JP4270023B2 - Ladder-type underground facility for waste geological disposal facility - Google Patents

Ladder-type underground facility for waste geological disposal facility Download PDF

Info

Publication number
JP4270023B2
JP4270023B2 JP2004148722A JP2004148722A JP4270023B2 JP 4270023 B2 JP4270023 B2 JP 4270023B2 JP 2004148722 A JP2004148722 A JP 2004148722A JP 2004148722 A JP2004148722 A JP 2004148722A JP 4270023 B2 JP4270023 B2 JP 4270023B2
Authority
JP
Japan
Prior art keywords
disposal
ladder
facility
waste
geological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004148722A
Other languages
Japanese (ja)
Other versions
JP2005331313A (en
Inventor
泰宏 須山
克 戸井田
Original Assignee
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹿島建設株式会社 filed Critical 鹿島建設株式会社
Priority to JP2004148722A priority Critical patent/JP4270023B2/en
Publication of JP2005331313A publication Critical patent/JP2005331313A/en
Application granted granted Critical
Publication of JP4270023B2 publication Critical patent/JP4270023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放射性廃棄物やその他の有害な廃棄物を廃棄物地層処分施設の地下に掘削形成された処分坑道に埋設処分するための地下施設に関するものであり、特に、日本の地質特性を考慮して高レベル放射性廃棄物を地層処分する場合に有効に適用される梯子型地下施設である。   The present invention relates to an underground facility for burying radioactive waste and other harmful wastes in a disposal tunnel excavated and formed underground in a waste geological disposal facility, particularly considering the geological characteristics of Japan. It is a ladder type underground facility that is effectively applied when geological disposal of high-level radioactive waste.

原子力発電から生じる放射性廃棄物のうち高レベル放射性廃棄物は、使用済核燃料の再処理工程で分離された液体廃棄物であり、放射能レベルが高いばかりでなく、長期間にわたって放射能を持ち続ける長寿命の放射性核種が数多く含まれている。そのため、このような高レベル放射性廃棄物は、ガラス原料と共にステンレス鋼製のキャニスターに溶かし込みガラス固化体として安定化処理し、冷却のため数10年間貯蔵した後、ガラス固化体が収納されたキャニスターをオーバーパックと称される厚肉鋼板製の密閉容器内に密閉収納するなどして廃棄体とし、この廃棄体を地下300m(法律により決定)より深い安定した地層中に埋設処分するようにしている。   Among the radioactive waste generated from nuclear power generation, high-level radioactive waste is liquid waste separated in the reprocessing process of spent nuclear fuel, and not only has a high level of radioactivity but also continues to have radioactivity for a long period of time. It contains many long-lived radionuclides. Therefore, such high-level radioactive waste is dissolved in a stainless steel canister together with glass raw materials, stabilized as a glass solidified body, stored for several decades for cooling, and then the canister in which the glass solidified body is stored. To be disposed of in a sealed container made of thick steel plate called overpack, and disposed of in a stable formation deeper than 300m underground (determined by law). Yes.

これまでに考えられている廃棄体の地層処分方法としては、大きく分けて以下の3つがある。   There are roughly the following three geological disposal methods for waste that have been considered.

(1) パネル方式(図4〜図6)
図4に示すように、高レベル放射性廃棄物の地層処分施設50は、地上施設51と地下施設52とから構成されている。地下施設52は、地上と地下を結ぶ立坑や斜坑等のアクセス坑道53、地下深部に複数並列して水平に掘削形成された処分坑道54、これら処分坑道に接続される主要坑道55等から構成されている(例えば、特許文献1、2等)。処分坑道54は区画されて独立した水平な処分パネルPに分割されており、処分サイトの地質環境条件等に応じて、分散配置や多層配置等の柔軟なパネルレイアウトが可能とされ、また建設・操業・閉鎖の主要な作業を独立・並行して実施できるようにされている。
(1) Panel method (Figs. 4-6)
As shown in FIG. 4, the geological disposal facility 50 for high-level radioactive waste is composed of a ground facility 51 and an underground facility 52. The underground facility 52 includes an access tunnel 53 such as a vertical shaft or a tilt shaft connecting the ground and the underground, a disposal tunnel 54 formed by a plurality of horizontal drillings in parallel in the deep underground, and a main tunnel 55 connected to these disposal tunnels. (For example, Patent Documents 1 and 2). The disposal tunnel 54 is partitioned and divided into independent horizontal disposal panels P, and flexible panel layouts such as distributed arrangement and multilayer arrangement are possible according to the geological environmental conditions of the disposal site. The main operations and closures can be carried out independently and in parallel.

また、処分坑道54における廃棄体の定置方式には、種々の方式が考えられているが、例えば、図5に示すような処分孔竪置き方式、図6に示すような処分坑道横置き方式がある。図5では、天然バリアとしての岩盤A中に掘削形成された処分坑道54の底版部から下に向って処分孔56を鉛直に掘削形成し、トンネル軸方向には所定の間隔をおいて多数形成し、この処分孔56内に人工バリアとして地下水や岩盤圧の影響を低減する緩衝材(ベントナイト等) Bを敷き詰めると共に、この緩衝材B中に竪にした廃棄体Cを埋設定置している。処分坑道54は埋め戻される。図6では、処分坑道54内に緩衝材Bを敷き詰めると共に、この緩衝材B中に横にした廃棄体Cをトンネル軸方向に所定の間隔をおいて埋設定置している。   In addition, various methods are considered for placing waste in the disposal tunnel 54. For example, a disposal hole anchoring method as shown in FIG. 5 and a disposal tunnel horizontal method as shown in FIG. is there. In FIG. 5, disposal holes 56 are vertically drilled downward from the bottom plate portion of the disposal tunnel 54 formed in the rock A as a natural barrier, and many are formed at predetermined intervals in the tunnel axis direction. In addition, a buffer material (such as bentonite) B that reduces the influence of groundwater and bedrock pressure is laid as an artificial barrier in the disposal hole 56, and a waste material C placed in the buffer material B is buried. The disposal tunnel 54 is backfilled. In FIG. 6, the buffer material B is spread in the disposal tunnel 54, and the waste C lying in the buffer material B is buried in the tunnel axis direction at a predetermined interval.

(2) サイロ方式(図7(a) 、(b) )
図7(a) に示すように、地中に設置したサイロ60により大きな空間を形成し、このサイロ内に廃棄体を積上げて埋設する。図7(b) に示すように、サイロ60はコンクリート製であり、この躯体コンクリート61の内側に緩衝材(ベントナイト) 62を設け、その内側に設けた廃棄体設置用コンクリート63の内部に廃棄体Cを積上げている。
(2) Silo system (Fig. 7 (a), (b))
As shown in FIG. 7 (a), a large space is formed by the silo 60 installed in the ground, and wastes are stacked and buried in the silo. As shown in FIG. 7 (b), the silo 60 is made of concrete, a buffer material (bentonite) 62 is provided inside the concrete frame 61, and the waste material is disposed inside the concrete 63 for installing waste material provided on the inside. C is piled up.

(3) ボーリング孔方式(図8)
図8に示すように、地上から地下深くまでボーリング孔70を削孔し、廃棄体Cを例えば500〜1000m程度の深さ(径は2m程度)に間隔をおいて埋設している。
(3) Boring hole method (Fig. 8)
As shown in FIG. 8, a boring hole 70 is drilled from the ground to deep underground, and the waste body C is embedded at a depth of about 500 to 1000 m (diameter is about 2 m) at intervals.

以上のような方式のうち、(2) のサイロ方式は、温度の問題(高レベル放射性廃棄物は高温を有しており、それが一箇所に多数集まると周囲の緩衝材を劣化させる)があるため、(3) のボーリング孔方式は、埋設時の品質管理ができないという問題(ボーリング孔に廃棄体を落下させた時、途中で引っかかり、所定の位置まで到達しない可能性がある)があるため、却下されている。最終的に、施工性、安全性、経済性の観点から、(1) のパネル方式が採用されている。
特開2002−196098号公報 特開平10−104398号公報
Among the above methods, the silo method (2) has a temperature problem (high-level radioactive waste has a high temperature, and if many of them are collected in one place, the surrounding cushioning material deteriorates). For this reason, the borehole method (3) has the problem that quality control during burial cannot be performed (when waste is dropped into the borehole, it may get caught in the middle and may not reach the specified position). Therefore, it has been rejected. Finally, from the viewpoint of workability, safety and economy, the panel method (1) is adopted.
JP 2002-196098 A Japanese Patent Laid-Open No. 10-104398

前述した従来の処分坑道を同じ高さ位置に複数並列して掘削形成した水平パネル方式の場合、傾斜が急な破砕帯が多い、日本の地質環境(特に、結晶質岩)に十分に対応できないという問題がある。最近の研究では、日本の花崗岩(結晶質岩の一つ)には、廃棄体埋設において好ましくない断層破砕帯が多く、その断層破砕帯の傾斜が急であることが分かってきた。   In the case of the horizontal panel method in which the above-mentioned conventional disposal tunnels are excavated in parallel at the same height, there are many crushing zones with steep slopes, and it cannot sufficiently cope with the Japanese geological environment (especially crystalline rocks). There is a problem. Recent research has shown that there are many undesired fault fracture zones in Japanese granite (one of the crystalline rocks), and the slope of the fault fracture zones is steep.

このような状況で水平パネル方式を採用すると、図9に示すように、断層破砕帯Dに直交するように処分坑道54が建設される場合、断層破砕帯Dは多くの場合地下水の通路となるため、処分坑道54に止水のためのプラグ(粘土材料等)57を数多く設置する必要が生じる。このように止水プラグが数多く設置されると、廃棄体Cの埋設のための空間を十分に利用できない、プラグ設置に費用がかかるためコスト高となる、などの問題があり、現実的な地層処分ではなくなる。   When the horizontal panel method is adopted in such a situation, as shown in FIG. 9, when the disposal tunnel 54 is constructed so as to be orthogonal to the fault crush zone D, the fault crush zone D often becomes a passage for groundwater. Therefore, it is necessary to install a large number of plugs (clay material or the like) 57 for water stoppage in the disposal mine shaft 54. If a large number of water stop plugs are installed in this way, there are problems such as the fact that the space for burying the waste body C cannot be fully utilized, and the cost of plug installation is high, resulting in high costs. It is no longer a disposal.

本発明は、上記のような問題を解消すべくなされたものであり、廃棄物の地層処分において、日本の地質環境のように急な傾斜の断層破砕帯が多い場合でも、従来のような多数の止水プラグが不要となり、廃棄体埋設空間を十分に確保することができると共に、比較的低コストで廃棄体を埋設処分することができる廃棄物地層処分施設の梯子型地下施設を提供することを目的とする。   The present invention has been made to solve the above-described problems, and even in the case of many geological disposals of wastes, even if there are many fault crushing zones with steep slopes like the geological environment in Japan, To provide a ladder-type underground facility for a waste geological disposal facility that can secure a sufficient space for burying waste and can bury waste at a relatively low cost. With the goal.

本発明の請求項1の発明は、廃棄物地層処分場の地下に形成された処分坑道に地上から搬入される廃棄物を埋設定置するための地下施設であり、地層の破砕帯と破砕帯との間に、破砕帯の水平方向に沿って掘削形成された処分坑道が破砕帯の上下方向に沿って間隔をおいて複数設けられ、この複数の処分坑道がそれぞれ立坑に接続され、これら立坑と複数の処分坑道とにより立板状で梯子型の地層処分パネルが形成されていることを特徴とする廃棄物地層処分施設の梯子型地下施設である。 The invention of claim 1 of the present invention is an underground facility for embedding waste to be carried from the ground into a disposal tunnel formed underground in a waste geological disposal site. In between, a plurality of disposal tunnels excavated along the horizontal direction of the crushing zone are provided at intervals along the vertical direction of the crushing zone, and the plurality of disposal tunnels are connected to the shafts, respectively. it is ladder underground facility waste geological disposal facility, characterized in that ladder geological disposal panel is formed by a plurality of disposal tunnels in upright plate-shaped.

本発明は、これまでの水平パネル方式の発想を転換し、縦方向の立板状の梯子型パネル方式とすることにより、破砕帯で挟まれた岩盤部分を利用できるようにしたものである。放射性廃棄物やその他の有害な廃棄物の地層処分に適用することができるが、特に、日本の地質特性を考慮して高レベル放射性廃棄物を地層処分する場合に極めて有効である。高レベル放射性廃棄物の場合は、立坑と複数の処分坑道とからなる梯子型の地層処分パネルを地下300m(法律により決定)より深い地層(花崗岩等) 中に配置する。   In the present invention, the idea of the horizontal panel method so far is changed to a vertical plate-like ladder-type panel method so that a rock portion sandwiched between crushing zones can be used. It can be applied to geological disposal of radioactive waste and other harmful wastes, but it is extremely effective especially when geological disposal of high-level radioactive waste is performed considering the geological characteristics of Japan. In the case of high-level radioactive waste, a ladder-type geological disposal panel consisting of vertical shafts and multiple disposal tunnels is placed in a deeper layer (granite, etc.) deeper than 300m underground (determined by law).

地層の破砕帯は、岩石が帯状に破砕されているものである。断層の多くのものは破砕帯を伴っており、断層破砕帯と呼ばれている。また、断層でも破砕帯を伴わず、鋭いナイフで切ったような断面のみのものもあり、また断層と言えるほどのずれを伴わない単なる破砕帯もある。これらは、多くの場合、地下水の通路となっている。本発明における「破砕帯」は、上記の破砕帯、断層、断層破砕帯などを含むものである。   The crush zone of the stratum is a rock that has been crushed into strips. Many faults are accompanied by fracture zones, which are called fault fracture zones. In addition, some faults do not have a crush zone but only have a cross-section that is cut with a sharp knife, and there are also simple crush zones that do not involve a gap that can be said to be a fault. These are often groundwater passages. The “crush zone” in the present invention includes the above crush zone, fault, fault crush zone and the like.

本発明の請求項2の発明は、請求項1に記載の梯子型地下施設において、立坑が水平方向に間隔をおいて複数掘削形成され、一対の立坑の間に上下方向に複数の処分坑道が配設されていることを特徴とする廃棄物地層処分施設の梯子型地下施設である。   According to a second aspect of the present invention, in the ladder type underground facility according to the first aspect, a plurality of vertical shafts are formed at intervals in the horizontal direction, and a plurality of disposal shafts are vertically disposed between the pair of vertical shafts. It is a ladder type underground facility of a waste geological disposal facility characterized by being arranged.

即ち、梯子型の地層処分パネルは、例えば一本の立坑から左右にそれぞれ処分坑道を掘削形成することも考えられるが、複数段の処分坑道の両側に立坑を配置するのが建設作業や廃棄体の搬入などの点から好ましい。   In other words, a ladder-type geological disposal panel can be considered, for example, by excavating and forming disposal tunnels from one shaft to the left and right, but placing shafts on both sides of a multistage disposal tunnel is a construction work or waste body. It is preferable from the point of carrying in.

本発明の請求項3の発明は、請求項1または請求項2に記載の梯子型地下施設において、処分坑道には処分孔が処分坑道軸方向に間隔をおいて複数設けられ、この処分孔内に複数の廃棄物が間隔をおいて埋設定置されていることを特徴とする廃棄物地層処分施設の梯子型地下施設である。   According to a third aspect of the present invention, in the ladder type underground facility according to the first or second aspect, a plurality of disposal holes are provided in the disposal tunnel at intervals in the axial direction of the disposal tunnel. It is a ladder-type underground facility of a waste geological disposal facility characterized in that a plurality of wastes are buried at intervals.

廃棄体の定置方式には、処分孔竪置き方式(廃棄体や緩衝材の定置性等に優れている) 、処分坑道横置き方式(坑道の掘削量や埋め戻し量を小さくできる) などを採用できるが、この請求項3の発明は処分孔竪置き方式に限定した場合である。処分孔は、破砕帯間のスペースが大きい場合には、処分坑道から水平にあるいは水平に対して傾斜させて掘削形成することもできるが、破砕帯間のスペースや作業性などの点から処分坑道の底版部から下に向って垂直に掘削形成するのが好ましい。処分孔には、地下水や岩盤圧の影響を低減する緩衝材(ベントナイト等) が充填され、この緩衝材の中に廃棄物が埋設定置される。廃棄物は一つの処分孔内に例えば二段で埋設すれば、埋設空間を鉛直方向に有効利用することができる。   Disposal hole placement methods such as the disposal hole anchoring method (excellent placement properties of waste bodies and buffer materials, etc.) and the disposal tunnel horizontal placement method (can reduce the amount of excavation and backfilling of the tunnel) are adopted. However, the invention of claim 3 is limited to the disposal hole laying system. If the space between the crushing zones is large, the disposal hole can be drilled horizontally from the disposal mine or inclined with respect to the horizontal. It is preferable to form by excavating vertically from the bottom plate portion of the plate. The disposal hole is filled with buffer material (such as bentonite) that reduces the effects of groundwater and rock pressure, and waste is buried in this buffer material. If waste is buried in, for example, two stages in one disposal hole, the buried space can be effectively used in the vertical direction.

以上のような構成の本発明において、処分坑道や処分孔が破砕帯にできるだけ交差しないように破砕帯と破砕帯の間に立板状の梯子型地層処分パネルを縦に配置する。破砕帯は多くの場合傾斜しているため、破砕帯に沿って梯子型地層処分パネルを傾斜配置してもよいし、破砕帯と破砕帯の間に処分坑道や処分孔が位置するように梯子型地層処分パネルを鉛直に配置することもできる。   In the present invention configured as described above, a vertical ladder-type geological disposal panel is vertically arranged between the crushing zone and the crushing zone so that the disposal mine and the disposal hole do not intersect the crushing zone as much as possible. Since the crushing zone is often inclined, a ladder-type geological disposal panel may be inclined along the crushing zone, and the ladder is located so that the disposal tunnel and the disposal hole are located between the crushing zone and the crushing zone. Type geological disposal panels can also be placed vertically.

本発明は、以上のような構成からなるので、次のような効果が得られる。   Since the present invention is configured as described above, the following effects can be obtained.

(1) これまでの水平パネル方式に代えて、縦方向の立板状の梯子型パネル方式を破砕帯と破砕帯との間に配置し、破砕帯で挟まれた健全な岩盤部分を有効利用するようにしたため、従来の多数の止水プラグが不要となり、廃棄体埋設空間を十分に確保することができると共に、比較的低コストで廃棄体を埋設処分することができる。   (1) Instead of the conventional horizontal panel system, a vertical vertical ladder-type panel system is arranged between the crushing zone and the sound bedrock sandwiched between the crushing zones is used effectively. As a result, a large number of conventional water stop plugs are not required, and a sufficient space for burying the waste body can be secured, and the waste body can be buried at a relatively low cost.

(2) 日本の地質環境のように急な傾斜の断層破砕帯が多く、これまで処分場として不適切、もしくは多くの止水プラグが必要で非現実的と考えられてきたサイトが地層処分場として利用可能となる。   (2) There are many fault crushing zones with steep slopes like the geological environment in Japan, and the geological disposal site has been considered to be inappropriate as a disposal site or unrealistic because it requires many water stop plugs. Will be available as

以下、本発明を図示する実施形態に基づいて説明する。この実施形態は高レベル放射性廃棄物の地層処分に適用した例である。図1は本発明の梯子型地下施設の一例を示す正面図と部分拡大正面図である。図2は本発明の処分坑道と断層破砕帯との関係を示す斜視図と断層破砕帯に直交する鉛直断面図である。   Hereinafter, the present invention will be described based on the illustrated embodiments. This embodiment is an example applied to the geological disposal of high-level radioactive waste. FIG. 1 is a front view and a partially enlarged front view showing an example of a ladder type underground facility of the present invention. FIG. 2 is a perspective view showing the relationship between the disposal tunnel of the present invention and the fault crushing zone, and a vertical sectional view perpendicular to the fault crushing zone.

図1の実施形態において、梯子型地下施設1は、岩盤A中に縦に構築された、水平方向に所定の距離をおいて一対の立坑2、2と、この一対の立坑2、2間で横に掘削形成された、上下方向に所定の間隔をおいて複数段の処分坑道3、3、…と、これら各処分坑道3の下部に掘削形成された、処分坑道軸方向に所定の間隔をおいて多数の処分孔4、4、…とから構成されている。   In the embodiment of FIG. 1, a ladder-type underground facility 1 is constructed in a vertical direction in a rock A, and a pair of vertical shafts 2, 2 at a predetermined distance in the horizontal direction, and between the pair of vertical shafts 2, 2. A plurality of disposal tunnels 3, 3,... Formed at a predetermined interval in the up and down direction, and a predetermined interval in the axial direction of the disposal tunnel formed in the lower part of each disposal tunnel 3. And a plurality of disposal holes 4, 4,.

高レベル放射性廃棄物の地層処分施設は、地上施設と地下施設とから構成されており、地上施設と地下施設を結ぶ立坑2を地下300mよりも深い位置まで構築し、地下300mより深い岩盤A中に複数段の処分坑道3、3、…を構築し、一対の立坑2、2の下部と複数段の処分坑道3、3、…とにより立板状の梯子型地層処分パネルPを形成する。このような立板状の梯子型地層処分パネルPを、後に詳述するように、断層破砕帯と断層破砕帯との間において鉛直にあるいは断層破砕帯に沿って傾斜させて配置する。なお、図1(b) は、傾斜しているパネルを前方から見た場合を示している。処分孔4は鉛直に配置されている。立坑2は、鉛直にあるいは傾斜させて構築され、人員や資材・機材の搬出入あるいは廃棄体の搬入、排気等に用いられる。この立坑2から各処分坑道3がトンネル掘削機等で水平に(水平に対して傾斜させてもよい)掘削形成され、必要に応じて支保工が施工される。   The geological disposal facility for high-level radioactive waste is composed of ground facilities and underground facilities, and the shaft 2 connecting the ground facilities and underground facilities is constructed to a position deeper than 300m underground, and the bedrock A is deeper than 300m underground. Are constructed with a plurality of stages of disposal tunnels 3, 3,..., And a bottom plate-like ladder type geological disposal panel P is formed by the lower part of the pair of shafts 2, 2, and the plurality of stages of disposal tunnels 3, 3,. Such a vertical ladder-type geological disposal panel P is disposed between the fault crush zone and the fault crush zone vertically or inclined along the fault crush zone, as will be described in detail later. FIG. 1 (b) shows a case where the inclined panel is viewed from the front. The disposal hole 4 is arranged vertically. The shaft 2 is constructed vertically or inclined, and is used for carrying in / out personnel, materials / equipment, waste in / out, etc. Each disposal mine 3 is excavated and formed horizontally (may be inclined with respect to the horizontal) from the vertical shaft 2 by a tunnel excavator or the like, and a support work is performed as necessary.

処分孔4は、断層破砕帯間のスペースに余裕がある場合には、水平にあるいは水平に対して傾斜させて掘削形成される場合もあるが、断層破砕帯間のスペースや作業性などの点から、処分坑道3の底版部から下に向って鉛直に岩盤A(天然バリア)中に掘削形成される。この処分孔4の内部に緩衝材B(人工バリア)を介して廃棄体C(キャニスターが収納されたオーバーパック)が埋設定置される。廃棄体Cは埋設空間を鉛直方向に有効に利用するため、二段で埋設される。なお、緩衝材Bは、地下水や岩盤圧の影響を低減するものであり、主材料がベントナイトの土質系材料(水と触れ合うと膨潤し、内圧が高まることで水の侵入を抑制する特徴があり、核種の流出を遅延させる効果が期待されている)が用いられる。   The disposal hole 4 may be formed by excavating horizontally or inclined with respect to the horizontal if there is enough space between the fault crushing zones. From the bottom slab portion of the disposal mine 3, it is drilled vertically into the rock mass A (natural barrier). A waste body C (overpack in which a canister is stored) is buried in the disposal hole 4 via a buffer material B (artificial barrier). The waste body C is embedded in two stages in order to effectively use the embedded space in the vertical direction. The buffer material B reduces the influence of groundwater and bedrock pressure, and the main material is bentonite soil material (swells when it comes into contact with water, and has the feature of suppressing water intrusion by increasing the internal pressure. , Which is expected to delay the release of nuclides).

このような構成の立板状の梯子型地層処分パネルPを、図2に示すように、断層破砕帯Dと断層破砕帯Dとの間に配設し、断層破砕帯Dに挟まれた健全な岩盤部分を有効利用する。処分坑道3および処分孔4が断層破砕帯Dにできるだけ交差しないように配置する。断層破砕帯Dは傾斜しているため、梯子型地層処分パネルPを断層破砕帯Dの傾斜に沿って傾斜させて配置することができ、また処分坑道3および処分孔4が断層破砕帯Dの間に断層破砕帯Dと交差せずに位置するように梯子型地層処分パネルPを鉛直に配置することもできる。   As shown in FIG. 2, a standing ladder-shaped geological disposal panel P having such a configuration is disposed between the fault crush zone D and the fault crush zone D, and is soundly sandwiched between the fault crush zones D Effective use of rock mass. It arrange | positions so that the disposal mine 3 and the disposal hole 4 may not cross the fault crush zone D as much as possible. Since the fault crushing zone D is inclined, the ladder-type geological disposal panel P can be inclined along the inclination of the fault crushing zone D, and the disposal mine 3 and the disposal hole 4 are located in the fault crushing zone D. Ladder type geological disposal panel P can also be arrange | positioned vertically so that it may be located without crossing fault fault zone D in between.

図3(a) は、梯子型地層処分パネルPを断層破砕帯Dの傾斜に沿って傾斜させて配置する場合であり、立坑2を断層破砕帯Dに沿って傾斜させて形成し、複数段の処分坑道3、3、…を断層破砕帯Dに沿って傾斜配列する。処分孔4は鉛直に形成する。   FIG. 3 (a) shows a case where the ladder-type geological disposal panel P is disposed along the inclination of the fault crushing zone D. The vertical shaft 2 is formed along the fault crushing zone D, and has a plurality of stages. Are disposed in an inclined manner along the fault crush zone D. The disposal hole 4 is formed vertically.

図3(b) は、複数の断層破砕帯Dで囲まれている場合であり、断層破砕帯Dで閉じられた部分に部分的な梯子型地層処分パネルPを鉛直に配置する。処分坑道3の数は閉じられた空間の大きさにより決定される。立坑2は上方または下方に鉛直に延設され、断層破砕帯Dを横切る。なお、このような複数の断層破砕帯で囲まれている場合に限らず、図3(a) の場合も、同様に上下の断層破砕帯Dを避けて処分坑道3・処分孔4を配置することにより、梯子型地層処分パネルPを鉛直に配置することができる。   FIG. 3 (b) shows a case where a plurality of fault crushing zones D are surrounded, and a partial ladder-type geological disposal panel P is vertically arranged in a portion closed by the fault crushing zones D. The number of disposal tunnels 3 is determined by the size of the closed space. The shaft 2 extends vertically upward or downward and crosses the fault crush zone D. In addition, not only when surrounded by such a plurality of fault fracture zones, but also in the case of FIG. 3 (a), the disposal tunnel 3 and the disposal hole 4 are similarly arranged avoiding the upper and lower fault fracture zones D. Thus, the ladder-type geological disposal panel P can be arranged vertically.

なお、梯子型地層処分パネルは、図示例に限らず、1本の立坑の左右にそれぞれ複数段の処分坑道がある場合、立坑の数が3本以上ある場合など、種々の形態が考えられる。また、廃棄体の定置方式は、処分孔竪置き方式を例示したが、処分坑道横置き方式などでもよい。また、対象となるサイトの地質環境に応じ、本発明の梯子型パネル方式と従来の水平パネル方式とを組み合わせることも有り得る。また、以上は、高レベル放射性廃棄物の地層処分に適用した例を示したが、これに限らず、その他の有害な廃棄物の地層処分にも適用することができる。   Note that the ladder-type geological disposal panel is not limited to the illustrated example, and various forms are conceivable, such as when there are multiple disposal tunnels on the left and right sides of one shaft, and when there are three or more shafts. Moreover, although the disposal method of a waste body illustrated the disposal hole anchoring method, a disposal tunnel horizontal installation method etc. may be sufficient. Further, the ladder type panel system of the present invention and the conventional horizontal panel system may be combined depending on the geological environment of the target site. Moreover, although the example applied to the geological disposal of a high level radioactive waste was shown above, it is not restricted to this, It can apply also to the geological disposal of other harmful waste.

本発明の梯子型地下施設の一例を示したものであり、(a) は正面図、(b) は部分拡大正面図である。An example of the ladder type underground facility of the present invention is shown, (a) is a front view, and (b) is a partially enlarged front view. 本発明の処分坑道と断層破砕帯との関係を示したものであり、(a) は斜視図、(b) は断層破砕帯に直交する鉛直断面図である。The relationship between the disposal mine shaft and the fault crush zone of the present invention is shown, (a) is a perspective view, and (b) is a vertical sectional view perpendicular to the fault crush zone. 断層破砕帯の位置や形状に対する本発明の梯子型地下施設の対応例を示す鉛直断面図である。It is a vertical sectional view showing a corresponding example of the ladder type underground facility of the present invention with respect to the position and shape of the fault crush zone. 高レベル放射性廃棄物の地層処分施設における従来の水平パネル方式を断面で示す斜視図である。It is a perspective view which shows the conventional horizontal panel system in the geological disposal facility of a high level radioactive waste in a cross section. 高レベル放射性廃棄物の地層処分施設における廃棄体の処分孔竪置き方式を示したものであり、(a) は処分坑道内部の透視図、(b) は断面にした斜視図である。The disposal hole storage system for waste in a geological disposal facility for high-level radioactive waste is shown, (a) is a perspective view inside the disposal tunnel, and (b) is a cross-sectional perspective view. 高レベル放射性廃棄物の地層処分施設における廃棄体の処分坑道横置き方式を示す断面にした斜視図である。It is the perspective view made into the cross section which shows the disposal tunnel horizontal installation system of the waste body in the geological disposal facility of a high level radioactive waste. 高レベル放射性廃棄物の地層処分におけるサイロ方式を示したものであり、(a) は施設全体の断面にした斜視図、(b) はサイロの鉛直断面図である。The silo method for geological disposal of high-level radioactive waste is shown. (A) is a perspective view of the entire facility and (b) is a vertical sectional view of the silo. 高レベル放射性廃棄物の地層処分におけるボーリング孔方式を示す鉛直断面図である。It is a vertical sectional view showing a boring hole method in geological disposal of high-level radioactive waste. 従来の水平処分パネル方式における断層破砕帯を示したものであり、(a) は施設全体の断面にした斜視図、(b) は断層破砕帯に直交する鉛直断面図である。The fault crush zone in the conventional horizontal disposal panel system is shown, (a) is a perspective view of the entire facility in section, and (b) is a vertical cross section perpendicular to the fault crush zone.

符号の説明Explanation of symbols

1……梯子型地下施設
2……立坑
3……処分坑道
4……処分孔
A……岩盤(天然バリア)
B……緩衝材(人工バリア)
C……廃棄体
D……断層破砕帯
P……立板状の梯子型地層処分パネル
1 …… Ladder-type underground facility 2 …… Vertical shaft 3 …… Disposal tunnel 4 …… Disposal hole A …… Brock (natural barrier)
B …… Buffer material (artificial barrier)
C …… Waste body D …… Fracture fracture zone P …… Stand-up ladder-type geological disposal panel

Claims (3)

廃棄物地層処分場の地下に形成された処分坑道に地上から搬入される廃棄物を埋設定置するための地下施設であり、地層の破砕帯と破砕帯との間に、破砕帯の水平方向に沿って掘削形成された処分坑道が破砕帯の上下方向に沿って間隔をおいて複数設けられ、この複数の処分坑道がそれぞれ立坑に接続され、これら立坑と複数の処分坑道とにより立板状で梯子型の地層処分パネルが形成されていることを特徴とする廃棄物地層処分施設の梯子型地下施設。 It is an underground facility for placing waste that is carried from the ground into a disposal tunnel formed underground in the waste geological disposal site. Between the crushing zone of the geological formation and in the horizontal direction of the crushing zone, along disposal tunnels excavated formed is provided with a plurality at intervals along the vertical direction of the fracture zone, the plurality of disposal tunnels are respectively connected to the shafts, and which, together shafts and a plurality of disposal tunnels with upright plate-shaped Ladder-type underground facility of waste geological disposal facility characterized by the formation of a ladder-type geological disposal panel. 請求項1に記載の梯子型地下施設において、立坑が水平方向に間隔をおいて複数掘削形成され、一対の立坑の間に上下方向に複数の処分坑道が配設されていることを特徴とする廃棄物地層処分施設の梯子型地下施設。   The ladder-type underground facility according to claim 1, wherein a plurality of vertical shafts are formed at intervals in the horizontal direction, and a plurality of disposal tunnels are disposed in the vertical direction between the pair of vertical shafts. Ladder type underground facility for waste geological disposal facility. 請求項1または請求項2に記載の梯子型地下施設において、処分坑道には処分孔が処分坑道軸方向に間隔をおいて複数設けられ、この処分孔内に複数の廃棄物が間隔をおいて埋設定置されていることを特徴とする廃棄物地層処分施設の梯子型地下施設。   The ladder type underground facility according to claim 1 or 2, wherein a plurality of disposal holes are provided in the disposal tunnel at intervals in the axial direction of the disposal tunnel, and a plurality of wastes are spaced in the disposal hole. Ladder type underground facility of waste geological disposal facility characterized by being buried.
JP2004148722A 2004-05-19 2004-05-19 Ladder-type underground facility for waste geological disposal facility Active JP4270023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148722A JP4270023B2 (en) 2004-05-19 2004-05-19 Ladder-type underground facility for waste geological disposal facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148722A JP4270023B2 (en) 2004-05-19 2004-05-19 Ladder-type underground facility for waste geological disposal facility

Publications (2)

Publication Number Publication Date
JP2005331313A JP2005331313A (en) 2005-12-02
JP4270023B2 true JP4270023B2 (en) 2009-05-27

Family

ID=35486078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148722A Active JP4270023B2 (en) 2004-05-19 2004-05-19 Ladder-type underground facility for waste geological disposal facility

Country Status (1)

Country Link
JP (1) JP4270023B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135706B2 (en) * 2006-04-10 2013-02-06 鹿島建設株式会社 Geological disposal facility and its construction method
JP4798057B2 (en) * 2007-05-09 2011-10-19 鹿島建設株式会社 Geological disposal facility and its construction method

Also Published As

Publication number Publication date
JP2005331313A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
Sinha Underground structures: design and instrumentation
Lee et al. Concept of a Korean reference disposal system for spent fuels
JP4270023B2 (en) Ladder-type underground facility for waste geological disposal facility
AYDAN et al. Sinkholes and subsidence above abandoned mines and quarries caused by the great east Japan earthquake on March 11, 2011 and their implications
JP4225245B2 (en) Underwater tunnel structure
JP4798057B2 (en) Geological disposal facility and its construction method
Hardin et al. Alternative Concepts for Direct Disposal of Dual-Purpose Canisters.
JP4492373B2 (en) Disposal tunnel facility at waste geological disposal site
JP5740456B2 (en) Radioactive waste underground storage facility and construction method thereof
JP4822996B2 (en) Underground storage facility of waste geological disposal site and waste recovery method
JP5135706B2 (en) Geological disposal facility and its construction method
JP6464469B2 (en) Radioactive waste disposal tunnel
JP5637376B2 (en) Method of burying radioactive waste
JP2002048900A (en) Structure for fixing high-level radioactive waste for geologic disposal
JP2006035068A (en) Arrangement method for waste ground layer disposal field
KR100669530B1 (en) Construction method of a rataining well
JP4281618B2 (en) Underground facility of waste geological disposal facility
JP2013509517A (en) An improved underground pit
JP2000160559A (en) Landslide protection wall and construction method therefor
Tan et al. Special design considerations for underpinning systems of existing structures due to tunnelling
JP2007154603A (en) Uneven settlement preventing method for building
Alzamora Jr et al. Case studies of new york city projects with varying site constraints
JP4453577B2 (en) Waste geological disposal facility
Hearn C4 Rock slope stabilization
Elmo et al. Design and construction of a dense array of small diameter holes in a large cavern sidewall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150306

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250