JP4243702B2 - Measurement method of sound velocity distribution inside material - Google Patents

Measurement method of sound velocity distribution inside material Download PDF

Info

Publication number
JP4243702B2
JP4243702B2 JP2003373470A JP2003373470A JP4243702B2 JP 4243702 B2 JP4243702 B2 JP 4243702B2 JP 2003373470 A JP2003373470 A JP 2003373470A JP 2003373470 A JP2003373470 A JP 2003373470A JP 4243702 B2 JP4243702 B2 JP 4243702B2
Authority
JP
Japan
Prior art keywords
ultrasonic
resonance
order
velocity
sound velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003373470A
Other languages
Japanese (ja)
Other versions
JP2005106792A (en
Inventor
捷宏 川島
Original Assignee
捷宏 川島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷宏 川島 filed Critical 捷宏 川島
Priority to JP2003373470A priority Critical patent/JP4243702B2/en
Publication of JP2005106792A publication Critical patent/JP2005106792A/en
Application granted granted Critical
Publication of JP4243702B2 publication Critical patent/JP4243702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、板状材料ならびに管状材料の材質測定や内部応力測定をおこなう超音波共振法において板状材料ならびに管状材料内部の音速分布を測定する方法に関する。The present invention relates to a method for measuring sound velocity distribution in a plate-like material and a tubular material in an ultrasonic resonance method for measuring the material of a plate-like material and a tubular material and measuring internal stress.

金属材料の厚さ測定、材質測定、内部応力測定のために超音波共振法が有効であることはよく知られている。
特開平6−118064には被試験材料に非接触で超音波を発受信できる電磁超音波共振法による金属板の材質測定方法が開示されている。 特開平10−48068には電磁超音波を用いた金属の内部応力測定方法が開示されている。 特開平9−280969には電磁超音波を用いた金属管の内部応力測定方法が開示されている。 実吉純一、菊池喜充、熊本乙彦 監修、「超音波技術便覧、新提版」、日刊工業新聞社、1989年5月25日発行、p737−738には超音波共振法の原理が述べられている。 表口隆雄、赤木俊夫、川島捷宏 他著、「共振電磁超音波法による冷延鋼板のオンラインr値測定技術の開発」,鉄と鋼、Vol.79(1993)p139−144には被試験材料に非接触で超音波を発受信できる電磁超音波共振法の原理ならびに実験結果が述べられている。 荻博次、平尾雅彦、福岡秀和 著、「電磁超音波共鳴法による金属薄板の音弾性応力測定」、日本機械学会論文集(A編)60巻569号(1994−1)には被試験材料に非接触で超音波を発受信できる電磁超音波共振法の原理ならびに実験結果が述べられている。
It is well known that the ultrasonic resonance method is effective for measuring the thickness of metal materials, measuring materials, and measuring internal stress.
Japanese Patent Laid-Open No. 6-118064 discloses a method for measuring the material of a metal plate by an electromagnetic ultrasonic resonance method capable of transmitting and receiving ultrasonic waves without contact with a material to be tested. Japanese Patent Laid-Open No. 10-48068 discloses a method for measuring internal stress of metal using electromagnetic ultrasonic waves. Japanese Patent Laid-Open No. 9-280969 discloses a method for measuring internal stress of a metal tube using electromagnetic ultrasonic waves. Supervised by Junichi Miyoshi, Yoshimitsu Kikuchi, Otohiko Kumamoto, “Ultrasonic Technology Handbook, New Edition”, Nikkan Kogyo Shimbun, published May 25, 1989, p737-738 describes the principle of ultrasonic resonance method Yes. Takao Omoguchi, Toshio Akagi, Yasuhiro Kawashima et al., “Development of on-line r-value measurement technology for cold-rolled steel sheets by resonant electromagnetic ultrasonic method”, Iron and Steel, Vol. 79 (1993) p139-144 describes the principle and experimental results of an electromagnetic ultrasonic resonance method capable of transmitting and receiving ultrasonic waves without contact with the material under test. Hiroyuki Tsuji, Masahiko Hirao, Hidekazu Fukuoka, “Acoustoelastic Stress Measurement of Thin Metal Sheets by Electromagnetic Ultrasonic Resonance”, The Japan Society of Mechanical Engineers (A), Volume 60, No. 569 (1994-1) Describes the principle and experimental results of the electromagnetic ultrasonic resonance method that can transmit and receive ultrasonic waves without contact.

図2は超音波共振法の概略図である。1は超音波振動子であり超音波の発信と受信の両方に用いられる。2は板状材料であり被試験材料である。その厚さはdである。超音波振動子1に交流電圧を加えつつ、その交流電圧の振動数を連続的に変化させると、上記非特許文献1によれば次の式(1)が成り立つときに板状材料内部に超音波の共振がおこる。

Figure 0004243702
式(1)においてdは板状材料の厚さ、λは超音波の波長、nは正の整数である。すなわち板状材料の厚さが超音波の波長の半分の整数倍のときに超音波の共振がおこるといえる。nが1,2,3...のときの共振をそれぞれ1次、2次、3次...の共振という。
一方、超音波の速度V、波長λ、周波数fの間に次の(2)式が成り立つことは一般的によく知られている。
Figure 0004243702
式(1)、(2)より次の式(3)を導くことができる。
Figure 0004243702
式(3)のfはn次の共振のときの周波数であるのでこれを明確に示すためにfと書き直すと次の式(4)ができる。
Figure 0004243702
式(4)より、板状材料の厚さdを測定し、n次共振周波数fを測定することにより板状材料内部の超音波の速度Vを知ることができる。板状材料内部の超音波の速度Vが板状材料の内部応力や材質に関連していることはよく知られている。上記の特許文献1、非特許文献2、非特許文献3はこのことを利用したものであり、金属板内部の超音波の速度Vを測定し、それより金属板の内部応力や材質を判定している。FIG. 2 is a schematic diagram of the ultrasonic resonance method. An ultrasonic transducer 1 is used for both transmission and reception of ultrasonic waves. Reference numeral 2 denotes a plate-like material, which is a material to be tested. Its thickness is d. When an AC voltage is applied to the ultrasonic vibrator 1 and the frequency of the AC voltage is continuously changed, according to the non-patent document 1, a super Resonance of sound waves occurs.
Figure 0004243702
In formula (1), d is the thickness of the plate-like material, λ is the wavelength of the ultrasonic wave, and n is a positive integer. That is, it can be said that ultrasonic resonance occurs when the thickness of the plate-like material is an integral multiple of half the wavelength of the ultrasonic wave. n is 1, 2, 3,. . . Resonance at first, second, third,. . . This is called resonance.
On the other hand, it is generally well known that the following equation (2) holds between the ultrasonic velocity V, wavelength λ, and frequency f.
Figure 0004243702
The following equation (3) can be derived from equations (1) and (2).
Figure 0004243702
F is this rewritten as f n to clearly show it is the following equation (4) because the frequency in the case of n-order resonance of the formula (3).
Figure 0004243702
From equation (4), the thickness d of the plate-like material is measured, and the ultrasonic velocity V inside the plate-like material can be known by measuring the n- th resonance frequency f n . It is well known that the ultrasonic velocity V inside the plate-like material is related to the internal stress or material of the plate-like material. The above-mentioned Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3 make use of this fact, and measure the ultrasonic velocity V inside the metal plate to determine the internal stress and material of the metal plate. ing.

上記の特許文献1、非特許文献2、非特許文献3に開示されている発明は基本原理的には式(4)を利用したものであり、金属板内部の超音波の速度Vが試験対象となる金属板の内部において表面からの深さにかかわらず一定であることを仮定したものである。従って、金属板の内部において材質や内部応力が表面からの深さにかかわらず一定であるときにのみそれらを測定できる方法であるといえる。ところが実際の金属板では圧延や熱処理により、金属板内部において材質や内部応力が表面からの深さによって一定でないことが多いことはよく知られている。したがって特許文献1、非特許文献2、非特許文献3に開示されている発明は金属板内部において材質や内部応力が表面からの深さによって一定でない場合には適用することができない。The inventions disclosed in Patent Literature 1, Non-Patent Literature 2, and Non-Patent Literature 3 basically use Equation (4), and the ultrasonic velocity V inside the metal plate is the test object. It is assumed that the inside of the metal plate is constant regardless of the depth from the surface. Therefore, it can be said that it can be measured only when the material and internal stress are constant inside the metal plate regardless of the depth from the surface. However, it is well known that in an actual metal plate, the material and internal stress are often not constant depending on the depth from the surface due to rolling or heat treatment. Therefore, the invention disclosed in Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3 cannot be applied when the material and internal stress are not constant depending on the depth from the surface inside the metal plate.

本発明は上記課題を解決するため材料内部の超音波の速度Vが表面からの深さによって一定でないときにも適用できる超音波共振法を提供するものである。
請求項1に記載の発明は、超音波共振法において複数の共振周波数を測定し、それらの値を演算した結果より材料内部の超音波速度の分布を判定することを特徴とする。 従来は共振周波数f、f、f、……は共振の次数に正比例すると考えられていた。そのため式(4)より、f、f、f、……等のうちどの共振周波数を用いても同じ値の超音波の速度Vが得られると考えられていた。本発明の発明者は、従来の考えは不完全であり板状材料内部の超音波の速度Vが表面からの深さによって一定でないときには共振周波数f、f、f、……等は共振の次数に正比例せず、わずかに正比例からずれることを発見し、さらにそれらの値を演算した結果より材料内部の超音波速度の分布を判定する方法を発明したのである。
In order to solve the above problems, the present invention provides an ultrasonic resonance method that can be applied even when the velocity V of the ultrasonic wave inside the material is not constant depending on the depth from the surface.
The invention according to claim 1 is characterized in that a plurality of resonance frequencies are measured in the ultrasonic resonance method, and the distribution of ultrasonic velocity inside the material is determined from the result of calculating these values. Conventionally, the resonance frequencies f 1 , f 2 , f 3 ,... Were considered to be directly proportional to the order of resonance. Therefore, it has been considered from equation (4) that the ultrasonic velocity V having the same value can be obtained using any resonance frequency among f 1 , f 2 , f 3 ,. The inventor of the present invention has incomplete the conventional idea, and when the velocity V of the ultrasonic wave inside the plate-like material is not constant depending on the depth from the surface, the resonance frequencies f 1 , f 2 , f 3 ,. They discovered that it was not directly proportional to the order of resonance, but slightly deviated from direct proportionality, and invented a method for determining the distribution of ultrasonic velocities inside the material from the result of calculating those values.

請求項2に記載の発明は、超音波共振法において、複数の共振周波数を測定し、1次以上且つ5次以下の複数の共振周波数のそれぞれに数値を掛けたものの和と、2次以上且つ20次以下の複数の共振周波数のそれぞれに数値を掛けたものの和とをもとめ、その両方から板状材料ならびに管状材料の内部の超音波速度の分布を判定することを特徴とする。The invention according to claim 2 is the ultrasonic resonance method in which a plurality of resonance frequencies are measured, a sum of values obtained by multiplying each of the plurality of resonance frequencies of the first order and the fifth order by a numerical value, a second order and more and It is characterized in that the ultrasonic velocity distribution inside the plate-like material and the tubular material is determined from the sum of the values obtained by multiplying each of a plurality of resonance frequencies of the 20th order or lower by a numerical value.

請求項3に記載の発明は、請求項1、請求項2に記載の超音波共振法において、材料内部の超音波速度の分布より材料の材質、内部応力を判定することを特徴とする。According to a third aspect of the present invention, in the ultrasonic resonance method according to the first and second aspects, the material quality and internal stress of the material are determined from the distribution of ultrasonic velocity inside the material.

発明を実施するための最良の形態は、請求項3に記載の発明であり、請求項1、請求項2に記載の超音波共振法により測定された材料内部の超音波速度の分布より、材料の材質、内部応力を判定することを特徴とする超音波共振法である。超音波共振法としては、電磁超音波共振法でもよいし、圧電振動子を用いた超音波共振法でもよい。The best mode for carrying out the invention is the invention according to claim 3, and from the distribution of ultrasonic velocity inside the material measured by the ultrasonic resonance method according to claim 1 and claim 2, the material The ultrasonic resonance method is characterized in that the material and the internal stress are determined. The ultrasonic resonance method may be an electromagnetic ultrasonic resonance method or an ultrasonic resonance method using a piezoelectric vibrator.

発明の実施の形態を実施例にもとづき図面を参照して説明する。図1は発明の実施の1例である共振電磁超音波検査装置の概要を示す概要図である。特許文献1、非特許文献2、非特許文献3には共振電磁超音波検査装置が開示されているので概要図のみとした。図1において、3は共振電磁超音波送受信器、4は電磁超音波トランスデューサ、5は被検査体である厚さ15mmの鋼板である。6は鋼板内での共振で生じた横波超音波の定在波の振幅分布を示す。4の電磁超音波トランスデューサは横波超音波を送受信するものである。金属等の固体中を伝播する超音波には、進行方向と振動方向が平行な縦波超音波と進行方向と振動方向が垂直な横波超音波とがあることはよく知られているのでそれらの詳細な説明は省略する。測定は共振電磁超音波送受信器3の周波数を掃引することによりおこなわれる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on examples with reference to the drawings. FIG. 1 is a schematic diagram showing an outline of a resonant electromagnetic ultrasonic inspection apparatus as an example of an embodiment of the invention. Since Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3 disclose resonant electromagnetic ultrasonic inspection apparatuses, only a schematic diagram is shown. In FIG. 1, 3 is a resonant electromagnetic ultrasonic transmitter / receiver, 4 is an electromagnetic ultrasonic transducer, and 5 is a steel plate having a thickness of 15 mm, which is an object to be inspected. 6 shows the amplitude distribution of the standing wave of the transverse ultrasonic wave generated by the resonance in the steel plate. The electromagnetic ultrasonic transducer 4 transmits and receives transverse wave ultrasonic waves. It is well known that ultrasonic waves propagating in solids such as metals include longitudinal wave ultrasonic waves whose traveling direction and vibration direction are parallel, and transverse wave ultrasonic waves whose traveling direction and vibration direction are perpendicular. Detailed description is omitted. The measurement is performed by sweeping the frequency of the resonant electromagnetic ultrasonic transceiver 3.

図3は図1の共振電磁超音波検査装置により得られたディジタル測定データを図示したものである。横軸は共振電磁超音波送受信器3によって掃引された周波数、縦軸は測定により得られた横波超音波の振幅をあらわしている。図3において横波超音波の振幅が特に大きいS(n=1〜20)であらわされているところで超音波の共振が起こっている。nは共振の次数をあらわしている。超音波の共振が起こっている共振周波数はf(n=1〜20)である。下付き添字であるnは共振の次数をあらわしている。fは1.007MHzと測定された。従来はこれらの共振周波数fは共振の次数nに正比例し、またこれらの共振周波数fと共振の次数nを式(4)に代入して得られる超音波の音速Vはnの値にかかわらずすべて等しいとされてきた。
しかし本発明者は図3に図示したディジタル測定データを仔細に検討した結果、これらの共振周波数fは共振の次数nに正比例せず、したがって式(4)によって得られる超音波の音速は全てわずかに異なることを発見した。
FIG. 3 shows digital measurement data obtained by the resonant electromagnetic ultrasonic inspection apparatus of FIG. The horizontal axis represents the frequency swept by the resonant electromagnetic ultrasonic transmitter / receiver 3, and the vertical axis represents the amplitude of the transverse ultrasonic wave obtained by the measurement. Resonance of the ultrasound at the amplitude of the transverse ultrasonic waves are represented by particularly large S n (n = 1~20) is occurring in FIG. n represents the order of resonance. The resonance frequency at which ultrasonic resonance occurs is f n (n = 1 to 20). The subscript n represents the order of resonance. f 1 was measured as 1.007 MHz. Conventionally, these resonance frequencies f n are directly proportional to the resonance order n, and the ultrasonic sound velocity V obtained by substituting the resonance frequency f n and the resonance order n into the equation (4) is a value of n. Regardless, they have all been equal.
However, as a result of careful examination of the digital measurement data shown in FIG. 3, the present inventor has found that these resonance frequencies f n are not directly proportional to the resonance order n, and therefore, the sound speed of the ultrasonic wave obtained by the equation (4) is all. I found it slightly different.

図4は図3の測定データを仔細に検討して得られた共振周波数fと共振の次数nとの関係を示している。図4において横軸は共振の次数であり、縦軸は共振周波数である。図4より共振周波数fは共振の次数nには正比例していないことがわかる。直線7は共振周波数が共振の次数に正比例すると仮定した場合にそれらの関係をあらわす直線である。共振周波数fが共振の次数nに正比例していないことを強調するために直線7からのずれを実際よりは大きく描いている。FIG. 4 shows the relationship between the resonance frequency f n and the resonance order n obtained by carefully examining the measurement data of FIG. In FIG. 4, the horizontal axis represents the order of resonance, and the vertical axis represents the resonance frequency. FIG. 4 shows that the resonance frequency f n is not directly proportional to the resonance order n. The straight line 7 is a straight line representing the relationship when it is assumed that the resonance frequency is directly proportional to the order of resonance. In order to emphasize that the resonance frequency f n is not directly proportional to the resonance order n, the deviation from the straight line 7 is drawn larger than actual.

このことをさらに明瞭に示すために各共振周波数fをnでわった値である(f/n)を1次の共振周波数fでさらにわった(f/n)/fを計算し、これと共振の次数nとの関係を図5に示す。図5において横軸は共振の次数であり、縦軸は(f/n)/fである。図5によれば(f/1)/f=1、(f/2)/f=1.0076、(f/3)/f=1.0090、(f/4)/f=1.0095、(f/5)/f=1.0097、であり、その後は(f/n)/fの値はnの増大とともにわずかに増加するが、nが2以上では増加の割合は小さくなりほぼ一定の値1.01にちかづいている。すなわちnが2以上20以下の(f/n)/f値はほぼ等しく1.01となっている。したがってnが2以上であれば(f/n)=f×1.01=1.0171MHz としても誤差は小さいといえる。 そこでnが10である場合の(f/n)、すなわち(f10/10)=1.0171MHzを使用して式(4)より超音波音速を算出すると3051m/sとなった。In order to show this more clearly, (f n / n), which is a value obtained by dividing each resonance frequency f n by n, is further divided by (f n / n) / f 1 by the primary resonance frequency f 1. FIG. 5 shows the relationship between the calculation and the resonance order n. In FIG. 5, the horizontal axis represents the order of resonance, and the vertical axis represents (f n / n) / f 1 . Referring to FIG. 5 (f 1/1) / f 1 = 1, (f 2/2) / f 1 = 1.0076, (f 3/3) / f 1 = 1.0090, (f 4/4 ) / f 1 = 1.0095, ( f 5/5) / f 1 = 1.0097, a, thereafter is slightly increases with increasing (f n / n) / value of f 1 is n, When n is 2 or more, the rate of increase is small and is almost constant 1.01. That is, the value of (f n / n) / f 1 where n is 2 or more and 20 or less is substantially equal to 1.01. Therefore, if n is 2 or more, it can be said that the error is small even if (f n / n) = f 1 × 1.01 = 1.0171 MHz. Thus, when (f n / n) where n is 10, that is, (f 10 /10)=1.0171 MHz is used, the ultrasonic sound velocity is calculated from Equation (4) to be 3051 m / s.

このような測定の後に、図1の厚さ15mmの鋼板5を表面に平行な面に沿ってスライスして厚さ1mmの薄い鋼板を11枚作り、それぞれの薄い鋼板の内部での音速を測定した結果を図6に示す。図6の横軸は表面からの深さをあらわし、縦軸はその深さでの超音波音速をあらわす。これによってもとの鋼板5の内部における超音波の音速は表面からの深さによって異なり、表面近くで超音波音速が最大で3150m/sであり、中心で超音波音速が最小であり3000m/sであることがわかった。その比は3150/3000=1.05である。また超音波の音速分布は表面からの深さに関して2次曲線状で且つ中心に関して対象であり、平均の超音波音速は3050m/sであることがわかった。After such measurement, the steel plate 5 with a thickness of 15 mm in FIG. The results are shown in FIG. The horizontal axis in FIG. 6 represents the depth from the surface, and the vertical axis represents the ultrasonic velocity at that depth. As a result, the sound velocity of the ultrasonic wave inside the original steel plate 5 varies depending on the depth from the surface, the ultrasonic sound velocity is 3150 m / s at the maximum near the surface, and the ultrasonic sound velocity is minimum at the center, 3000 m / s. I found out that The ratio is 3150/3000 = 1.05. Further, it was found that the ultrasonic sound velocity distribution is a quadratic curve with respect to the depth from the surface and the center, and the average ultrasonic sound velocity is 3050 m / s.

他の異なる5枚の鋼板(厚さはいずれも15mm)についても上記と同様の共振周波数の測定とスライス後の超音波音速測定をおこなった。鋼板5と他の異なる5枚の鋼板、すなわち合計6枚の鋼板の測定の結果を図7、図8に示す。図7の横軸は共振電磁超音波検査装置によって測定された(f10/10)/fの値である。図7の縦軸は鋼板をスライス後に測定された表面近くの超音波音速Vと中心の超音波音速Vとの比である。図7より共振電磁超音波検査装置によって測定された(f10/10)/fの値から、表面近くの超音波音速Vと中心の超音波音速Vとの比を次の式により求めることができる。
/V=5(f10/10)/f−4 (5)
nが2以上であれば(f/n)/fの値はほぼ等しいので、(f10/10)/fのかわりに、nが2以上である他の(f/n)/fを使ってもほぼ同じ結果が得られることはいうまでもない。またnが2以上である任意のnを有する複数の(f/n)/fの平均値を使ってもほぼ同じ結果が得られることはいうまでもない。
For the other five different steel plates (thickness is 15 mm), the measurement of the resonance frequency and the ultrasonic speed of sound after slicing were performed in the same manner as described above. 7 and 8 show the measurement results of the steel plate 5 and other five different steel plates, that is, a total of six steel plates. 7, the horizontal axis is the value of the resonance was measured by an electromagnetic ultrasonic inspection apparatus (f 10/10) / f 1. The vertical axis in FIG. 7 is the ratio between the ultrasonic sound velocity V S near the surface and the central ultrasonic sound velocity V C measured after slicing the steel sheet. From the value of (f 10/10 ) / f 1 measured by the resonance electromagnetic ultrasonic inspection apparatus from FIG. 7, the ratio between the ultrasonic velocity V S near the surface and the ultrasonic velocity V C at the center is expressed by the following equation. Can be sought.
V S / V C = 5 ( f 10/10) / f 1 -4 (5)
If n is 2 or more because (f n / n) / value of f 1 is approximately equal, in place of (f 10/10) / f 1, n is other than 2 (f n / n) Needless to say, the same result can be obtained by using / f 1 . It goes without saying that substantially the same result can be obtained even if an average value of a plurality of (f n / n) / f 1 having an arbitrary n of 2 or more is used.

図8の横軸は共振電磁超音波検査装置によって測定された(f10/10)の値を式(4)に代入して算出した超音波音速である。図8の縦軸は鋼板をスライス後に測定された平均の超音波音速である。
図8より共振電磁超音波検査装置によって測定された(f10/10)の値を式(4)に代入して算出した超音波音速と鋼板をスライス後に測定された平均の超音波音

Figure 0004243702
ることができる。ここでdは鋼板の厚さである。
Figure 0004243702
nが2以上であれば(f/n)の値はほぼ等しいので、(f10/10)のかわりに、nが2以上である他の(f/n)を使ってもほぼ同じ結果が得られることはいうまでもない。
超音波の音速分布が表面からの深さに関して2次曲線状で且つ中心に関して対象である場合は、平均の超音波音速と、鋼板の表面近くの超音波音速と中心の超音波音速との比の両方がわかれば超音波の音速分布を完全に知ることができることは数学的にも自明である。このようにして共振電磁超音波検査装置による測定結果より鋼板内部の定量的超音波音速の分布を判定することができることがわかった。The horizontal axis of FIG. 8 is an ultrasonic sound velocity of calculating the value of which is determined by the resonant electromagnetic ultrasonic inspection apparatus (f 10/10) into Equation (4). The vertical axis | shaft of FIG. 8 is the average ultrasonic sound speed measured after slicing the steel plate.
From FIG. 8, the ultrasonic sound velocity calculated by substituting the value of (f 10/10 ) measured by the resonance electromagnetic ultrasonic inspection apparatus into the equation (4) and the average ultrasonic sound measured after slicing the steel sheet.
Figure 0004243702
Can. Here, d is the thickness of the steel plate.
Figure 0004243702
If n is 2 or more, the value of (f n / n) is almost equal. Therefore, instead of (f 10/10 ), it is almost the same if another (f n / n) where n is 2 or more is used. It goes without saying that results are obtained.
When the ultrasonic sound velocity distribution is a quadratic curve with respect to the depth from the surface and the object is the center, the ratio of the average ultrasonic sound velocity to the ultrasonic sound velocity near the surface of the steel sheet and the ultrasonic sound velocity at the center. It is also mathematically obvious that if both of these are known, the ultrasonic velocity distribution can be completely known. In this way, it was found that the distribution of quantitative ultrasonic sound velocity inside the steel sheet can be determined from the measurement result by the resonance electromagnetic ultrasonic inspection apparatus.

実施例1で使用した計算方法とは異なる以下の方法によっても、共振電磁超音波検査装置による測定結果より鋼板内部の超音波音速の定量的分布を判定することができることがわかった。

Figure 0004243702
は0より大きく1より小さい正の数である。
次に式(8)により鋼板の表面近くの超音波音速Vと中心の超音波音速Vとの比をもとめる。
Figure 0004243702
は0より大きく1より小さい正の数である。
とqの値としては次のような値を選ぶとよいことがわかった。
=1.0024,p=1.001,p=1.0005,p=1.0003,p〜p20=1.00q=1.000、q=0.9925、q=0.9911、q=0.9906,q=0.9904そしてこうしてもとめられた平均の超音波音速と、鋼板の表面近くの超音波音速と中心の超音波音速との比の両方より鋼板内部の超音波の音速分布を判定したところ鋼板をスライスして測定した超音波の音速分布とほぼ等しいことがわかった。このほかにもさまざまなp、qの値の組み合わせが可能であることもわかった。共振の次数nが21以上のfは測定の誤差の範囲内で全く同じ値であることが実験によりわかった。したがって次数nが21以上のfを利用する価値がないこともわかった。It was found that the quantitative distribution of the ultrasonic sound velocity inside the steel sheet can also be determined from the measurement result obtained by the resonance electromagnetic ultrasonic inspection apparatus by the following method different from the calculation method used in Example 1.
Figure 0004243702
pn is a positive number greater than 0 and less than 1.
Next, the ratio between the ultrasonic sound velocity V S near the surface of the steel sheet and the central ultrasonic sound velocity V C is obtained by equation (8).
Figure 0004243702
q n is a positive number greater than 0 and less than 1.
The value of p n and q n was found to be a good choice values as follows.
p 2 = 1.0024, p 3 = 1.001, p 4 = 1.0005, p 5 = 1.0003, p 6 ~p 20 = 1.00q 1 = 1.000, q 2 = 0.9925, q 3 = 0.9911, q 4 = 0.9906, q 5 = 0.9904 and the ratio of the average ultrasonic velocity thus determined to the ultrasonic velocity near the surface of the steel sheet and the ultrasonic velocity at the center The ultrasonic velocity distribution inside the steel plate was judged from both, and it was found that it was almost equal to the ultrasonic velocity distribution measured by slicing the steel plate. In addition to various well of p n, also it has been found that it is possible combination of values of q n. Order n 21 or more f n of the resonance that is exactly the same value in the range of measurement error was found by experiments. Therefore, it was also found that it is not worth using f n of order n of 21 or more.

本発明は横波超音波のみでなく縦波超音波にも適用できる。また本発明は板状材料のみでなく管状材料であっても管壁が極度に湾曲していない比較的直径の大きいものであれば適用できる。また本発明は超音波の音速分布が表面からの深さに関して2次曲線状でない場合にも適切なpならびにqの組み合わせにより適用できる。また式(7)、(8)のようなfだけを含む式だけでなくfの2乗以上の項を含む式を適切に選んで演算することによっても適用できる。あるいはfを含む関数を適切に選んで演算することによっても適用できる。The present invention can be applied not only to transverse wave ultrasound but also to longitudinal wave ultrasound. The present invention can be applied not only to plate-like materials but also to tubular materials, as long as the tube wall is not extremely curved and has a relatively large diameter. The present invention can be applied by a combination of appropriate p n and q n even if the sound velocity distribution in the ultrasonic wave is not a quadratic curve shape with respect to depth from the surface. Further, the present invention can be applied by appropriately selecting and calculating not only an expression including only f n such as Expressions (7) and (8) but also an expression including a term equal to or larger than the square of f n . Alternatively applicable by appropriately Pick computing functions including f n.

発明の効果The invention's effect

以上説明したように本発明によれば、下記のような優れた効果が得られる。請求項1,2に示した超音波共振法のうちのいずれかの超音波共振法により、板状材料や管状材料の内部の厚さ方向に沿った音速分布測定を実現できる。一方、板状材料や管状材料を伝播する超音波の音速と残留応力あるいは材質特性との関係は[特許文献1]、[特許文献2][特許文献3]、[非特許文献1]、[非特許文献2]、[非特許文献3]などのこれまでの多数の文献において明らかにされている。すなわち、請求項3に示した超音波共振法により、これまでは不可能とされてきた板状材料や管状材料の内部の厚さ方向に沿った残留応力の分布の測定、材質特性の分布の測定を信頼性高く実現できることになる。As described above, according to the present invention, the following excellent effects can be obtained. With any one of the ultrasonic resonance methods described in claims 1 and 2, sound velocity distribution measurement along the thickness direction inside the plate-like material or tubular material can be realized. On the other hand, the relationship between the acoustic velocity of the ultrasonic wave propagating through the plate-like material or the tubular material and the residual stress or the material property is [Patent Document 1], [Patent Document 2] [Patent Document 3], [Non-Patent Document 1], [ It has been clarified in many documents such as Non-Patent Document 2] and [Non-Patent Document 3]. That is, the ultrasonic resonance method described in claim 3 is used to measure the distribution of residual stress along the thickness direction inside the plate-like or tubular material, which has been impossible until now, Measurement can be realized with high reliability.

本発明は板状材料のみでなく管状材料であっても管壁が極度に湾曲していない比較的直径の大きいものであれば適用できる。鉄鋼業やアルミニウム産業において、板状材料や管状材料の内部の残留応力の分布の測定、材質特性の分布の測定に利用することができる。The present invention can be applied not only to a plate-like material but also to a tubular material as long as the tube wall is not extremely curved and has a relatively large diameter. In the steel industry and the aluminum industry, it can be used for measuring the distribution of residual stress inside the plate-like material and tubular material and measuring the distribution of material properties.

共振電磁超音波検査装置の概要を示す概要図である。It is a schematic diagram which shows the outline | summary of a resonance electromagnetic ultrasonic inspection apparatus. 超音波共振法の概略図である。It is the schematic of an ultrasonic resonance method. 共振電磁超音波検査装置(図1)により得られたディジタル測定データを図示したものである。横軸は図1の共振電磁超音波送受信器3によって掃引された周波数、縦軸は測定により得られた横波超音波の振幅をあらわしている。FIG. 2 shows digital measurement data obtained by a resonance electromagnetic ultrasonic inspection apparatus (FIG. 1). The horizontal axis represents the frequency swept by the resonant electromagnetic ultrasonic wave transmitter / receiver 3 in FIG. 1, and the vertical axis represents the amplitude of the transverse wave ultrasonic wave obtained by the measurement. 共振周波数fと共振の次数nとの関係を示している。横軸は共振の次数であり、縦軸は共振周波数である。It shows the relationship between the order n of the resonance and the resonance frequency f n. The horizontal axis is the order of resonance, and the vertical axis is the resonance frequency. (f/n)/fと共振の次数nとの関係を示している。横軸は共振の次数nであり、縦軸は(f/n)/fである。The relationship between (f n / n) / f 1 and the resonance order n is shown. The horizontal axis is the resonance order n, and the vertical axis is (f n / n) / f 1 . 図1の鋼板5を表面に平行な面に沿って11枚の薄い鋼板にスライスしそれらの音速を測定した結果を示している。横軸は表面からの深さをあらわし、縦軸はその深さでの超音波音速をあらわす。1 shows a result of slicing the steel plate 5 of FIG. 1 into 11 thin steel plates along a plane parallel to the surface and measuring the speed of sound thereof. The horizontal axis represents the depth from the surface, and the vertical axis represents the ultrasonic sound velocity at that depth. 共振電磁超音波検査装置(図1)によって測定された(f10/10)/fと鋼板をスライス後に測定した表面近くの超音波音速Vと中心の超音波音速Vとの比との関係を示している。横軸は(f10/10)/fの値であり、縦軸はVとVとの比である。The ratio between (f 10/10 ) / f 1 measured by the resonance electromagnetic ultrasonic inspection apparatus (FIG. 1) and the ultrasonic sound velocity V S near the surface measured after slicing the steel sheet and the ultrasonic sound velocity V C at the center Shows the relationship. The horizontal axis is the value of (f 10/10 ) / f 1 , and the vertical axis is the ratio between V S and V C. 共振電磁超音波検査装置(図1)によって測定された(f10/10)の値より算出した超音波音速と鋼板をスライス後に測定した超音波音速の平均値との関係を示している。横軸は(f10/10)の値より算出した超音波音速であり、縦軸は鋼板をスライス後に測定された超音波音速の平均値である。The relationship between the ultrasonic sound speed calculated from the value of (f 10/10 ) measured by the resonance electromagnetic ultrasonic inspection apparatus (FIG. 1) and the average value of the ultrasonic sound speed measured after slicing the steel sheet is shown. The horizontal axis represents the ultrasonic sound velocity calculated from the value of (f 10/10 ), and the vertical axis represents the average value of the ultrasonic sound velocity measured after slicing the steel sheet.

符号の説明Explanation of symbols

1 超音波振動子
2 板状材料
3 共振電磁超音波送受信器
4 電磁超音波トランスデューサ
5 厚さ15mmの鋼板
6 鋼板内での共振で生じた横波超音波の定在波の振幅分布
7 共振周波数が共振の次数に正比例すると仮定した場合にそれらの関係をあらわす直線
DESCRIPTION OF SYMBOLS 1 Ultrasonic transducer 2 Plate-shaped material 3 Resonance electromagnetic ultrasonic transmitter / receiver 4 Electromagnetic ultrasonic transducer 5 15 mm-thick steel plate 6 Amplitude distribution of standing wave of transverse wave generated by resonance in the steel plate 7 Resonance frequency is A straight line representing the relationship when it is assumed to be directly proportional to the order of resonance

Claims (3)

超音波共振法において、1次の共振周波数ならびに2次以上20次以下の共振周波数を測定し、2次以上20次以下の共振周波数のいずれかと1次の共振周波数との比の値をもとめ、その比の値より、板状材料ならびに管状材料の内部を厚さの方向に伝播するにつれて速度が変化しながら伝播する超音波の速度の厚さ方向の変化を判定することを特徴とする超音波共振法。In the ultrasonic resonance method, the primary resonance frequency and the resonance frequency of the second order to the twentieth order are measured, and the value of the ratio between the resonance frequency of the second order and the twentieth order and the primary resonance frequency is obtained. The ultrasonic wave characterized by determining the change in the thickness direction of the velocity of the ultrasonic wave propagating while changing the velocity as it propagates in the direction of the thickness in the plate material and the tubular material from the value of the ratio Resonance method. 超音波共振法において、1次の共振周波数ならびに2次以上20次以下の共振周波数を測定し、2次以上20次以下の共振周波数のうちのいずれかの複数の共振周波数の平均と1次の共振周波数との比の値をもとめ、その比の値より板状材料ならびに管状材料の内部を厚さの方向に伝播するにつれて速度が変化しながら伝播する超音波の速度の厚さ方向の変化を判定することを特徴とする超音波共振法。In the ultrasonic resonance method, a primary resonance frequency and a resonance frequency from the second order to the twentieth order are measured, and an average of the plurality of resonance frequencies of the resonance frequencies from the second order to the twentieth order and the first order is calculated. Find the value of the ratio to the resonance frequency, and the change in the thickness direction of the velocity of the ultrasonic wave propagating while the velocity changes as the value propagates through the plate and tubular materials in the thickness direction. An ultrasonic resonance method characterized by determining. 請求項1、請求項2に記載の超音波共振法において、超音波の速度の厚さ方向の変化より板状材料ならびに管状材料の材質、内部応力の厚さ方向の変化を判定することを特徴とする超音波共振法。3. The ultrasonic resonance method according to claim 1, wherein the change in the thickness direction of the plate material and the tubular material and the thickness direction of the internal stress is determined from the change in the thickness direction of the ultrasonic velocity. The ultrasonic resonance method.
JP2003373470A 2003-09-27 2003-09-27 Measurement method of sound velocity distribution inside material Expired - Fee Related JP4243702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373470A JP4243702B2 (en) 2003-09-27 2003-09-27 Measurement method of sound velocity distribution inside material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373470A JP4243702B2 (en) 2003-09-27 2003-09-27 Measurement method of sound velocity distribution inside material

Publications (2)

Publication Number Publication Date
JP2005106792A JP2005106792A (en) 2005-04-21
JP4243702B2 true JP4243702B2 (en) 2009-03-25

Family

ID=34544134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373470A Expired - Fee Related JP4243702B2 (en) 2003-09-27 2003-09-27 Measurement method of sound velocity distribution inside material

Country Status (1)

Country Link
JP (1) JP4243702B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025093A (en) * 2007-07-18 2009-02-05 Nichizou Tec:Kk Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave
JP2009068914A (en) * 2007-09-11 2009-04-02 Nippon Steel Corp Inner state measuring instrument, inner state measuring method, program and computer readable storage medium
JP5624271B2 (en) * 2008-09-17 2014-11-12 株式会社東芝 Piping thickness measurement method and apparatus
US8181524B2 (en) * 2008-12-26 2012-05-22 Panasonic Corporation Ultrasonic stress measurement method and device
JP2010249574A (en) * 2009-04-13 2010-11-04 Ricoh Elemex Corp Ultrasonic liquid level indicator
JP2015071198A (en) * 2013-10-02 2015-04-16 株式会社ディスコ Grinding method of plate-like object
CN104048786B (en) * 2014-06-09 2016-03-30 中国航空工业集团公司北京航空材料研究院 A kind of method of ultrasound wave nondestructive measurement sheet metal internal residual stress field
CN105203638A (en) * 2015-09-18 2015-12-30 哈尔滨工业大学深圳研究生院 Method for detecting distribution of steel member absolute stress along depth on basis of Lcr wave method
CN112710417B (en) * 2020-12-17 2022-10-28 哈尔滨工业大学 Plane stress measurement system and method for unknown thickness of test piece

Also Published As

Publication number Publication date
JP2005106792A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
Nagy et al. Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection
EP3497402B1 (en) Determining a thickness of a region of wall- or plate-like structure
Demma et al. The reflection of the fundamental torsional mode from cracks and notches in pipes
CA2258439C (en) Ultrasonic lamb wave technique for measurement of pipe wall thickness at pipe supports
CN105378471A (en) Methods for measuring properties of multiphase oil-water-gas mixtures
NO327139B1 (en) Method and system for determining loss of material thickness in a solid structure
JP4243702B2 (en) Measurement method of sound velocity distribution inside material
EP2195611B1 (en) Acoustic thickness measurements using gas as a coupling medium
KR102204747B1 (en) Damage detection method using lamb wave signal energy
US10641743B2 (en) Beam forming and steering of helical guided waves in pipe-like and plate-like structures
Murav’eva et al. Methodological peculiarities of using SH-and Lamb waves when assessing the anisotropy of properties of flats
JP5904339B2 (en) Liquid detection method and liquid detection apparatus
JP5059344B2 (en) Plate thickness measuring apparatus and measuring method
Velichko et al. Post-processing of guided wave array data for high resolution pipe inspection
Cobb et al. Detecting sensitization in aluminum alloys using acoustic resonance and EMAT ultrasound
JP3140244B2 (en) Grain size measurement method
JP2792286B2 (en) Method for measuring elastic constant of specimen
Rebinsky et al. An asymptotic calculation of the acoustic signature of a cracked surface for the line focus scanning acoustic microscope
Fong et al. Curvature effect on the properties of guided waves in plates
JP4653624B2 (en) Crystal grain size measuring device, crystal grain size measuring method, program, and computer-readable storage medium
JP5240218B2 (en) Crystal grain size measuring apparatus, method and program
CN114441638B (en) Flaw detection method for corrugated plate
JPH1164309A (en) Method and apparatus for measuring material characteristic of roll material
RU2379675C2 (en) Method for detection of local corrosion depth and tracking of its development
RU2334224C1 (en) Method of ultrasonic measuring of average grain size

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees