JP4263664B2 - Damping braces and structures - Google Patents

Damping braces and structures Download PDF

Info

Publication number
JP4263664B2
JP4263664B2 JP2004202214A JP2004202214A JP4263664B2 JP 4263664 B2 JP4263664 B2 JP 4263664B2 JP 2004202214 A JP2004202214 A JP 2004202214A JP 2004202214 A JP2004202214 A JP 2004202214A JP 4263664 B2 JP4263664 B2 JP 4263664B2
Authority
JP
Japan
Prior art keywords
axial force
force member
axial
damping brace
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004202214A
Other languages
Japanese (ja)
Other versions
JP2005042537A (en
Inventor
博志 中村
一弁 鈴木
安洋 中田
貴志 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2004202214A priority Critical patent/JP4263664B2/en
Publication of JP2005042537A publication Critical patent/JP2005042537A/en
Application granted granted Critical
Publication of JP4263664B2 publication Critical patent/JP4263664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地震や風等によって構造物に作用する振動エネルギーを、自らが変形することで吸収する制振ブレース、およびこれを備える構造物に関する。   The present invention relates to a vibration-damping brace that absorbs vibration energy acting on a structure due to an earthquake, a wind, or the like by itself deforming, and a structure including the same.

従来の制振ブレースは、一般的に、鋼製の軸力部材と、軸力部材の座屈を防止する拘束部材と、拘束部材と軸力部材との間の付着を防止する付着防止皮膜とを備える。軸力部材は、所定の大きさ以上の引張力または圧縮力が作用した場合に塑性変形する塑性化部と、塑性化部とともに拘束部材に周囲を覆われ、拘束部材から突出する軸力部材の端部の剛性を補う補剛部と、構造物に接合される継手部とを有する。
制振ブレースは、柱と梁とで矩形に組まれた構造物の構面に斜めに設置され、軸力部材の端部が、柱と梁との接合部に溶接されたガセットプレートにボルトで固定される。
制振ブレースが設置された構造物に地震や風等によって振動エネルギーが作用すると、軸力部材には引張力または圧縮力が作用し、塑性化部が引張方向または圧縮方向に変形することで振動エネルギーを吸収する。
Conventional vibration-damping braces generally include a steel axial force member, a restraining member that prevents buckling of the axial force member, and an anti-adhesion coating that prevents adhesion between the restraining member and the axial force member. Is provided. The axial force member includes a plasticized portion that is plastically deformed when a tensile force or a compressive force of a predetermined magnitude or greater is applied, and the axial force member that is surrounded by the restraint member together with the plasticized portion and protrudes from the restraint member. It has a stiffening part that supplements the rigidity of the end part, and a joint part joined to the structure.
The vibration-damping brace is installed diagonally on the structure of a rectangular structure composed of columns and beams, and the end of the axial force member is bolted to the gusset plate welded to the joint between the columns and beams. Fixed.
When vibration energy acts on the structure where the vibration-damping brace is installed due to an earthquake, wind, etc., tensile force or compressive force acts on the axial force member, and the plasticized part is deformed in the tensile or compressive direction and vibrates. Absorb energy.

上記のような制振ブレースに関しては、例えば下記の特許文献1に開示されているように、硬化したコンクリートと軸力部材との付着を防止する皮膜の膜厚および皮膜の剛性を規定することにより軸力部材の局部座屈を防止する検討がなされている。   With respect to the vibration damping brace as described above, for example, as disclosed in Patent Document 1 below, by defining the film thickness and the film rigidity to prevent adhesion between the hardened concrete and the axial force member Studies have been made to prevent local buckling of the axial force member.

ところで、上記のような制振ブレースについては、振動エネルギーに対して所期の設定どおりに変形するかどうかを検証するために種々の研究や試験が行われている。しかしながら、制振ブレースと構造物との接合部の座屈変形についての検証はなされていない。本発明者らは、制振ブレースが所期の設定通りの制振作用を生むには、制振ブレースに圧縮力が作用した場合に軸力部材の端部に生じるヒンジ現象の問題を解明することが重要であるとの知見を得た。制振ブレースは、軸力部材の端部が一旦ヒンジ現象を生じて不安定な挙動を示すと、設計で意図した剛性・耐力を発揮できず、振動エネルギーの十分な吸収ができなくなる。   By the way, various studies and tests have been conducted on the vibration-damping brace as described above in order to verify whether or not the vibration energy is deformed as intended. However, the verification about the buckling deformation of the junction part of a damping brace and a structure is not made | formed. The inventors of the present invention elucidate the problem of the hinge phenomenon that occurs at the end of the axial force member when the damping force is applied to the damping brace in order for the damping brace to produce the desired damping effect. I learned that this is important. Once the end of the axial force member exhibits a hinge phenomenon and exhibits an unstable behavior, the damping brace cannot exhibit the rigidity and proof strength intended in the design and cannot sufficiently absorb vibration energy.

ここで、ヒンジ現象について図17(A)〜(C)を参照して説明する。
図17(A)に示すように、制振ブレース100は、軸力部材101と、拘束部材102とを備える。軸力部材101は、塑性化部103と、補剛部104とを有する。
制振ブレース100に過大な圧縮力が作用した場合、拘束部材102から突出する軸力部材101の端部、すなわち補剛部104によって剛性を補われた部分が、軸力部材101の構面外方向すなわち構面の法線方向に向けて変形する可能性がある。詳述すると、図17(B),図17(C)に示すように、軸力部材101の端部が、付着防止被膜(図示略)を圧縮しながら、塑性化部103と補剛部104との境界付近を中心としてあたかもヒンジが回転するかのように変形する。この現象をヒンジ現象といい、軸力部材101の端部が塑性変形し折れ曲がった状態を「ヒンジHが形成された」と表現する。
特開2001−227192号公報
Here, the hinge phenomenon will be described with reference to FIGS.
As shown in FIG. 17A, the vibration suppression brace 100 includes an axial force member 101 and a restraining member 102. The axial force member 101 has a plasticizing portion 103 and a stiffening portion 104.
When an excessive compressive force is applied to the damping brace 100, the end of the axial force member 101 protruding from the restraining member 102, that is, the portion whose rigidity is compensated by the stiffening portion 104 is out of the plane of the axial force member 101. There is a possibility of deformation in the direction, that is, the normal direction of the surface. More specifically, as shown in FIGS. 17B and 17C, the end portion of the axial force member 101 compresses the adhesion preventing coating (not shown) while the plasticizing portion 103 and the stiffening portion 104. Deforms as if the hinge rotates around the boundary of This phenomenon is called a hinge phenomenon, and the state where the end portion of the axial force member 101 is plastically deformed and bent is expressed as “the hinge H is formed”.
JP 2001-227192 A

塑性化部103と補剛部104との境界付近のヒンジ現象は、実際には、軸力部材101の端部とガセットプレート110との接合部に十分な剛性が確保されている限り起こり得ないが、この部分に与えられた剛性を上回る圧縮力が作用した場合には、軸力部材101の端部とガセットプレート110との境界付近を中心として、同様のヒンジ現象が起こり得る。このように、塑性化部103と補剛部104との境界付近、ならびに軸力部材101の端部とガセットプレート110との境界付近にヒンジ現象が起こり得る状況では、制振ブレース100に3つまたは4つのヒンジHが形成され、制振ブレース100の挙動が不安定になる。   The hinge phenomenon in the vicinity of the boundary between the plasticized portion 103 and the stiffening portion 104 cannot actually occur as long as sufficient rigidity is secured at the joint portion between the end portion of the axial force member 101 and the gusset plate 110. However, when a compressive force exceeding the rigidity given to this portion is applied, a similar hinge phenomenon can occur around the boundary between the end of the axial force member 101 and the gusset plate 110. Thus, in a situation where a hinge phenomenon may occur near the boundary between the plasticizing portion 103 and the stiffening portion 104 and near the boundary between the end portion of the axial force member 101 and the gusset plate 110, there are three vibration damping braces 100. Alternatively, four hinges H are formed, and the behavior of the damping brace 100 becomes unstable.

本発明は上記の事情に鑑みてなされたものであり、軸力部材の端部にヒンジ現象が生じることがなく、軸力部材の端部が不安定な挙動を示さないようにすることで、軸力部材が設計で意図した剛性・耐力を発揮して振動エネルギーを十分に吸収することできる制振ブレースおよび構造物を提供すること目的としている。   The present invention has been made in view of the above circumstances, the hinge phenomenon does not occur at the end of the axial force member, and the end of the axial force member does not exhibit unstable behavior, It is an object of the present invention to provide a damping brace and a structure in which an axial force member can sufficiently absorb vibration energy by exhibiting the rigidity and proof strength intended by the design.

上記の課題を解決するための手段として、次のような構成の制振ブレースおよび構造物を採用する。
すなわち本発明の制振ブレースは、軸方向に作用する引張力または圧縮力に対して耐力を発揮する軸力部材と、前記軸力部材の周囲に設けられて該軸力部材を拘束する拘束部材と、前記軸力部材の端部に設けられて前記軸力部材の剛性を補う補剛部と、前記拘束部材と前記補剛部との間に設けられて両者の付着を防止する付着防止体とを備える制振ブレースにおいて、
前記軸力部材に前記圧縮力が作用した場合に、前記軸力部材の端部が前記軸方向に対してある角度よりも大きく回転しないように、前記補剛部の前記軸方向の長さと、前記補剛部と前記拘束部材との隙間の大きさとが設定され、かつ前記軸力部材と前記拘束部材との隙間が、前記補剛部と前記拘束部材との隙間よりも大きいことを特徴とする。
As means for solving the above-mentioned problems, a vibration-damping brace and a structure having the following configuration are employed.
That is, the vibration-damping brace of the present invention includes an axial force member that exhibits a proof strength against a tensile force or a compressive force acting in the axial direction, and a restraining member that is provided around the axial force member and restrains the axial force member. A stiffening portion provided at an end portion of the axial force member to supplement the rigidity of the axial force member, and an adhesion preventing body provided between the restraining member and the stiffening portion to prevent adhesion of both. In the vibration suppression brace comprising
The axial length of the stiffening portion so that the end of the axial force member does not rotate more than a certain angle with respect to the axial direction when the compressive force is applied to the axial force member; The size of the gap between the stiffening portion and the restraining member is set, and the gap between the axial force member and the restraining member is larger than the gap between the stiffening portion and the restraining member. To do.

補剛部は、軸力部材の端部の剛性を補うために必要であるが、軸力部材に上記のようなヒンジ現象が生じると、軸力部材の端部が不安定な挙動を示し、制振ブレースが設計で意図した剛性・耐力を発揮できず、振動エネルギーを十分に吸収できなくなる。上記のようなヒンジ現象を防止するには、拘束部材と補剛部との間に隙間を設けなければよいが、両者間に隙間がないと軸力部材が所期の機能を果たさなくなるので、拘束部材と補剛部との間に隙間は必要である。そこで本発明においては、補剛部の軸方向の長さと、補剛部と拘束部材との隙間の大きさとを適切に設定し、軸力部材に圧縮力が作用した場合に、軸力部材の端部が軸方向に対してある角度よりも大きく回転しないようにすることにより、軸力部材の端部にヒンジ現象が生じることがなく、軸力部材の端部が不安定な挙動を示さなくなる。   The stiffening part is necessary to supplement the rigidity of the end of the axial force member, but when the hinge phenomenon as described above occurs in the axial force member, the end of the axial force member exhibits an unstable behavior, The damping brace cannot exhibit the rigidity and proof strength intended by the design, and the vibration energy cannot be absorbed sufficiently. In order to prevent the hinge phenomenon as described above, there is no need to provide a gap between the restraining member and the stiffening portion, but if there is no gap between the two, the axial force member will not perform its intended function. A gap is required between the restraining member and the stiffening portion. Therefore, in the present invention, when the axial length of the stiffening portion and the size of the gap between the stiffening portion and the restraining member are appropriately set and a compressive force is applied to the axial force member, the axial force member By preventing the end from rotating more than a certain angle with respect to the axial direction, the end of the axial force member does not cause a hinge phenomenon, and the end of the axial force member does not exhibit unstable behavior. .

本発明の制振ブレースは、前記ある角度が1/75rad(ラジアン)に規定され、前記補剛部の前記軸方向の長さが150mm(ミリメートル)以上に設定されていることが望ましい。
軸力部材の端部に許容される回転角度が1/75rad以下であれば、軸力部材の端部にヒンジ現象が生じることがなく、軸力部材の端部が不安定な挙動を示さない。また、補剛部の軸方向の長さが150mmよりも短ければ、軸力部材に端部破壊が生じる。
In the vibration suppression brace of the present invention, it is preferable that the certain angle is defined as 1/75 rad (radian), and the axial length of the stiffening portion is set to 150 mm (millimeters) or more.
If the rotation angle allowed at the end of the axial force member is 1/75 rad or less, the end of the axial force member will not be hinged, and the end of the axial force member will not show unstable behavior. . Further, if the axial length of the stiffening portion is shorter than 150 mm, the end portion breakage occurs in the axial force member.

本発明の制振ブレースは、前記拘束部材と前記補剛部との隙間の大きさが1mm(ミリメートル)以下に設定されていることが望ましい。
拘束部材と補剛部との隙間の大きさが1mmよりも大きくても、軸力部材の端部に許容される回転角度が1/75rad以下であればヒンジ現象が生じることはないが、拘束部材と補剛部との隙間があまりに大きくなると、拘束部材が所期の機能を果たさなくなる。
本発明の制振ブレースは、前記軸力部材の端部に、構造物に接合されるピン継手が設けられていることが望ましい。
In the vibration damping brace of the present invention, it is preferable that the size of the gap between the restraining member and the stiffening portion is set to 1 mm (millimeters) or less.
Even if the size of the gap between the restraining member and the stiffening portion is larger than 1 mm, the hinge phenomenon does not occur if the rotation angle allowed at the end of the axial force member is 1/75 rad or less. If the gap between the member and the stiffening portion becomes too large, the restraining member will not perform its intended function.
In the damping brace of the present invention, it is desirable that a pin joint to be joined to the structure is provided at an end of the axial force member.

本発明の構造物は、柱と梁とからなるラーメン構造の骨組みに、上記本発明の制振ブレースが設置されていることを特徴とする。
本発明の構造物は、前記制振ブレースが、前記骨組みにピン接合されていることが望ましい。
構造物と制振ブレースとが、例えばスプライスプレートを使用して剛に接合されると、柱と梁とからなるラーメン構造の構造物が層間変形を起こしたとき、スプライスプレートを固着された軸力部材の端部に曲げモーメントが生じ、軸力部材の端部に回転変形を起こさせる原因となる。軸力部材の所期の機能は、軸方向に作用する引張力または圧縮力に対して耐力を発揮することであるから、軸力部材の端部にピン継手を設け、構造物に対しピン接合することにより、構造物が層間変形を起こしたときでも、軸力部材の端部に曲げモーメントが生じることがない。
The structure of the present invention is characterized in that the vibration-damping brace of the present invention is installed on a framework of a ramen structure composed of columns and beams.
In the structure of the present invention, it is desirable that the vibration-damping brace is pin-joined to the frame.
When the structure and the damping brace are rigidly joined using, for example, a splice plate, the axial force with which the splice plate is fixed when the rigid frame structure consisting of columns and beams undergoes interlayer deformation. A bending moment is generated at the end of the member, causing rotational deformation at the end of the axial force member. The intended function of the axial force member is to exert a proof strength against the tensile or compressive force acting in the axial direction. Therefore, a pin joint is provided at the end of the axial force member, and the pin is joined to the structure. Thus, even when the structure undergoes interlayer deformation, no bending moment is generated at the end of the axial force member.

本発明によれば、補剛部の軸方向の長さと、補剛部と拘束部材との隙間の大きさとを適切に設定し、軸力部材に圧縮力が作用した場合に、軸力部材の端部が軸方向に対してある角度よりも大きく回転しないようにすることにより、軸力部材の端部にヒンジ現象が生じることがなく、軸力部材の端部が不安定な挙動を示さないので、軸力部材が設計で意図した剛性・耐力を発揮し、振動エネルギーを十分に吸収することができる。   According to the present invention, when the axial length of the stiffening portion and the size of the gap between the stiffening portion and the restraining member are appropriately set and a compressive force is applied to the axial force member, the axial force member By preventing the end portion from rotating more than a certain angle with respect to the axial direction, the end portion of the axial force member does not cause a hinge phenomenon, and the end portion of the axial force member does not exhibit unstable behavior. Therefore, the axial force member can exhibit the rigidity and proof strength intended by the design, and can sufficiently absorb vibration energy.

[第1実施形態]
本発明の第1実施形態を、図を参照して説明する。
制振ブレース1は、図1(A)〜(C)に示すように、軸方向に作用する引張力または圧縮力に対して耐力を発揮する軸力部材2と、軸力部材2の周囲に設けられて軸力部材2を拘束する拘束部材3とを備えている。軸力部材2と拘束部材3との間には、両者の付着を防止する付着防止皮膜(付着防止体)4が設けられている。
[First Embodiment]
A first embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1A to 1C, the damping brace 1 includes an axial force member 2 that exerts a proof force against a tensile force or a compressive force acting in the axial direction, and around the axial force member 2. And a restraining member 3 that restrains the axial force member 2. Between the axial force member 2 and the restraining member 3, an adhesion preventing film (an adhesion preventing body) 4 for preventing the adhesion of both is provided.

軸力部材2は、拘束部材3に周囲を覆われ、所定の大きさ以上の引張力または圧縮力が作用した場合に塑性変形しエネルギーを吸収する塑性化部21と、拘束部材3から突出する塑性化部21の剛性を補う補剛部22と、補剛部22の外側に設けられ、構造物に接合される継手部23とを備えている。軸力部材2は、均一な厚さの一枚の鋼板によって形成されており、塑性化部21は、軸力部材2の中央に設けられている。塑性化部21の両外側には、塑性化部21よりも幅の広い第1の拡幅部24が設けられ、さらにその外側に第1の拡幅部24よりも幅の広い第2の拡幅部25が設けられている。   The axial force member 2 is covered with the restraining member 3 and protrudes from the restraining member 3 with a plasticizing portion 21 that plastically deforms and absorbs energy when a tensile force or compressive force of a predetermined magnitude or larger is applied. A stiffening portion 22 for supplementing the rigidity of the plasticizing portion 21 and a joint portion 23 provided outside the stiffening portion 22 and joined to the structure are provided. The axial force member 2 is formed of a single steel plate having a uniform thickness, and the plasticizing portion 21 is provided at the center of the axial force member 2. A first widened portion 24 wider than the plasticized portion 21 is provided on both outer sides of the plasticized portion 21, and a second widened portion 25 wider than the first widened portion 24 on the outer side. Is provided.

軸力部材2の両端部には、第1、第2の拡幅部24,25に沿って補剛リブ5が設けられている。補剛リブ5は、軸力部材2と同じく均一な厚さの鋼板によって形成されており、軸力部材2の両側面に、補剛部22および継手部23に沿って配設され、軸力部材2に突き当てられた部分を軸方向に沿って溶接されている。補剛リブ5には、第1の拡幅部24に沿う部分に、第1の拡幅部24とともに上述した補剛部22を構成する第3の拡幅部51が設けられ、第2の拡幅部25に沿う部分に、第3の拡幅部51よりも幅が広く、第2の拡幅部25とともに継手部23を構成する第4の拡幅部52が設けられている。   Stiffening ribs 5 are provided at both ends of the axial force member 2 along the first and second widened portions 24 and 25. The stiffening rib 5 is formed of a steel plate having a uniform thickness similar to the axial force member 2, and is disposed on both side surfaces of the axial force member 2 along the stiffening portion 22 and the joint portion 23. The portion abutted against the member 2 is welded along the axial direction. The stiffening rib 5 is provided with a third widening portion 51 that constitutes the stiffening portion 22 described above together with the first widening portion 24 at a portion along the first widening portion 24, and the second widening portion 25. A fourth widened portion 52 that is wider than the third widened portion 51 and that forms the joint portion 23 together with the second widened portion 25 is provided in the portion along the line.

拘束部材3は、軸力部材2の周囲に配設された補強用の鋼管31と、鋼管31と軸力部材2との間に打設されて硬化したコンクリート32とを備えている。軸力部材2の表面には、コンクリート32の打設に先んじて付着防止皮膜4が施工され、硬化した後のコンクリート32と軸力部材2との付着が防止される。   The restraining member 3 includes a reinforcing steel pipe 31 disposed around the axial force member 2 and a concrete 32 that is placed between the steel pipe 31 and the axial force member 2 and hardened. The adhesion preventing film 4 is applied on the surface of the axial force member 2 prior to the placement of the concrete 32, and adhesion between the concrete 32 after being hardened and the axial force member 2 is prevented.

付着防止皮膜4は、軸力部材2の表面に塗布された粘弾塑性材料や塗料等によって構成されている。付着防止皮膜4は、軸力部材2と拘束部材3との付着を防止するばかりでなく、軸力部材2に圧縮力が作用した場合に、断面を膨張させるようにして起こる軸力部材2の変形を許容する。付着防止皮膜4が設けられることにより、拘束部材3に周囲を覆われる軸力部材2とコンクリート32とは、付着防止被膜4の膜厚分だけ離間している。上述したように、付着防止皮膜4は、コンクリート32の打設に先んじて軸力部材2の表面に施工されるので、拘束部材3に周囲を覆われる軸力部材2の表面とコンクリート32との隙間は、事前に施工される付着防止皮膜4の厚さに依存する。そこで本実施形態の制振ブレース1では、補剛リブ5の側縁5aとコンクリート32との隙間が、付着防止皮膜4の施工精度を高めるなどして厳密に管理される。   The adhesion preventing film 4 is composed of a viscoelastic plastic material or paint applied to the surface of the axial force member 2. The adhesion preventing film 4 not only prevents adhesion between the axial force member 2 and the restraining member 3 but also causes the cross-sectional expansion of the axial force member 2 that occurs when a compressive force acts on the axial force member 2. Allow deformation. By providing the adhesion preventing film 4, the axial force member 2 and the concrete 32 covered by the restraining member 3 are separated from each other by the film thickness of the adhesion preventing film 4. As described above, the adhesion preventing film 4 is applied to the surface of the axial force member 2 prior to the placement of the concrete 32, so that the surface of the axial force member 2 covered with the restraining member 3 and the concrete 32 The gap depends on the thickness of the anti-adhesion coating 4 that is applied in advance. Therefore, in the vibration damping brace 1 of the present embodiment, the gap between the side edge 5a of the stiffening rib 5 and the concrete 32 is strictly managed by increasing the construction accuracy of the adhesion preventing film 4 or the like.

上記のように構成された制振ブレース1が設置された構造物を図2に示す。この構造物には、鋼製の柱6と梁7とからなるラーメン構造が採用されており、この構造物の各階の層間に、2本の制振ブレース1が設置されている。一方の制振ブレース1の上端の接合部は、上階の梁7の中央に溶接されたガセットプレート8aにボルト接合され、下端の接合部は、一方の柱6と下階の梁7との接合部分に溶接されたガセットプレート8bにボルト接合されている。他方の制振ブレース1の上端の接合部は、上述したガセットプレート8aにボルト接合され、下端の接合部は、他方の柱6と下階の梁7との接合部分に溶接されたガセットプレート8cにボルト接合されている。いずれの制振ブレース1も、軸力部材2の構面を柱6と梁7とによって構成される構面と平行に、すなわち構面を一致させて配置されている。   FIG. 2 shows a structure in which the damping brace 1 configured as described above is installed. In this structure, a ramen structure composed of steel columns 6 and beams 7 is employed, and two damping braces 1 are installed between the layers of each floor of the structure. The joint at the upper end of one damping brace 1 is bolted to a gusset plate 8a welded to the center of the beam 7 on the upper floor, and the joint at the lower end is connected to one column 6 and the beam 7 on the lower floor. It is bolted to a gusset plate 8b welded to the joint portion. The joint portion at the upper end of the other damping brace 1 is bolted to the gusset plate 8a described above, and the joint portion at the lower end is welded to the joint portion between the other column 6 and the beam 7 on the lower floor. It is bolted. Any of the vibration-damping braces 1 is arranged such that the composition surface of the axial force member 2 is parallel to the composition surface constituted by the columns 6 and the beams 7, that is, the composition surfaces are matched.

制振ブレース1の下方の継手部23をガセットプレート8bにボルト接合された部分(図2において符号Eで示した部分)の詳細を図3に示す。ガセットプレート8bには、構面外リブ9が、柱6に届くまで延長されて溶接されている。軸力部材2とガセットプレート8bとは、2枚1組のスプライスプレート10を2組使用して補剛リブ5の両側の2箇所を挟まれ、ボルト10aを用いて締着されている。同様に、補剛リブ5と構面外リブ9とが、2枚1組のスプライスプレート10を2組使用して軸力部材2の両側の2箇所を挟まれ、ボルト(図示略)を用いて締着されている。   FIG. 3 shows details of a portion (a portion indicated by symbol E in FIG. 2) in which the joint portion 23 below the vibration brace 1 is bolted to the gusset plate 8b. The gusset plate 8b is welded with the outer rib 9 extending until it reaches the column 6. The axial force member 2 and the gusset plate 8b are clamped with two bolts 10a between two sides of the stiffening rib 5 using two sets of two splice plates 10. Similarly, the stiffening rib 5 and the out-of-plane rib 9 are sandwiched between two locations on both sides of the axial force member 2 by using two sets of two splice plates 10 and using bolts (not shown). It is tightened.

上記のように構成された構造物に、地震や風等によって振動エネルギーが作用すると、制振ブレース1には軸方向に引張力または圧縮力が作用する。制振ブレース1は、これらの力を受けて軸力部材2を塑性変形させることにより、振動エネルギーを吸収する。   When vibration energy acts on the structure configured as described above due to an earthquake, wind, or the like, a tensile force or a compressive force acts on the damping brace 1 in the axial direction. The damping brace 1 absorbs vibration energy by receiving these forces and plastically deforming the axial force member 2.

制振ブレース1に引張力が作用する場合、図4(A)に示すように、軸力部材2には、構面内において伸びる方向への変形が生じるが、構面外方向への変形は生じない。制振ブレース1に圧縮力が作用する場合は、図4(B)に示すように、軸力部材2の塑性化部21が、付着防止被膜4を圧縮しながら構面外方向に変位し、続いて軸力部材2の端部が構面外方向に回転変形を生じる。詳述すると、軸力部材2の端部が、付着防止被膜4を圧縮しながら、塑性化部21と補剛部22との境界部分(塑性化部21に臨む補剛リブ5の先端5bが配置される部分)を中心としてあたかもヒンジが回転するかのように変形する。制振ブレース1に圧縮力が作用した状態において、軸力部材2の端部の挙動は、補剛リブ5がコンクリート32に接触するまでは、軸力部材2の曲げ剛性に依存し、補剛リブ5がコンクリート32に接触した後は、コンクリート32のせん断力が十分に小さいとすれば鋼管31の耐力、剛性に依存する。そして、圧縮力の大きさが軸力部材2の弾性変形の限界を超えると、軸力部材2の端部は、あたかもヒンジが回転し折れ曲がったかのように塑性変形する(上述したヒンジ現象)。   When a tensile force acts on the vibration-damping brace 1, as shown in FIG. 4A, the axial force member 2 is deformed in the direction extending in the composition surface, but the deformation in the outward direction of the composition surface is caused. Does not occur. When a compressive force acts on the vibration-damping brace 1, as shown in FIG. 4B, the plasticizing portion 21 of the axial force member 2 is displaced outwardly while compressing the adhesion preventing coating 4, Subsequently, the end portion of the axial force member 2 undergoes rotational deformation in the outward direction of the composition surface. More specifically, the end portion of the axial force member 2 compresses the adhesion preventing coating 4 while the boundary portion between the plasticizing portion 21 and the stiffening portion 22 (the tip 5b of the stiffening rib 5 facing the plasticizing portion 21 is formed). It will be deformed as if the hinge is rotating around the part). The behavior of the end portion of the axial force member 2 in a state where the compressive force is applied to the vibration control brace 1 depends on the bending rigidity of the axial force member 2 until the stiffening rib 5 comes into contact with the concrete 32. After the rib 5 comes into contact with the concrete 32, if the shear force of the concrete 32 is sufficiently small, it depends on the proof stress and rigidity of the steel pipe 31. When the magnitude of the compressive force exceeds the limit of elastic deformation of the axial force member 2, the end portion of the axial force member 2 is plastically deformed as if the hinge is rotated and bent (the above-described hinge phenomenon).

圧縮力が作用することによって軸力部材2の端部に生じる回転角の大きさθは、拘束部材3に覆われた補剛部22の軸方向の長さL、および補剛リブ5の側縁5aとコンクリート32との隙間の大きさtに依存して決定される。すなわち、軸力部材2の端部に生じる回転角θの大きさは、2t/L rad(ラジアン)で表され、拘束部材3に覆われた補剛部22の軸方向の長さLが長いほど小さくなり、短いほど大きくなる。また、軸力部材2の端部に生じる回転角θの大きさは、補剛リブ5の側縁5aとコンクリート32との隙間が小さいほど小さくなり、隙間が大きいほど大きくなる。   The magnitude θ of the rotation angle generated at the end of the axial force member 2 by the action of the compressive force is the axial length L of the stiffening portion 22 covered by the restraining member 3 and the side of the stiffening rib 5. It is determined depending on the size t of the gap between the edge 5a and the concrete 32. That is, the magnitude of the rotation angle θ generated at the end of the axial force member 2 is expressed by 2t / L rad (radian), and the axial length L of the stiffening portion 22 covered by the restraining member 3 is long. The smaller it is, the shorter it becomes. In addition, the magnitude of the rotation angle θ generated at the end of the axial force member 2 decreases as the gap between the side edge 5a of the stiffening rib 5 and the concrete 32 decreases, and increases as the gap increases.

本実施形態の制振ブレース1は、後述する実験結果に基づき、過大な圧縮力が作用しても軸力部材2の端部にヒンジを形成しないように、拘束部材3に覆われた補剛部22の軸方向の長さLが150mm(ミリメートル)以上に規定され、かつ補剛リブ5の側縁5aとコンクリート32との隙間の大きさtが1mm(ミリメートル)以下に規定されている。制振ブレース1は、上記のように規定されることにより、軸力部材2の端部に生じる回転角θの大きさが、1/75rad(ラジアン)以下に制限され、軸力部材2の端部にヒンジが形成されなくなる。   The vibration-damping brace 1 of the present embodiment is based on the experimental results described later, and stiffening covered with the restraining member 3 so that a hinge is not formed at the end of the axial force member 2 even if an excessive compressive force is applied. The length L in the axial direction of the portion 22 is defined as 150 mm (millimeter) or more, and the size t of the gap between the side edge 5a of the stiffening rib 5 and the concrete 32 is defined as 1 mm (millimeter) or less. Since the damping brace 1 is defined as described above, the magnitude of the rotation angle θ generated at the end of the axial force member 2 is limited to 1/75 rad (radian) or less, and the end of the axial force member 2 is limited. No hinge is formed on the part.

以下、本実施形態の制振ブレース1について、拘束部材3に覆われた補剛部22の軸方向の長さL、および補剛リブ5の側縁5aとコンクリート32との隙間の大きさtを規定するために、本実施形態の制振ブレース1について本発明者が行った実験について説明する。
本発明者は、制振ブレース1に圧縮力および引張力を作用させて制振ブレース1に変形を生じさせ、軸力部材2の軸方向の変形量δと、軸力部材2の端部に生じる回転角θの大きさとの関係を調べた。ここで、軸力部材2の軸方向の変形量δ、ならびに軸力部材2の端部に生じる回転角θは、次のように定義した。すなわち、図5(A)に示すように、制振ブレース1が直線的な形状を保っている状態から、制振ブレース1に圧縮力を作用させ、図5(B)に示すように、制振ブレース1がヒンジhを形成して屈曲した状態となったとき、軸力部材2の軸方向の変形量をδとし、塑性化部21に対して補剛部22、継手部23がなす角をθとした。なお、図5(A)の状態では、実際には制振ブレース1にヒンジhは形成されないが、図5(B)と対比させる意味で、図5(A)の制振ブレース1にはヒンジhを記載してある。
Hereinafter, regarding the damping brace 1 of the present embodiment, the axial length L of the stiffening portion 22 covered with the restraining member 3 and the size t of the gap between the side edge 5a of the stiffening rib 5 and the concrete 32 are described. Therefore, an experiment conducted by the present inventor on the vibration damping brace 1 of the present embodiment will be described.
The inventor causes the damping brace 1 to be deformed by applying a compressive force and a tensile force to the damping brace 1, and the axial deformation amount δ of the axial force member 2 and the end of the axial force member 2 are The relationship with the magnitude of the generated rotation angle θ was examined. Here, the axial deformation amount δ of the axial force member 2 and the rotation angle θ generated at the end of the axial force member 2 were defined as follows. That is, as shown in FIG. 5 (A), a compression force is applied to the damping brace 1 from a state where the damping brace 1 maintains a linear shape, and as shown in FIG. When the vibration brace 1 is bent by forming the hinge h, the axial deformation amount of the axial force member 2 is δ, and the angle formed by the stiffening portion 22 and the joint portion 23 with respect to the plasticized portion 21. Was defined as θ. In the state of FIG. 5A, the hinge h is not formed on the vibration suppression brace 1 in practice, but the vibration suppression brace 1 of FIG. 5A has a hinge for the purpose of comparison with FIG. h is described.

実験に使用した載荷装置200を図6に示す。載荷装置200は、基台201上に、軸力部材2の一端を接合されて定位置に留まる反力治具202と、軸力部材2の他端を接合されて軸方向に移動自在に支持されている加力治具203とを備えている。加力治具203には、加力治具203を介して制振ブレース1に圧縮力および引張力を選択的に作用させるジャッキ(図示略)が連結される。   FIG. 6 shows a loading device 200 used in the experiment. The loading device 200 is supported on the base 201 so that one end of the axial force member 2 is joined and stayed in a fixed position, and the other end of the axial force member 2 is joined and movable in the axial direction. And an applied force jig 203. A jack (not shown) for selectively applying a compressive force and a tensile force to the damping brace 1 is connected to the force applying jig 203 via the force applying jig 203.

軸力部材2の軸歪4%を目標に制振ブレース1に圧縮力および引張力を作用させると、図7(A)に示すような実験結果が得られた。制振ブレース1に圧縮力を作用させた場合、軸方向の負の変形量がある程度大きくなっても、軸力部材2の端部に生じる回転角θの大きさは、ある程度以上大きくはならなくなっている。制振ブレース1に引張力を作用させた場合は、軸方向の正の変形量が軸力部材2の初期歪によってもたらされたとすると、軸力部材2の端部に生じる回転角θの大きさは、約1/75rad程度に抑えられている。これは、軸力部材2の端部の回転が、補剛リブ5の側縁5aとコンクリート32との隙間の分だけは許容されたが、それ以上の回転がコンクリート32および鋼管31の抵抗によって抑えられたことによる。
軸力部材2の軸歪2%を目標に制振ブレース1に圧縮力および引張力を作用させると、図7(B)に示すように、軸力部材2の軸方向の変形量δは少ないものの上記と同様の傾向が見られた。
When compressive force and tensile force were applied to the damping brace 1 with the target of 4% axial strain of the axial force member 2, experimental results as shown in FIG. 7A were obtained. When compressive force is applied to the damping brace 1, even if the amount of negative deformation in the axial direction increases to some extent, the magnitude of the rotation angle θ generated at the end of the axial force member 2 does not increase beyond a certain level. ing. When a tensile force is applied to the damping brace 1, assuming that a positive amount of axial deformation is caused by the initial strain of the axial force member 2, the rotation angle θ generated at the end of the axial force member 2 is large. The height is suppressed to about 1/75 rad. This is because the rotation of the end portion of the axial force member 2 is allowed only by the gap between the side edge 5a of the stiffening rib 5 and the concrete 32, but the further rotation is caused by the resistance of the concrete 32 and the steel pipe 31. Because it was suppressed.
When compressive force and tensile force are applied to the damping brace 1 with the target of 2% axial strain of the axial force member 2, the axial deformation amount δ of the axial force member 2 is small as shown in FIG. However, the same tendency as above was observed.

上記の実験では、軸力部材2の端部が折れ曲がることはなく、軸力部材2にヒンジが形成されることはなかった。実験での載荷条件は、構造物の層間変形に対して軸力部材の構面全体で追従する場合に対応したものとなっており、軸力部材2の端部に偏心圧縮力は作用していない。また、拘束部材3に覆われた補剛部22の軸方向の長さLが十分であったこともヒンジが形成されなかった要因と考えられる。   In the experiment described above, the end of the axial force member 2 was not bent, and no hinge was formed on the axial force member 2. The loading conditions in the experiment correspond to the case where the entire surface of the axial force member follows the interlayer deformation of the structure, and the eccentric compressive force acts on the end of the axial force member 2. Absent. Further, the fact that the length L in the axial direction of the stiffening portion 22 covered with the restraining member 3 is sufficient is considered to be a factor that the hinge is not formed.

本実施形態においては、軸力部材2の構面を、柱6と梁7とによって構成される構面と平行に配置しているが、軸力部材2の構面を、柱6と梁7とによって構成される構面に対して垂直に配置しても、上記と同等の効果が得られる。図8に示すように、補剛リブ5とガセットプレート8bとは、2枚1組のスプライスプレート10を2組使用して軸力部材2の両側の2箇所を挟まれ、ボルト10aを用いて締着されている。同様に、軸力部材2と構面外リブ9とが、2枚1組のスプライスプレート10を2組使用して補剛リブ5の両側の2箇所を挟まれ、ボルト(図示略)を用いて締着されている。   In the present embodiment, the construction surface of the axial force member 2 is arranged in parallel to the construction surface constituted by the columns 6 and the beams 7. The same effect as described above can be obtained even if it is arranged perpendicularly to the construction surface constituted by. As shown in FIG. 8, the stiffening rib 5 and the gusset plate 8b are sandwiched between two portions on both sides of the axial force member 2 using two sets of two splice plates 10 and using bolts 10a. It is fastened. Similarly, the axial force member 2 and the out-of-plane rib 9 are sandwiched between two locations on both sides of the stiffening rib 5 using two sets of two splice plates 10 and bolts (not shown) are used. It is tightened.

[第2実施形態]
本発明の第2実施形態を、図を参照して説明する。なお、上記第1実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態の制振ブレース1には、図9(A),(B)に示すように、軸力部材2と同じ長さの補剛リブ53が設けられている。補剛リブ53は、軸力部材2と同じく均一な厚さの鋼板によって形成されており、軸力部材2の両端部にそれぞれ設けられた2つの補剛リブ5を、塑性化部21に沿って配設された連結バー54を介して連結したような形状をなしている。補剛リブ53は、軸力部材2の両側面に配置され、軸力部材2に突き当てられた部分を軸方向に沿って溶接されている。連結バー54は、軸力部材2の塑性化部21の剛性を補う。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the component already demonstrated in the said 1st Embodiment, and description is abbreviate | omitted.
As shown in FIGS. 9A and 9B, the vibration damping brace 1 of the present embodiment is provided with a stiffening rib 53 having the same length as the axial force member 2. The stiffening rib 53 is formed of a steel plate having the same thickness as the axial force member 2, and the two stiffening ribs 5 provided at both ends of the axial force member 2 are arranged along the plasticized portion 21. The connection bar 54 is arranged through a connection bar 54 arranged in the form of a connector. The stiffening ribs 53 are disposed on both side surfaces of the axial force member 2 and welded along the axial direction at portions abutted against the axial force member 2. The connecting bar 54 supplements the rigidity of the plasticizing portion 21 of the axial force member 2.

本実施形態の制振ブレース1は、上記第1実施形態と同様に、拘束部材3に覆われた補剛部22の軸方向の長さLが150mm以上に規定され、かつ補剛リブ5の側縁5aとコンクリート32との隙間の大きさtが1mm以下に規定されている。本実施形態の制振ブレース1も、上記のように規定されることにより、軸力部材2の端部に生じる回転角の大きさθが、1/75rad以下に制限され、軸力部材2の端部にヒンジが形成されなくなる。   In the vibration damping brace 1 of the present embodiment, the axial length L of the stiffening portion 22 covered by the restraining member 3 is defined to be 150 mm or more, and the stiffening rib 5 is similar to the first embodiment. The size t of the gap between the side edge 5a and the concrete 32 is defined to be 1 mm or less. The vibration damping brace 1 of the present embodiment is also regulated as described above, so that the magnitude θ of the rotation angle generated at the end of the axial force member 2 is limited to 1/75 rad or less. No hinge is formed at the end.

以下、本実施形態の制振ブレース1について、拘束部材3に覆われた補剛部22の軸方向の長さL、および補剛リブ5の側縁5aとコンクリート32との隙間の大きさtを規定するために、本実施形態の制振ブレース1について本発明者が行った実験について説明する。
本発明者は、制振ブレース1を、鋼製の柱6と梁7とからなる構造物に、軸力部材2の構面を柱6と梁7とによって構成される構面と平行に配置して取り付けた。そして、この構造物に層間変形を生じさせるようにして、軸力部材2の軸歪2%を目標に制振ブレース1に圧縮力および引張力を作用させ、軸力部材2の軸方向の変形量δと軸力部材2の端部に生じる回転角θの大きさとの関係を調べた。この場合も、図10に示すように、軸力部材2の軸方向の変形量δは少ないものの上記第1実施形態について行った実験と同様の傾向が見られた。
Hereinafter, regarding the damping brace 1 of the present embodiment, the axial length L of the stiffening portion 22 covered with the restraining member 3 and the size t of the gap between the side edge 5a of the stiffening rib 5 and the concrete 32 are described. Therefore, an experiment conducted by the present inventor on the vibration damping brace 1 of the present embodiment will be described.
The inventor arranges the damping brace 1 on a structure composed of a steel column 6 and a beam 7 and arranges the surface of the axial force member 2 in parallel with the surface formed by the column 6 and the beam 7. And attached. Then, by causing interlayer deformation in the structure, compressive force and tensile force are applied to the damping brace 1 with the target of 2% axial strain of the axial force member 2, and the axial force member 2 is deformed in the axial direction. The relationship between the amount δ and the magnitude of the rotation angle θ generated at the end of the axial force member 2 was examined. Also in this case, as shown in FIG. 10, the tendency similar to the experiment performed for the first embodiment was observed although the axial deformation amount δ of the axial force member 2 was small.

[第3実施形態]
本発明の第3実施形態を、図を参照して説明する。なお、上記の各実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態の制振ブレース1には、図11(A),(B)に示すように、軸力部材2が2本設けられている。これら2本の軸力部材2は、等間隔に離間して平行に配列されており、それぞれの軸力部材2にひとつずつ補剛リブ5が設けられている。この制振ブレース1が構造物に設置される際には、2本の軸力部材2の端部間にガセットプレート8a(または8b,8c)が挿入され、スプライスプレートを用いずにボルト結合される。なお、補剛リブ5は、スプライスプレートを用いてボルト結合しても構わない。
[Third Embodiment]
A third embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the component already demonstrated in said each embodiment, and description is abbreviate | omitted.
As shown in FIGS. 11A and 11B, the vibration damping brace 1 of the present embodiment is provided with two axial force members 2. These two axial force members 2 are arranged in parallel at equal intervals, and one stiffening rib 5 is provided for each axial force member 2. When this damping brace 1 is installed in a structure, a gusset plate 8a (or 8b, 8c) is inserted between the ends of the two axial force members 2, and is bolted without using a splice plate. The The stiffening rib 5 may be bolted using a splice plate.

[第4実施形態]
本発明の第4実施形態を、図を参照して説明する。なお、上記の各実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態の制振ブレース1にも、図12(A),(B)に示すように、軸力部材2が2本設けられており、それぞれの軸力部材2に拘束部材3がひとつずつ設けられている。
[Fourth Embodiment]
A fourth embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the component already demonstrated in said each embodiment, and description is abbreviate | omitted.
As shown in FIGS. 12A and 12B, the damping brace 1 of the present embodiment is also provided with two axial force members 2, and each axial force member 2 has one restraining member 3. Is provided.

[第5実施形態]
本発明の第5実施形態を、図を参照して説明する。なお、上記の各実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
図13(A)〜(D)には、上記の各実施形態に示した拘束部材3の変形例を示す。図13(A)に示す拘束部材3aは、上記第1、第2実施形態の拘束部材3の代替品として使用される。この拘束部材3aは、2本の溝形鋼33と2本の平鋼34とを組み合わせたものである。各溝形鋼33は、互いのウエブ背面で軸力部材2の塑性化部21を挟むように配置されている。各平鋼34は、塑性化部21を挟んで隣り合う溝形鋼33のフランジ面に沿って配置されている。溝形鋼33と平鋼34は、それぞれボルト35を用いて締結されている。
[Fifth Embodiment]
A fifth embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the component already demonstrated in said each embodiment, and description is abbreviate | omitted.
13A to 13D show modifications of the restraining member 3 shown in each of the above embodiments. A restraining member 3a shown in FIG. 13 (A) is used as an alternative to the restraining member 3 of the first and second embodiments. This restraining member 3 a is a combination of two channel steels 33 and two flat steels 34. Each channel steel 33 is arrange | positioned so that the plasticizing part 21 of the axial force member 2 may be pinched | interposed by the mutual web back surface. Each flat steel 34 is arranged along the flange surface of the adjacent channel steel 33 across the plasticized portion 21. The channel steel 33 and the flat steel 34 are fastened with bolts 35, respectively.

図13(B)に示す拘束部材3bは、上記第3実施形態の拘束部材3の代替品として使用される。この拘束部材3bは、4本の山形鋼36を組み合わせたものである。各山形鋼36は、直角に突き出す背面を、塑性化部21と連結バー54との間に形成される直角の溝面に沿わせるように配置されている。各山形鋼36は、隣り合うものどうしが、フランジ面で塑性化部21または連結バー54を挟み、それぞれボルト35を用いて締結されている。   A restraining member 3b shown in FIG. 13B is used as an alternative to the restraining member 3 of the third embodiment. This restraining member 3 b is a combination of four angle steels 36. Each angle steel 36 is arranged so that a back surface protruding at a right angle follows a right-angled groove surface formed between the plasticizing portion 21 and the connecting bar 54. Adjacent ones of the angle steels 36 are fastened using bolts 35 with the plasticized portion 21 or the connecting bar 54 sandwiched between the flange surfaces.

図13(C)に示す拘束部材3cは、上記第1、第2実施形態の拘束部材3の代替品として使用される。この拘束部材3cは、矩形断面を有する2本の箱形鋼37と2本の平鋼34とを組み合わせたものである。各箱形鋼37は、互いの側面で軸力部材2の塑性化部21を挟むように配置されている。各平鋼34は、塑性化部21を挟んで隣り合う箱形鋼37の側面に沿って配置されている。箱形鋼37と平鋼34は、溶接によって固着されている。   A restraining member 3c shown in FIG. 13C is used as an alternative to the restraining member 3 of the first and second embodiments. The restraining member 3c is a combination of two box steels 37 and two flat steels 34 having a rectangular cross section. Each box-shaped steel 37 is arrange | positioned so that the plasticizing part 21 of the axial force member 2 may be pinched | interposed by the mutual side surface. Each flat steel 34 is arranged along the side surface of the box-shaped steel 37 adjacent on both sides of the plasticized portion 21. The box steel 37 and the flat steel 34 are fixed by welding.

図13(D)に示す拘束部材3dは、上記第3実施形態の拘束部材3の代替品として使用される。この拘束部材3dは、矩形断面を有する4本の箱形鋼38と4本の平鋼34とを組み合わせたものである。各箱形鋼38は、隣り合う2つの側面を、塑性化部21と連結バー54との間に形成される直角の溝面に沿わせるように配置されている。各平鋼34は、塑性化部21を挟んで隣り合う箱形鋼38の側面に沿って配置されている。箱形鋼38と平鋼34は、溶接によって固着されている。   A restraining member 3d shown in FIG. 13D is used as an alternative to the restraining member 3 of the third embodiment. This restraining member 3d is a combination of four box-shaped steels 38 and four flat steels 34 having a rectangular cross section. Each box-shaped steel 38 is arranged so that two adjacent side surfaces are along a right-angled groove surface formed between the plasticizing portion 21 and the connecting bar 54. Each flat steel 34 is arranged along the side surface of the box-shaped steel 38 adjacent to the plasticized portion 21. The box steel 38 and the flat steel 34 are fixed by welding.

[第6実施形態]
本発明の第6実施形態を、図を参照して説明する。なお、上記の各実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態の制振ブレース1には、図14(A),(B)に示すように、継手部23として、構造物にピン接合されるピン接合ブロック(ピン継手)60が設けられている。ピン接合ブロック60には、2つの軸支部61が平行に離間して設けられており、各軸支部61に、ピン孔62がそれぞれ形成されている。
この制振ブレース1が構造物に設置される際には、2つの軸支部61間にガセットプレート8a(または8b,8c)が挿入され、ピン孔62およびガセットプレート8aに形成されたピン孔8dに回動自在にピン(図示略)が装着される。
[Sixth Embodiment]
A sixth embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the component already demonstrated in said each embodiment, and description is abbreviate | omitted.
As shown in FIGS. 14A and 14B, the vibration damping brace 1 of the present embodiment is provided with a pin joint block (pin joint) 60 that is pin-joined to a structure as the joint portion 23. . Two pin support portions 61 are provided in the pin joint block 60 so as to be separated from each other in parallel, and a pin hole 62 is formed in each shaft support portion 61.
When the vibration brace 1 is installed in the structure, the gusset plate 8a (or 8b, 8c) is inserted between the two shaft support portions 61, and the pin hole 62 and the pin hole 8d formed in the gusset plate 8a. A pin (not shown) is rotatably mounted on.

制振ブレースが設置された構造物に、地震や風等によって振動エネルギーが作用し、構造物が層間変形を生じると、制振ブレースの端部がスプライスプレート10を用いて柱6と梁7との接合部分に剛に接合されている場合、制振ブレースの端部には、柱6と梁7との構面内方向に曲げモーメントが生じるが、上記のように制振ブレース1が構造物にピン接合されている場合は、制振ブレース1の端部が回動するため、曲げモーメントは生じず、制振ブレース1には引張力または圧縮力のいずれかしか作用しなくなるので、制振ブレース1の特性を十分に発揮することができる。   When vibration energy acts on the structure where the vibration suppression brace is installed due to an earthquake or wind, and the structure undergoes interlayer deformation, the end of the vibration suppression brace is connected to the column 6 and the beam 7 using the splice plate 10. In the end of the damping brace, a bending moment is generated in the in-plane direction of the column 6 and the beam 7, but the damping brace 1 is structured as described above. Since the end portion of the vibration suppression brace 1 rotates, the bending moment does not occur and only the tensile force or the compression force acts on the vibration suppression brace 1. The characteristics of the brace 1 can be fully exhibited.

[第7実施形態]
本発明の第7実施形態を、図を参照して説明する。なお、上記の各実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態の制振ブレース1は、図15に示すように、補剛リブ5の側縁5aが、軸力部材2の軸方向に対して角度γをなすように傾斜している。拘束部材3も、側縁5aの傾斜に合わせて、コンクリート32の内面が傾斜している。これにより、補剛リブ5の側縁5aとコンクリート32との隙間は等しくなっている。
[Seventh Embodiment]
A seventh embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the component already demonstrated in said each embodiment, and description is abbreviate | omitted.
As shown in FIG. 15, the damping brace 1 of the present embodiment is inclined so that the side edge 5 a of the stiffening rib 5 forms an angle γ with respect to the axial direction of the axial force member 2. The inner surface of the concrete 32 also inclines in the restraint member 3 according to the inclination of the side edge 5a. Thereby, the clearance gap between the side edge 5a of the stiffening rib 5 and the concrete 32 is equal.

上記のように構成された制振ブレース1に圧縮力が作用すると、軸力部材2が軸方向に歪みを生じ、軸力部材2の端部が、拘束部材3の内側に押し込まれる。これにより、補剛リブ5の側縁5aとコンクリート32との隙間の大きさは、圧縮力が作用していない状態よりも小さくなるので、軸力部材2の端部に生じる回転角θも小さくなり、軸力部材2の端部にヒンジが形成されなくなる。   When a compressive force acts on the damping brace 1 configured as described above, the axial force member 2 is distorted in the axial direction, and the end of the axial force member 2 is pushed into the inside of the restraining member 3. As a result, the size of the gap between the side edge 5a of the stiffening rib 5 and the concrete 32 is smaller than that in the state where the compressive force is not acting, so the rotation angle θ generated at the end of the axial force member 2 is also small. Thus, no hinge is formed at the end of the axial force member 2.

[第8実施形態]
本発明の第8実施形態を、図を参照して説明する。なお、上記の各実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態の制振ブレース1は、図16に示すように、塑性化部21とコンクリート32との隙間の大きさsが、補剛リブ5の側縁5aとコンクリート32との隙間の大きさtよりも大きく設定されている。
[Eighth Embodiment]
An eighth embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the component already demonstrated in said each embodiment, and description is abbreviate | omitted.
In the vibration damping brace 1 of the present embodiment, as shown in FIG. 16, the size s of the gap between the plasticized portion 21 and the concrete 32 is the size of the gap between the side edge 5a of the stiffening rib 5 and the concrete 32. It is set larger than t.

上記のように構成された制振ブレース1に圧縮力が作用すると、補剛リブ5がコンクリート32に接触して軸力部材2の端部の挙動が制限される。この状態でも、塑性化部21はコンクリート32には接触しないので、圧縮力が作用することによって起こる軸力部材2の軸方向への変形が、過大な抵抗を受けることなく円滑に行われ、制振ブレース1が不安定な挙動を示すことがない。   When a compressive force is applied to the damping brace 1 configured as described above, the stiffening rib 5 comes into contact with the concrete 32 and the behavior of the end portion of the axial force member 2 is limited. Even in this state, since the plasticized portion 21 does not contact the concrete 32, deformation in the axial direction of the axial force member 2 caused by the application of compressive force is smoothly performed without receiving excessive resistance, and is controlled. The vibration brace 1 does not exhibit unstable behavior.

本実施形態においては、軸力部材2の塑性化部21が矩形の断面形状を有するが、本発明においては、軸力部材の断面形状は矩形には限定されず、例えば円形、中空の矩形、中空の円形等、あらゆる形状を採用することが可能である。
本実施形態においては、鋼管31とコンクリート32とを組み合わせて拘束部材3を構成したが、コンクリートに代えてモルタルを使用しても構わない。
本実施形態においては、軸力部材2を均一な厚さの一枚の鋼板によって形成したが、例えば塑性化部の厚さを他の部分よりも薄くする等して軸力部材の厚さに変化をもたせても構わない。また、複数枚の鋼板を組み合わせて軸力部材を構成しても構わない。
本実施形態においては、付着防止皮膜4を軸力部材2の表面に塗布された粘弾塑性材料や塗料等によって構成したが、本発明の付着防止体としては、軸力部材2の表面を覆う皮膜状のものに限らず、軸力部材2と拘束部材3との隙間に、互いに離間して複数存在するものであっても構わない。さらに、固体状のものに限らず、潤滑油等の液体状のものであっても構わない。
In the present embodiment, the plasticizing portion 21 of the axial force member 2 has a rectangular cross-sectional shape. However, in the present invention, the cross-sectional shape of the axial force member is not limited to a rectangular shape, for example, a circular shape, a hollow rectangular shape, Any shape, such as a hollow circle, can be employed.
In this embodiment, although the restraint member 3 was comprised combining the steel pipe 31 and the concrete 32, it may replace with concrete and may use mortar.
In the present embodiment, the axial force member 2 is formed of a single steel plate having a uniform thickness. However, the thickness of the axial force member is reduced by, for example, making the plasticized portion thinner than other portions. You can change it. Moreover, you may comprise an axial force member combining several steel plates.
In the present embodiment, the adhesion preventing film 4 is constituted by a viscoelastic plastic material or a paint applied on the surface of the axial force member 2, but the adhesion preventing body of the present invention covers the surface of the axial force member 2. It is not limited to a film-like one, and a plurality of them may be present apart from each other in the gap between the axial force member 2 and the restraining member 3. Furthermore, it is not limited to a solid one, and may be a liquid such as lubricating oil.

以上、本発明の好ましい実施形態を説明したが、本発明はこれらの実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付の請求項の範囲によってのみ限定される。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The invention is not limited by the foregoing description, but only by the scope of the appended claims.

図1(A)は、本発明の制振ブレースの第1実施形態を示す縦断面図、図1(B)は、同実施形態の横断面図、図1(C)は、図1(B)におけるA−A線の矢視断面図である。1A is a longitudinal sectional view showing a first embodiment of the vibration-damping brace of the present invention, FIG. 1B is a transverse sectional view of the embodiment, and FIG. 1C is FIG. It is an arrow sectional view of the AA line in FIG. 本発明の構造物の第1実施形態を模式的に示す正面図である。It is a front view showing typically a 1st embodiment of a structure of the present invention. 制振ブレースと構造物との接合部分を示す正面図である。It is a front view which shows the junction part of a damping brace and a structure. 図4(A)は、制振ブレースに引張力が作用した場合の軸力部材の端部の挙動を示す状態説明図、図4(B)は、制振ブレースに圧縮力が作用した場合の軸力部材の端部の挙動を示す状態説明図である。FIG. 4A is a state explanatory diagram showing the behavior of the end portion of the axial force member when a tensile force is applied to the damping brace, and FIG. 4B is a case where a compressive force is applied to the damping brace. It is state explanatory drawing which shows the behavior of the edge part of an axial force member. 図5(A)は、制振ブレースになんら力が作用していない場合の制振ブレースの態様を示す模式図、図5(B)は、制振ブレースに圧縮力が作用している場合の制振ブレースの態様を示す模式図である。FIG. 5 (A) is a schematic diagram showing a mode of a vibration suppression brace when no force is applied to the vibration suppression brace, and FIG. 5 (B) is a case where a compression force is applied to the vibration suppression brace. It is a schematic diagram which shows the aspect of a damping brace. 制振ブレースの載荷試験に使用した載荷装置の構造を示す正面図である。It is a front view which shows the structure of the loading apparatus used for the loading test of the damping brace. 図7(A)は、軸力部材の軸歪4%を目標に制振ブレースに圧縮力および引張力を作用させ、軸力部材の軸方向の変形量δと軸力部材の端部に生じる回転角θの大きさとの関係を示す図、図7(B)は、軸力部材の軸歪2%を目標に制振ブレースに圧縮力および引張力を作用させ、軸力部材の軸方向の変形量δと軸力部材の端部に生じる回転角θの大きさとの関係を示す図である。FIG. 7A shows a case where a compressive force and a tensile force are applied to the damping brace with a target of 4% axial distortion of the axial force member, and the axial deformation amount δ of the axial force member and the end of the axial force member are generated. FIG. 7B is a diagram showing the relationship with the magnitude of the rotation angle θ, and FIG. 7B is a diagram in which a compressive force and a tensile force are applied to the damping brace with the target of 2% axial strain of the axial force member, and It is a figure which shows the relationship between deformation amount (delta) and the magnitude | size of rotation angle (theta) produced in the edge part of an axial force member. 本実施形態の変形例であって、本発明の制振ブレースと構造物との接合部分を示す正面図である。It is a modification of this embodiment, Comprising: It is a front view which shows the junction part of the damping brace of this invention, and a structure. 図9(A)は、本発明の制振ブレースの第2実施形態を示す横断面図、図9(B)は、図9(A)におけるB−B線の矢視断面図である。FIG. 9A is a cross-sectional view showing a second embodiment of the vibration-damping brace of the present invention, and FIG. 9B is a cross-sectional view taken along the line BB in FIG. 9A. 軸力部材の軸歪2%を目標に制振ブレースに圧縮力および引張力を作用させ、軸力部材の軸方向の変形量δと軸力部材の端部に生じる回転角θの大きさとの関係を示す図である。By applying a compressive force and a tensile force to the damping brace with the target of 2% axial strain of the axial force member, the amount of axial deformation of the axial force member δ and the magnitude of the rotation angle θ generated at the end of the axial force member It is a figure which shows a relationship. 図11(A)は、本発明の制振ブレースの第3実施形態を示す横断面図、図11(B)は、図11(A)におけるC−C線の矢視断面図である。FIG. 11A is a cross-sectional view showing a third embodiment of the vibration-damping brace of the present invention, and FIG. 11B is a cross-sectional view taken along the line CC in FIG. 11A. 図12(A)は、本発明の制振ブレースの第4実施形態を示す横断面図、図12(B)は、図12(A)におけるD−D線の矢視断面図である。12A is a cross-sectional view showing a fourth embodiment of the vibration-damping brace of the present invention, and FIG. 12B is a cross-sectional view taken along line DD in FIG. 12A. 図13(A),図13(B),図13(C),図13(D)は、本発明の制振ブレースの第5実施形態であって、上記各実施形態に示した拘束部材の変形例を示す断面図である。13 (A), 13 (B), 13 (C), and 13 (D) show a fifth embodiment of the vibration-damping brace of the present invention, in which the restraining member shown in each of the above embodiments is shown. It is sectional drawing which shows a modification. 図14(A)は、本発明の制振ブレースの第6実施形態を示す縦横断面図、図14(B)は、同実施形態の横断面図である。FIG. 14A is a longitudinal and transverse sectional view showing a sixth embodiment of the vibration damping brace of the present invention, and FIG. 14B is a transverse sectional view of the same embodiment. 本発明の制振ブレースの第7実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 7th Embodiment of the damping brace of this invention. 本発明の制振ブレースの第8実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 8th Embodiment of the damping brace of this invention. 図17(A)は、制振ブレースに圧縮力が作用していても制振ブレースの挙動が安定している状態を示す模式図、図17(B),図17(C)は、制振ブレースに圧縮力が作用してヒンジ現象が生じ、制振ブレースの挙動が不安定になった状態を示す模式図である。FIG. 17A is a schematic diagram illustrating a state in which the behavior of the vibration suppression brace is stable even when a compressive force is applied to the vibration suppression brace. FIGS. 17B and 17C illustrate vibration suppression. FIG. 6 is a schematic diagram showing a state in which the compression force acts on the brace to cause a hinge phenomenon, and the behavior of the damping brace becomes unstable.

符号の説明Explanation of symbols

1 制振ブレース
2 軸力部材
3 拘束部材
4 付着防止皮膜(付着防止体)
21 塑性化部
22 補剛部
23 継手部
L 補剛部22の軸方向の長さ
t 補剛部22と拘束部材3との隙間の大きさ

DESCRIPTION OF SYMBOLS 1 Damping brace 2 Axial force member 3 Restraint member 4 Adhesion prevention film (adhesion prevention body)
21 Plasticizing portion 22 Stiffening portion 23 Joint portion L Length of axial direction of stiffening portion 22 t Size of gap between stiffening portion 22 and restraining member 3

Claims (6)

軸方向に作用する引張力または圧縮力に対して耐力を発揮する軸力部材と、
前記軸力部材の周囲に設けられて該軸力部材を拘束する拘束部材と、
前記軸力部材の端部に設けられて前記軸力部材の剛性を補う補剛部と、
前記拘束部材と前記補剛部との間に設けられて両者の付着を防止する付着防止体とを備える制振ブレースであって、
前記軸力部材に前記圧縮力が作用した場合に、前記軸力部材の端部が前記軸方向に対してある角度よりも大きく回転しないように、前記補剛部の前記軸方向の長さと、前記補剛部と前記拘束部材との隙間の大きさとが設定され、かつ前記軸力部材と前記拘束部材との隙間が、前記補剛部と前記拘束部材との隙間よりも大きいことを特徴とする制振ブレース。
An axial force member demonstrating proof against tensile or compressive force acting in the axial direction;
A restraining member provided around the axial force member and restraining the axial force member;
A stiffening portion provided at an end of the axial force member to supplement the rigidity of the axial force member;
A vibration-damping brace provided with an adhesion preventing body that is provided between the restraining member and the stiffening portion and prevents adhesion of both,
The axial length of the stiffening portion so that the end of the axial force member does not rotate more than a certain angle with respect to the axial direction when the compressive force is applied to the axial force member; The size of the gap between the stiffening portion and the restraining member is set, and the gap between the axial force member and the restraining member is larger than the gap between the stiffening portion and the restraining member. Damping brace.
前記ある角度が1/75rad(ラジアン)に規定され、前記補剛部の前記軸方向の長さが150mm(ミリメートル)以上に設定されていることを特徴とする請求項1記載の制振ブレース。   The damping brace according to claim 1, wherein the certain angle is defined as 1/75 rad (radian), and the axial length of the stiffening portion is set to 150 mm (millimeters) or more. 前記拘束部材と前記補剛部との隙間の大きさが1mm(ミリメートル)以下に設定されていることを特徴とする請求項2記載の制振ブレース。   The vibration-damping brace according to claim 2, wherein a size of a gap between the restraining member and the stiffening portion is set to 1 mm (millimeter) or less. 前記軸力部材の端部に、構造物に接合されるピン継手が設けられていることを特徴とする請求項1から3のいずれか一項記載の制振ブレース。   The damping brace according to any one of claims 1 to 3, wherein a pin joint joined to a structure is provided at an end of the axial force member. 柱と梁とからなるラーメン構造の骨組みが採用された構造物であって、前記骨組みに請求項1から4のいずれか一項記載の制振ブレースが設置されていることを特徴とする構造物。   A structure in which a framework of a ramen structure composed of columns and beams is adopted, wherein the damping brace according to any one of claims 1 to 4 is installed in the framework. . 前記制振ブレースが、前記骨組みにピン接合されていることを特徴とする請求項5記載の構造物。

The structure according to claim 5, wherein the vibration-damping brace is pin-bonded to the frame.

JP2004202214A 2003-07-08 2004-07-08 Damping braces and structures Active JP4263664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202214A JP4263664B2 (en) 2003-07-08 2004-07-08 Damping braces and structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003193274 2003-07-08
JP2004202214A JP4263664B2 (en) 2003-07-08 2004-07-08 Damping braces and structures

Publications (2)

Publication Number Publication Date
JP2005042537A JP2005042537A (en) 2005-02-17
JP4263664B2 true JP4263664B2 (en) 2009-05-13

Family

ID=34277210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202214A Active JP4263664B2 (en) 2003-07-08 2004-07-08 Damping braces and structures

Country Status (1)

Country Link
JP (1) JP4263664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006202B2 (en) 2015-08-31 2018-06-26 Nippon Steel & Sumikin Engineering Co., Ltd. Buckling-restrained brace and method of manufacturing buckling-restrained brace

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848647B2 (en) * 2005-03-10 2011-12-28 Jfeスチール株式会社 Buckling stiffening brace material
JP4846424B2 (en) * 2006-04-18 2011-12-28 新日本製鐵株式会社 Damping structure of structure
JP4735585B2 (en) * 2007-03-29 2011-07-27 鹿島建設株式会社 Concrete rod-shaped damper structure
JP5147007B2 (en) * 2008-07-22 2013-02-20 国立大学法人東京工業大学 Damper device and structure
KR101086965B1 (en) 2009-01-30 2011-11-29 고려대학교 산학협력단 Diagrid Structure
JP5498122B2 (en) * 2009-10-14 2014-05-21 株式会社フジタ Construction method of buckling restraint brace mounting structure
US20110232221A1 (en) * 2010-03-25 2011-09-29 National Applied Research Laboratories Buckling restrained brace
JP5474163B2 (en) * 2012-11-12 2014-04-16 大和ハウス工業株式会社 Buckling-restrained brace and manufacturing method thereof
KR101554092B1 (en) 2014-01-23 2015-09-17 한국기술교육대학교 산학협력단 Reinforcing brace structure of building
JP6769758B2 (en) * 2016-07-04 2020-10-14 株式会社タカミヤ Vibration damping device
JP7175694B2 (en) * 2018-09-28 2022-11-21 大和ハウス工業株式会社 buckling restraint brace
CN109403467B (en) * 2018-10-31 2024-02-02 广西辰宇建材科技有限公司 Prefabricated buckle of assembled building and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006202B2 (en) 2015-08-31 2018-06-26 Nippon Steel & Sumikin Engineering Co., Ltd. Buckling-restrained brace and method of manufacturing buckling-restrained brace

Also Published As

Publication number Publication date
JP2005042537A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US7225588B2 (en) Damping brace and structure
JP4263664B2 (en) Damping braces and structures
JP6001755B2 (en) Elastic-plastic hysteretic damper
JP2004278293A (en) Beam joint structure and buckling restraining member used therefor
JP2006257674A (en) Vibration control structure for building
US20140062648A1 (en) Member-to-Member Fuse Connection
JP2003193699A (en) Elasto-plastic, visco-elastic brace
JP2005299078A (en) Vibration proofing apparatus for bridge
JP2002235454A (en) Vibration damper device
JP2001214541A (en) Buckling restraint brace
KR101487134B1 (en) Cantilever Type Vibration Control Device Using Bearings
JP2005233367A (en) Connection member of structure
US11346121B2 (en) Member-to-member laminar fuse connection
JP4386804B2 (en) Seismic reinforcement structure for existing steel towers
JP5654060B2 (en) Damper brace and damping structure
JP2001173130A (en) Hysteresis damiping type shear damper
JP5305756B2 (en) Damping wall using corrugated steel
JP4049120B2 (en) Building seismic control structure
JP5317904B2 (en) Shear panel type damper, bridge support structure using this shear panel type damper, and bridge using this support structure
JP2018091128A (en) Energy absorption mechanism and wooden building
US11203862B2 (en) Member-to-member laminar fuse connection
JP7230630B2 (en) weld joint
JP5603741B2 (en) Buckling restraint brace
JP6244053B1 (en) Vibration control device
JP6915601B2 (en) Viscoelastic damper

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4263664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250