理の固体ソースとなる材料(例えばガスソースとして得にくい材料)で構成すれば,ガスソース単体では難しいプロセス性能を実現できる。
また,上記アンテナを,上記プラズマ発生空間を形成する構造物を固定しつつ該構造物を直接的若しくは間接的に冷却する構造物に対して,絶縁性と伝熱性とを有する部材を介して取り付ければ,アンテナに発生するジュール熱を効率的に廃熱でき,アンテナの抵抗変化を抑えて効率低下を回避することができると共に,アンテナの位置出し精度を確保できる。
【0010】
【発明の実施の形態】
以下添付図面を参照して,本発明の実施の形態及び実施例につき説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るプラズマ処理装置Z1の概略構成を示す縦断面図(図2におけるB″−B−B′断面),図2は図1におけるA−A断面図,図3は本発明の実施例に係るプラズマ処理装置Z2の概略構成を示す縦断面図,図4は図3におけるC−C断面図,図5は上記プラズマ処理装置Z2の変形例を示す要部縦断面図,図6は図5におけるD−D断面図である。尚,図7は上記プラズマ処理装置Z1又はZ2のアノードの概略構成を示す図であり,その(a)と(b)とは互いに異なる形状のものである。
【0011】
本実施の形態に係るプラズマ処理装置Z1は,図1(図2におけるB″−B−B′断面),及び図2(図1におけるA−A断面)に示すような概略構成を有する。
このプラズマ処理装置Z1は,上記従来のプラズマ処理装置Z0と同様,不活性ガス(Arなど)のイオンを供給するプラズマ発生空間1と,反応性ガス(C4 8 などの反応ラジカルを形成するガス)を解離するプラズマ処理空間2とが,互いに隣接して連通可能に形成されている。
【0012】
上記プラズマ発生空間1は,ドープされていない非導電性Siで構成されたプラズマ発生キャビティ3(プラズマ発生空間を形成する構造物に相当)に同心に彫り込まれた複数の(図1及び図2では2個の)環状溝として形成されている。また,上記プラズマ発生キャビティ3の下端部には,高ドープの導電性Siで構成され,上記プラズマ発生空間1を挟むように環状に形成されたアノード4が接着されている。上記プラズマ発生キャビティ3と上記アノード4とは同一の材料Siで形成されているため,線膨張率が同一であり,接着施工時及びプラズマ負荷時の熱流入に対して内部応力の発生による割れなどを誘発せず,機械構造的な安定性を実現している。
更に,上記プラズマ発生キャビティ3内には,RF電源10に接続されたアンテナ9が,上記プラズマ発生空間1を囲むように同心円状に埋設されている。
【0013】
また,上記プラズマ発生キャビティ3及びアノード4は,同心円状の複数のガス溜まり溝5(ガス溜まり室に相当)が形成されたアルミ製のガス溜まり構造物(以下,ガスチャネル)6に対して,内側からボルト7によって結合されている。尚,上記アノード4は,上記ボルト7を介して接地電位が付与されている。ここで,不活性ガスが供給されるガス溜まり溝5aは上記プラズマ発生空間1の上方に形成された供給口13と,反応性ガスが供給されるガス溜まり溝5bは上記アノード4に形成された供給口14と,上記プラズマ発生キャビティ3内を通してそれぞれ連通されており,適切なピッチで形成された上記供給口13,14から各空間内に均一に噴射される。このように,上記アノード4を介して上記プラズマ処理空間2に供給される上記反応性ガスは,上記ガスチャネル6に形成されたガス溜まり溝5bから上記プラズマ発生キャビティ3内を通して供給されるため,上記従来のプラズマ処理装置Z0のようにプラズマ発生空間を横切って各アノードを接続するリブ状のガス供給経路を設ける必要がなく,プラズマ発生空間から拡散吹き出しされるイオンFluxが遮られてしまう,高密度プラズマ被爆による熱膨張と収縮との繰り返しによってパーティクル発生源となってしまう,機械的な耐久性が劣る,といった種々の問題点が解決できる。また,各アノード4毎に異なるガス溜まり溝5bから反応性ガスを供給できるため,1種類のアノードを用いて反応性ガスの供給量を自在に制御することが可能である。
但し,格別の,反応性ガスの供給量の制御を必要としない場合,ガス溜まり溝(ひいては供給口14)は単一の同心円状に形成されたものであってもかまわない。
【0014】
また,上記ガスチャネル6の上面側には,内部にフロロカーボン系の絶縁性冷媒が循環されるアルミ製の冷却板8(冷却手段の一例)が,大気圧側(外側)からボルトにて結合されている。これにより,上記ガスチャネル6,上記プラズマ発生キャビティ3,及びアノード4に対する伝熱冷却を実現している。
更に,ロッドヒータ11と熱電対12(温度センサの一例)とが,上記冷却板8及びガスチャネル6を介して且つ該冷却板8及び該ガスチャネル6に接せずにプラズマ発生キャビティ3内に挿入されており,プラズマ発生の強弱やプラズマ発生の有無(装置停止時を含む)といった熱負荷の変化に対する,より安定した温度制御を可能としている。
このように,上記アノード4については,上記プラズマ発生キャビティ3を介して面外方向への熱伝達によってその全面にわたる温度制御を容易且つ適切に行うことが可能である。
【0015】
尚,上記プラズマ発生キャビティ3と上記ガスチャネル6との間には,シリコーンラバー17を配して異材料の接触における線膨張率の差異による熱膨張の差を吸収し,且つ十分な熱的接触を実現している。
また,上記ボルト7は,アノード4−ガスチャネル6間の温度分布による鉛直方向への伸びを抑えるためにタングステン製のものを用いており,更に,プラズマ処理空間2に露出されるボルト7の頭部は,反応影響とプラズマへの特異点影響を低減するためにSiのカバー15で覆われている。
更に,上記アンテナ9は,アルミナ製ブロックとシリコーンゴムなどの絶縁性と伝熱性を有するアンテナ固定部材16を介して上記ガスチャネル6に固定されている。これにより,アンテナに発生するジュール熱を効率的に廃熱でき,アンテナの抵抗変化を抑えて効率低下を回避することができると共に,アンテナの位置出し精度を確保できる。
【0016】
以上のように,冷却板8,ガスチャネル6,プラズマ発生キャビティ3,及びアノード4は,ボルト等によって互いに結合されてルーフ20を形成している。
上記ルーフ20は,チャンバ21の上方に形成された開口部を塞ぐように,上記チャンバ21の上縁部に形成されたルーフベース22上に載置され,更にルーフ押さえ23によって固定されている。
【0017】
また,上記プラズマ処理空間2は,上記アノード4と,ウェハなどの非処理物Wが載置され,RF電源25に接続されるカソード24とで挟まれた領域として形成されている。
【0018】
プラズマ発生空間1内に不活性ガスが供給され,RF電源10が作動されて上記アンテナ9からRF交番磁界が印加されると,同心円状の溝形状に構成された上記プラズマ発生空間1内において,電子が誘導結合し,高密度プラズマが形成される(ICP)。その一方,高速電子は曲率ある壁面に吸収消滅され,比較的低温で高密度の不活性ガスプラズマ(HDP)が形成される。このプラズマ発生空間1内で発生したプラズマは,上記プラズマ処理空間2に拡散する。更に,RF電源23を作動させると,プラズマ処理空間2にもカソード24及びアノード4を介してRF電界が印加され,容量結合(CCP)によるプラズマ発生が行われ,供給口14から供給された反応性ガスが励起・解離される。
ここで,同心円状の溝形状に構成された上記プラズマ発生空間1の物理的な横方向拡散防止効果により,プラズマのローカライズが可能となる。更に,同心円状のリング構造アノード4を用いると,アンテナ9の発生電磁界の電気的なシールド効果が付加され,ICP型放電のプラズマ結合領域がよりプラズマ発生空間1内に限定できる。これによって上記プラズマ発生空間1内の不活性ガスプラズマとプラズマ処理空間2内の反応性ガスプラズマは独立性が増し,反応性ガスの解離度制御がより行い易くなっている。
尚,上記の例ではボルト7にタングステン製のものを用い,上記ボルト7を介して接地電位を全てのリング状のアノード4に付与する構成のものを示したが,シールド効果はそのアノード4の電位自体とは直接関係せず,シールド効果の面から上記のような構成とする必要性はない。例えば,絶縁性の部材でアノード4を保持するなどして,上記アノード4を電気的ないわゆるフローティング状態としても,同様の電気的なシールド効果を奏することができ,ひいては不活性ガスプラズマのローカライズをもなし得るのである。
【0019】
以上説明したように,本実施の形態に係るプラズマ処理装置Z1は,上記アノード4を介して上記プラズマ処理空間2に供給される上記反応性ガスは,上記ガスチャネル6に形成されたガス溜まり溝5bから上記プラズマ発生キャビティ3内を通して供給されるため,上記従来のプラズマ処理装置Z0のようにプラズマ発生空間を横切って各アノードを接続するリブ状のガス供給経路を設ける必要がなく,プラズマ発生空間から拡散吹き出しされるイオンFluxが遮られてしまう,高密度プラズマ被爆による熱膨張と収縮との繰り返しによってパーティクル発生源となってしまう,機械的な耐久性が劣る,といった種々の問題点が解決できる。また,各アノード4毎に独立にガス供給の可能な異なるガス溜まり溝5bから反応性ガスを供給できるため,このプラズマ処理装置Z1の外部の反応性ガスの供給源から,上記ガス溜まり溝5bに通じるガス流路に,独立したガス流量制御手段(弁)を介設する等をすることにより,1種類のアノードを用いて反応性ガスの供給量を自在に制御することが可能である。
また,アノード4が,上記プラズマ発生キャビティ3の下端部に上記プラズマ発生空間1を挟むように同心円状に形成されているため,アンテナ9の発生電磁界の電気的なシールド効果により,ICP型放電のプラズマ結合領域がプラズマ発生空間1内に限定されて不活性ガスプラズマのローカライズが可能となり,これによって上記プラズマ発生空間1内の不活性ガスプラズマとプラズマ処理空間2内の反応性ガスプラズマは独立性が増し,反応性ガスの解離度制御がより行い易くなっている。
また,上記プラズマ発生キャビティ3と上記アノード4とが接着により熱的に連結され,更に上記プラズマ発生キャビティ3はガスチャネル6を介して冷却板8に熱的に連結されているため,プラズマ発生キャビティ3やアノード4をムラなく冷却して異常な温度上昇を抑制することができ,プロセス条件及び構造物の安定化を図ることができる。
更に,上記プラズマ発生キャビティ3内にロッドヒータ11と熱電対12とが挿入され,上記熱電対12による検出温度に基づいて上記ロッドヒータ11によって温度制御が行われるため,プラズマ発生の強弱やプラズマ発生の有無(装置停止時を含む)といった熱負荷の変化に対する,より安定した温度制御が可能となる。
更に,上記アンテナ9は,上記ガスチャネル6に対して,アルミナ製ブロックとシリコーンゴムなどの絶縁性と伝熱性を有する部材16を介して上記ガスチャネル6に固定されているため,アンテナに発生するジュール熱を効率的に廃熱でき,アンテナの抵抗変化を抑えて効率低下を回避することができると共に,アンテナの位置出し精度を確保できる。
【0020】
【実施例】
続いて,本発明の他の実施形態について説明する。
図3及び図4に示すプラズマ処理装置Z2は,上記プラズマ処理装置Z1を一部改良したものであり,図1及び図2と略同一の構成については同符号を付し,その説明は省略する。以下,上記プラズマ処理装置Z1との相違部分を中心に説明する。
上記プラズマ処理装置Z2では,ガスチャネル6とプラズマ発生キャビティ3との間にアルミナ製のベース構造物31が挟み込まれており,アンテナ9は上記プラズマ発生空間1の上方の上記ベース構造物31内に埋設されている。
また,上記ベース構造物31には,伝熱性のロッド状構造物(以下,伝熱ロッド)32(導電性部材の一例)が上下方向に貫通する形で埋め込まれている。上記プラズマ発生キャビティ3及びアノード4は,ボルト7によって上記ベース構造物31の上記伝熱ロッド32に対して固定されており,冷却板8及びガスチャネル6との熱的な連結が実現されている。即ち,上記プラズマ発生キャビティ3及びアノード4は,上記伝熱ロッド32を介して上記冷却板8からの伝熱冷却が実現されている。また,上記アノード4は,上記ボルト7,上記伝熱ロッド32を介して上記冷却板8及びガスチャネル6と同様の接地電位が付与される。更に,ロッドヒータ11と熱電対12についても上記伝熱ロッド32内に挿入されている。尚,上記アルミナ製のベース構造物31自体は,構造的な真空支持部材であり,冷却には直接寄与しない。
冷却板8及びガスチャネル6については,基本的に上記プラズマ処理装置Z1と同様の構造となっている。尚,上記ガスチャネル6に形成されたガス溜まり溝5a,5bと,プラズマ発生キャビティ3及びアノード4に形成された供給口13,14は,上記ベース構造物31を介して上記プラズマ処理装置Z1と同様に連通されている。
以上のように,上記プラズマ処理装置Z2では,アンテナ9,伝熱ロッド32,ロッドヒータ11,熱電対12などが上記ベース構造物31内に設置されており,それらとプラズマ発生キャビティ3′との干渉がないため,上記プラズマ処理装置Z1と比べて上記プラズマ発生キャビティ3′の交換作業が格段に容易である。また,上記プラズマ発生キャビティ3′にアンテナ9やロッドヒータ11の挿入用の溝等を形成する必要がないため,ガス供給用の細穴を形成する際の自由度が増す。また,耐真空保持の応力負荷のプラズマ発生キャビティ3′への負担が軽減されることから,強度的にも有利である。
【0021】
また,上記プラズマ処理装置Z2(若しくはZ1)を改良し,冷却板8,ガスチャネル6,伝熱ロッド32,ボルト7,及びアノード4を絶縁させ,上記冷却板8等を介してアノードバイアス用の高周波(400kHzか13.56MHz)を導入し(高周波電力供給手段),上記アノード4及びその周辺部にバイアス電界を発生させるようにすることもできる。この場合,冷却板8内を循環する冷媒として例えば絶縁性の高いフロロカーボン系のブラインを使用し,ガス導入部には例えばテフロン製のフィルタを挿入することで,アノードバイアスと配管との絶縁を実現できる。
上記のような構成とすることにより,アノード周辺へのバイアス印加によるスパッタ効果により付着するデポ膜形成を抑制することができ,エッチング処理の安定性を向上させることが可能となる。
ここで,更に,図5,図6に示すように,プラズマ発生キャビティ3′内にSi,カーボンなどの導電性の埋め込み部材41を設けてアノード4と電気的に接続すれば,プラズマ発生キャビティ3′の側壁部によりアノードバイアスが掛かりやすくなり,デポ膜の除去性能を向上させることができる。尚,上記埋め込み部材は,上記プラズマ発生キャビティ3′やアノード4と略同一の線膨張率を有する材料で構成し,両者と熱的に接続させることが望ましい。
【0022】
また,アノード4を,プラズマのガスソースとして得にくい組成により構成すれば,アノード4により固体ソースが形成でき,ガスソース単体では難しいプロセス性能が実現できる。例えばアノード4をグラッシーカーボンで形成すれば,カーボンがスパッタにより入口部に付着しやすく,例えばエッチングにおいてはパターンの口部のダレを抑制する保護膜として作用し,より垂直なエッチングを実現し易くなる。
尚,アノード4については,図7(a)に示すように,同心円状に分割されてなる円又は円環にて構成されたものに限るものではなく,図7(b)に示すように,更に径方向のスリットにて再分割されてなるものでもよい(尚,図7は,アノードの外形を概略的に示すため,ガスの供給口,ボルトについてはその図示を省略している)。
この図7(b)のように,同心円状の円又は円環のアノードをスリットにて再分割した構成でも,上記したような,プラズマ発生空間でのプラズマのローカライズは可能であり,ひいては上記プラズマ発生空間の深さとのバランスに基づき,プラズマ処理空間への上記プラズマ発生空間のプラズマの寄与度を調整することができる。
【0023】
【発明の効果】
以上説明したように,本発明は,環状に形成されたプラズマ発生空間と,上記プラズマ発生空間近傍の壁面内に環状に埋設され,上記プラズマ発生空間に高周波電磁界を印加するアンテナと,上記プラズマ発生空間に隣接して連通可能に形成され,一対の電極で挟まれた平行平板型のプラズマ処理空間とを具備してなるプラズマ処理装置において,上記プラズマ処理空間に導入される反応性ガスが,上記プラズマ発生空間の上方から上記プラズマ発生空間の側壁内に設けられた供給管を介して上記プラズマ発生空間側壁の上記プラズマ処理空間側端部から上記プラズマ処理空間に供給されるように構成されてなることを特徴とするプラズマ処理装置として構成されているため,上記従来のプラズマ処理装置Z0のようにプラズマ発生空間を横切って各アノードを接続するリブ状のガス供給経路を設ける必要がなく,プラズマ発生空間から拡散吹き出しされるイオンFluxが遮られてしまう,高密度プラズマ被爆による熱膨張と収縮との繰り返しによってパーティクル発生源となってしまう,機械的な耐久性が劣る,といった種々の問題点が解決できる。
【0024】
また,並列に設けられた複数のガス溜まり室を具備し,上記各供給管がいずれかのガス溜まり室に接続されるように構成すれば,各吹き出し口に異なるガス溜まり室から反応性ガスを供給できるため,1種類のアノードを用いて反応性ガスの供給量を自在に制御することが可能である。
また,上記一対の電極を構成するアノード電極を上記プラズマ発生空間側壁の上記プラズマ処理空間側端部に環状に設置し,上記アンテナによって上記プラズマ発生空間に印加される高周波電磁界を上記プラズマ発生空間内にシールドするように構成すれば,アンテナから発生する交番磁界をシールドすることにより,ICP型放電のプラズマ結合領域がプラズマ発生空間内に限定されて不活性ガスプラズマのローカライズが可能となり,これによって上記プラズマ発生空間内の不活性ガスプラズマとプラズマ処理空間内の反応性ガスプラズマは独立性が増し,反応性ガスの解離度制御がより行い易くなる。
【0025】
また,上記プラズマ発生空間側壁の上記プラズマ処理空間側の端部と上記アノード電極とを熱的に連結すると共に,上記プラズマ発生空間を形成する構造物を直接的若しくは間接的に冷却する冷却手段を具備すれば,プラズマ発生空間を構成する構造物やアノード電極をムラなく冷却して異常な温度上昇を抑制することができ,プロセス条件及び構造物の安定化を図ることができる。
またこの時,上記プラズマ発生空間を形成する構造物と上記アノード電極とを略等しい線膨張率の材料又は同質の材料にて構成するのが望ましい。これにより,接着施工時及びプラズマ負荷時の熱流入に対して内部応力の発生による割れなどを誘発せず,機械構造的な安定性を向上させることが可能である。
更に,上記プラズマ発生空間を形成する構造物,若しくは該構造物と熱的に連結されている伝熱部材にヒータと温度センサとを挿入し,上記温度センサによる検出温度に基づいて上記ヒータによって温度制御を行うように構成すれば,プラズマ発生の強弱やプラズマ発生の有無(装置停止時を含む)といった熱負荷の変化に対する,より安定した温度制御が可能となる。
【0026】
また,上記プラズマ発生空間を形成する絶縁性の構造物を熱的に結合される伝熱部材にて支持し,該伝熱部材を絶縁性材料よりなるベース構造物に埋設すると共に,上記アンテナを上記ベース構造物内に埋設すれば,アンテナとプラズマ発生空間を形成する構造物との干渉がなくなるため,上記プラズマ発生空間を形成する構造物の交換作業が格段に容易である。また,上記プラズマ発生空間を形成する構造物にアンテナ等の挿入用の溝等を形成する必要がないため,ガス供給用の細穴を形成する際の自由度が増し,また強度的にも有利である。
【0027】
また,上記プラズマ発生空間側壁の上記プラズマ処理空間側の端部に設置されたアノード電極に高周波電力を供給する高周波電力供給手段を具備し,上記高周波電力供給手段によって上記アノード電極及びその周辺部にバイアス電界を印加するように構成すれば,アノード周辺へ付着するデポ膜形成を抑制することができ,エッチング処理の安定性を向上させることが可能となる。
この時,更に上記プラズマ発生空間の側壁内に上記アノード電極と電気的に接続された導電性部材を埋設すれば,プラズマ発生空間の側壁部に,よりアノードバイアスが掛かりやすくなり,デポ膜の除去性能を向上させることができる。
更にこの時,上記導電性部材を,上記プラズマ発生空間を形成する構造物と略等しい線膨張率の材料又は同質の材料にて構成するのが望ましい。これにより,上記アノード電極と熱的に連結しても,熱負荷に対して内部応力の発生による割れなどを誘発せず,機械構造的な安定性を向上させることが可能である。
【0028】
また,上記アノード電極の少なくとも一部分を,プラズマ処理の固体ソースとなる材料(例えばガスソースとして得にくい材料)で構成すれば,ガスソース単体では難しいプロセス性能を実現できる。
また,上記アンテナを,上記プラズマ発生空間を形成する構造物を固定しつつ該構造物を直接的若しくは間接的に冷却する構造物に対して,絶縁性と伝熱性とを有する部材を介して取り付ければ,アンテナに発生するジュール熱を効率的に廃熱でき,アンテナの抵抗変化を抑えて効率低下を回避することができると共に,アンテナの位置出し精度を確保できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係るプラズマ処理装置Z1の概略構成を示す縦断面図(図2におけるB″−B−B′断面)。
【図2】 図1におけるA−A断面図。
【図3】 本発明の実施例に係るプラズマ処理装置Z2の概略構成を示す縦断面図。
【図4】 図3におけるC−C断面図。
【図5】 上記プラズマ処理装置Z2の変形例を示す要部縦断面図。
【図6】 図5におけるD−D断面図。
【図7】 本発明の実施例に係るプラズマ処理装置Z1又はZ2のアノードの概略構成を示す図(図1におけるY矢視図,図3におけるY′矢視図,図5におけるY″矢視図)。尚,(b)は(a)と別の形態を示す図である。
【図8】 従来技術に係るプラズマ処理装置Z0の概略構成を示す縦断面図。
【図9】 上記プラズマ処理装置Z0のアノード電極近傍の拡大図。尚,(b)は(a)のX矢視図である。
【符号の説明】
1…プラズマ発生空間
2…プラズマ処理空間
3…プラズマ発生キャビティ(プラズマ発生空間を形成する構造物)
4…アノード
5(5a,5b)…ガス溜まり溝(室)
6…ガスチャネル
7…ボルト
8…冷却板
9…アンテナ
10…RF電源
11…ロッドヒータ
12…熱電対(温度センサの一例)
13,14…供給口
15…カバー
16…アンテナ固定部材
17…シリコーンラバー
20…ルーフ部
21…チャンバ
22…ルーフベース
23…ルーフ押さえ
24…カソード
25…RF電源

Claims (4)

  1. 環状に形成されたプラズマ発生空間と、
    上記プラズマ発生空間近傍の壁面内に環状に埋設され、上記プラズマ発生空間に高周波電磁界を印加するアンテナと、
    上記プラズマ発生空間に隣接して連通可能に形成され、一対の電極で挟まれた平行平板型のプラズマ処理空間とを具備してなるプラズマ処理装置において、
    上記プラズマ発生空間を形成する構造物であるプラズマ発生キャビティには、プラズマ発生空間となる複数の環状溝が形成されており、かつ前記アンテナが埋設され、
    前記プラズマ発生キャビティの外側には、前記プラズマ発生キャビティと固着され、同心円状の複数のガス溜まり室を具備したガス溜まり構造物が配置され、
    前記ガス溜まり構造物の外側には、前記ガス溜まり構造物と固着され、前記ガス溜まり構造物を冷却する冷却板が配置され、
    反応性ガスが上記ガス溜まり室から前記プラズマ発生キャビティのプラズマ発生空間の側壁内に設けられた供給管を介して、上記プラズマ発生空間側壁のプラズマ処理空間側端部からプラズマ処理空間に供給されるように構成されている
    ことを特徴とするプラズマ処理装置。
  2. 上記プラズマ発生空間を形成する構造物であるプラズマ発生キャビティにヒータと温度センサとが埋設されていることを特徴とする請求項1に記載のプラズマ処理装置。
  3. 上記一対の電極を構成するアノード電極が上記プラズマ発生空間側壁の上記プラズマ処理空間側端部に環状に設置され、上記アンテナによって上記プラズマ発生空間に印加される高周波電磁界を上記プラズマ発生空間内にシールドするように構成されていることを特徴とする請求項1又は2に記載のプラズマ処理装置。
  4. 上記プラズマ発生空間を形成するプラズマ発生キャビティが、プラズマ発生空間となる複数の環状溝が形成されたキャビティ構造物と、前記キャビティ構造物の外側に固着され、上記アンテナが埋設されるベース構造物とからなることを特徴とする請求項に記載のプラズマ処理装置。
JP26535499A 1999-09-20 1999-09-20 プラズマ処理装置 Expired - Lifetime JP4311828B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26535499A JP4311828B2 (ja) 1999-09-20 1999-09-20 プラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26535499A JP4311828B2 (ja) 1999-09-20 1999-09-20 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2001093881A JP2001093881A (ja) 2001-04-06
JP4311828B2 true JP4311828B2 (ja) 2009-08-12

Family

ID=17416020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26535499A Expired - Lifetime JP4311828B2 (ja) 1999-09-20 1999-09-20 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP4311828B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6446572B1 (en) * 2000-08-18 2002-09-10 Tokyo Electron Limited Embedded plasma source for plasma density improvement
JP2002248345A (ja) * 2001-02-27 2002-09-03 Foi:Kk プラズマ処理装置
JP2006066744A (ja) * 2004-08-27 2006-03-09 Tokyo Institute Of Technology 固体ソースエッチング装置及び固体ソースエッチング方法
US20060081185A1 (en) * 2004-10-15 2006-04-20 Justin Mauck Thermal management of dielectric components in a plasma discharge device
US20080087641A1 (en) * 2006-10-16 2008-04-17 Lam Research Corporation Components for a plasma processing apparatus
KR102189337B1 (ko) * 2019-07-17 2020-12-09 주식회사 유진테크 플라즈마 처리 장치

Also Published As

Publication number Publication date
JP2001093881A (ja) 2001-04-06

Similar Documents

Publication Publication Date Title
JP5747231B2 (ja) プラズマ生成装置およびプラズマ処理装置
US8696862B2 (en) Substrate mounting table, substrate processing apparatus and substrate temperature control method
TWI667944B (zh) 具有可拆卸高電阻率氣體分配板的噴淋頭
KR102644272B1 (ko) 정전척 어셈블리
TWI688668B (zh) 具有可拆卸式氣體分配板之噴淋頭
KR102092623B1 (ko) 플라스마 처리 장치
KR101495230B1 (ko) 플라즈마 처리 장치
KR102487342B1 (ko) 정전척 어셈블리 및 이를 구비하는 플라즈마 처리장치
KR20220156052A (ko) 기판 프로세싱 챔버 내의 프로세스 키트의 시스 및 온도 제어
KR20090071060A (ko) 정전척 및 그를 포함하는 기판처리장치
KR102016408B1 (ko) 플라스마 처리 장치
JP7381713B2 (ja) プロセスキットのシース及び温度制御
JP2022524088A (ja) プラズマ処理チャンバにおける高周波(rf)電力印加のための静電チャック
US20130220975A1 (en) Hybrid plasma processing systems
JP4323021B2 (ja) プラズマ処理装置
JP2002525866A (ja) 内部誘導コイルアンテナ及び導電性チャンバ壁を有するrfプラズマエッチング反応器
JP2022511063A (ja) 温度の影響を受けやすいプロセスのための改善された熱的結合を有する静電チャック
JP4311828B2 (ja) プラズマ処理装置
JP2001237226A (ja) プラズマ処理装置
KR102684970B1 (ko) 포커스 링을 포함하는 용량성 결합 플라즈마 기판 처리 장치 및 이를 이용한 기판 처리 방법
KR101569886B1 (ko) 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
KR101927937B1 (ko) 지지 유닛 및 이를 포함하는 기판 처리 장치
WO2010119947A1 (ja) プラズマ処理装置
KR102702944B1 (ko) 프로세스 키트의 시스 및 온도 제어
JP2023549744A (ja) ペデスタル近傍のプラズマチャンバの周囲の磁気材料シールド

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4311828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term