JP4258571B2 - Manufacturing method and manufacturing apparatus for three-dimensional shaped object - Google Patents

Manufacturing method and manufacturing apparatus for three-dimensional shaped object Download PDF

Info

Publication number
JP4258571B2
JP4258571B2 JP2008127719A JP2008127719A JP4258571B2 JP 4258571 B2 JP4258571 B2 JP 4258571B2 JP 2008127719 A JP2008127719 A JP 2008127719A JP 2008127719 A JP2008127719 A JP 2008127719A JP 4258571 B2 JP4258571 B2 JP 4258571B2
Authority
JP
Japan
Prior art keywords
modeling
cooling
powder layer
heating
modeled object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008127719A
Other languages
Japanese (ja)
Other versions
JP2008307895A (en
Inventor
諭 阿部
勲 不破
喜万 東
徳雄 ▲吉▼田
正孝 武南
俊 清水
昇 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2008127719A priority Critical patent/JP4258571B2/en
Publication of JP2008307895A publication Critical patent/JP2008307895A/en
Application granted granted Critical
Publication of JP4258571B2 publication Critical patent/JP4258571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、無機質あるいは有機質の粉末材料に光ビームの照射を行なう三次元形状造形物の製造方法及び製造装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for a three-dimensional shaped object in which an inorganic or organic powder material is irradiated with a light beam.

従来から、無機質あるいは有機質の粉末材料で形成した粉末層に光ビームを照射し、粉末層を溶融して硬化層を形成し、その硬化層の上に新たな粉末層を形成して光ビームを照射し、硬化層を形成することを繰り返して、三次元形状造形物を製造する方法が知られている。   Conventionally, a light beam is irradiated onto a powder layer formed of an inorganic or organic powder material, the powder layer is melted to form a hardened layer, and a new powder layer is formed on the hardened layer to emit a light beam. A method of manufacturing a three-dimensional shaped object by repeating irradiation and forming a hardened layer is known.

また、粉末層と硬化層の形成を繰り返す工程において、粉末層を焼結温度に近い温度まで加熱してから光ビームを照射することにより、三次元形状造形物の加工精度を良くする製造方法が知られている(例えば、特許文献1参照)。   Further, in the process of repeating the formation of the powder layer and the hardened layer, there is a manufacturing method that improves the processing accuracy of the three-dimensional shaped object by irradiating the light layer after heating the powder layer to a temperature close to the sintering temperature. It is known (see, for example, Patent Document 1).

また、粉末層と硬化層の形成を繰り返して三次元形状造形物を造形する間に、造形物の表面を切削加工し、三次元形状造形物の加工精度を良くする製造方法が知られている(例えば、特許文献2参照)。   In addition, a manufacturing method is known in which the surface of a model is cut while the powder layer and the hardened layer are formed to form a three-dimensional model, and the processing accuracy of the three-dimensional model is improved. (For example, refer to Patent Document 2).

しかしながら、上記特許文献1に示されるような製造方法においては、三次元形状造形物が焼結されたままであるので、加工精度は不十分であり、また特許文献2に示される製造方法においては、三次元形状造形物が焼結されて高温状態のときに切削されるので、常温まで冷却されて収縮すると加工精度が悪化する虞がある。
特表平1−502890号公報 特開2002−115004号公報
However, in the manufacturing method as shown in Patent Document 1, since the three-dimensional shaped object remains sintered, the processing accuracy is insufficient. In the manufacturing method shown in Patent Document 2, Since the three-dimensional shaped object is sintered and cut when it is in a high temperature state, the processing accuracy may be deteriorated if the three-dimensional shaped object is cooled to normal temperature and contracted.
JP-T-1-502890 JP 2002-115004 A

本発明は、上記従来の問題を解決するためになされたものであり、三次元形状造形物の加工精度が良い製造方法を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a manufacturing method with high processing accuracy of a three-dimensional shaped object.

上記目的を達成するために請求項1の発明は、造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化工程とを備え、前記粉末層形成工程と硬化工程とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、該造形物の表面及び表面内側を除去する除去工程を少なくとも1回以上繰り返して三次元形状造形物を造形する方法において、前記除去工程は、前記造形用プレートを所定の冷却手段により冷却する冷却工程と、この冷却工程の後に行なわれる除去仕上げ工程と、を含み、前記冷却工程は、造形中の造形物における上面全体の温度を測定し、予め定めた温度まで冷却されたかを判断するステップを有し、前記定めた温度まで冷却されたときに前記除去仕上げ工程に移行し、前記硬化工程時に、前記造形用プレートを所定の加熱手段により加熱する加熱工程を含み、この加熱工程により所定の温度まで加熱した後に硬化工程を行ない、前記除去工程を行なうNCプログラムの加工位置の補正を行なう補正工程を更に備え、前記補正工程は、
(i)三次元形状造形物の造形前に、前記除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去工程の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、除去工程の前に検出された基準点の位置との測定差に基づいて位置補正するものである。
In order to achieve the above object, the invention of claim 1 includes a powder layer forming step of forming a powder layer by supplying an inorganic or organic powder material to a modeling plate, and a light beam at a predetermined portion of the powder layer. And a curing step of forming a cured layer by sintering or melting and curing the powder layer, and repeating the powder layer forming step and the curing step to integrate a plurality of cured layers. In the process of forming a three-dimensional shaped object by repeating the removing step of removing the surface and inner surface of the shaped object at least once in the middle of formation, the removing step comprises a predetermined cooling means for forming the modeling plate. And a removal finishing step performed after the cooling step, wherein the cooling step measures the temperature of the entire upper surface of the modeled object being modeled and is cooled to a predetermined temperature. Comprising the step of determining whether, shifted to the removing finishing step when cooled to the predetermined temperature, the during the curing step includes a heating step of heating the shaping plate by a predetermined heating means, the A heating process is performed after heating to a predetermined temperature, and further includes a correction process for correcting the machining position of the NC program for performing the removal process.
(I) Before modeling of the three-dimensional shaped object, creation of a plurality of reference points serving as reference positions for the removal finishing process on the modeling plate, and position detection of the reference points are performed.
(Ii) The position of the reference point is detected again before the removing step in the middle of forming the modeled object, the position of the reference point detected before the modeling, and the position of the reference point detected before the removing step The position is corrected based on the measurement difference .

請求項2の発明は、造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化工程とを備え、前記粉末層形成工程と硬化工程とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、該造形物の表面及び表面内側を除去する除去工程を少なくとも1回以上繰り返して三次元形状造形物を造形する方法において、前記除去工程は、前記造形用プレートを所定の冷却手段により冷却する冷却工程と、この冷却工程の後に行なわれる除去仕上げ工程と、を含み、
前記冷却工程は、造形中の造形物における上面全体の温度を測定し、予め定めた温度まで冷却されたかを判断するステップを有し、前記定めた温度まで冷却されたときに前記除去仕上げ工程に移行し、前記硬化工程時に、前記三次元形状造形物の周囲の雰囲気を所定の加熱手段により加熱する加熱工程を含み、この加熱工程により所定の温度まで加熱した後に硬化工程を行ない、前記除去工程を行なうNCプログラムの加工位置の補正を行なう補正工程を更に備え、前記補正工程は、
(i)三次元形状造形物の造形前に、前記除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去工程の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、除去工程の前に検出された基準点の位置との測定差に基づいて位置補正するものである。
According to a second aspect of the present invention, there is provided a powder layer forming step of forming a powder layer by supplying an inorganic or organic powder material to the modeling plate, and irradiating a predetermined portion of the powder layer with a light beam to form the powder layer. A step of sintering or melt-curing to form a cured layer, and repeating the powder layer forming step and the curing step to form a modeled object in which a plurality of cured layers are integrated. In the method of modeling the three-dimensional shaped object by repeating the removal process for removing the surface and the inner surface of the object at least once, the removing process is a cooling process for cooling the modeling plate by a predetermined cooling means; A removal finishing step performed after this cooling step,
The cooling step has a step of measuring the temperature of the entire upper surface of the modeled object under modeling and judging whether it has been cooled to a predetermined temperature, and when it is cooled to the predetermined temperature, And a heating step of heating the atmosphere around the three-dimensional shaped object by a predetermined heating means during the curing step, and performing the curing step after heating to a predetermined temperature by the heating step, the removing step A correction step of correcting the machining position of the NC program for performing the correction,
(I) Before modeling of the three-dimensional shaped object, creation of a plurality of reference points serving as reference positions for the removal finishing process on the modeling plate, and position detection of the reference points are performed.
(Ii) The position of the reference point is detected again before the removing step in the middle of forming the modeled object, the position of the reference point detected before the modeling, and the position of the reference point detected before the removing step The position is corrected based on the measurement difference .

請求項3の発明は、造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化工程とを備え、前記粉末層形成工程と硬化工程とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、該造形物の表面及び表面内側を除去する除去工程を少なくとも1回以上繰り返して三次元形状造形物を造形する方法において、前記除去工程は、前記造形物の周囲の雰囲気を所定の冷却手段により冷却する冷却工程と、この冷却工程の後に行なわれる除去仕上げ工程と、を含み、前記冷却工程は、造形中の造形物における上面全体の温度を測定し、予め定めた温度まで冷却されたかを判断するステップを有し、前記定めた温度まで冷却されたときに前記除去仕上げ工程に移行し、前記硬化工程時に、前記造形用プレートを所定の加熱手段により加熱する加熱工程を含み、この加熱工程により所定の温度まで加熱した後に硬化工程を行ない、前記除去工程を行なうNCプログラムの加工位置の補正を行なう補正工程を更に備え、前記補正工程は、
(i)三次元形状造形物の造形前に、前記除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去工程の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、除去工程の前に検出された基準点の位置との測定差に基づいて位置補正するものである。
According to a third aspect of the present invention, there is provided a powder layer forming step of supplying an inorganic or organic powder material to a modeling plate to form a powder layer, and irradiating a predetermined portion of the powder layer with a light beam to form the powder layer. A step of sintering or melt-curing to form a cured layer, and repeating the powder layer forming step and the curing step to form a modeled object in which a plurality of cured layers are integrated. In the method of modeling a three-dimensional shaped object by repeating the removing step for removing the surface and the inner surface of the object at least once, the removing step is a cooling for cooling the atmosphere around the shaped object by a predetermined cooling means. And a finishing process performed after the cooling step, wherein the cooling step measures the temperature of the entire top surface of the modeled object being modeled and determines whether it has been cooled to a predetermined temperature. Has up, moves to the removing finishing step when cooled to the predetermined temperature, the during the curing step includes a heating step of heating the shaping plate by a predetermined heating means, predetermined by the heating step of the curing process rows that are in after heating to a temperature, further comprising a correction step for correcting the working position of the NC program for performing the removing step, the correction process,
(I) Before modeling of the three-dimensional shaped object, creation of a plurality of reference points serving as reference positions for the removal finishing process on the modeling plate, and position detection of the reference points are performed.
(Ii) The position of the reference point is detected again before the removing step in the middle of forming the modeled object, the position of the reference point detected before the modeling, and the position of the reference point detected before the removing step The position is corrected based on the measurement difference .

請求項4の発明は、造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化工程とを備え、前記粉末層形成工程と硬化工程とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、該造形物の表面及び表面内側を除去する除去工程を少なくとも1回以上繰り返して三次元形状造形物を造形する方法において、前記除去工程は、前記造形物の周囲の雰囲気を所定の冷却手段により冷却する冷却工程と、この冷却工程の後に行なわれる除去仕上げ工程と、を含み、前記冷却工程は、造形中の造形物における上面全体の温度を測定し、予め定めた温度まで冷却されたかを判断するステップを有し、前記定めた温度まで冷却されたときに前記除去仕上げ工程に移行し、前記硬化工程時に、前記三次元形状造形物の周囲の雰囲気を所定の加熱手段により加熱する加熱工程を含み、この加熱工程により所定の温度まで加熱した後に硬化工程を行ない、前記除去工程を行なうNCプログラムの加工位置の補正を行なう補正工程を更に備え、前記補正工程は、
(i)三次元形状造形物の造形前に、前記除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去工程の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、除去工程の前に検出された基準点の位置との測定差に基づいて位置補正するものである。
The invention of claim 4 is a powder layer forming step of forming a powder layer by supplying an inorganic or organic powder material to a modeling plate, and irradiating a predetermined portion of the powder layer with a light beam to form the powder layer. A step of sintering or melt-curing to form a cured layer, and repeating the powder layer forming step and the curing step to form a modeled object in which a plurality of cured layers are integrated. In the method of modeling a three-dimensional shaped object by repeating the removing step for removing the surface and the inner surface of the object at least once, the removing step is a cooling for cooling the atmosphere around the shaped object by a predetermined cooling means. And a finishing process performed after the cooling step, wherein the cooling step measures the temperature of the entire top surface of the modeled object being modeled and determines whether it has been cooled to a predetermined temperature. Has up, moves to the removing finishing step when cooled to the predetermined temperature, the during the curing step includes a heating step of heating the atmosphere surrounding the three-dimensionally shaped object by predetermined heating means , have rows curing step after heating to a predetermined temperature by the heating step, further comprising a correction step for correcting the working position of the NC program for performing the removing step, the correction process,
(I) Before modeling of the three-dimensional shaped object, creation of a plurality of reference points serving as reference positions for the removal finishing process on the modeling plate, and position detection of the reference points are performed.
(Ii) The position of the reference point is detected again before the removing step in the middle of forming the modeled object, the position of the reference point detected before the modeling, and the position of the reference point detected before the removing step The position is corrected based on the measurement difference .

請求項5の発明は、請求項3又は請求項4に記載の三次元形状造形物の製造方法における前記加熱工程において、造形中の造形物における上面全体の温度を測定し、予め定めた温度に達しているかを判断するステップを有するものである。 The invention of claim 5, Oite to as you Keru said heating engineering to the production method of three-dimensionally shaped object according to claim 3 or claim 4, the temperature of the entire upper surface of a molded article in molding were measured, A step of determining whether or not a predetermined temperature has been reached.

請求項6の発明は、請求項1乃至請求項のいずれか一項に記載の三次元形状造形物の製造方法における前記加熱工程及び冷却工程の両方又はいずれか一方において、前記除去仕上げ加工を行う除去手段の主軸に取り付けられた温度センサによって、前記上面全体の温度に代えて造形物の所定箇所の温度を測定するものである。 According to a sixth aspect of the invention, in both or either one of claims 1 to Keru Contact to the production method of three-dimensionally shaped object according to any one of claims 5 wherein the heating and cooling steps, the removing finishing Instead of the temperature of the entire upper surface, the temperature of a predetermined portion of the modeled object is measured by a temperature sensor attached to the main shaft of the removing means for processing .

請求項7の発明は、請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法において、前記冷却工程は、前記造形物を冷却するステップを有するものである。   The invention of claim 7 is the method for producing a three-dimensional shaped article according to any one of claims 1 to 6, wherein the cooling step includes a step of cooling the shaped article.

請求項の発明は、造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成手段と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化手段と、三次元形状造形物の表面及び表面内側を切削して除去する除去手段と、を備え、前記粉末層の形成と、前記硬化層の形成とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、前記除去手段により前記除去を少なくとも1回以上繰り返して三次元形状造形物を製造する製造装置において、前記除去手段による前記除去動作の前に、造形物の周囲の雰囲気及び前記造形用プレートの両方又はいずれか一方を冷却し、該造形物の上面全体の温度を所定の温度まで冷却する冷却手段と、前記造形物の周囲の雰囲気及び前記造形用プレートの両方又はいずれか一方を加熱する加熱手段と、前記除去を行なうNCプログラムの加工位置の補正を行なう補正手段と、を更に備え、前記補正手段は、
(i)三次元形状造形物の造形前に、除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、前記除去の前に検出された基準点の位置との測定差に基づいて位置補正するものである。
According to an eighth aspect of the present invention, there is provided a powder layer forming means for forming a powder layer by supplying an inorganic or organic powder material to the modeling plate, and irradiating a predetermined portion of the powder layer with a light beam to form the powder layer. A curing means for forming a cured layer by sintering or melt-curing; and a removing means for cutting and removing the surface and the inside of the surface of the three-dimensionally shaped object, and forming the powder layer; In the manufacturing apparatus for producing a three-dimensional shaped object by repeating the removal at least once by the removing means during the formation of a shaped object in which a plurality of hardened layers are integrated by repeating the formation, the removal Before the removing operation by means , cooling means for cooling the atmosphere around the modeled object and / or the modeling plate, and cooling the temperature of the entire upper surface of the modeled object to a predetermined temperature; and Model Further comprising a heating means for heating both or one of the surrounding atmosphere and the shaping plate, and correcting means for correcting the machining position of the NC program for the removal, wherein the correction means,
(I) Before modeling the three-dimensional shaped object, create a plurality of reference points serving as reference positions for removal finishing processing on the modeling plate, and detect the positions of the reference points.
(Ii) The position of the reference point is detected again before the removal during the formation of the modeled object, and the position of the reference point detected before the modeling and the position of the reference point detected before the removal The position is corrected based on the measurement difference .

請求項1の発明によれば、造形物を冷却し、造形物の熱収縮が安定してから除去仕上げ加工を行なうので、除去仕上げ加工後の造形物の収縮が少なくなり、従って、除去仕上げの加工精度が良くなる。また、造形物の温度が上昇してから硬化工程を行なうので、光ビームの照射エネルギーが少なくてよく、焼結を効率良く行なうことができる。また、造形中に除去仕上げ加工の基準点のズレが補正されるので、加工精度が良くなる。 According to the invention of claim 1, since the shaped article is cooled and the thermal contraction of the shaped article is stabilized, the removal finishing process is performed. Therefore, the shrinkage of the shaped article after the removal finishing process is reduced. Processing accuracy is improved. Further, since the curing process is performed after the temperature of the modeled object rises, the irradiation energy of the light beam may be small, and the sintering can be performed efficiently. In addition, since the deviation of the reference point of the removal finishing process is corrected during modeling, the processing accuracy is improved.

請求項2の発明によれば、造形物を冷却し、造形物の熱収縮が安定してから除去仕上げ加工を行なうので、除去仕上げ加工後の造形物の収縮が少なくなり、従って、除去仕上げの加工精度が良くなる。また、造形物の周囲の雰囲気を加熱するので、造形物の加熱を効率良く行なうことができ、造形物の温度が上昇してから硬化工程を行なうので、光ビームの照射エネルギーが少なくてよく、焼結を効率良く行なうことができる。また、造形中に除去仕上げ加工の基準点のズレが補正されるので、加工精度が良くなる。 According to the invention of claim 2, since the shaped article is cooled and the thermal contraction of the shaped article is stabilized and the removal finishing process is performed, the shrinkage of the shaped article after the removal finishing process is reduced. Processing accuracy is improved. In addition, since the atmosphere around the modeled object is heated, the modeled object can be heated efficiently, and the curing process is performed after the temperature of the modeled object rises. Sintering can be performed efficiently. In addition, since the deviation of the reference point of the removal finishing process is corrected during modeling, the processing accuracy is improved.

請求項3の発明によれば、造形物の周囲の雰囲気を冷却するので、造形物の冷却を効率良く行なうことができ、造形物の熱収縮が安定してから除去仕上げ加工を行なうので、除去仕上げ加工後の造形物の収縮が少なくなり、従って、除去仕上げの加工精度が良くなる。また、造形物の温度が上昇してから硬化工程を行なうので、光ビームの照射エネルギーが少なくてよく、焼結を効率良く行なうことができる。また、造形中に除去仕上げ加工の基準点のズレが補正されるので、加工精度が良くなる。 According to the invention of claim 3, since the atmosphere around the modeled object is cooled, the modeled object can be cooled efficiently, and the removal finish processing is performed after the thermal shrinkage of the modeled object is stabilized. The shrinkage of the shaped object after the finishing process is reduced, and therefore the removal finishing process accuracy is improved. Further, since the curing process is performed after the temperature of the modeled object rises, the irradiation energy of the light beam may be small, and the sintering can be performed efficiently. In addition, since the deviation of the reference point of the removal finishing process is corrected during modeling, the processing accuracy is improved.

請求項4の発明によれば、造形物の周囲の雰囲気を冷却するので、造形物の冷却を効率良く行なうことができ、造形物の熱収縮が安定してから除去仕上げ加工を行なうので、除去仕上げ加工後の造形物の収縮が少なくなり、従って、除去仕上げの加工精度が良くなる。また、造形物の周囲の雰囲気を加熱するので、造形物の加熱を効率良く行なうことができ、造形物の温度が上昇してから硬化工程を行なうので、光ビームの照射エネルギーが少なくてよく、焼結を効率良く行なうことができる。また、造形中に除去仕上げ加工の基準点のズレが補正されるので、加工精度が良くなる。 According to the invention of claim 4, since the atmosphere around the modeled object is cooled, the modeled object can be cooled efficiently, and the removal finish processing is performed after the thermal shrinkage of the modeled object is stabilized. The shrinkage of the shaped object after the finishing process is reduced, and therefore the removal finishing process accuracy is improved. In addition, since the atmosphere around the modeled object is heated, the modeled object can be heated efficiently, and the curing process is performed after the temperature of the modeled object rises. Sintering can be performed efficiently. In addition, since the deviation of the reference point of the removal finishing process is corrected during modeling, the processing accuracy is improved.

請求項5の発明によれば、造形物の温度を測定するので、加熱を過不足なく行うことができ、造形の効率が良くなる。 According to the invention of claim 5, since the measured temperature of the shaped object, pressurized heat may be expanded without excess or deficiency, efficiency of shaping is improved.

請求項6の発明によれば、造形物の任意の箇所の温度を測定するので、造形物の形状に拘わらずに、加熱及び冷却を過不足なく行うことができ、造形の効率が良くなる。   According to the sixth aspect of the present invention, since the temperature of an arbitrary portion of the modeled object is measured, heating and cooling can be performed without excess or deficiency regardless of the shape of the modeled object, and the efficiency of modeling is improved.

請求項7の発明によれば、造形物自体を冷却するので、冷却を効率良く行なうことができる。   According to the seventh aspect of the present invention, since the molded article itself is cooled, the cooling can be performed efficiently.

請求項の発明によれば、冷却手段により造形物を冷却し、熱収縮が安定してから除去仕上げ加工を行なうので、除去仕上げ加工後の造形物の収縮が少なくなり、従って、除去仕上げの加工精度が良くなる。また、加熱手段により造形物の温度が上昇してから硬化工程を行なうので、光ビームの照射エネルギーが少なくてよく、焼結を効率良く行なうことができる。また、造形中に除去仕上げ加工の基準点のズレが補正されるので、加工精度が良くなる。 According to the eighth aspect of the present invention, the shaped article is cooled by the cooling means, and the removal finishing process is performed after the thermal shrinkage is stabilized. Therefore, the shrinkage of the shaped article after the removal finishing process is reduced, and therefore the removal finishing process is performed. Processing accuracy is improved. Further, since the curing process is performed after the temperature of the modeled object is raised by the heating means, the irradiation energy of the light beam may be small and the sintering can be performed efficiently. In addition, since the deviation of the reference point of the removal finishing process is corrected during modeling, the processing accuracy is improved.

(第1の実施形態)
本発明の第1の実施形態に係る三次元形状造形物の製造方法について図面を参照して説明する。図1は、同製造方法に用いられる金属光造形加工機の構成を示す。金属光造形加工機1は、金属粉末2の粉末層21が敷かれる造形用プレート22と、造形用プレート22を保持し、上下に昇降する昇降テーブル23と、昇降テーブルの外周を囲み金属粉末2を保持する造形タンク24と、造形用プレート22に粉末層21を形成する粉末層形成部3と、光ビームにより粉末層21を焼結、又は溶融硬化させ硬化層25を形成する硬化部4と、造形物11を切削する切削除去部5と、金属光造形加工機1の動作を制御する制御部(図示なし)を備えている。
(First embodiment)
A method for manufacturing a three-dimensional shaped object according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a metal stereolithography machine used in the manufacturing method. The metal stereolithography machine 1 includes a modeling plate 22 on which a powder layer 21 of a metal powder 2 is laid, a lifting table 23 that holds the modeling plate 22 and moves up and down, and surrounds the outer periphery of the lifting table. A modeling tank 24 for holding the powder, a powder layer forming unit 3 for forming the powder layer 21 on the modeling plate 22, and a curing unit 4 for sintering or melting and curing the powder layer 21 with a light beam to form a cured layer 25. The cutting removal part 5 which cuts the molded article 11 and the control part (not shown) which controls operation | movement of the metal stereolithography machine 1 are provided.

粉末層形成部3は、金属粉末2を供給する粉末タンク31と、供給された金属粉末2によって造形用プレート22に粉末層21を敷く粉末供給ブレード32とを備えている。硬化部4は、光ビームLを発光する光ビーム発振機41と、光ビームLを集光する集光レンズ42と、集光された光ビームLを粉末層21の上にスキャニングするガルバノミラー43と、を備えている。切削除去部5は、造形物11を切削する切削工具51と、切削工具51を保持するミーリングヘッド52と、ミーリングヘッド52を切削位置に移動させるXY駆動部53と、種々の切削工具51を保有し待機するツールマガジン54とを備えている。金属粉末2は、例えば、平均粒径20μmの球形の鉄粉であり、光ビームは、例えば、炭酸ガスレーザである。   The powder layer forming unit 3 includes a powder tank 31 that supplies the metal powder 2, and a powder supply blade 32 that lays the powder layer 21 on the modeling plate 22 with the supplied metal powder 2. The curing unit 4 includes a light beam oscillator 41 that emits a light beam L, a condenser lens 42 that collects the light beam L, and a galvano mirror 43 that scans the collected light beam L onto the powder layer 21. And. The cutting removal unit 5 includes a cutting tool 51 that cuts the shaped article 11, a milling head 52 that holds the cutting tool 51, an XY drive unit 53 that moves the milling head 52 to a cutting position, and various cutting tools 51. And a tool magazine 54 for waiting. The metal powder 2 is, for example, a spherical iron powder having an average particle diameter of 20 μm, and the light beam is, for example, a carbon dioxide laser.

ここで、本実施形態における製造方法を説明する前に、硬化層の積層後に造形物の冷却を行なわずに除去仕上げ加工を行なう従来の製造方法を説明する。図12は従来の製造方法のフローを、図13はその動作をそれぞれ示す。制御部は、昇降テーブル23に載置された造形用プレート22の上に、粉末タンク31の金属粉末2を粉末供給ブレード32によって供給し、粉末層21を形成する(ステップS101)(図13(a)参照)。このステップS101は粉末層形成工程を構成する。次に、ガルバノミラー43によって光ビームLを粉末層21の任意の箇所に走査させて金属粉末2を焼結、又は溶融硬化させ、造形用プレート22と一体化した硬化層25を形成する(ステップS102)(図13(b)参照)。このステップS102は、硬化工程を構成する。光ビームLの照射経路は、予め三次元CADモデルから生成したSTL(Stereo Lithography)データを、例えば、0.05mmの等ピッチでスライスした各断面の輪郭形状データに基づいて定める。この照射経路は、三次元形状造形物の少なくとも最表面が気孔率5%以下の高密度となるようにするのが好ましい。   Here, before explaining the manufacturing method in the present embodiment, a conventional manufacturing method in which the removal finishing process is performed without cooling the modeled object after laminating the hardened layers will be described. FIG. 12 shows the flow of the conventional manufacturing method, and FIG. 13 shows the operation thereof. The control unit supplies the metal powder 2 in the powder tank 31 by the powder supply blade 32 on the modeling plate 22 placed on the lifting table 23 to form the powder layer 21 (step S101) (FIG. 13 ( a)). This step S101 constitutes a powder layer forming process. Next, the light beam L is scanned by the galvano mirror 43 to an arbitrary portion of the powder layer 21 to sinter or melt-harden the metal powder 2 to form a hardened layer 25 integrated with the modeling plate 22 (step) S102) (see FIG. 13B). This step S102 constitutes a curing process. The irradiation path of the light beam L is determined based on contour shape data of each cross section obtained by slicing STL (Stereo Lithography) data generated from a three-dimensional CAD model at an equal pitch of, for example, 0.05 mm. This irradiation path is preferably such that at least the outermost surface of the three-dimensional shaped object has a high density with a porosity of 5% or less.

上記粉末層形成工程と硬化工程とを繰り返して硬化層25を積層し、硬化層25の層数が造形物11の表面を切削する切削工具51の有効刃長から求めた層数Nになるまで積層を繰り返す(ステップS101乃至S104)。この層数Nは、例えば、切削工具51が直径1mm、有効刃長3mmで深さ3mmの切削加工が可能であるボールエンドミルであり、粉末層の厚みが0.05mmであるならば、積層した粉末層の厚みが2.5mmとなる50層とする。そして、硬化層25の層数が定めた総数Nになると、制御部は、XY駆動部53によってミーリングヘッド52を移動させ、造形物11の表面を切削工具51によって除去する(ステップS105)(図13(c)参照)。このステップS105は除去仕上げ工程を構成する。こうして、三次元形状造形物の造形が終了するまで、硬化層25の形成と造形物11の表面の除去とを繰り返す(ステップS106、S107)。除去仕上げ工程は、造形物の表面に付着した粉末による低密度表面層を除去するものであるが、高密度部まで削り込むことによって造形物表面に高密度部を全面的に露出させるようにしてもよく、この場合は所望の形状よりも硬化層が少し大きくなるようにしておく。   Until the powder layer forming step and the curing step are repeated, the cured layer 25 is laminated, and the number of layers of the cured layer 25 reaches the number N of layers obtained from the effective blade length of the cutting tool 51 that cuts the surface of the molded article 11. The stacking is repeated (steps S101 to S104). The number N of layers is, for example, a ball end mill capable of cutting with a cutting tool 51 having a diameter of 1 mm, an effective blade length of 3 mm, and a depth of 3 mm. If the thickness of the powder layer is 0.05 mm, the layers are stacked. The powder layer has 50 layers with a thickness of 2.5 mm. When the number of hardened layers 25 reaches the determined total number N, the control unit moves the milling head 52 by the XY driving unit 53 and removes the surface of the modeled object 11 by the cutting tool 51 (step S105) (FIG. 5). 13 (c)). This step S105 constitutes a removal finishing process. In this way, the formation of the hardened layer 25 and the removal of the surface of the modeled object 11 are repeated until the modeling of the three-dimensional modeled model is completed (steps S106 and S107). The removal finishing process is to remove the low-density surface layer from the powder adhering to the surface of the modeled object, but the high-density part is completely exposed on the surface of the modeled object by grinding to the high-density part. In this case, the hardened layer is made slightly larger than the desired shape.

上記硬化工程では、光ビームLからエネルギーを受けて造形物11は加熱されて蓄熱する。光ビームLが照射された部分の金属粉末2及び造形物11は、局所的に1000°C以上の温度まで上昇する。造形物11は、放射や対流により冷却されるが、造形物内部に蓄熱する。さらに、造形物11は金属粉末2に囲われており、金属粉末2は熱伝導率が低いために蓄熱しやすい。造形中の造形物11の温度履歴を図14に示す。硬化工程中に光ビームの照射により造形物の温度は上昇し、粉末層形成工程中には放熱するが、蓄熱により温度は少ししか低下せず、硬化層を積層している間は造形物の温度は上昇を続ける。そして、高温状態まま除去仕上げ工程になり、除去仕上げ工程中に冷却される。   In the curing step, the molded article 11 is heated and stored by receiving energy from the light beam L. The metal powder 2 and the modeled object 11 in the portion irradiated with the light beam L locally rise to a temperature of 1000 ° C. or higher. The model 11 is cooled by radiation or convection, but stores heat inside the model. Furthermore, the molded article 11 is surrounded by the metal powder 2, and the metal powder 2 is easy to store heat because of its low thermal conductivity. FIG. 14 shows the temperature history of the model 11 during modeling. The temperature of the shaped object rises by irradiation with a light beam during the curing process, and heat is dissipated during the powder layer forming process, but the temperature decreases only slightly due to heat storage, and while the cured layer is laminated, The temperature continues to rise. And it becomes a removal finishing process with a high temperature state, and it cools during a removal finishing process.

このように、従来の製造方法においては、硬化工程後の造形物の温度が高い状態で除去仕上げ加工を行なうため、造形物が熱膨張した状態で加工することとなり、常温に戻ったときに熱収縮し、加工精度が悪くなる。造形物の熱収縮は、例えば、造形物の長さが100mmで温度が100°Cであった場合、線膨張係数を鋼と同じ1.0×10−5とすると、常温の25°Cに戻ったときの寸法差は、100×1.0×10−5×(100−25)=0.075mmとなり、造形物が金型の場合には許容できない大きな量となる。 Thus, in the conventional manufacturing method, since the removal finishing process is performed in a state where the temperature of the modeled object after the curing process is high, the modeled object is processed in a thermally expanded state, and when the modeled object returns to room temperature, Shrinkage and processing accuracy deteriorates. For example, if the length of the model is 100 mm and the temperature is 100 ° C., and the linear expansion coefficient is 1.0 × 10 −5, which is the same as steel, the heat shrinkage of the model is 25 ° C. The dimensional difference when returning is 100 × 1.0 × 10 −5 × (100−25) = 0.075 mm, which is an unacceptably large amount when the modeled object is a mold.

上記のような従来方法の問題を解消するため、本実施形態においては、除去仕上げ工程時の造形物の温度を下げて、除去仕上げ加工の寸法精度を良くするために、造形用プレートを冷却する。本実施形態における造形物の冷却状態を図2に示す。昇降テーブル23は内部に冷媒回路6を有し、冷媒回路6は冷媒配管61によって冷却温度調整装置62と繋がっており、冷却温度調整装置62は冷媒回路6に冷媒を循環させて昇降テーブル23を冷却する。冷却温度調整装置62は、プレート温度センサ63によって造形用プレート22の温度を測定しており、造形物を冷却するために、造形用プレート22を所定の温度まで冷却する。   In order to solve the problems of the conventional method as described above, in this embodiment, the modeling plate is cooled in order to lower the temperature of the modeled object during the removal finishing process and improve the dimensional accuracy of the removal finishing process. . The cooling state of the shaped object in the present embodiment is shown in FIG. The elevating table 23 has a refrigerant circuit 6 therein, and the refrigerant circuit 6 is connected to a cooling temperature adjusting device 62 by a refrigerant pipe 61, and the cooling temperature adjusting device 62 circulates the refrigerant through the refrigerant circuit 6 to move the elevating table 23. Cooling. The cooling temperature adjusting device 62 measures the temperature of the modeling plate 22 by the plate temperature sensor 63, and cools the modeling plate 22 to a predetermined temperature in order to cool the modeled object.

この製造方法のフローを図3に示し、その時の、造形物の温度履歴を図4に示す。制御部は、硬化層の層数が予め定めた層数Nになるまで、粉末層形成工程と硬化工程を繰り返し(ステップS1乃至S4)、層数Nになると造形用プレート22の温度が、例えば、25°Cの所定の温度に低下するまで、冷却温度調整装置62によって、昇降テーブル23を冷却し、所定の温度になるように温度調整を行なう(ステップS5乃至S7)。このステップS5乃至S7は、冷却工程を構成する。そして、所定の温度まで低下すると、温度調整を続けながら除去仕上げ工程を開始し(ステップS8)、除去仕上げが終了すると冷却を停止して温度調整を終了する(ステップS9)。こうして、三次元形状造形物の造形が終了するまで、硬化層25の形成と造形物11の表面の切削を繰り返す(ステップS10及びS11)。このように、造形物11を冷却してから除去仕上げ工程を行なうので、造形物11の加工後の熱収縮が少なく、加工誤差が小さくなる。   FIG. 3 shows the flow of this manufacturing method, and FIG. 4 shows the temperature history of the molded article at that time. The control unit repeats the powder layer forming process and the curing process until the number of hardened layers reaches a predetermined number N (steps S1 to S4). When the number of layers reaches N, the temperature of the modeling plate 22 is, for example, The elevating table 23 is cooled by the cooling temperature adjusting device 62 until the temperature drops to a predetermined temperature of 25 ° C., and the temperature is adjusted to a predetermined temperature (steps S5 to S7). Steps S5 to S7 constitute a cooling process. When the temperature is lowered to a predetermined temperature, the removal finishing process is started while continuing the temperature adjustment (step S8). When the removal finishing is finished, the cooling is stopped and the temperature adjustment is finished (step S9). In this way, the formation of the hardened layer 25 and the cutting of the surface of the modeled object 11 are repeated until the modeling of the three-dimensional modeled model is completed (steps S10 and S11). Thus, since the removal finishing process is performed after the shaped article 11 is cooled, the thermal shrinkage after the shaping of the shaped article 11 is small, and the processing error is reduced.

次に、本実施形態における製造方法の第1の変形例について図5を参照して説明する。本変形例では、造形物の硬化層近傍を冷却する。図5は本変形例における造形物の冷却状態を示す。硬化工程が終了した後に放熱フィン64を有した放熱ブロック65を造形物11の上に載置し、冷却ファン66からの送風によって放熱ブロック65を冷却する。制御部は、放熱ブロック65と造形用プレート22のそれぞれの温度を、ブロック温度センサ67とプレート温度センサ63からのそれぞれの検出信号に基づいて、温度測定装置68によって測定し、放熱ブロック65と造形用プレート22とが所定の温度まで冷却されると除去仕上げ工程を行なう。放熱ブロック65によって、造形物の焼結が行なわれた直後の近傍部分を冷却するので、冷却を効率良く行なうことができる。また、この放熱ブロック65による冷却を、上述した昇降テーブル23による冷却と共に行なってもよい。さらに、効率良く冷却することができる。   Next, a first modification of the manufacturing method in the present embodiment will be described with reference to FIG. In the present modification, the vicinity of the hardened layer of the model is cooled. FIG. 5 shows the cooling state of the shaped object in this modification. After the curing process is completed, the heat radiation block 65 having the heat radiation fins 64 is placed on the molded article 11, and the heat radiation block 65 is cooled by the air blown from the cooling fan 66. The control unit measures the temperatures of the heat dissipation block 65 and the modeling plate 22 by the temperature measuring device 68 based on the detection signals from the block temperature sensor 67 and the plate temperature sensor 63, respectively. When the working plate 22 is cooled to a predetermined temperature, a removal finishing process is performed. Since the heat dissipation block 65 cools the vicinity immediately after the shaped object is sintered, the cooling can be performed efficiently. Further, the cooling by the heat radiation block 65 may be performed together with the cooling by the lifting table 23 described above. Furthermore, it can cool efficiently.

次に、本実施形態における製造方法の第2の変形例について説明する。本変形例では、三次元形状造形物の周囲の雰囲気を冷却することにより、三次元形状造形物を冷却する。雰囲気を冷却するには、例えば、粉末層を囲んでいるチャンバー内の不活性ガスの雰囲気を冷却したり、粉末層に冷却した不活性ガスを吹き込むことにより冷却する。三次元形状造形物を周囲から冷却するので効率良く冷却することができる。   Next, a second modification of the manufacturing method in the present embodiment will be described. In this modification, the three-dimensional shaped object is cooled by cooling the atmosphere around the three-dimensional shaped object. In order to cool the atmosphere, for example, the atmosphere of an inert gas in a chamber surrounding the powder layer is cooled, or the cooled inert gas is blown into the powder layer. Since the three-dimensional shaped object is cooled from the surroundings, it can be efficiently cooled.

(第2の実施形態)
次に、本発明の第2の実施形態に係る三次元形状造形物の製造方法について図面を参照して説明する。本実施形態における造形物の加熱状態を図6に示す。本実施形態では、第1の実施形態における造形物の冷却に加えて、硬化工程の前に造形物を加熱する。昇降テーブル23は内部に冷媒回路6と共にヒータ69を有している。加熱冷却装置62aは冷媒回路6によって昇降テーブル23を冷却すると共に、ヒータ69によって昇降テーブル23を加熱する。
(Second Embodiment)
Next, a method for manufacturing a three-dimensional shaped object according to the second embodiment of the present invention will be described with reference to the drawings. The heating state of the shaped object in the present embodiment is shown in FIG. In this embodiment, in addition to the cooling of the modeled object in the first embodiment, the modeled object is heated before the curing step. The elevating table 23 has a heater 69 along with the refrigerant circuit 6 therein. The heating / cooling device 62 a cools the lift table 23 by the refrigerant circuit 6 and heats the lift table 23 by the heater 69.

図7は、同製造方法のフローを、図8は、同製造方法における三次元形状造形物の温度履歴を示す。三次元形状造形物を製造するときは、制御部は最初に昇降テーブル23に配設したヒータ69により、昇降テーブル23を加熱し、造形用プレート22を、例えば、200°Cの所定の温度まで昇温させ、所定温度以上に温度調整する(ステップS21乃至S23)。このステップS21及びS23は加熱工程を構成する。造形用プレート22が所定の温度まで昇温すると温度調整を続けながら、粉末層21の形成と焼結又は溶融硬化とを繰り返し硬化層を積層する(ステップS24乃至S27)。造形物11が加熱されているので、粉末層21の焼結又は溶融硬化が行い易い。そして、硬化層の層数が所定の層数Nに達した後は、加熱を停止して温度調整を終了し(ステップS28)、第1の実施形態と同様に造形物11の除去仕上げ加工を行なう(ステップS29乃至S35)。   FIG. 7 shows the flow of the manufacturing method, and FIG. 8 shows the temperature history of the three-dimensional shaped object in the manufacturing method. When manufacturing a three-dimensional shaped object, the control unit first heats the lifting table 23 with the heater 69 disposed on the lifting table 23, and the modeling plate 22 is heated to a predetermined temperature of, for example, 200 ° C. The temperature is raised and the temperature is adjusted to a predetermined temperature or higher (steps S21 to S23). Steps S21 and S23 constitute a heating process. When the modeling plate 22 is heated to a predetermined temperature, the cured layer is laminated by repeating the formation of the powder layer 21 and sintering or melt curing while continuing the temperature adjustment (steps S24 to S27). Since the molded article 11 is heated, the powder layer 21 is easily sintered or melt-cured. Then, after the number of hardened layers reaches the predetermined number N, heating is stopped and the temperature adjustment is finished (step S28), and the removal finish processing of the shaped article 11 is performed as in the first embodiment. Perform (Steps S29 to S35).

この製造方法において、造形物の加熱は、例えば、粉末層の上方に赤外線ヒータを設置し、赤外線によって三次元形状造形物を直接加熱したり、粉末層に加熱した不活性ガスを吹き込んで三次元形状造形物の周囲の雰囲気を加熱して行なってもよい。三次元形状造形物を効率良く加熱することができる。   In this manufacturing method, the modeling object is heated by, for example, installing an infrared heater above the powder layer, directly heating the three-dimensional modeled object with infrared rays, or blowing heated inert gas into the powder layer. You may carry out by heating the atmosphere around a shape molded article. A three-dimensional shaped object can be heated efficiently.

(第3の実施形態)
次に、本発明の第3の実施形態に係る三次元形状造形物の製造方法について図9を参照して説明する。図9は、同製造方法に用いられる金属光造形加工機の構成を示す。本実施形態では、加熱工程や冷却工程において、造形物の温度を測定し所定の温度に達しているかを判断するステップを有している。金属光造形加工機1は、第1の実施形態における金属光造形加工機の構成に加えて、赤外線放射温度計71を備えている。制御部は、加熱工程及び冷却工程において、赤外線放射温度計71によって、造形物11の上面全体の温度を測定し、加熱工程から粉末層形成工程への移行、及び冷却工程から削除仕上げ工程への移行を判断する。造形物11の温度を測定するので、加熱工程及び冷却工程を効率良く行なうことができる。
(Third embodiment)
Next, the manufacturing method of the three-dimensional shape molded article which concerns on the 3rd Embodiment of this invention is demonstrated with reference to FIG. FIG. 9 shows the configuration of a metal stereolithography machine used in the manufacturing method. In the present embodiment, in the heating process and the cooling process, there is a step of measuring the temperature of the modeled object and determining whether the predetermined temperature has been reached. The metal stereolithography machine 1 includes an infrared radiation thermometer 71 in addition to the configuration of the metal stereolithography machine in the first embodiment. In the heating process and the cooling process, the control unit measures the temperature of the entire upper surface of the modeled article 11 with the infrared radiation thermometer 71, and shifts from the heating process to the powder layer forming process and from the cooling process to the deletion finishing process. Determine migration. Since the temperature of the molded article 11 is measured, the heating process and the cooling process can be performed efficiently.

次に、同製造方法の変形例について図10を参照して説明する。本変形例では、造形物の上面全体の温度を測定するのでなく、造形物の所定の箇所の温度を測定する。図10(a)は、本変形例において、局部温度センサがツールマガジンで待機している動作を、図10(b)及び(c)は、局部温度センサによって、造形物の任意の箇所の温度を測定している動作を示す。本変形例の金属光造形加工機は、ミーリングヘッド52に取り付けることができる局部温度センサ72を備えている。局部温度センサ72は、熱電対やサーミスタ等の接触式でも、赤外線放射温度計等の非接触式でもよい。ミーリングヘッド52が切削工具51を保持する部分はコレットタイプとなっており、局部温度センサ72は切削工具51と同一の直径の軸を有しているので、ミーリングヘッド52は局部温度センサ72を保持することができる。   Next, a modification of the manufacturing method will be described with reference to FIG. In this modification, the temperature of the predetermined part of the modeled object is measured instead of measuring the temperature of the entire upper surface of the modeled object. FIG. 10A shows the operation in which the local temperature sensor is waiting in the tool magazine in this modification, and FIGS. 10B and 10C show the temperature at an arbitrary position of the modeled object by the local temperature sensor. The operation | movement which is measuring is shown. The metal stereolithography machine of this modification includes a local temperature sensor 72 that can be attached to the milling head 52. The local temperature sensor 72 may be a contact type such as a thermocouple or a thermistor, or a non-contact type such as an infrared radiation thermometer. The portion where the milling head 52 holds the cutting tool 51 is a collet type, and the local temperature sensor 72 has an axis having the same diameter as the cutting tool 51, so the milling head 52 holds the local temperature sensor 72. can do.

局部温度センサ72は、切削工具51と同様にツールマガジン54に置かれている。制御部は、冷却工程や加熱工程時に、ミーリングヘッド52に局部温度センサ72を取り付け、XY駆動部53によって、局部温度センサ72を造形物11の任意の箇所に移動させ温度を測定する。測定する箇所としては、例えば、三次元形状造形物のCADデータの断面輪郭形状データから、各断面の重心点や、輪郭線から最も遠い点等を設定する。造形する三次元形状造形物の形状に応じた箇所の温度を測定し、冷却や加熱の状態を検出することができるので、冷却や加熱を過不足なく効率良く行なうことができる。   Similar to the cutting tool 51, the local temperature sensor 72 is placed in the tool magazine 54. The control unit attaches the local temperature sensor 72 to the milling head 52 during the cooling process or the heating process, and moves the local temperature sensor 72 to an arbitrary position of the molded article 11 by the XY driving unit 53 to measure the temperature. As a location to be measured, for example, the center of gravity of each cross section, the point farthest from the contour line, and the like are set from the cross section contour shape data of the CAD data of the three-dimensional shaped object. Since the temperature of the location according to the shape of the three-dimensional shaped object to be modeled can be measured and the state of cooling or heating can be detected, cooling and heating can be performed efficiently without excess or deficiency.

(第4の実施形態)
次に、本発明の第4の実施形態に係る三次元形状造形物の製造方法について図11を参照して説明する。三次元形状造形物の造形においては、造形中に加熱、冷却を繰り返すので、造形物、造形用プレート及び昇降テーブルは熱膨張、収縮を繰り返すこととなり、造形の基準点がずれる虞がある。そこで、本実施形態では、三次元形状造形物の造形前に切削工具によって、造形用プレートに除去仕上げ加工の基準位置となる基準点を作成する。図11(a)乃至(f)は、本実施形態での基準点の作成及び除去仕上げ加工の動作を示す。最初に、図11(a)に示すように、三次元形状造形物の造形前に、制御部は、ミーリングヘッド52を所定の位置に移動させて、切削工具51によって、造形用プレート22に除去仕上げ加工の基準位置となる、例えば、+形状の基準点8を形成し、図11(b)に示すように、基準点8をミーリングヘッド52に取り付けたCCDカメラ81によって検出しその位置データを記憶する。
(Fourth embodiment)
Next, the manufacturing method of the three-dimensional shape molded article which concerns on the 4th Embodiment of this invention is demonstrated with reference to FIG. In the modeling of a three-dimensional modeled object, since heating and cooling are repeated during modeling, the modeled object, the modeling plate, and the lifting table repeat thermal expansion and contraction, which may shift the reference point for modeling. Therefore, in the present embodiment, a reference point serving as a reference position for the removal finishing process is created on the modeling plate by a cutting tool before modeling the three-dimensional modeled object. FIGS. 11A to 11F show operations of the reference point creation and removal finishing process in the present embodiment. First, as shown in FIG. 11A, before the three-dimensional shaped object is formed, the control unit moves the milling head 52 to a predetermined position and removes it to the forming plate 22 by the cutting tool 51. For example, a + -shaped reference point 8 is formed as a reference position for finishing, and the reference point 8 is detected by a CCD camera 81 attached to the milling head 52 as shown in FIG. Remember.

次いで、図11(c)に示すように、制御部は所定の層数の硬化層を積層した後、図11(d)に示すように、冷却中に基準点8が見えるように未焼結の金属粉末2を吸引機82により吸引する。次いで、図11(e)に示すように、制御部9はCCDカメラ81によって、基準点8を検出し、最初に記憶した位置データと比較して、その差に基づいて除去仕上げ工程を行なうNC(Numerical Control)プログラムの加工位置を補正する。この補正する動作は補正工程を構成する。この制御部9とミーリングヘッド52とCCDカメラ81は補正手段を構成する。次いで、図11(f)に示すように、補正したNCプログラムにより造形物11の除去仕上げ加工を行なう。除去仕上げ加工の前に加工位置の補正を行なうので、加工精度が良くなる。加工位置の補正は、除去仕上げ加工のプログラムだけでなく、光ビームを走査するプログラムの補正を行なってもよい。光ビームの走査位置が補正されるので、焼結の位置精度が良くなる。 Next, as shown in FIG. 11 (c), the control unit laminates a predetermined number of hardened layers, and then, as shown in FIG. 11 (d), unsintered so that the reference point 8 can be seen during cooling. The metal powder 2 is sucked by a suction machine 82. Next, as shown in FIG. 11E, the control unit 9 detects the reference point 8 by the CCD camera 81, compares it with the first stored position data, and performs the removal finishing process based on the difference. (Numerical Control) The machining position of the program is corrected. This correction operation constitutes a correction process. The controller 9, the milling head 52, and the CCD camera 81 constitute correction means. Next, as shown in FIG. 11 (f), the removal finish processing of the shaped article 11 is performed by the corrected NC program. Since the machining position is corrected before the removal finish machining, the machining accuracy is improved. The correction of the processing position may be performed not only for the removal finishing processing program but also for the program that scans the light beam. Since the scanning position of the light beam is corrected, the positional accuracy of sintering is improved.

(第5の実施形態)
次に、本発明の第5の実施形態に係る三次元形状造形物の製造方法について説明する。本実施形態では、第1乃至第4の実施形態における製造方法と異なり、除去仕上げ工程前の冷却中の待機を、温度を測定して行なうのでなく、製造条件から待機時間を算出して待機する。硬化工程後の冷却中の三次元形状造形物の温度は、金属粉末の種類、粒径、光ビームのエネルギー吸収率及び熱伝導率等の材料特性や、光ビームの照射条件や、冷却条件に基づいて予測することができる。また、冷却温度の要因には、上述した要因以外に、前回の除去仕上げ工程の後の光ビームによる加熱量と、造形物の蓄熱量が大きな要因となる。
(Fifth embodiment)
Next, a method for manufacturing a three-dimensional shaped object according to the fifth embodiment of the present invention will be described. In the present embodiment, unlike the manufacturing methods in the first to fourth embodiments, the cooling standby before the removal finishing process is not performed by measuring the temperature, but the standby time is calculated from the manufacturing conditions and waited. . The temperature of the three-dimensional shaped object during cooling after the curing process depends on the material properties such as the metal powder type, particle size, light beam energy absorption rate and thermal conductivity, light beam irradiation conditions, and cooling conditions. Can be predicted based on. Further, in addition to the above-described factors, the cooling temperature is largely caused by the heating amount by the light beam after the previous removal finishing process and the heat storage amount of the modeled object.

上記待機時間を算出するには、前回の除去仕上げ工程の後の光ビームによる加熱量を表す指標として、前回の除去仕上げ工程後に造形した硬化層の面積Sを用いると共に、造形物の蓄熱量を表す指標としてそれまでに造形した体積Vを用いて、この面積Sと体積Vを変数とし、上述した金属粉末の材料特性等毎に基づいた式、待機時間T=f(S,V)を実験データ等から導きだす。そして、硬化工程の後、この式によって算出した待機時間Tの間、待機する。計算式から算出することにより、温度測定をすることなく、簡単に待機時間を決定することができる。また、除去仕上げ工程後の加熱工程での待機時間も、加熱量等を要因に加えて算出式を導き出し、待機時間を算出してもよい。温度測定をすることなく、簡単に加熱工程時の待機時間を決定することができる。   In order to calculate the waiting time, the area S of the hardened layer formed after the previous removal finishing process is used as an index representing the heating amount by the light beam after the previous removal finishing process, and the heat storage amount of the modeled object is calculated. Using the volume V that has been shaped so far as an index to represent, the area S and the volume V are used as variables, and an equation based on the above-described material characteristics of the metal powder and the waiting time T = f (S, V) are tested. Derived from data. Then, after the curing process, the apparatus waits for the waiting time T calculated by this equation. By calculating from the calculation formula, the standby time can be easily determined without measuring the temperature. Further, the waiting time in the heating process after the removal finishing process may be calculated by adding a heating amount or the like to a factor to derive the waiting time. The waiting time during the heating process can be easily determined without measuring the temperature.

なお、本発明は、上記各種実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、金属粉末の組成は、上記実施形態の構成に限られないし、また、有機質の粉末材料でもよい。   In addition, this invention is not restricted to the structure of the said various embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, the composition of the metal powder is not limited to the configuration of the above embodiment, and may be an organic powder material.

本発明の第1の実施形態に係る製造方法に用いる金属光造形加工機の斜視図。The perspective view of the metal stereolithography processing machine used for the manufacturing method which concerns on the 1st Embodiment of this invention. 同製造方法における造形物の冷却状態を示す図。The figure which shows the cooling state of the molded article in the manufacturing method. 同製造方法のフロー図。The flowchart of the manufacturing method. 同製造方法における造形物の温度履歴を表す図。The figure showing the temperature history of the molded article in the manufacturing method. 同製造方法の変形例における造形物の冷却状態を示す図。The figure which shows the cooling state of the molded article in the modification of the manufacturing method. 本発明の第2の実施形態に係る製造方法における造形物の加熱状態を示す図。The figure which shows the heating state of the molded article in the manufacturing method which concerns on the 2nd Embodiment of this invention. 同製造方法のフロー図。The flowchart of the manufacturing method. 同製造方法における造形物の温度履歴を表す図。The figure showing the temperature history of the molded article in the manufacturing method. 本発明の第3の実施形態に係る製造方法に用いる金属光造形加工機の斜視図。The perspective view of the metal stereolithography machine used for the manufacturing method which concerns on the 3rd Embodiment of this invention. (a)乃至(c)は、同製造方法の変形例を時系列に説明する図。(A) thru | or (c) is a figure explaining the modification of the manufacturing method in time series. (a)乃至(f)は、本発明の第4の実施形態に係る製造方法を時系列に説明する図。(A) thru | or (f) is a figure explaining the manufacturing method which concerns on the 4th Embodiment of this invention in time series. 従来の製造方法のフロー図。The flowchart of the conventional manufacturing method. (a)乃至(c)は、同製造方法を時系列に説明する図。(A) thru | or (c) is a figure explaining the manufacturing method in time series. 同製造方法における造形物の温度履歴を表す図。The figure showing the temperature history of the molded article in the manufacturing method.

符号の説明Explanation of symbols

1 金属光造形加工機(製造装置)
11 造形物(三次元形状造形物)
2 金属粉末(粉末材料)
21 粉末層
22 造形用プレート
25 硬化層
3 粉末層形成部(粉末層形成手段)
4 硬化部(硬化手段)
5 切削除去部(除去手段)
52 ミーリングヘッド(主軸)
6 冷媒回路(冷却手段)
61 冷媒配管(冷却手段)
62 冷却温度調整装置(冷却手段)
64 放熱フィン(冷却手段)
65 放熱ブロック(冷却手段)
66 冷却ファン(冷却手段)
69 ヒータ(加熱手段)
72 局部温度センサ(温度センサ)
8 基準点
L 光ビーム
1 Metal stereolithography machine (manufacturing equipment)
11 Modeled objects (three-dimensional modeled objects)
2 Metal powder (powder material)
21 Powder layer 22 Modeling plate 25 Hardened layer 3 Powder layer forming part (powder layer forming means)
4 Curing part (curing means)
5 Cutting removal part (removal means)
52 Milling head (spindle)
6 Refrigerant circuit (cooling means)
61 Refrigerant piping (cooling means)
62 Cooling temperature adjusting device (cooling means)
64 Radiation fins (cooling means)
65 Heat dissipation block (cooling means)
66 Cooling fan (cooling means)
69 Heater (heating means)
72 Local temperature sensor (temperature sensor)
8 Reference point L Light beam

Claims (8)

造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化工程とを備え、前記粉末層形成工程と硬化工程とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、該造形物の表面及び表面内側を除去する除去工程を少なくとも1回以上繰り返して三次元形状造形物を造形する方法において、
前記除去工程は、前記造形用プレートを所定の冷却手段により冷却する冷却工程と、この冷却工程の後に行なわれる除去仕上げ工程と、を含み、
前記冷却工程は、造形中の造形物における上面全体の温度を測定し、予め定めた温度まで冷却されたかを判断するステップを有し、前記定めた温度まで冷却されたときに前記除去仕上げ工程に移行し、
前記硬化工程時に、前記造形用プレートを所定の加熱手段により加熱する加熱工程を含み、この加熱工程により所定の温度まで加熱した後に硬化工程を行ない、
前記除去工程を行なうNCプログラムの加工位置の補正を行なう補正工程を更に備え、前記補正工程は、
(i)三次元形状造形物の造形前に、前記除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去工程の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、除去工程の前に検出された基準点の位置との測定差に基づいて位置補正することを特徴とする三次元形状造形物の製造方法。
A powder layer forming step of forming a powder layer by supplying an inorganic or organic powder material to the modeling plate, and irradiating a predetermined portion of the powder layer with a light beam to sinter or melt cure the powder layer A curing step for forming a cured layer, and by repeating the powder layer forming step and the curing step, the surface of the modeled object and the inside of the modeled object are formed in the middle of the formation of the modeled product in which a plurality of cured layers are integrated. In the method of modeling a three-dimensional shaped object by repeating the removing step to be removed at least once,
The removing step includes a cooling step of cooling the modeling plate by a predetermined cooling means, and a removal finishing step performed after the cooling step,
The cooling step has a step of measuring the temperature of the entire upper surface of the modeled object under modeling and judging whether it has been cooled to a predetermined temperature, and when it is cooled to the predetermined temperature, Migrate ,
During the curing step, including a heating step of heating the modeling plate by a predetermined heating means, and performing the curing step after heating to a predetermined temperature by this heating step,
The method further comprises a correction step of correcting the machining position of the NC program for performing the removal step,
(I) Before modeling of the three-dimensional shaped object, creation of a plurality of reference points serving as reference positions for the removal finishing process on the modeling plate, and position detection of the reference points are performed.
(Ii) The position of the reference point is detected again before the removing step in the middle of forming the modeled object, the position of the reference point detected before the modeling, and the position of the reference point detected before the removing step A method for manufacturing a three-dimensional shaped object, wherein the position is corrected based on the measurement difference .
造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化工程とを備え、前記粉末層形成工程と硬化工程とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、該造形物の表面及び表面内側を除去する除去工程を少なくとも1回以上繰り返して三次元形状造形物を造形する方法において、
前記除去工程は、前記造形用プレートを所定の冷却手段により冷却する冷却工程と、この冷却工程の後に行なわれる除去仕上げ工程と、を含み、
前記冷却工程は、造形中の造形物における上面全体の温度を測定し、予め定めた温度まで冷却されたかを判断するステップを有し、前記定めた温度まで冷却されたときに前記除去仕上げ工程に移行し、
前記硬化工程時に、前記三次元形状造形物の周囲の雰囲気を所定の加熱手段により加熱する加熱工程を含み、この加熱工程により所定の温度まで加熱した後に硬化工程を行ない、
前記除去工程を行なうNCプログラムの加工位置の補正を行なう補正工程を更に備え、前記補正工程は、
(i)三次元形状造形物の造形前に、前記除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去工程の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、除去工程の前に検出された基準点の位置との測定差に基づいて位置補正することを特徴とする三次元形状造形物の製造方法。
A powder layer forming step of forming a powder layer by supplying an inorganic or organic powder material to the modeling plate, and irradiating a predetermined portion of the powder layer with a light beam to sinter or melt cure the powder layer A curing step for forming a cured layer, and by repeating the powder layer forming step and the curing step, the surface of the modeled object and the inside of the modeled object are formed in the middle of the formation of the modeled product in which a plurality of cured layers are integrated. In the method of modeling a three-dimensional shaped object by repeating the removing step to be removed at least once,
The removing step includes a cooling step of cooling the modeling plate by a predetermined cooling means, and a removal finishing step performed after the cooling step,
The cooling step has a step of measuring the temperature of the entire upper surface of the modeled object under modeling and judging whether it has been cooled to a predetermined temperature, and when it is cooled to the predetermined temperature, Migrate ,
During the curing step, including a heating step of heating the atmosphere around the three-dimensional shaped object by a predetermined heating means, and performing the curing step after heating to a predetermined temperature by this heating step,
The method further comprises a correction step of correcting the machining position of the NC program for performing the removal step,
(I) Before modeling of the three-dimensional shaped object, creation of a plurality of reference points serving as reference positions for the removal finishing process on the modeling plate, and position detection of the reference points are performed.
(Ii) The position of the reference point is detected again before the removing step in the middle of forming the modeled object, the position of the reference point detected before the modeling, and the position of the reference point detected before the removing step A method for manufacturing a three-dimensional shaped object, wherein the position is corrected based on the measurement difference .
造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化工程とを備え、前記粉末層形成工程と硬化工程とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、該造形物の表面及び表面内側を除去する除去工程を少なくとも1回以上繰り返して三次元形状造形物を造形する方法において、
前記除去工程は、前記造形物の周囲の雰囲気を所定の冷却手段により冷却する冷却工程と、この冷却工程の後に行なわれる除去仕上げ工程と、を含み、
前記冷却工程は、造形中の造形物における上面全体の温度を測定し、予め定めた温度まで冷却されたかを判断するステップを有し、前記定めた温度まで冷却されたときに前記除去仕上げ工程に移行し、
前記硬化工程時に、前記造形用プレートを所定の加熱手段により加熱する加熱工程を含み、この加熱工程により所定の温度まで加熱した後に硬化工程を行ない、
前記除去工程を行なうNCプログラムの加工位置の補正を行なう補正工程を更に備え、前記補正工程は、
(i)三次元形状造形物の造形前に、前記除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去工程の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、除去工程の前に検出された基準点の位置との測定差に基づいて位置補正することを特徴とする三次元形状造形物の製造方法。
A powder layer forming step of forming a powder layer by supplying an inorganic or organic powder material to the modeling plate, and irradiating a predetermined portion of the powder layer with a light beam to sinter or melt cure the powder layer A curing step for forming a cured layer, and by repeating the powder layer forming step and the curing step, the surface of the modeled object and the inside of the modeled object are formed in the middle of the formation of the modeled product in which a plurality of cured layers are integrated. In the method of modeling a three-dimensional shaped object by repeating the removing step to be removed at least once,
The removal step includes a cooling step of cooling the atmosphere around the modeled object by a predetermined cooling means, and a removal finishing step performed after the cooling step,
The cooling step has a step of measuring the temperature of the entire upper surface of the modeled object under modeling and judging whether it has been cooled to a predetermined temperature, and when it is cooled to the predetermined temperature, Migrate,
Wherein during the curing step includes a heating step of heating the shaping plate by a predetermined heating means, rows that have a curing step after heating to a predetermined temperature by the heating step,
The method further comprises a correction step of correcting the machining position of the NC program for performing the removal step,
(I) Before modeling of the three-dimensional shaped object, creation of a plurality of reference points serving as reference positions for the removal finishing process on the modeling plate, and position detection of the reference points are performed.
(Ii) The position of the reference point is detected again before the removing step in the middle of forming the modeled object, the position of the reference point detected before the modeling, and the position of the reference point detected before the removing step method for producing a three-dimensionally shaped object you characterized in that the position is corrected based on the measurement difference.
造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化工程とを備え、前記粉末層形成工程と硬化工程とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、該造形物の表面及び表面内側を除去する除去工程を少なくとも1回以上繰り返して三次元形状造形物を造形する方法において、
前記除去工程は、前記造形物の周囲の雰囲気を所定の冷却手段により冷却する冷却工程と、この冷却工程の後に行なわれる除去仕上げ工程と、を含み、
前記冷却工程は、造形中の造形物における上面全体の温度を測定し、予め定めた温度まで冷却されたかを判断するステップを有し、前記定めた温度まで冷却されたときに前記除去仕上げ工程に移行し、
前記硬化工程時に、前記三次元形状造形物の周囲の雰囲気を所定の加熱手段により加熱する加熱工程を含み、この加熱工程により所定の温度まで加熱した後に硬化工程を行ない、
前記除去工程を行なうNCプログラムの加工位置の補正を行なう補正工程を更に備え、前記補正工程は、
(i)三次元形状造形物の造形前に、前記除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去工程の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、除去工程の前に検出された基準点の位置との測定差に基づいて位置補正することを特徴とする三次元形状造形物の製造方法。
A powder layer forming step of forming a powder layer by supplying an inorganic or organic powder material to the modeling plate, and irradiating a predetermined portion of the powder layer with a light beam to sinter or melt cure the powder layer A curing step for forming a cured layer, and by repeating the powder layer forming step and the curing step, the surface of the modeled object and the inside of the modeled object are formed in the middle of the formation of the modeled product in which a plurality of cured layers are integrated. In the method of modeling a three-dimensional shaped object by repeating the removing step to be removed at least once,
The removal step includes a cooling step of cooling the atmosphere around the modeled object by a predetermined cooling means, and a removal finishing step performed after the cooling step,
The cooling step has a step of measuring the temperature of the entire upper surface of the modeled object under modeling and judging whether it has been cooled to a predetermined temperature, and when it is cooled to the predetermined temperature, Migrate,
Wherein during the curing step includes a heating step of heating the atmosphere surrounding the three-dimensionally shaped object by predetermined heating means, rows that have a curing step after heating to a predetermined temperature by the heating step,
The method further comprises a correction step of correcting the machining position of the NC program for performing the removal step,
(I) Before modeling of the three-dimensional shaped object, creation of a plurality of reference points serving as reference positions for the removal finishing process on the modeling plate, and position detection of the reference points are performed.
(Ii) The position of the reference point is detected again before the removing step in the middle of forming the modeled object, the position of the reference point detected before the modeling, and the position of the reference point detected before the removing step method for producing a three-dimensionally shaped object you characterized in that the position is corrected based on the measurement difference.
前記加熱工程において、造形中の造形物における上面全体の温度を測定し、予め定めた温度に達しているかを判断するステップを有することを特徴とする請求項3又は請求項4に記載の三次元形状造形物の製造方法。   5. The three-dimensional according to claim 3, wherein the heating step includes a step of measuring the temperature of the entire upper surface of the modeled object during modeling and determining whether or not a predetermined temperature is reached. A method of manufacturing a shaped object. 前記加熱工程及び冷却工程の両方又はいずれか一方において、前記除去仕上げ加工を行う除去手段の主軸に取り付けられた温度センサによって、前記上面全体の温度に代えて造形物の所定箇所の温度を測定することを特徴とする請求項1乃至請求項5のいずれか一項に記載の三次元形状造形物の製造方法。   In both or any one of the heating step and the cooling step, a temperature sensor attached to a main shaft of a removing unit that performs the removal finishing process measures a temperature of a predetermined portion of the modeled object instead of the temperature of the entire upper surface. The method for producing a three-dimensional shaped article according to any one of claims 1 to 5, wherein 前記冷却工程は、前記造形物を冷却するステップを有することを特徴とする請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法。   The said cooling process has a step which cools the said molded article, The manufacturing method of the three-dimensional shaped molded article as described in any one of Claim 1 thru | or 6 characterized by the above-mentioned. 造形用プレートに無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成手段と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結、又は溶融硬化させ硬化層を形成する硬化手段と、三次元形状造形物の表面及び表面内側を切削して除去する除去手段と、を備え、前記粉末層の形成と、前記硬化層の形成とを繰り返すことにより複数の硬化層が一体化された造形物の形成の途中に、前記除去手段により前記除去を少なくとも1回以上繰り返して三次元形状造形物を製造する製造装置において、
前記除去手段による前記除去動作の前に、造形物の周囲の雰囲気及び前記造形用プレートの両方又はいずれか一方を冷却し、該造形物の上面全体の温度を所定の温度まで冷却する冷却手段と、
前記造形物の周囲の雰囲気及び前記造形用プレートの両方又はいずれか一方を加熱する加熱手段と、
前記除去を行なうNCプログラムの加工位置の補正を行なう補正手段と、を更に備え、前記補正手段は、
(i)三次元形状造形物の造形前に、除去仕上げ加工の基準位置となる複数の基準点の前記造形用プレートへの作成、及び該基準点の位置検出を行ない、
(ii)造形物の形成途中における前記除去の前に前記基準点の位置を再度検出し、造形前に検出された基準点の位置と、前記除去の前に検出された基準点の位置との測定差に基づいて位置補正することを特徴とする三次元形状造形物の製造装置。
Powder layer forming means for forming a powder layer by supplying an inorganic or organic powder material to a modeling plate, and irradiating a predetermined portion of the powder layer with a light beam to sinter or melt cure the powder layer A curing means for forming a hardened layer; and a removing means for cutting and removing the surface and the inner surface of the three-dimensionally shaped object, and by repeating the formation of the powder layer and the formation of the hardened layer. In the process of forming a three-dimensional shaped object by repeating the removal at least once by the removing means during the formation of a three-dimensional object in which the cured layer is integrated,
Cooling means for cooling the atmosphere around the modeled object and / or the modeling plate before the removing operation by the removing unit, and cooling the temperature of the entire upper surface of the modeled object to a predetermined temperature ; ,
A heating means for heating the atmosphere around the modeled object and / or the modeling plate;
Correction means for correcting the machining position of the NC program to be removed, and the correction means,
(I) Before modeling the three-dimensional shaped object, create a plurality of reference points serving as reference positions for removal finishing processing on the modeling plate, and detect the positions of the reference points.
(Ii) The position of the reference point is detected again before the removal during the formation of the modeled object, and the position of the reference point detected before the modeling and the position of the reference point detected before the removal An apparatus for manufacturing a three-dimensional shaped object, wherein the position is corrected based on a measurement difference .
JP2008127719A 2007-05-14 2008-05-14 Manufacturing method and manufacturing apparatus for three-dimensional shaped object Active JP4258571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127719A JP4258571B2 (en) 2007-05-14 2008-05-14 Manufacturing method and manufacturing apparatus for three-dimensional shaped object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007128520 2007-05-14
JP2008127719A JP4258571B2 (en) 2007-05-14 2008-05-14 Manufacturing method and manufacturing apparatus for three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2008307895A JP2008307895A (en) 2008-12-25
JP4258571B2 true JP4258571B2 (en) 2009-04-30

Family

ID=40031815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127719A Active JP4258571B2 (en) 2007-05-14 2008-05-14 Manufacturing method and manufacturing apparatus for three-dimensional shaped object

Country Status (2)

Country Link
JP (1) JP4258571B2 (en)
WO (1) WO2008143106A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2926923A1 (en) * 2014-04-04 2015-10-07 Matsuura Machinery Corporation Metal powder processing equipment

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4566286B1 (en) * 2010-04-14 2010-10-20 株式会社松浦機械製作所 Manufacturing equipment for 3D modeling products
DE202010005162U1 (en) * 2010-04-17 2010-11-04 Evonik Degussa Gmbh Device for reducing the lower installation space of a laser sintering system
JP2015150886A (en) * 2014-02-19 2015-08-24 シャープ株式会社 Device and method for laminating molding
CN103990798B (en) * 2014-05-06 2015-10-21 华中科技大学 A kind of high-temperature powder bed system manufactured for laser gain material
JP6455699B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Method for manufacturing alloy structure
JP6455700B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Method for manufacturing alloy structure
DE102014012286B4 (en) * 2014-08-22 2016-07-21 Cl Schutzrechtsverwaltungs Gmbh Apparatus and method for producing three-dimensional objects
EP3766608A1 (en) * 2014-11-14 2021-01-20 Nikon Corporation Shaping apparatus and shaping method
JP6840540B2 (en) 2014-11-14 2021-03-10 株式会社ニコン Modeling equipment
JP6604002B2 (en) * 2015-02-26 2019-11-13 日本電気株式会社 Additive manufacturing apparatus and additive manufacturing method
US11117360B2 (en) 2015-06-03 2021-09-14 Renishaw Plc Device and method for generating and displaying data relating to an additive manufacturing process
CN104959606B (en) * 2015-06-25 2017-01-11 同济大学 Partial temperature control system for metal material 3D printing
JP6669444B2 (en) 2015-06-29 2020-03-18 株式会社ミツトヨ Modeling apparatus and modeling method
CN104960202B (en) * 2015-06-29 2017-05-10 华中科技大学 3D printing device and method
KR101757989B1 (en) * 2015-11-09 2017-07-26 이재훈 Delta-bot type three dimensional printer having heating unit
JP6561412B2 (en) * 2015-11-24 2019-08-21 住友電工焼結合金株式会社 Sinter hardening method and sintering furnace for sinter hardening
EP3199268A1 (en) * 2016-01-28 2017-08-02 Siemens Aktiengesellschaft Method for generative production of components with heatable construction platform and system used in this method
CN108778576B (en) * 2016-03-09 2021-03-12 松下知识产权经营株式会社 Method for manufacturing three-dimensional shaped object
EP3248718A4 (en) * 2016-03-25 2018-04-18 Technology Research Association for Future Additive Manufacturing 3d additive manufacturing device, control method for 3d additive manufacturing device, control program for 3d additive manufacturing device, and jig
FR3055564B1 (en) 2016-09-08 2020-07-31 Safran METHOD OF MANUFACTURING A PART IN ELECTROCONDUCTIVE MATERIAL BY ADDITIVE MANUFACTURING
KR102476579B1 (en) * 2016-10-14 2022-12-12 한국재료연구원 Printer for manufacturing three-dimensional object
WO2018086009A1 (en) * 2016-11-09 2018-05-17 东台精机股份有限公司 Heating and refrigerating device
JP6823517B2 (en) * 2017-03-24 2021-02-03 株式会社ソディック Manufacturing method and manufacturing equipment for 3D laminated model
KR102151445B1 (en) 2017-08-30 2020-09-03 가부시키가이샤 소딕 Additive manufacturing apparatus and method for manufacturing three dimensional object
JP6295001B1 (en) * 2017-08-30 2018-03-14 株式会社ソディック Laminated modeling apparatus and manufacturing method of a layered object
JP6560775B1 (en) * 2018-02-27 2019-08-14 株式会社ソディック Laminated modeling apparatus and manufacturing method of a layered object
EP3470207B1 (en) * 2017-10-13 2021-12-01 CL Schutzrechtsverwaltungs GmbH Plant for additively manufacturing of three-dimensional objects
EP3795279A4 (en) * 2018-05-18 2021-12-15 Ihi Corporation Three-dimensional shaping device and three-dimensional shaping method
JP6532990B1 (en) * 2018-07-18 2019-06-19 株式会社ソディック Method of manufacturing layered product
JP7117584B2 (en) * 2018-07-25 2022-08-15 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensional shaped article
CN109746443A (en) * 2018-12-29 2019-05-14 华中科技大学 A kind of method of parallel control part deformation and precision during increasing material manufacturing
KR102162562B1 (en) * 2019-01-29 2020-10-07 현대로템 주식회사 Refrigerant injection cooling jig for 3D printer
JP7354489B2 (en) * 2019-03-19 2023-10-03 ニデックマシンツール株式会社 Three-dimensional lamination device and three-dimensional lamination method
DE112021007615T5 (en) * 2021-05-07 2024-02-29 Mitsubishi Electric Corporation NUMERICAL CONTROL APPARATUS AND NUMERICAL CONTROL METHOD
JP7295987B1 (en) 2022-03-18 2023-06-21 株式会社ソディック LAMINATED MAKING APPARATUS AND METHOD FOR MANUFACTURING LAMINATED PRODUCT

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294927A (en) * 1998-04-09 1999-10-29 Ckd Corp Liquid temperature controller, liquid temperature control method, working system and grinding system
JP2000280355A (en) * 1999-03-29 2000-10-10 Minolta Co Ltd Apparatus and method for three-dimensional shaping
JP3446733B2 (en) * 2000-10-05 2003-09-16 松下電工株式会社 Method and apparatus for manufacturing three-dimensional shaped object
JP2004237372A (en) * 2003-02-04 2004-08-26 Okamoto Machine Tool Works Ltd Temperature control mechanism for photoconductive board workpiece cutting device, and method of cutting groove in photoconductive board workpiece
JP2005319634A (en) * 2004-05-07 2005-11-17 Roland Dg Corp Three-dimensional shaping apparatus and three-dimensional shaping method
JP4856908B2 (en) * 2005-07-12 2012-01-18 株式会社イマジオム Powder sintering modeling apparatus and powder sintering modeling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2926923A1 (en) * 2014-04-04 2015-10-07 Matsuura Machinery Corporation Metal powder processing equipment

Also Published As

Publication number Publication date
WO2008143106A1 (en) 2008-11-27
JP2008307895A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4258571B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
US10532513B2 (en) Method and arrangement for producing a workpiece by using additive manufacturing techniques
US8974727B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP5355213B2 (en) Laminate modeling equipment for modeling three-dimensional shaped objects
KR101606426B1 (en) Production method for three-dimensionally shaped molded object
JP6855181B2 (en) 3D modeling device and manufacturing method of 3D modeled object
JP3446733B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
KR101666102B1 (en) Method for manufacturing three-dimensional molding
JP5186306B2 (en) Manufacturing method of three-dimensional shaped object
US20120041586A1 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object obtained by the same
CN105817625A (en) Composite forming device of molten coating added and decreased materials
US20120093674A1 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object obtained by the same
JPWO2011102382A1 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
KR20140116496A (en) Method of manufacturing three-dimensional sculpture
KR20180021186A (en) Method for manufacturing three dimensional shaped sculpture
JP2016186129A (en) Lamination molding device
JP6471975B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
KR20180019747A (en) METHOD FOR MANUFACTURING 3-D DIMENSIONAL SCRAP
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
JP2019210534A (en) Method of manufacturing three-dimensional shaped article
JP2012224907A (en) Method for manufacturing three-dimensionally shaped article
JP6858658B2 (en) Manufacturing equipment and manufacturing method for laminated model
JP6823517B2 (en) Manufacturing method and manufacturing equipment for 3D laminated model
TWI784253B (en) Three-dimensional molded object, and lamination molding apparatus
CN112692280B (en) Laminated molding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5