JP4239584B2 - Ignition timing control device for in-cylinder direct injection spark ignition engine - Google Patents

Ignition timing control device for in-cylinder direct injection spark ignition engine Download PDF

Info

Publication number
JP4239584B2
JP4239584B2 JP2002371635A JP2002371635A JP4239584B2 JP 4239584 B2 JP4239584 B2 JP 4239584B2 JP 2002371635 A JP2002371635 A JP 2002371635A JP 2002371635 A JP2002371635 A JP 2002371635A JP 4239584 B2 JP4239584 B2 JP 4239584B2
Authority
JP
Japan
Prior art keywords
region
ignition timing
ignition
combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002371635A
Other languages
Japanese (ja)
Other versions
JP2004204704A (en
Inventor
仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002371635A priority Critical patent/JP4239584B2/en
Publication of JP2004204704A publication Critical patent/JP2004204704A/en
Application granted granted Critical
Publication of JP4239584B2 publication Critical patent/JP4239584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は筒内直接噴射式火花点火エンジンの点火時期制御の改良に関する。
【0002】
【従来の技術】
運転域を成層燃焼域と均質燃焼域に分割し、均質燃焼域では1回の点火を行い、成層燃焼域になると2回の連続点火を行うものがある(特許文献1参照)。
【0003】
【特許文献1】
特開平11−2173号公報
【0004】
【発明が解決しようとする課題】
ところで、筒内直接噴射式火花点火エンジンでは、所定運転域でリーン空燃比での成層燃焼を行うのであるが、成層燃焼を行う所定運転域のうち隣り合う運転域で成層燃焼の設定条件を異ならせたものが提案されている。
【0005】
このものにおける成層燃焼域での混合気の形成方法をエアガイド式について説明すると、成層燃焼域のうち隣り合う運転域を領域R1と領域R2とに区別する。例えば図3に示したように、成層燃焼域のうち低回転速度側を領域R1、高回転速度側を領域R2とする。各領域R1、R2での混合気形成方法は次の通りである。
【0006】
領域R1での混合気形成方法:燃料噴射量が少ないこの領域で安定した成層混合気を形成するために、シリンダヘッドと、上昇してきたピストン冠面のキャビティに囲まれた空間に、コンパクトに噴霧を収める(図12の左側参照)。また、元々ガス流動場は弱いこともあり、この力を用いて混合気形成を行うのではなく、噴射期間と噴霧の貫徹力により混合気を形成する。
【0007】
領域R2での混合気形成方法:この領域になると、燃料噴射量が多いため、噴射期間が長く設定される。そのとき、スモークや未燃燃料の発生を抑制する面から、燃料が冠面に付着するのを防ぐために噴射開始時期を領域R1の場合より早める必要があり、ピストン冠面の位置が、より下がった状態で混合気形成を行う(図12の右側参照)。その際、噴射期間と噴霧の貫徹力だけで混合気形成を行うのではなく、ガス流動を利用する。すなわち、吸気ポートに設けたガス流動制御弁を閉じることによってシリンダ内にガス流動(タンブル流)を生成し、燃焼室空間に噴射した噴霧を、その生成したガス流動を利用してまとめつつ点火プラグへと移送することで、安定した混合気形成を行う。
【0008】
このように、2つの領域R1、R2で混合気の形成方法が異なるため、隣り合う運転域でありながら成層燃焼の設定条件(ガス流動弁の作動状態、空燃比、EGR率、噴射時期、点火時期等)が大きく異なっている。このため、運転条件がその隣り合う運転域の境界を横切る際には、成層燃焼の設定条件を、領域R1に適合した値から領域R2に適合した値へと、あるいはその逆へと切換える必要がある。具体的には領域R1より領域R2へと移行させる際にはガス流動弁を開状態より閉状態へと、また領域R2より領域R1へと移行させる際にはガス流動弁を閉状態より開状態へと切換えなければならない。
【0009】
しかしながら、ガス流動弁の閉作動中や開作動中は燃焼状態が過渡的に変化するため、噴射時期と点火時期とで決まる安定燃焼領域を外れる可能性がある。これを図6を参照しながら説明すると、図6はガス流動制御弁(TCV)の作動状態の違いによる燃焼安定領域の差異を示している。ここで、横軸は噴射時期(右側が遅角側)、縦軸は点火時期(上側が進角側)であり、これらのバランスの上に燃焼安定領域が定まる。図示の4重丸のうち2重丸の部分のみが燃焼安定領域であり、その外側は燃焼不安定領域である。
【0010】
成層燃焼域である領域R1、R2では燃費向上のため空燃比はリーン状態にあり、このリーン状態で多く発生するNOxを低減するためEGR率を大きくしている。このため、領域R1、R2とも燃焼安定領域は狭く、領域R1での燃焼安定領域は右上に示すように、これに対して領域R2での燃焼安定領域は左上に示すようになる。両者を比較すると、左上のほうが2重丸の領域が少しだけ大きくなっているのでそれだけ燃焼安定領域が広い。また、左上の燃焼安定領域よりも右上の燃焼安定領域のほうが点火時期が進角側に偏っていることがわかる。
【0011】
さて、点火時期を変えなくとも2つの領域R1、R2で共に燃焼安定領域でいられる点火時期があるのか否かを調べるために引いたのが図示の2本の平行線で、上側の線より進角側(上側)にあれば領域R1では燃焼安定領域に入り、下側の線より遅角側(下側)であれば領域R2で燃焼安定領域に入る。ということは、2つの領域R1、R2で共に燃焼安定領域でいられる点火時期はない。従って、燃焼安定を保ちつつかつ点火時期を変更することなく右上に示す状態(領域R1での成層燃焼状態)より左上に示す状態(領域R2での成層燃焼状態)へと、あるいはこの逆へと移すことはできない。従って、領域R1より領域R2へのあるいはその逆への移行途中において成層燃焼を持続させようとした場合、燃焼安定度を確保するために成層燃焼の設定値を甘く設定せざるを得ない。すなわち、図6の場合で再度説明すると、右上、左上に対して空燃比をリッチ化すると共にEGR率を小さくすれば、右下、左下に示したように燃焼安定領域が拡大する。これら右下、左下の2つの状態で、点火時期を変えることなく共に燃焼安定領域でいられる点火時期があるのか否かを調べるために図示の2本の平行線を引いてみると、今度は上の直線と下の直線の間の点火時期であれば、右下、左下の2つの状態で共に燃焼安定領域でいられることになる。このことは、成層燃焼の設定条件を甘くして、右下と左下の状態が得られるようにしておけば、右下と左下の間では点火時期(噴射時期についても)を一定に保った状態でTCVを開状態から閉状態へあるいはこの逆に閉状態から開状態へと切換えても燃焼安定領域を外れることがないことを意味する。
【0012】
しかしながら、右下、左下の状態で燃焼安定領域が大きくなっているのは、空燃比をリッチ化すると共にEGR率を小さくすることによって燃焼ガスが高温化しているからであり、この燃焼ガスの高温化によってNOx排出量が増大する。同図には等NOx排出量線を書き入れており、その線幅が太くなるほどNOx排出量が増大することを表している。右下、左下の状態では右上、左上の状態より燃焼安定領域を横切る、等NOx排出量線の線幅が太く、NOx排出量が増大していることがわかる。
【0013】
このように、成層燃焼域のうち成層燃焼の設定条件が異なる隣り合う運転域の境界を横切る際にも成層燃焼を持続させようとして、成層燃焼の設定値を甘く設定したのでは、NOx排出量が多くなり、排気を悪化させてしまうのである。
【0014】
そこで本発明は、成層燃焼のうち成層燃焼の設定条件である点火時期が少なくとも異なる隣り合う運転域の境界を横切る際に、どちらに要求される点火時期にも点火を行うことにより、成層燃焼の設定条件が異なる隣り合う運転域の境界を横切る際にも、成層燃焼を安定して持続させることを目的とする。
【0015】
一方、上記の従来装置において成層燃焼域で2回の多重点火を行うのは、成層燃焼の設定条件が同一の運転域において着火の機会を増やすためである。すなわち、成層燃焼では燃焼室空間に噴射した噴霧をガス流動を利用してまとめつつ混合気塊にして点火プラグに輸送するようにしているので、混合気塊が点火プラグ付近に存在するときに点火を行う必要があり、着火の機会を逃さないように2回の多重点火を行っている。これに対して本発明は、成層燃焼の設定条件が異なる隣り合う運転域の境界を横切る際に、一方の運転域で最適に設定した点火時期と他方の運転域で最適に設定した点火時期との2回の連続点火を行うものであり、上記の従来装置とは技術的思想が異なる。
【0016】
【問題点を解決するための手段】
本発明は、所定運転域でリーン空燃比での成層燃焼を行う筒内直接噴射式火花点火エンジンにおいて、成層燃焼を行う所定運転域のうち隣り合う運転域で成層燃焼の設定条件である点火時期が少なくとも異なる場合に、あるいは、隣り合う運転域で成層燃焼の設定条件であるガス流動状態と点火時期とが少なくとも異なる場合に、その隣り合う運転域の境界を横切る際に、どちらに要求される点火時期にも点火を行う2回点火実行手段を備える。
【0017】
【発明の効果】
成層燃焼域のうち隣り合う運転域で成層燃焼の設定条件が異なる場合に、その隣り合う運転域の境界を横切る際には、燃焼状態が過渡的に変化するため、噴射時期と点火時期とで決まる安定燃焼領域を外れる可能性があるのであるが、本発明ではその隣り合う運転域の境界を横切る際に、どちらに要求される点火時期にも点火を行うので、いずれかの点火時期がそのときの燃焼形態に最適なものとなり、燃焼形態が違う隣り合う運転域を繋げることが可能となる。これにより、運転の連続性を確保しつつ、低燃費、低排気(NOx)の燃焼状態を維持することができる。
【0018】
また、長放電化等で点火エネルギを高める手段を用いなくても、必要最小限の点火エネルギの投入で連続運転が可能となるので、コストアップとならない。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
【0020】
図1は筒内直接噴射式火花点火エンジンの概略構成図である。
【0021】
図1に示すように、シリンダヘッド2と、シリンダブロック3に形成されるシリンダ4と、このシリンダ4を摺動するピストン5との間に燃焼室6が画成される。点火プラグ7が燃焼室中央部に臨み、ペントルーフ型に傾斜する燃焼室天井壁には2本の吸気ポート8a、8bと2本の排気ポート9a、9bが点火プラグ7を挟むようにして互いに対向して設けられる。10a、10bは吸気ポート8a、8bの燃焼室6への開口部を開閉するための吸気弁、11a、11bは排気ポート9a、9bの燃焼室6への開口部を開閉するための排気弁、13は吸気ポート8a、8bの途中にあって閉じられたとき吸気を絞る、ガス流動制御弁としてのタンブルコントロールバルブ(以下単に「TCV」という。)である。
【0022】
燃焼室6天井壁にはその側部から燃焼室6に臨む燃料噴射弁12が設けられる。燃料噴射弁12は各吸気弁10a、10bの側方で、かつ各吸気ポート8a、8bの間に位置して燃焼室6に臨んでいる。
【0023】
当該エンジンでは図3に示す低中回転速度域かつ低負荷域である領域R1及びR2で成層燃焼運転を行うが、この成層燃焼域(R1、R2)においては、燃焼室6内のガス流動を利用して燃料噴射弁12より燃焼室6内に直接噴射された燃料の噴霧をまとめつつ点火プラグ7近傍へと導き、この過程で混合気の塊となったものに対して着火している。燃料噴射弁12より噴射された燃料を混合気の塊状態にして点火プラグ7に誘導する方法は、エアガイド式といわれるものである。
【0024】
エアガイド式による混合気の形成方法を図2を参照しながら具体的に説明すると、同図は左側より右側に向けて時間的経過を表している。
【0025】
TCV開時:
図3に示す領域R1ではもともとガス流動場は弱いこともあり、このガス流動を用いて混合気を形成することは困難であるので、噴霧の貫徹力により混合気を形成する。すなわち、上死点に近づくにつれて形成される、シリンダヘッド2とピストンキャビティ5aに挟まれた空間内に燃料を噴射するため、噴射時期は遅角側に設定している(圧縮行程噴射)。この狭い空間に噴射された噴霧は噴霧の貫徹力だけで混合気を形成しつつ点火プラグ7へと到達する(図2上段参照)。
【0026】
TCV閉時:
図3に示す領域R2になるとガス流動を利用できる。すなわち、TCV13を閉じると各吸気ポート8a、8bの上側半分からのみ吸気が流入することになって吸気の流速が早まり、ピストン5の冠部上でシリンダ4中心線と直交する軸を中心に旋回するタンブルが十分な強さで生起する(図2下段最左端の矢印参照)。このタンブルを助長するようにキャビティ5aは浅皿状に形成されている。このため、燃料噴射弁12から噴射される燃料噴霧は、燃料噴射弁12の中心線を中心とする円錐状に拡がる。上記のタンブルによって燃料噴射弁21より噴射された燃料噴霧は、点火プラグ7のある方向に導かれ、その過程で着火可能な混合気塊を形成する。そして、この点火プラグ7近傍に達したこの混合気塊に対して点火を行うことで、安定した成層燃焼運転が可能になる。
【0027】
この場合、領域R2では領域R1より燃料噴射量が多くなりその分だけ噴射期間が長くなる。その際、燃料が冠面に付着するとスモークや未燃燃料の発生の原因となるのでこれを防ぐために噴射開始時期を領域R1より進角側に設定し(圧縮行程噴射)、ピストン冠面の位置が、より下がった状態で混合気形成を行う。点火時期についても同様に領域R1より進角側への設定となる。
【0028】
このように、成層燃焼域のうち隣り合う2つの領域R1とR2とでは、混合気の形成方法が異なるため、隣り合う運転域でありながら成層燃焼の設定条件(TCV13の作動状態、空燃比、EGR率、噴射時期、点火時期等)が大きく異なっている。
【0029】
これに対して、図3に示す領域R3、R4(均質燃焼域)になると、TCV13を開いた状態でも燃焼室6内に強いタンブルが発生するため、TCV13を開いた状態とし、燃焼室6内にタンブルを作りながら吸気行程で燃料を噴射することにより、燃焼室6全体に理論空燃比付近の均質な混合気を生成し、これによって均質燃焼運転を行う。
【0030】
ここで、均質燃焼域での目標空燃比は基本的に理論空燃比(14.7)である。これは理論空燃比付近の混合気の燃焼のとき、排気中のNOx、HC、COを排気通路21に設けた三元触媒(後述するNOxトラップ触媒31に付加されている)で同時に浄化できるためである。
【0031】
一方、成層燃焼域での目標空燃比は14.7より大きな値であり、このリーンな空燃比のとき多く排出されるNOxを低減するためEGR(排気還流)を行う。なお、図3では領域R3においてもEGRを行っている。成層燃焼域でのEGRがNOx低減を主目的とするものであるのに対して、領域R3でのEGRは燃費向上を主目的とするものである。
【0032】
なお、図3において「λ」は空気過剰率を表す。この空気過剰率λと空燃比との間には次の関係がある。
【0033】
空気過剰率λ=空燃比/理論空燃比…(1)
例えば領域R3では目標空燃比が理論空燃比であるので、これを(1)式に代入するとλ=1となる。また、領域R4では目標空燃比が理論空燃比または理論空燃比よりもリッチ側の値、つまり14.7以下の値であるから、これを(1)式に代入するとλ≦1となる。
【0034】
図4は筒内直接噴射式火花点火エンジンの制御システム図である。
【0035】
エンジンには、2回の点火(多重点火)が可能な点火装置を備える。点火装置は、バッテリからの電気エネルギーを蓄える点火コイル22と、パワートランジスタと、燃焼室6の天井に設けられた点火プラグ7とからなり、エンジンコントローラ41より1回点火を指令する点火信号がパワートランジスタに送られ、点火コイル22の一次電流が遮断されたとき(点火時期)、点火コイル22の二次側に高電圧が発生し、この高電圧を受けて、点火プラグ7が火花放電を行う。また、エンジンコントローラ41より2回点火を指令する点火信号がパワートランジスタに送られると、点火プラグ7は2回の火花放電を行う。
【0036】
なお、図4では最下段に位置する気筒のみの点火装置を記載しているが、残りの気筒も同様であるため、記載を省略している。また、2回の点火が可能な点火装置の具体的構成は公知であるので省略する(特開平11−2173号公報参照)。
【0037】
エンジンにはまたEGR装置としてのEGR弁26を備える。EGR弁26は排気通路23と吸気通路24を連通するEGR通路25に介装され、EGR弁アクチュエータ27により駆動されるもので、EGR弁26が所定のEGR領域で開かれると、排気の一部が不活性ガスとして吸気通路24に導かれ、この不活性ガスにより成層燃焼域(領域R1、R2)では燃焼ガス温度が低下してNOxの発生が抑えられ、またこの不活性ガスにより均質燃焼域(領域R3)ではポンピングロスが低下してそのぶん燃費が向上する。
【0038】
EGR通路25の分岐口より下流の排気通路23にはNOxトラップ触媒31を備える。NOxトラップ触媒31は、流入する排気の空燃比がリーンであるとき排気中のNOxをトラップし、流入する排気の空燃比が理論空燃比またはリッチ空燃比であるとき、トラップしていたNOxを脱離すると共に、この脱離したNOxを排気中のHC、COを還元剤として用いて還元浄化する。このNOxトラップ触媒31には三元触媒機能が付加されている。NOxトラップ触媒31と別体で三元触媒を設けてもかまわない。
【0039】
アクセル開度(アクセルペダルの踏み込み量)に応じたエンジントルクが発生するようにするため、また成層燃焼域と均質燃焼域との切換時にトルク段差を生じさせないようにするために吸気通路24にスロットル弁28とこれを駆動するスロットルアクチュエータ29とからなる電子制御式スロットル装置が設けられている。
【0040】
アクセルセンサ42からのアクセル開度(エンジン負荷相当)の信号、クランク角センサ43からの基準位置の信号(点火時期や燃料噴射時期を制御するための信号となる)やクランク角1°毎の信号、エアフローメータ44からの信号等が入力されるエンジンコントローラ41では、運転条件に応じ
▲1▼燃料噴射弁12を介しての燃料噴射量と燃料噴射時期の制御、
▲2▼点火プラグ7を介しての点火時期の制御、
▲3▼EGR弁26を介してのEGR弁開度(EGR率)の制御、
▲4▼スロットル弁28を介してのスロットル弁開度の制御、
▲5▼NOxトラップ触媒31の再生処理
をそれぞれ行うと共に、TCV13の開閉を制御する。
【0041】
上記▲1▼の燃料噴射制御については次の通りである。図3に示す成層燃焼域(R1とR2)、均質燃焼域(R3とR4)の各領域毎に最適な目標当量比Tfbyaを演算し、この目標当量比Tfbyaが得られるように燃料噴射量を演算し、この燃料噴射量を燃料噴射弁12の開弁期間に変換し、この開弁期間を含んだパルス信号を燃料噴射弁12の駆動回路(図示せず)に出力する。これに伴って、駆動回路からパルス信号に対応する駆動電流が燃料噴射弁12のアクチュエータに送られ、燃料噴射弁12のニードルがリフトして噴孔を開弁する。燃料噴射パルス幅が長いほど燃料噴射弁12の開弁期間が長くなり、燃料噴射量が増えるようになっている。このように、実際の制御上においては空燃比でなく当量比を使っている。この当量比と空燃比との間には後述する(2)式の関係がある。
【0042】
また、成層燃焼域で燃料噴射時期をピストン5が上昇する圧縮行程の後半に設定し、均質燃焼域で燃料噴射時期をピストン5が下降する吸気行程に設定する。
【0043】
上記▲2▼、▲3▼、▲4▼の制御については次の通りである。アクセル開度とエンジン回転速度に基づいて点火時期を演算する。アクセル開度とエンジン回転速度に基づいて目標EGR率を演算し、この目標EGR率が得られるようにEGR弁開度を演算する。アクセル開度とエンジン回転速度に基づいて目標トルクを演算し、この目標トルクに基づいて目標空気量を演算し、この目標空気量が得られるようにスロットル弁開度を演算する。
【0044】
上記▲5▼の再生処理については次の通りである。NOxとラップ触媒31にトラップされたNOx量がある程度溜まったタイミングで成層燃焼域にあっても空燃比を理論空燃比またはリッチ空燃比へと一時的に切換え、これにより定期的にNOxトラップ触媒31を再生する。
【0045】
このように上記▲1▼〜▲5▼の各制御を行うものを前提として、本実施形態ではさらに、図3に示す成層燃焼域のうち隣り合う運転域R1、R2の境界を横切る際に、一方の運転域R1で最適に設定した点火時期と他方の運転域R2で最適に設定した点火時期との2回の点火を行う。
【0046】
これを図5を参照しながら説明すると、図5において左半分は領域R1より領域R2への移行時に、また右半分はこの逆への移行時にTCV13の作動状態、空燃比A/F、EGR率、噴射時期IT、点火時期Advがそれぞれどのように変化するのかを示した波形図である。なお、噴射時期ITと点火時期Advとは上側が進角側である。
【0047】
この場合、図5右半分に示す一連の操作は、図5左半分に示す一連の操作のちょうど逆を行うものであり、従って、図5左半分での一連の操作のみを説明する。
【0048】
図5左半分において図示のように各タイミングにt1、t2を割り振り、t1のタイミングで運転条件が領域R1より領域R2へと移行し、t2のタイミングで領域移行時の制御を終了するものとする。
【0049】
〈1〉空燃比:領域R1より領域R2へと移行するt1のタイミングより空燃比A/Fを領域R1での適合値から領域R2での適合値になるまで徐々に小さくする。空燃比A/Fを所定の傾きで変化させているのは、領域移行時のトルク変動を防止するためである。
【0050】
〈2〉TCV13の作動状態とEGR率:t1のタイミングでTCV13を閉じると共に、EGR率を領域R2での適合値に切換える。TCV13はTCVアクチュエータへの通電に対して所定の傾きをもって閉じている。この傾きはTCVアクチュエータの変化速度で決まる。また、目標EGR率がt1のタイミングで領域R1での適合値から領域R2での適合値へとステップ的に変化するのに対して、実際のEGR率(図5左半分第3段目に示す実線は実際のEGR率の動きである)は所定の傾きをもって小さくなっているが、この傾きもEGR弁アクチュエータ27の変化速度で決まっている。
【0051】
この場合、実際にはTCV13の閉じる速度や実EGR率の変化速度は同じでないので、TCV13が全閉位置に落ち着くタイミング、実EGR率が領域R2での適合値に到達するタイミングは同じでない。また、これらのタイミングは空燃比が領域R2での適合値に到達するタイミングとも異なる。しかしながら、図5では簡単のため3つのタイミングを一致させて、つまりt2のタイミングでTCV13が全閉位置に落ち着き、空燃比A/Fが領域R2での適合値に到達し、、実EGR率が領域R2での適合値に到達するものとしている。
【0052】
〈3〉噴射時期:t1のタイミングより噴射時期を領域R1での適合値から領域R2での適合値になるまで徐々に進角する。噴射時期が領域R2での適合値に到達するタイミングも、簡単のため他の3つのタイミングと一致させて示している。
【0053】
〈4〉点火時期:t1よりt2までの間、つまり領域移行中、領域R1での適合値と領域R2での適合値の2つの点火時期とする。
【0054】
このように本実施形態では、領域R1より領域R2へと移行させる際に、領域移行中、領域R1での点火時期の適合値と領域R2での点火時期の適合値との2つの点火時期で点火するのであるが、比較のため本実施形態とは異なる方法を図6を参照しながら説明する。
【0055】
図6はTCV13の作動状態の違いによる燃焼安定領域の差異を示す。ここで、横軸は噴射時期IT(右側が遅角側)、縦軸は点火時期Adv(上側が進角側)であり、これらのバランスの上に燃焼安定領域が定まっている。図示の4重丸のうち2重丸の部分のみが燃焼安定領域であり、その外側は燃焼不安定領域である。
【0056】
領域R1、R2では燃費向上のため空燃比はリーン状態にあり、このリーン状態で多く発生するNOxを低減するためEGR率を大きくしている。このため、領域R1、R2とも燃焼安定領域は狭く、領域R1での燃焼安定領域は右上に示すように、これに対して領域R2での燃焼安定領域は左上に示すようになる。両者を比較すると、左上のほうが2重丸の領域が少しだけ大きくなっているのでそれだけ燃焼安定領域が広いことを示す。また、左上の燃焼安定領域よりも右上の燃焼安定領域のほうが点火時期が進角側に偏っていることがわかる。
【0057】
このように隣り合う運転域(領域R1とR2)で要求される点火時期が異なるのは、TCV13の開状態と閉状態とでガス流動の強さが大きく変化することにより、成層混合気の移送力が変わり、成層混合気が点火プラグ7に到着するタイミングが異なってくるからである。
【0058】
さて、この2つの領域R1、R2で共に点火時期を変えずに燃焼安定領域でいられる点火時期があるのか否かを調べるために引いたのが図示の2本の平行線である。上側の線より進角側にあれば領域R1では燃焼安定領域に入り、下側の線より遅角側であれば領域R2で燃焼安定領域に入る。ということは、2つの領域R1、R2で共に点火時期を変えずに燃焼安定領域でいられる点火時期はなく、従って燃焼を安定に保ちつつ、かつ点火時期を変更することなく右上に示す状態より左上に示す状態へと、この逆に左上の状態より右上の状態へと移すことはできない。これを逆にいうと、点火時期と噴射時期を同一に保ちつつ燃焼安定領域の一部が重なるようにしてやれば、点火時期と噴射時期を変えることなく燃焼を安定に保ちつつ右上より左上へと、この逆に左上より右上へと状態を移すことができる。
【0059】
このため、右下に示す状態と左下に示す状態とを追加する。右下は右上に示す状態に対して、左下は左上に示す状態に対して空燃比をリッチ化すると共にEGR率を小さくしたものである。これらの操作の結果、燃焼安定領域が右下、左下の状態とも大きくなっている。従って、これら右下、左下の2つの状態で共に点火時期を変えることなく燃焼安定領域でいられる点火時期があるのか否かを調べるために図示の2本の平行線を引いてみると、今度は上の直線と下の直線の間の点火時期であれば、右下、左下の2つの状態で共に燃焼安定領域でいられる。このことは、右下と左下の間では点火時期Advと噴射時期ITを一定に保った状態でTCV13を開状態から閉状態へ、あるいはこの逆に閉状態から開状態へと切換えても燃焼安定領域を外れることがないことを意味する。
【0060】
これより、TCV13が開状態にある右上の状態よりTCV13が閉状態にある左上の状態へと、あるいはこの逆へと燃焼安定領域を外れることなく移すには、右下、左下の状態を途中に加えればよいこと分かる。すなわち、TCV13が開状態にある右上の状態よりTCV13は開状態のまま空燃比のリッチ化とEGR率の減少化とを行って右下の状態に移し、この状態でTCV13を開状態より閉状態へと切換えて左下の状態に移し、再び空燃比を領域2での適合値へとリーン化すると共にEGR率を領域2での適合値へと大きくしてやれば左上の状態に移る。また、TCV13が閉状態にある左上の状態よりTCV13は閉状態のまま空燃比のリッチ化とEGR率の減少化を行って左下の状態に移し、この状態でTCV13を閉より開へと切換えて右下の状態に移し、再び空燃比を領域R1での適合値へとリーン化すると共にEGR率を領域R1での適合値へと大きくしてやれば右上の状態に移る。
【0061】
しかしながら、このように領域移行途中に空燃比をリッチ化すると共にEGR率を小さくする操作を挟む方法において、右下、左下の状態で燃焼安定領域が大きくなっているのは燃焼ガスが高温化しているからであり、この燃焼ガスの高温化によってNOx排出量が増大する。同図には等NOx排出量線を書き入れており、その線幅が太くなるほどNOx排出量が増大することを表している。右下、左下の状態では右上、左上の状態より燃焼安定領域を横切る、等NOx排出量線の線幅が太く、NOx排出量が増大していることがわかる。
【0062】
これに対して本実施形態による領域移行方法によれば、TCV13の作動状態によらず、TCV13の開状態に適した点火時期とTCV13の閉状態に適した点火時期の2つでそれぞれ点火することで、燃焼安定領域が、図6に示す右上、左上のどちらの状態になっても、安定して成層燃焼を維持させることができる。
【0063】
エンジンコントローラ41で実行される領域移行時の制御をフローチャートに基づいて詳述する。ただし、領域R1より領域R2への移行時についてだけ説明する。
【0064】
図7は領域移行中フラグを設定するためのもので、一定時間毎(例えば10msec毎)に実行する。
【0065】
ステップ1では運転条件(エンジンの回転速度と負荷とから定まる)が成層燃焼域(図3に示す領域R1とR2)にあるかどうかみる。成層燃焼域になければそのまま今回の処理を終了する。
【0066】
成層燃焼域にあるときにはステップ2に進み領域移行切換中フラグ(ゼロに初期設定)をみる。ここでは領域移行中フラグ=0であるとして述べると、このとき、ステップ3、4に進んで今回に運転条件が領域R2にあるか否か、また前回は運転条件が領域R1にあったか否かをみる。今回に運転条件が領域R2にありかつ前回に運転条件が領域R1にあったとき、つまり領域R1より領域R2に移行した直後であるときにはステップ5に進み領域移行中フラグ=1とする。この領域移行中フラグは領域R1より領域R2への移行時に1となり、後述するように領域移行制御を終了するときにゼロとなるフラグである。
【0067】
今回に運転条件が領域R2にないときや、今回、前回とも領域R2にあるときにはそのまま今回の処理を終了する。
【0068】
図8は目標当量比Tfbyaを演算するためのもので、一定時間毎(例えば10msec毎)に実行する。
【0069】
なお、図6では空燃比で説明したが、実際の制御上では当量比を使っている。この当量比と空燃比との間には次の関係がある。
【0070】
当量比=14.7/空燃比…(2)
(2)式より空燃比が理論空燃比(14.7)のとき当量比は1.0となる。空燃比が理論空燃比よりリッチ側の値であるときには当量比は1.0を超える値に、この逆に空燃比が理論空燃比よりリーン側の値であるときには当量比は1.0未満の値になる。
【0071】
ステップ11では運転条件に基づいて目標当量比の基本値Tfbya0を演算する。例えば、均質燃焼域と成層燃焼域とに分けて別々に目標当量比基本値のマップを備えさせ、運転条件がいずれの燃焼域にあるのかを判定した後、そのときのエンジンの回転速度と負荷とからその判定した燃焼域のマップを検索することにより目標当量比基本値Tfbya0を求めればよい。
【0072】
ステップ12、13では今回に領域移行中フラグ=1であるか否か、また前回に領域移行中フラグ=0であったか否かをみる。今回に領域移行中フラグ=0であるときにはステップ14に進み基本値Tfbya0をそのまま目標当量比Tfbyaに入れる。
【0073】
今回に領域移行中フラグ=1でありかつ前回に領域移行中フラグ=0であったとき、つまり領域移行中フラグがゼロより1へと切換わった直後(運転条件が領域R1より領域R2に移行した直後)であるときにはステップ15に進み基本値Tfbya0を領域移行中の目標当量比の前回値を表す「TfbyaTR(前回)」に入れ、ステップ16で、
TfbyaTR=TfbyaTR(前回)+Δ1…(3)
ただし、Δ1:正の所定値(例えば一定値)、
の式により領域移行中の目標当量比TfbyaTRを演算する。
【0074】
ステップ17ではこの領域移行中の目標当量比TfbyaTRと目標当量比基本値Tfbya0を比較する。領域移行中フラグがゼロより1へと切換わった直後つまり運転条件が領域R1より領域R2に移行した直後であれば、今回の目標当量比基本値Tfbya0は領域R2での適合値であり、前回のTfbya0は領域R1での適合値であったのであるから、今回にTfbya0は領域R2での適合値へとステップ的に大きくなっている。これに対して、領域移行中の目標当量比TfbyaTRは領域R1での適合値より領域R2での適合値に向けて徐々に大きくなる値であるから、運転条件が領域R1より領域R2に移行した直後では領域移行中の目標当量比TfbyaTRはステップ的に変化するTfbya0より小さく、従ってステップ18に進んで領域移行中の目標当量比TfbyaTRの値を目標当量比Tfbyaとする。
【0075】
一方、今回、前回とも領域移行中フラグ=1であるときにはステップ12、13よりステップ15を飛ばしてステップ16の操作を実行し、領域移行中の目標当量比TfbyaTRが基本値Tfbya0より小さいとステップ18の操作を行う。
【0076】
上記(3)式は運転条件が領域R1よりR2に移行したタイミングだけでなく、このように領域R2になってからも繰り返し行われるのであり、領域移行中の目標当量比TfbyaTRを演算周期当たりΔ1ずつ漸増させる式である。これは図5左半分の第2段目のt1よりt2直前までの操作を行うものである。これによって空燃比は領域R2での適合値へと向かう。
【0077】
この領域移行中の目標当量比TfbyaTRの漸増によりやがて領域移行中の目標当量比TfbyaTRが基本値Tfbya0以上になると、領域移行時の制御を終了するためステップ17よりステップ19に進み領域移行中フラグ=0として次回の領域移行時に備えると共に、ステップ20で基本値Tfbya0を目標当量比Tfbyaとする。
【0078】
このようにして演算される目標当量比TFBYAは、図示しない燃料噴射パルス幅Tiの演算フローにおいて用いられ、例えば
Ti=Tp×Tfbya×(α+αm−1)×2+Ts…(4)
ただし、Tp:基本噴射パルス幅、
α:空燃比フィードバック補正係数、
αm:空燃比学習値、
Ts:無効パルス幅、
の式によりシーケンシャル噴射時の燃料噴射パルス幅Tiが演算される。
【0079】
図9はTCV13を開閉駆動するためのもので、一定時間毎(例えば10msec毎)に実行する。
【0080】
ステップ31では運転条件が成層燃焼域にあるか否かをみる。運転条件が成層燃焼域にあればステップ32に進んで運転条件が領域R1、R2のいずれにあるのかをみる。運転条件が領域R1にあるときにはステップ33に進んでTCV13を開き、運転条件が領域R2にあるときにはステップ34に進んでTCV13を閉じる。また、成層燃焼域にないときにもステップ31よりステップ33に進んでTCV13を開く。
【0081】
図10は噴射時期を設定するためのもので、一定時間毎(例えば10msec毎)に実行する。
【0082】
ステップ41では噴射時期基本値IT0を演算する。成層燃焼域ではIT0は圧縮行程における所定のクランク角位置である。IT0は簡単には一定値でよい。
【0083】
ステップ42、43では今回に領域移行中フラグ=1であるか否か、また前回に領域移行中フラグ=0であったか否かをみる。今回に領域移行中フラグ=0であるときにはステップ44に進み基本値IT0をそのまま噴射時期ITに入れる。
【0084】
今回に領域移行中フラグ=1でありかつ前回に領域移行中フラグ=0であったとき、つまり領域移行中フラグがゼロより1へと切換わった直後(運転条件が領域R1より領域R2に移行した直後)であるときにはステップ45に進み基本値IT0を領域移行中の噴射時期の前回値を表す「IT(前回)」に入れ、ステップ46で、
ITTR=ITTR(前回)+Δ2…(5)
ただし、Δ2:正の所定値(例えば一定値)、
の式により領域移行中の噴射時期ITTRを演算し、これをステップ47で噴射時期ITに移す。
【0085】
一方、今回、前回とも領域移行中フラグ=1であるときにはステップ42、43よりステップ45を飛ばしてステップ46、47の操作を実行する。
【0086】
上記(5)式は運転条件が領域R1よりR2に移行したタイミングだけでなく、このように領域R2になってからも繰り返し行われるのであり、領域移行中の噴射時期ITTRを演算周期当たりΔ2ずつ漸増させる式である。これは図5左半分の第4段目のt1よりt2直前までの操作を行うものである。これによって噴射時期ITは領域R2での適合値へと向かう。
【0087】
図11は点火時期を演算するためのもので、一定時間毎(例えば10msec毎)に実行する。
【0088】
ステップ41ではそのときの運転条件が成層燃焼域にあるか否かみる。成層燃焼域でなければ、ステップ42に進みそのときの運転条件に基づいて点火時期の基本値ADV0を演算する。例えば、点火時期基本値マップを備えさせ、そのときのエンジンの回転速度と負荷とからその点火時期基本値マップを検索することにより点火時期基本値ADV0を求めればよい。
【0089】
ステップ43ではこの基本値ADV0を1回目の点火時期ADV1[°BTDC]に移すと共に、2回目の点火時期ADV2[°BTDC]にゼロを入れる。ADV2=0は2回目の点火は行わないことを表す。
【0090】
運転条件が成層燃焼域にあるときにはステップ41よりステップ44に進んで領域R2であるか否かみる。領域R1であればステップ45に進み、そのときの運転条件に基づいて領域R1で安定燃焼の得られる点火時期Aを演算する。すなわち、点火時期Aは、図6右上に示したように領域R1における燃焼安定領域内に設定される点火時期である。
【0091】
領域R1内で運転条件が変化すればそれに応じて領域R1における燃焼安定領域も移動するので、例えば点火時期マップ1を備えさせ、そのときのエンジンの回転速度と負荷とからその点火時期マップ1を検索することにより点火時期Aを求めればよい。
【0092】
ステップ46ではこのようにして得た点火時期Aを1回目の点火時期ADV1に移し、2回目の点火時期ADV2にはゼロを入れる。ステップ47ではステップ45で得ている領域R1での点火時期Aをメモリに移して保存する。
【0093】
領域R1にある間ステップ45〜47の操作が繰り返され、メモリに点火時期Aの最新の値だけが保存される。このため、運転条件が領域R1より領域R2に移行したときには現在の運転条件がある領域R2に近接する領域R1での点火時期がメモリに格納されている。
【0094】
運転条件が領域R2であるときにはステップ44よりステップ48に進み、そのときの運転条件に基づいて領域R2で安定燃焼の得られる点火時期Bを演算する。すなわち、点火時期Bは、図6左上に示したように領域R2における燃焼安定領域内に設定される点火時期である。
【0095】
領域R2内で運転条件が変化すればそれに応じて領域R2における燃焼安定領域も移動するので、例えば点火時期マップ2を備えさせ、そのときのエンジンの回転速度と負荷とからその点火時期マップ2を検索することにより点火時期Bを求めればよい。
【0096】
ステップ49では領域移行中フラグをみる。領域移行中フラグ=0であるときにはステップ50に進み、ステップ48で得ている点火時期Bを1回目の点火時期ADV1に移すと共に、2回目の点火時期ADV2にゼロを入れる。
【0097】
一方、領域移行中フラグ=1であるときにはステップ49よりステップ51に進み、ステップ47で格納されているメモリ値(領域R2に移る直前の領域R1での点火時期A)を1回目の点火時期ADV1に移すと共に、ステップ48で得ている点火時期Bを2回目の点火時期ADV2に移す。
【0098】
このようにして演算される1回目の点火時期ADV1と2回目の点火時期ADV2との2つの点火時期は、図示しない点火時期制御のフローにおいて用いられ、実際のクランク角がこの点火時期ADV1、ADV2と一致したタイミングで点火コイル22の一次側回路が遮断され、これによって点火プラグ7に火花が飛ぶ。
【0099】
ここで、本実施形態の作用を説明する。
【0100】
成層燃焼域のうち隣り合う運転域で成層燃焼の設定条件が異なることがある。例えば、図3に示す領域R1とR2とではTCV13の作動状態、EGR率、空燃比、噴射時期、点火時期が異なっている。この場合に、TCV13を開いている領域R1、TCV13を閉じている領域R2とも、ある範囲の燃焼安定領域を残して最大のEGR率としており、従って領域R1とR2とで燃焼安定領域は重なっていない(図6右上、左上参照)。
【0101】
この場合に例えば領域R1よりR2へと移行させるには、TCV13の作動を開状態より閉状態へと切り換えるだけなく、同時に、少なくとも点火時期を領域R2での適合値へと変更する必要がある。
【0102】
しかしながら、燃焼状態に大きく影響するTCV13の作動状態と点火時期とを同時に変化させるのでは、燃焼状態が過渡的に大きく変化することが考えられ、噴射時期と点火時期とで決まる安定燃焼領域を外れる可能性がある。
【0103】
これに対して本実施形態(請求項2に記載の発明)では、TCV13が開状態にある領域R1よりTCV13が閉状態にある領域R2へと移行させる際に、領域移行前に安定した成層燃焼を得るために最適であった点火時期Aと、領域移行後に安定した成層燃焼を得るために最適となる点火時期Bとの2つのタイミングでそれぞれ点火し、また、TCV13が閉状態にある領域R2よりTCV13が開状態にある領域R1へと移行させる際に、領域移行前に安定した成層燃焼を得るために最適であった点火時期Bと、領域移行後に安定した成層燃焼を得るために最適となる点火時期Aとの2つのタイミングでそれぞれ点火する。すなわち、TCV13の作動状態によらず、TCV13の開状態に適した点火時期AとTCV13の閉状態に適した点火時期Bの2つでそれぞれ点火することで、燃焼安定領域が、図6に示す右上、左上のどちらの状態になっても、安定して成層燃焼を行わせることができる。
【0104】
このように、本実施形態(請求項2に記載の発明)によれば、成層燃焼域のうち成層燃焼の設定条件であるTCV13の作動状態と点火時期とが少なくとも異なる隣り合う運転域R1、R2の境界を横切る際にも、燃焼形態が異なる隣り合う運転域を繋げることが可能となり、これにより、運転の連続性を確保しつつ、低燃費、低排気(NOx)の燃焼状態を維持することができる。
【0105】
また、長放電化等で点火エネルギを高める手段を用いなくても、必要最小限の点火エネルギの投入で連続運転が可能となるので、コストアップとならない。
【0106】
実施形態では、2回点火実行手段が、エンジンコントローラ41と多重点火装置11とで構成される場合で説明したが、多重点火装置に代えて、2つの点火プラグを少し位置をずらせて設けた多点点火装置を備える場合でもかまわない。
【0107】
2回の点火を実行する方法は実施形態のものに限定されない。例えば、エンジンの回転速度と負荷をパラメータとし点火時期AとBをカップルにして割り付けたマップを作成しておき、領域移行中にこのマップを検索することにより点火時期AとBを求め、1回目の点火時期ADV1に点火時期Aを、2回目の点火時期ADV2に点火時期Bを入れるようにしてもかまわない。
【0108】
請求項1に記載の2回点火実行手段の機能は図11のフローのうちステップ41、44〜51及び点火装置11により果たされている。
【図面の簡単な説明】
【図1】一実施形態の筒内直噴式火花点火エンジンの概略構成図。
【図2】エアガイド式による混合気の形成方法を示す説明図。
【図3】運転領域図。
【図4】筒内直噴式火花点火エンジンの制御システム図。
【図5】本実施形態の領域移行時の作用を説明するための波形図。
【図6】TCVの作動状態の違いによる燃焼安定領域の差異を示す特性図。
【図7】領域移行フラグの設定を説明するためのフローチャート。
【図8】目標当量比の演算を説明するためのフローチャート。
【図9】TCVの開閉制御を説明するためのフローチャート。
【図10】噴射時期の設定を説明するためのフローチャート。
【図11】点火時期の演算を説明するためのフローチャート。
【図12】エアガイド式による混合気の形成方法を示す説明図。
【符号の説明】
7 点火プラグ
11 点火装置
12 燃料噴射弁
13 TCV(ガス流動制御弁)
22 点火コイル
41 エンジンコントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in ignition timing control of an in-cylinder direct injection spark ignition engine.
[0002]
[Prior art]
There is a type in which an operation region is divided into a stratified combustion region and a homogeneous combustion region, and ignition is performed once in the homogeneous combustion region, and continuous ignition is performed twice in the stratified combustion region (see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-2173
[0004]
[Problems to be solved by the invention]
By the way, in a cylinder direct injection type spark ignition engine, stratified combustion is performed at a lean air-fuel ratio in a predetermined operation range. However, the setting conditions for stratified combustion are different in adjacent operation regions of the predetermined operation region in which stratified combustion is performed. That has been proposed.
[0005]
When the air-fuel type formation method in the stratified combustion zone in this type will be described with respect to the air guide type, the adjacent operating zones in the stratified combustion zone are classified into a region R1 and a region R2. For example, as shown in FIG. 3, the low rotation speed side of the stratified combustion region is defined as a region R1, and the high rotation speed side is defined as a region R2. The air-fuel mixture formation method in each of the regions R1 and R2 is as follows.
[0006]
Air-fuel mixture formation method in region R1: In order to form a stable stratified air-fuel mixture in this region where the fuel injection amount is small, a compact spray is applied to the space surrounded by the cylinder head and the cavity of the rising piston crown surface. (See the left side of FIG. 12). In addition, the gas flow field is originally weak, and this force is not used to form the air-fuel mixture, but the air-fuel mixture is formed by the injection period and the penetration force of the spray.
[0007]
Air-fuel mixture formation method in region R2: In this region, the fuel injection amount is large, so the injection period is set longer. At that time, in order to prevent the generation of smoke and unburned fuel, it is necessary to make the injection start time earlier than in the case of the region R1 in order to prevent the fuel from adhering to the crown surface, and the position of the piston crown surface is further lowered. In this state, the air-fuel mixture is formed (see the right side of FIG. 12). At that time, the gas flow is utilized instead of forming the air-fuel mixture only by the injection period and the penetration force of the spray. That is, by closing the gas flow control valve provided in the intake port, a gas flow (tumble flow) is generated in the cylinder, and the spray injected into the combustion chamber space is collected using the generated gas flow while igniting the plug. The mixture is formed into a stable mixture.
[0008]
As described above, since the formation method of the air-fuel mixture is different between the two regions R1 and R2, the setting conditions for the stratified charge combustion (the operating state of the gas flow valve, the air-fuel ratio, the EGR rate, the injection timing, the ignition, etc.) are in the adjacent operation region Time) is very different. Therefore, when the operating condition crosses the boundary between the adjacent operating regions, it is necessary to switch the stratified combustion setting condition from a value suitable for the region R1 to a value suitable for the region R2, or vice versa. is there. Specifically, when moving from the region R1 to the region R2, the gas flow valve is moved from the open state to the closed state, and when moving from the region R2 to the region R1, the gas flow valve is opened from the closed state. You must switch to
[0009]
However, since the combustion state changes transiently during the closing operation or opening operation of the gas flow valve, there is a possibility that the stable combustion region determined by the injection timing and the ignition timing may be excluded. This will be described with reference to FIG. 6. FIG. 6 shows the difference in the stable combustion region due to the difference in the operating state of the gas flow control valve (TCV). Here, the horizontal axis is the injection timing (the right side is the retard side), and the vertical axis is the ignition timing (the upper side is the advance side), and the combustion stable region is determined on the basis of these balances. Of the quadruple shown, only the double circle is the combustion stable region, and the outside is the combustion unstable region.
[0010]
In the regions R1 and R2, which are stratified combustion regions, the air-fuel ratio is in a lean state for improving fuel efficiency, and the EGR rate is increased in order to reduce NOx that is often generated in the lean state. For this reason, the combustion stable region is narrow in both regions R1 and R2, and the combustion stable region in region R1 is shown in the upper right, whereas the combustion stable region in region R2 is shown in the upper left. Comparing the two, the upper left corner has a slightly larger double circle region, so the combustion stable region is wider. It can also be seen that the ignition timing is biased toward the advance side in the upper right combustion stable region than in the upper left combustion stable region.
[0011]
The two parallel lines shown in the figure are drawn to check whether there is an ignition timing that can be in the combustion stable region in the two regions R1 and R2 without changing the ignition timing. If it is on the advance side (upper side), it enters the combustion stable region in the region R1, and if it is on the retard side (lower side) from the lower line, it enters the combustion stable region on the region R2. That is, there is no ignition timing in which the two regions R1 and R2 can be in the combustion stable region. Therefore, the state shown in the upper right (stratified combustion state in the region R1) is changed to the state shown in the upper left (stratified combustion state in the region R2) or vice versa without maintaining the combustion timing and changing the ignition timing. It cannot be transferred. Therefore, when the stratified combustion is to be maintained during the transition from the region R1 to the region R2 or vice versa, the set value of the stratified combustion must be set sweetly in order to ensure the combustion stability. That is, in the case of FIG. 6 again, if the air-fuel ratio is enriched with respect to the upper right and upper left and the EGR rate is decreased, the combustion stable region is expanded as shown in the lower right and lower left. In these two states, lower right and lower left, in order to investigate whether there is an ignition timing that can be in the combustion stable region without changing the ignition timing, when drawing the two parallel lines shown in the figure, this time If the ignition timing is between the upper straight line and the lower straight line, both the lower right and lower left states can be in the combustion stable region. This means that if the setting conditions for stratified combustion are relaxed so that the lower right and lower left states can be obtained, the ignition timing (and the injection timing) is kept constant between the lower right and lower left. Therefore, even if the TCV is switched from the open state to the closed state or vice versa, it means that the combustion stable region is not deviated.
[0012]
However, the reason why the combustion stable region becomes larger in the lower right and lower left states is that the combustion gas is heated to a high temperature by enriching the air-fuel ratio and decreasing the EGR rate. As a result, NOx emissions increase. In the drawing, an equal NOx emission amount line is written, and the NOx emission amount increases as the line width increases. In the lower right and lower left states, it can be seen that the line width of the equal NOx emission amount line crosses the combustion stable region more than the upper right and upper left states, and the NOx emission amount increases.
[0013]
In this way, if the stratified combustion setting is set sweetly in order to maintain the stratified combustion even when crossing the boundary between adjacent operating regions having different stratified combustion setting conditions in the stratified combustion region, the NOx emission amount is reduced. Will increase the exhaust.
[0014]
Therefore, the present invention performs igniting at the ignition timing required for either of the stratified combustion by crossing the boundary between adjacent operating regions where the ignition timing, which is the setting condition for stratified combustion, is different. The purpose is to stably maintain stratified combustion even when crossing the boundary between adjacent operating regions with different setting conditions.
[0015]
On the other hand, the reason why the multiple ignition is performed twice in the stratified combustion region in the above-described conventional apparatus is to increase the chance of ignition in the operation region where the set conditions of the stratified combustion are the same. In other words, in stratified combustion, the spray injected into the combustion chamber space is brought together into a gas mixture while being transported to the spark plug using the gas flow, so that the ignition is performed when the gas mixture exists near the spark plug. In order not to miss the ignition opportunity, multiple multiple ignitions are performed. On the other hand, the present invention provides an ignition timing optimally set in one operating region and an ignition timing optimally set in the other operating region when crossing the boundary between adjacent operating regions having different stratified combustion setting conditions. These two continuous ignitions are performed, and the technical idea is different from that of the conventional device.
[0016]
[Means for solving problems]
The present invention relates to an in-cylinder direct injection spark ignition engine that performs stratified combustion at a lean air-fuel ratio in a predetermined operating region, and an ignition timing that is a setting condition for stratified combustion in an adjacent operating region of the predetermined operating region in which stratified combustion is performed. Is required at the time of crossing the boundary of the adjacent operation region when the gas flow state and the ignition timing, which are the setting conditions for stratified combustion, are at least different in the adjacent operation region. Two-ignition execution means for igniting the ignition timing is provided.
[0017]
【The invention's effect】
When the setting conditions for stratified combustion are different in the adjacent operating regions in the stratified combustion region, the combustion state changes transiently when crossing the boundary between the adjacent operating regions. However, in the present invention, when crossing the boundary between the adjacent operating regions, ignition is performed at the ignition timing required for either, so that any ignition timing is It becomes the most suitable for the combustion form at the time, and it becomes possible to connect the adjacent operation areas with different combustion forms. Thereby, the combustion state of low fuel consumption and low exhaust (NOx) can be maintained while ensuring continuity of operation.
[0018]
Further, even if a means for increasing the ignition energy by using a longer discharge or the like is not used, the continuous operation can be performed with the minimum required amount of ignition energy, so that the cost is not increased.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0020]
FIG. 1 is a schematic configuration diagram of an in-cylinder direct injection spark ignition engine.
[0021]
As shown in FIG. 1, a combustion chamber 6 is defined between a cylinder head 2, a cylinder 4 formed in the cylinder block 3, and a piston 5 that slides on the cylinder 4. The spark plug 7 faces the center of the combustion chamber, and two intake ports 8a and 8b and two exhaust ports 9a and 9b face each other with the spark plug 7 sandwiched between the combustion chamber ceiling wall inclined in a pent roof shape. Provided. 10a and 10b are intake valves for opening and closing the openings to the combustion chamber 6 of the intake ports 8a and 8b, 11a and 11b are exhaust valves for opening and closing the openings to the combustion chamber 6 of the exhaust ports 9a and 9b, Reference numeral 13 denotes a tumble control valve (hereinafter simply referred to as “TCV”) as a gas flow control valve that throttles the intake air when it is closed in the middle of the intake ports 8a and 8b.
[0022]
A fuel injection valve 12 facing the combustion chamber 6 from its side is provided on the ceiling wall of the combustion chamber 6. The fuel injection valve 12 is located on the side of each intake valve 10a, 10b and between each intake port 8a, 8b and faces the combustion chamber 6.
[0023]
In the engine, stratified combustion operation is performed in the regions R1 and R2 which are the low and medium rotation speed regions and the low load region shown in FIG. 3, and in this stratified combustion region (R1, R2), the gas flow in the combustion chamber 6 is flown. The fuel spray directly injected from the fuel injection valve 12 into the combustion chamber 6 is guided to the vicinity of the spark plug 7 while being collected, and the mixture that has become a mass of the air-fuel mixture in this process is ignited. A method of guiding the fuel injected from the fuel injection valve 12 to the spark plug 7 in the form of an air-fuel mixture is called an air guide type.
[0024]
The method for forming the air-fuel mixture by the air guide method will be described in detail with reference to FIG. 2. The figure shows the time course from the left side to the right side.
[0025]
When TCV is open:
In the region R1 shown in FIG. 3, the gas flow field is originally weak, and it is difficult to form an air-fuel mixture using this gas flow. Therefore, the air-fuel mixture is formed by the penetration force of the spray. That is, in order to inject fuel into the space formed between the cylinder head 2 and the piston cavity 5a as it approaches the top dead center, the injection timing is set to the retard side (compression stroke injection). The spray injected into this narrow space reaches the spark plug 7 while forming an air-fuel mixture only by the penetration force of the spray (see the upper part of FIG. 2).
[0026]
When TCV is closed:
In the region R2 shown in FIG. 3, gas flow can be used. That is, when the TCV 13 is closed, the intake air flows only from the upper half of each intake port 8a, 8b, and the flow velocity of the intake air is increased. The piston 5 turns on the axis perpendicular to the center line of the cylinder 4 on the crown. The tumble to occur occurs with sufficient strength (see the arrow at the left end of the lower stage in FIG. 2). The cavity 5a is formed in a shallow dish shape to promote this tumble. For this reason, the fuel spray injected from the fuel injection valve 12 spreads in a conical shape centering on the center line of the fuel injection valve 12. The fuel spray injected from the fuel injection valve 21 by the above-described tumble is guided in a direction in which the spark plug 7 is located, and forms an air-fuel mixture mass that can be ignited in the process. And, by igniting the air-fuel mixture reaching the vicinity of the spark plug 7, a stable stratified combustion operation becomes possible.
[0027]
In this case, the fuel injection amount in the region R2 is larger than that in the region R1, and the injection period is increased accordingly. At that time, if the fuel adheres to the crown surface, it may cause smoke and unburned fuel. To prevent this, the injection start timing is set to the advance side from the region R1 (compression stroke injection), and the position of the piston crown surface However, the mixture is formed in a lower state. Similarly, the ignition timing is set to the advance side from the region R1.
[0028]
As described above, the two regions R1 and R2 adjacent to each other in the stratified combustion region have different formation methods of the air-fuel mixture, so that the stratified combustion setting conditions (TCV13 operating state, air-fuel ratio, EGR rate, injection timing, ignition timing, etc.) are greatly different.
[0029]
On the other hand, in the regions R3 and R4 (homogeneous combustion regions) shown in FIG. 3, strong tumbling occurs in the combustion chamber 6 even when the TCV 13 is open. By injecting fuel in the intake stroke while making a tumble, a homogeneous air-fuel mixture near the stoichiometric air-fuel ratio is generated in the entire combustion chamber 6, thereby performing a homogeneous combustion operation.
[0030]
Here, the target air-fuel ratio in the homogeneous combustion region is basically the stoichiometric air-fuel ratio (14.7). This is because NOx, HC and CO in the exhaust gas can be simultaneously purified by a three-way catalyst (added to a NOx trap catalyst 31 described later) provided in the exhaust passage 21 when the air-fuel mixture near the stoichiometric air-fuel ratio is combusted. It is.
[0031]
On the other hand, the target air-fuel ratio in the stratified combustion zone is a value larger than 14.7, and EGR (exhaust gas recirculation) is performed in order to reduce NOx that is exhausted a lot at this lean air-fuel ratio. In FIG. 3, EGR is also performed in the region R3. Whereas EGR in the stratified combustion region is mainly aimed at reducing NOx, EGR in region R3 is mainly aimed at improving fuel efficiency.
[0032]
In FIG. 3, “λ” represents the excess air ratio. There is the following relationship between the excess air ratio λ and the air-fuel ratio.
[0033]
Excess air ratio λ = air / fuel ratio / theoretical air / fuel ratio (1)
For example, in the region R3, the target air-fuel ratio is the stoichiometric air-fuel ratio, so if this is substituted into the equation (1), λ = 1. In the region R4, the target air-fuel ratio is the stoichiometric air-fuel ratio or a value on the richer side than the stoichiometric air-fuel ratio, that is, a value equal to or less than 14.7. Therefore, if this is substituted into the equation (1), λ ≦ 1.
[0034]
FIG. 4 is a control system diagram of the in-cylinder direct injection spark ignition engine.
[0035]
The engine includes an ignition device capable of performing ignition twice (multiple ignition). The ignition device includes an ignition coil 22 that stores electric energy from the battery, a power transistor, and an ignition plug 7 provided on the ceiling of the combustion chamber 6. The ignition signal that commands ignition once from the engine controller 41 is a power. When the primary current of the ignition coil 22 is cut off (ignition timing) when it is sent to the transistor, a high voltage is generated on the secondary side of the ignition coil 22, and the spark plug 7 performs spark discharge in response to this high voltage. . When an ignition signal for commanding ignition twice is sent from the engine controller 41 to the power transistor, the spark plug 7 performs spark discharge twice.
[0036]
In FIG. 4, the ignition device for only the cylinder located at the lowermost stage is described, but the description is omitted because the remaining cylinders are the same. Further, since a specific configuration of an ignition device capable of performing ignition twice is known, a description thereof will be omitted (see Japanese Patent Application Laid-Open No. 11-2173).
[0037]
The engine also includes an EGR valve 26 as an EGR device. The EGR valve 26 is interposed in an EGR passage 25 communicating with the exhaust passage 23 and the intake passage 24, and is driven by an EGR valve actuator 27. When the EGR valve 26 is opened in a predetermined EGR region, a part of the exhaust Is introduced into the intake passage 24 as an inert gas, and the inert gas suppresses the generation of NOx by lowering the combustion gas temperature in the stratified combustion region (regions R1, R2). In (region R3), the pumping loss is reduced and the fuel efficiency is improved.
[0038]
A NOx trap catalyst 31 is provided in the exhaust passage 23 downstream of the branch port of the EGR passage 25. The NOx trap catalyst 31 traps NOx in the exhaust when the air-fuel ratio of the inflowing exhaust is lean, and removes the trapped NOx when the air-fuel ratio of the inflowing exhaust is the stoichiometric or rich air-fuel ratio. At the same time, the desorbed NOx is reduced and purified using HC and CO in the exhaust as reducing agents. The NOx trap catalyst 31 has a three-way catalyst function. A three-way catalyst may be provided separately from the NOx trap catalyst 31.
[0039]
In order to generate an engine torque corresponding to the accelerator opening (the amount of depression of the accelerator pedal), and to prevent a torque step from occurring when switching between the stratified combustion region and the homogeneous combustion region, a throttle is provided in the intake passage 24. An electronically controlled throttle device comprising a valve 28 and a throttle actuator 29 for driving the valve 28 is provided.
[0040]
A signal of the accelerator opening (corresponding to the engine load) from the accelerator sensor 42, a signal of the reference position from the crank angle sensor 43 (a signal for controlling the ignition timing and the fuel injection timing), and a signal for each crank angle of 1 °. In the engine controller 41 to which a signal from the air flow meter 44 is input, depending on the operating conditions
(1) Control of fuel injection amount and fuel injection timing through the fuel injection valve 12,
(2) Control of ignition timing via the spark plug 7,
(3) Control of the EGR valve opening (EGR rate) via the EGR valve 26;
(4) Control of the throttle valve opening through the throttle valve 28,
(5) Regeneration treatment of NOx trap catalyst 31
And controlling the opening and closing of the TCV 13.
[0041]
The fuel injection control (1) is as follows. The optimum target equivalence ratio Tfbya is calculated for each of the stratified combustion region (R1 and R2) and the homogeneous combustion region (R3 and R4) shown in FIG. 3, and the fuel injection amount is set so that this target equivalence ratio Tfbya is obtained. The fuel injection amount is calculated and converted into a valve opening period of the fuel injection valve 12, and a pulse signal including the valve opening period is output to a drive circuit (not shown) of the fuel injection valve 12. Along with this, a drive current corresponding to the pulse signal is sent from the drive circuit to the actuator of the fuel injection valve 12, and the needle of the fuel injection valve 12 is lifted to open the injection hole. The longer the fuel injection pulse width, the longer the valve opening period of the fuel injection valve 12, and the fuel injection amount increases. Thus, in actual control, the equivalence ratio is used instead of the air-fuel ratio. There is a relationship of equation (2) described later between the equivalence ratio and the air-fuel ratio.
[0042]
Further, the fuel injection timing is set in the latter half of the compression stroke in which the piston 5 rises in the stratified combustion zone, and the fuel injection timing is set in the intake stroke in which the piston 5 falls in the homogeneous combustion zone.
[0043]
The controls (2), (3), and (4) are as follows. The ignition timing is calculated based on the accelerator opening and the engine speed. A target EGR rate is calculated based on the accelerator opening and the engine speed, and the EGR valve opening is calculated so that the target EGR rate is obtained. A target torque is calculated based on the accelerator opening and the engine speed, a target air amount is calculated based on the target torque, and a throttle valve opening is calculated so as to obtain this target air amount.
[0044]
The reproduction process (5) is as follows. Even when the NOx amount trapped in the NOx and the lap catalyst 31 is accumulated to some extent, the air-fuel ratio is temporarily switched to the theoretical air-fuel ratio or the rich air-fuel ratio even in the stratified combustion region. Play.
[0045]
Assuming that the above controls (1) to (5) are performed as described above, in this embodiment, when crossing the boundary between the adjacent operation zones R1 and R2 in the stratified combustion zone shown in FIG. Two ignitions, the ignition timing optimally set in one operating region R1 and the ignition timing optimally set in the other operating region R2, are performed.
[0046]
This will be described with reference to FIG. 5. In FIG. 5, the left half is the operating state of the TCV 13, the air-fuel ratio A / F, and the EGR rate when the region R1 is shifted from the region R1 to the region R2, and the right half is the reverse. FIG. 5 is a waveform diagram showing how injection timing IT and ignition timing Adv change. The injection timing IT and the ignition timing Adv are on the advance side.
[0047]
In this case, the series of operations shown in the right half of FIG. 5 is just the reverse of the series of operations shown in the left half of FIG. 5, and therefore only the series of operations in the left half of FIG. 5 will be described.
[0048]
As shown in the left half of FIG. 5, t1 and t2 are allocated to each timing, the driving condition is shifted from the region R1 to the region R2 at the timing t1, and the control at the time of shifting the region is finished at the timing t2. .
[0049]
<1> Air-fuel ratio: The air-fuel ratio A / F is gradually decreased from the appropriate value in the region R1 to the appropriate value in the region R2 from the timing t1 when the region R1 shifts to the region R2. The reason why the air-fuel ratio A / F is changed with a predetermined inclination is to prevent torque fluctuation at the time of shifting to the region.
[0050]
<2> Operating state of TCV 13 and EGR rate: The TCV 13 is closed at the timing of t1, and the EGR rate is switched to a conforming value in the region R2. The TCV 13 is closed with a predetermined inclination with respect to energization to the TCV actuator. This inclination is determined by the changing speed of the TCV actuator. In addition, the target EGR rate changes stepwise from the conforming value in the region R1 to the conforming value in the region R2 at the timing of t1, whereas the actual EGR rate (shown in the third stage in the left half of FIG. 5) The solid line is the actual movement of the EGR rate), which decreases with a predetermined inclination. This inclination is also determined by the changing speed of the EGR valve actuator 27.
[0051]
In this case, since the closing speed of the TCV 13 and the actual EGR rate changing speed are not the same, the timing at which the TCV 13 settles to the fully closed position and the timing at which the actual EGR rate reaches the matching value in the region R2 are not the same. These timings are also different from the timing at which the air-fuel ratio reaches a conforming value in the region R2. However, in FIG. 5, for the sake of simplicity, the three timings are matched, that is, the TCV 13 settles to the fully closed position at the timing t2, the air-fuel ratio A / F reaches the conforming value in the region R2, and the actual EGR rate is It is assumed that the matching value in the region R2 is reached.
[0052]
<3> Injection timing: From the timing t1, the injection timing is gradually advanced from the appropriate value in the region R1 to the appropriate value in the region R2. The timing at which the injection timing reaches the conforming value in the region R2 is also shown to match the other three timings for the sake of simplicity.
[0053]
<4> Ignition timing: Between t1 and t2, that is, during the transition to the region, two ignition timings, that is, the conforming value in the region R1 and the conforming value in the region R2.
[0054]
Thus, in the present embodiment, when shifting from the region R1 to the region R2, during the region transition, the two ignition timings of the ignition timing adaptive value in the region R1 and the ignition timing adaptive value in the region R2 are used. Although the ignition is performed, a method different from the present embodiment will be described with reference to FIG. 6 for comparison.
[0055]
FIG. 6 shows the difference in the combustion stable region due to the difference in the operating state of the TCV 13. Here, the horizontal axis is the injection timing IT (the right side is the retarded angle side), and the vertical axis is the ignition timing Adv (the upper side is the advanced angle side), and the combustion stable region is determined on the basis of these balances. Of the quadruple shown, only the double circle is the combustion stable region, and the outside is the combustion unstable region.
[0056]
In the regions R1 and R2, the air-fuel ratio is in a lean state for improving fuel efficiency, and the EGR rate is increased in order to reduce NOx that frequently occurs in the lean state. For this reason, the combustion stable region is narrow in both regions R1 and R2, and the combustion stable region in region R1 is shown in the upper right, whereas the combustion stable region in region R2 is shown in the upper left. Comparing the two, the upper left corner shows that the double circle region is slightly larger, and therefore the combustion stable region is wider. It can also be seen that the ignition timing is biased toward the advance side in the upper right combustion stable region than in the upper left combustion stable region.
[0057]
The ignition timing required in the adjacent operation regions (regions R1 and R2) is different because the strength of the gas flow varies greatly between the open state and the closed state of the TCV 13, thereby transferring the stratified mixture. This is because the force changes and the timing at which the stratified mixture reaches the spark plug 7 is different.
[0058]
The two parallel lines shown in the drawing are drawn to check whether there is an ignition timing that can be in the combustion stable region without changing the ignition timing in the two regions R1 and R2. If it is on the advance side from the upper line, it enters the combustion stable region in the region R1, and if it is on the retard side from the lower line, it enters the combustion stable region in the region R2. This means that there is no ignition timing that can be in the stable combustion region without changing the ignition timing in the two regions R1 and R2, so that the combustion can be kept stable and the state shown in the upper right without changing the ignition timing. On the contrary, it is not possible to shift from the upper left state to the upper right state to the upper left state. In other words, if the ignition timing and the injection timing are kept the same and a part of the combustion stable region is overlapped, the combustion will remain stable without changing the ignition timing and the injection timing and from the upper right to the upper left. Conversely, the state can be shifted from the upper left to the upper right.
[0059]
For this reason, the state shown in the lower right and the state shown in the lower left are added. In the lower right, the air-fuel ratio is enriched and the EGR rate is reduced with respect to the state shown in the upper right, and the lower left in the state shown in the upper left. As a result of these operations, the combustion stable region is increased in both the lower right and lower left states. Accordingly, in order to investigate whether or not there is an ignition timing that can be in the combustion stable region without changing the ignition timing in both the lower right and lower left states, the two parallel lines shown in the drawing are now drawn. If the ignition timing is between the upper straight line and the lower straight line, the combustion stable region can be entered in both the lower right and lower left states. This means that between the lower right and the lower left, combustion stability is maintained even when the TCV 13 is switched from the open state to the closed state with the ignition timing Adv and the injection timing IT kept constant, or vice versa. It means not to go out of the area.
[0060]
Thus, in order to move from the upper right state in which the TCV 13 is in the open state to the upper left state in which the TCV 13 is in the closed state, or vice versa, the lower right and lower left states are in the middle. I understand that I should add. That is, the TCV 13 is opened from the upper right state where the TCV 13 is in the open state, and the air-fuel ratio is enriched and the EGR rate is decreased to move to the lower right state. In this state, the TCV 13 is closed from the open state. If the air-fuel ratio is made lean again to the conforming value in the region 2 and the EGR rate is increased to the conforming value in the region 2, the state is shifted to the upper left state. In addition, the TCV 13 is closed from the upper left state where the TCV 13 is in the closed state, and the air-fuel ratio is enriched and the EGR rate is decreased to move to the lower left state. In this state, the TCV 13 is switched from closed to open. If the air-fuel ratio is made lean again to the appropriate value in the region R1 and the EGR rate is increased to the appropriate value in the region R1, the state moves to the upper right.
[0061]
However, in the method of sandwiching the operation of enriching the air-fuel ratio and decreasing the EGR rate during the region transition in this way, the combustion stable region becomes large in the lower right and lower left states because the combustion gas becomes hot. This is because NOx emissions increase due to the high temperature of the combustion gas. In the drawing, an equal NOx emission amount line is written, and the NOx emission amount increases as the line width increases. In the lower right and lower left states, it can be seen that the line width of the equal NOx emission amount line crosses the combustion stable region more than the upper right and upper left states, and the NOx emission amount increases.
[0062]
On the other hand, according to the region transition method according to the present embodiment, the ignition is performed at two timings, i.e., the ignition timing suitable for the open state of the TCV13 and the ignition timing suitable for the closed state of the TCV13, regardless of the operating state of the TCV13. Thus, regardless of whether the combustion stable region is in the upper right or upper left state shown in FIG. 6, stratified combustion can be stably maintained.
[0063]
The control at the time of area shift executed by the engine controller 41 will be described in detail based on a flowchart. However, only the transition from the region R1 to the region R2 will be described.
[0064]
FIG. 7 is for setting the area transition flag, and is executed at regular intervals (for example, every 10 msec).
[0065]
In Step 1, it is checked whether or not the operating condition (determined from the engine speed and load) is in the stratified combustion region (regions R1 and R2 shown in FIG. 3). If it is not in the stratified charge combustion zone, the current process is terminated.
[0066]
When in the stratified charge combustion zone, the routine proceeds to step 2 where the zone transition switching flag (initially set to zero) is checked. Here, if the region transition flag = 0 is described, at this time, the process proceeds to Steps 3 and 4 to determine whether or not the operating condition is in the region R2 this time, and whether or not the operating condition was in the region R1 last time. View. When the operating condition is in the region R2 this time and the operating condition was in the region R1 last time, that is, immediately after the transition from the region R1 to the region R2, the process proceeds to step 5 to set the region transition flag = 1. This in-region transition flag is a flag that becomes 1 when transitioning from the region R1 to the region R2, and becomes zero when the region transition control is terminated, as will be described later.
[0067]
If the operating condition is not in the region R2 this time or if it is in the region R2 both this time and the previous time, the current process is terminated.
[0068]
FIG. 8 is for calculating the target equivalent ratio Tfbya, and is executed at regular time intervals (for example, every 10 msec).
[0069]
Although the air-fuel ratio is described in FIG. 6, the equivalence ratio is used in actual control. There is the following relationship between the equivalence ratio and the air-fuel ratio.
[0070]
Equivalent ratio = 14.7 / air-fuel ratio (2)
From equation (2), when the air-fuel ratio is the stoichiometric air-fuel ratio (14.7), the equivalent ratio is 1.0. When the air-fuel ratio is a value on the rich side of the stoichiometric air-fuel ratio, the equivalent ratio exceeds 1.0. Conversely, when the air-fuel ratio is a value on the lean side of the stoichiometric air-fuel ratio, the equivalent ratio is less than 1.0. Value.
[0071]
In step 11, the basic value Tfbya0 of the target equivalence ratio is calculated based on the operating conditions. For example, the target equivalence ratio basic value map is prepared separately for the homogeneous combustion zone and the stratified combustion zone, and after determining which combustion zone the operating conditions are in, the engine speed and load at that time The target equivalence ratio basic value Tfbya0 may be obtained by searching a map of the determined combustion range from the above.
[0072]
In Steps 12 and 13, it is checked whether or not the region transition flag is 1 at this time, and whether or not the region transition flag is 0 last time. If the region transition flag = 0 at this time, the process proceeds to step 14 where the basic value Tfbya0 is directly input to the target equivalent ratio Tfbya.
[0073]
If the region transition flag is 1 and the region transition flag is 0 last time, that is, immediately after the region transition flag is switched from zero to 1, the operating condition is shifted from the region R1 to the region R2. Immediately after the operation), the process proceeds to step 15 and the basic value Tfbya0 is put into “TfbyaTR (previous)” representing the previous value of the target equivalence ratio during the region shift.
TfbyaTR = TfbyaTR (previous) + Δ1 (3)
Where Δ1: a predetermined positive value (for example, a constant value),
The target equivalence ratio TfbyaTR during the region transition is calculated by the following equation.
[0074]
In step 17, the target equivalent ratio TfbyTR during this region transition is compared with the target equivalent ratio basic value Tfbya0. Immediately after the area transition flag is switched from zero to 1, that is, immediately after the operating condition is shifted from the area R1 to the area R2, the current target equivalence ratio basic value Tfbya0 is a conforming value in the area R2. Since Tfbya0 is a matching value in the region R1, this time Tfbya0 is increased stepwise to a matching value in the region R2. On the other hand, the target equivalent ratio TfbyaTR during the region transition is a value that gradually increases from the conforming value in the region R1 toward the conforming value in the region R2, so the operating condition has shifted from the region R1 to the region R2. Immediately after that, the target equivalent ratio TfbyaTR during the region transition is smaller than Tfbya0 that changes in a stepwise manner. Therefore, the process proceeds to step 18 and the value of the target equivalent ratio TfbyaTR during the region transition is set as the target equivalent ratio Tfbya.
[0075]
On the other hand, when the region transition flag = 1 at this time, step 15 is skipped from steps 12 and 13, and the operation of step 16 is executed. If the target equivalent ratio TfbyTR during the region transition is smaller than the basic value Tfbya0, step 18 is performed. Perform the operation.
[0076]
The above equation (3) is repeated not only at the timing when the operating condition shifts from the region R1 to R2, but also when the operating condition shifts to the region R2, and the target equivalent ratio TfbyaTR during the region shift is calculated by Δ1 per calculation cycle. It is an equation that gradually increases. This is an operation from the second stage t1 in the left half of FIG. 5 to just before t2. As a result, the air-fuel ratio moves toward a conforming value in the region R2.
[0077]
When the target equivalent ratio TfbyaTR during the region transition eventually becomes equal to or greater than the basic value Tfbya0 due to the gradual increase of the target equivalent ratio TfbyaTR during the region transition, the process proceeds from step 17 to step 19 to end the control during the region transition, and the region transition flag = In addition to preparing for the next region transition as 0, the basic value Tfbya0 is set as the target equivalent ratio Tfbya in step 20.
[0078]
The target equivalent ratio TFBYA calculated in this way is used in a calculation flow of a fuel injection pulse width Ti (not shown).
Ti = Tp × Tfbya × (α + αm−1) × 2 + Ts (4)
Where Tp: basic injection pulse width,
α: Air-fuel ratio feedback correction coefficient,
αm: air-fuel ratio learning value,
Ts: Invalid pulse width,
The fuel injection pulse width Ti at the time of sequential injection is calculated by the following formula.
[0079]
FIG. 9 is for driving the TCV 13 to open and close, and is executed at regular intervals (for example, every 10 msec).
[0080]
In step 31, it is checked whether or not the operating condition is in the stratified combustion zone. If the operating condition is in the stratified combustion zone, the process proceeds to step 32 to see whether the operating condition is in the zone R1 or R2. When the operating condition is in the region R1, the routine proceeds to step 33 and the TCV 13 is opened, and when the operating condition is in the region R2, the routine proceeds to step 34 and the TCV 13 is closed. Further, even when not in the stratified charge combustion zone, the routine proceeds from step 31 to step 33 and the TCV 13 is opened.
[0081]
FIG. 10 is for setting the injection timing, and is executed at regular intervals (for example, every 10 msec).
[0082]
In step 41, the injection timing basic value IT0 is calculated. In the stratified combustion zone, IT0 is a predetermined crank angle position in the compression stroke. IT0 may simply be a constant value.
[0083]
In steps 42 and 43, it is checked whether or not the area transition flag is 1 at this time, and whether or not the area transition flag is 0 at the previous time. If the region transition flag is 0 at this time, the routine proceeds to step 44, where the basic value IT0 is directly input to the injection timing IT.
[0084]
If the region transition flag is 1 and the region transition flag is 0 last time, that is, immediately after the region transition flag is switched from zero to 1, the operating condition is shifted from the region R1 to the region R2. Immediately after the operation), the routine proceeds to step 45, where the basic value IT0 is entered in “IT (previous)” representing the previous value of the injection timing during the region shift, and in step 46,
ITTR = ITTR (previous) + Δ2 (5)
However, Δ2: a predetermined positive value (for example, a constant value),
The injection timing ITTR during the region shift is calculated by the following equation, and this is shifted to the injection timing IT in step 47.
[0085]
On the other hand, when the region transition flag = 1 at this time, step 45 is skipped from steps 42 and 43 and the operations of steps 46 and 47 are executed.
[0086]
The above equation (5) is repeated not only at the timing when the operating condition shifts from the region R1 to R2, but also when the operating condition shifts to the region R2, and the injection timing ITTR during the region shift is set by Δ2 per calculation cycle. It is a formula that gradually increases. This is an operation from the fourth stage t1 in the left half of FIG. 5 to just before t2. As a result, the injection timing IT moves toward a conforming value in the region R2.
[0087]
FIG. 11 is for calculating the ignition timing, and is executed at regular intervals (for example, every 10 msec).
[0088]
In step 41, it is checked whether or not the operating condition at that time is in the stratified combustion region. If it is not the stratified combustion region, the routine proceeds to step 42, where the basic value ADV0 of the ignition timing is calculated based on the operating conditions at that time. For example, the ignition timing basic value ADV0 may be obtained by providing the ignition timing basic value map and searching the ignition timing basic value map from the engine speed and load at that time.
[0089]
In step 43, the basic value ADV0 is shifted to the first ignition timing ADV1 [° BTDC] and zero is set to the second ignition timing ADV2 [° BTDC]. ADV2 = 0 indicates that the second ignition is not performed.
[0090]
When the operating condition is in the stratified combustion region, the routine proceeds from step 41 to step 44 to check whether or not the region is in the region R2. If it is area | region R1, it will progress to step 45 and will calculate the ignition timing A with which stable combustion is obtained in area | region R1 based on the driving | running condition at that time. That is, the ignition timing A is an ignition timing set in the combustion stable region in the region R1 as shown in the upper right of FIG.
[0091]
If the operating conditions change in the region R1, the combustion stable region in the region R1 also moves accordingly. For example, the ignition timing map 1 is provided, and the ignition timing map 1 is determined from the rotational speed and load of the engine at that time. The ignition timing A may be obtained by searching.
[0092]
In step 46, the ignition timing A thus obtained is shifted to the first ignition timing ADV1, and zero is set to the second ignition timing ADV2. In step 47, the ignition timing A in the region R1 obtained in step 45 is transferred to the memory and stored.
[0093]
While in the region R1, the operations in steps 45 to 47 are repeated, and only the latest value of the ignition timing A is stored in the memory. For this reason, when the operating condition shifts from the region R1 to the region R2, the ignition timing in the region R1 close to the region R2 where the current operating condition is present is stored in the memory.
[0094]
When the operating condition is the region R2, the process proceeds from step 44 to step 48, and the ignition timing B at which stable combustion is obtained in the region R2 is calculated based on the operating condition at that time. That is, the ignition timing B is an ignition timing set in the combustion stable region in the region R2 as shown in the upper left of FIG.
[0095]
If the operating condition changes in the region R2, the combustion stable region in the region R2 also moves accordingly. Therefore, for example, the ignition timing map 2 is provided, and the ignition timing map 2 is determined from the engine speed and load at that time. The ignition timing B may be obtained by searching.
[0096]
In step 49, the area transition flag is checked. When the region transition flag = 0, the routine proceeds to step 50 where the ignition timing B obtained at step 48 is shifted to the first ignition timing ADV1 and zero is set to the second ignition timing ADV2.
[0097]
On the other hand, when the region transition flag = 1, the routine proceeds from step 49 to step 51, where the memory value stored in step 47 (ignition timing A in the region R1 immediately before transitioning to the region R2) is used as the first ignition timing ADV1. At the same time, the ignition timing B obtained in step 48 is shifted to the second ignition timing ADV2.
[0098]
The two ignition timings of the first ignition timing ADV1 and the second ignition timing ADV2 calculated in this way are used in an ignition timing control flow (not shown), and the actual crank angle is set to the ignition timing ADV1, ADV2. The primary side circuit of the ignition coil 22 is cut off at a timing coincident with the above, whereby a spark is blown to the spark plug 7.
[0099]
Here, the operation of the present embodiment will be described.
[0100]
The setting conditions for stratified combustion may be different in adjacent operating regions in the stratified combustion region. For example, in the regions R1 and R2 shown in FIG. 3, the operating state of the TCV 13, the EGR rate, the air-fuel ratio, the injection timing, and the ignition timing are different. In this case, both the region R1 in which the TCV 13 is open and the region R2 in which the TCV 13 is closed have the maximum EGR rate leaving a certain range of the combustion stable region, and thus the combustion stable regions overlap in the regions R1 and R2. No (see upper right and upper left in FIG. 6).
[0101]
In this case, for example, to shift from the region R1 to R2, it is necessary not only to switch the operation of the TCV 13 from the open state to the closed state, but at the same time, at least change the ignition timing to a conforming value in the region R2.
[0102]
However, if the TCV 13 operating state and ignition timing that greatly affect the combustion state are changed at the same time, it is conceivable that the combustion state changes greatly in a transient manner, and the stable combustion region determined by the injection timing and the ignition timing is deviated. there is a possibility.
[0103]
On the other hand, in the present embodiment (the invention described in claim 2), when the TCV 13 is shifted from the region R1 in the open state to the region R2 in which the TCV 13 is in the closed state, stable stratified combustion is performed before the region shift. Region R2 in which ignition is performed at two timings, i.e., an ignition timing A that is optimal for obtaining a stable combustion and an ignition timing B that is optimal for obtaining stable stratified combustion after the transition to the region, and TCV 13 is in a closed state When the transition to the region R1 in which the TCV 13 is in the open state is made, the ignition timing B that was optimal for obtaining stable stratified combustion before the region transition and the optimum for obtaining stable stratified combustion after the region transition Are ignited at two timings, i.e., ignition timing A. That is, regardless of the operating state of the TCV 13, the combustion stable region is shown in FIG. 6 by igniting at the ignition timing A suitable for the open state of the TCV 13 and the ignition timing B suitable for the closed state of the TCV 13. Regardless of which state is the upper right or upper left, stratified combustion can be performed stably.
[0104]
Thus, according to the present embodiment (the invention described in claim 2), adjacent operating regions R1, R2 in which the operating state and ignition timing of the TCV 13, which is a setting condition for stratified combustion, of the stratified combustion region differ at least. Even when crossing the boundary, it is possible to connect adjacent operation areas with different combustion modes, thereby maintaining a low fuel consumption and low exhaust (NOx) combustion state while ensuring continuity of operation. Can do.
[0105]
Further, even if no means for increasing the ignition energy by using a long discharge or the like is used, continuous operation can be performed with the minimum required amount of ignition energy input, so that the cost is not increased.
[0106]
In the embodiment, the case where the two-time ignition execution means is configured by the engine controller 41 and the multiple ignition device 11 has been described. However, instead of the multiple ignition device, two ignition plugs are provided with slightly shifted positions. A multi-point ignition device may be provided.
[0107]
The method of performing the ignition twice is not limited to that of the embodiment. For example, a map in which the engine rotation speed and load are used as parameters and the ignition timings A and B are assigned as a couple is created, and the ignition timings A and B are obtained by searching this map during the region transition. The ignition timing A may be inserted into the ignition timing ADV1, and the ignition timing B may be inserted into the second ignition timing ADV2.
[0108]
The function of the two-time ignition execution means described in claim 1 is performed by steps 41, 44 to 51 and the ignition device 11 in the flow of FIG.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an in-cylinder direct injection spark ignition engine according to an embodiment.
FIG. 2 is an explanatory view showing a method of forming an air-fuel mixture by an air guide method.
FIG. 3 is an operation region diagram.
FIG. 4 is a control system diagram of an in-cylinder direct injection spark ignition engine.
FIG. 5 is a waveform diagram for explaining the operation at the time of area transition according to the present embodiment.
FIG. 6 is a characteristic diagram showing the difference in the stable combustion region due to the difference in the operating state of the TCV.
FIG. 7 is a flowchart for explaining setting of a region transition flag.
FIG. 8 is a flowchart for explaining calculation of a target equivalent ratio.
FIG. 9 is a flowchart for explaining TCV opening / closing control.
FIG. 10 is a flowchart for explaining injection timing setting.
FIG. 11 is a flowchart for explaining calculation of ignition timing.
FIG. 12 is an explanatory view showing a method of forming an air-fuel mixture by an air guide method.
[Explanation of symbols]
7 Spark plug
11 Ignition system
12 Fuel injection valve
13 TCV (Gas Flow Control Valve)
22 Ignition coil
41 Engine controller

Claims (5)

所定運転域でリーン空燃比での成層燃焼を行う筒内直接噴射式火花点火エンジンにおいて、
成層燃焼を行う所定運転域のうち隣り合う運転域で成層燃焼の設定条件である点火時期が少なくとも異なる場合に、その隣り合う運転域の境界を横切る際に、どちらに要求される点火時期にも点火を行う2回点火実行手段
を備えることを特徴とする筒内直接噴射式火花点火エンジンの点火時期制御装置。
In a direct injection type spark ignition engine that performs stratified combustion at a lean air-fuel ratio in a predetermined operating range,
When the ignition timing, which is the setting condition for stratified combustion, differs at least between the adjacent operating regions in the predetermined operating region where stratified combustion is performed, the ignition timing required for either of them when crossing the boundary of the adjacent operating regions An ignition timing control device for an in-cylinder direct injection spark ignition engine, characterized by comprising a double ignition execution means for performing ignition.
所定運転域でリーン空燃比での成層燃焼を行う筒内直接噴射式火花点火エンジンにおいて、
成層燃焼を行う所定運転域のうち隣り合う運転域で成層燃焼の設定条件であるガス流動状態と点火時期とが少なくとも異なる場合に、その隣り合う運転域の境界を横切る際に、どちらに要求される点火時期にも点火を行う2回点火実行手段を備えることを特徴とする筒内直接噴射式火花点火エンジンの点火時期制御装置。
In a direct injection type spark ignition engine that performs stratified combustion at a lean air-fuel ratio in a predetermined operating range,
When the gas flow state, which is the setting condition for stratified combustion, and the ignition timing are at least different in the adjacent operating regions of the predetermined operating region where stratified combustion is performed, which is required when crossing the boundary between the adjacent operating regions. An ignition timing control device for an in-cylinder direct injection spark ignition engine, characterized in that it comprises a two-time ignition execution means for igniting the ignition timing.
ガス流動制御弁を備え、前記隣り合う運転域の一方でこのガス流動制御弁を開き、前記隣り合う運転域の他方でこのガス流動制御弁を閉じることを特徴とする請求項2に記載の筒内直接噴射式火花点火エンジンの点火時期制御装置。The cylinder according to claim 2, further comprising a gas flow control valve, wherein the gas flow control valve is opened in one of the adjacent operation regions, and the gas flow control valve is closed in the other of the adjacent operation regions. Ignition timing control device for internal direct injection spark ignition engine. EGR装置を備え、前記隣り合う運転域ではいずれもEGR率を大きくすることを特徴とする請求項2に記載の筒内直接噴射式火花点火エンジンの点火時期制御装置。The ignition timing control device for a direct injection type spark ignition engine according to claim 2, further comprising an EGR device, wherein the EGR rate is increased in each of the adjacent operation regions. 前記隣り合う運転域のいずれにおいても成層混合気に着火できるタイミングが進角側にも遅角側にも制限されていることを特徴とする請求項4に記載の筒内直接噴射式火花点火エンジンの点火時期制御装置。The in-cylinder direct injection spark ignition engine according to claim 4, wherein the timing at which the stratified mixture can be ignited in any of the adjacent operating ranges is limited to both the advance side and the retard side. Ignition timing control device.
JP2002371635A 2002-12-24 2002-12-24 Ignition timing control device for in-cylinder direct injection spark ignition engine Expired - Fee Related JP4239584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371635A JP4239584B2 (en) 2002-12-24 2002-12-24 Ignition timing control device for in-cylinder direct injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371635A JP4239584B2 (en) 2002-12-24 2002-12-24 Ignition timing control device for in-cylinder direct injection spark ignition engine

Publications (2)

Publication Number Publication Date
JP2004204704A JP2004204704A (en) 2004-07-22
JP4239584B2 true JP4239584B2 (en) 2009-03-18

Family

ID=32810471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371635A Expired - Fee Related JP4239584B2 (en) 2002-12-24 2002-12-24 Ignition timing control device for in-cylinder direct injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP4239584B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897059B2 (en) 2004-06-22 2007-03-22 旭硝子株式会社 Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
DE602005024002D1 (en) 2004-06-22 2010-11-18 Asahi Glass Co Ltd ELECTROLYTE MEMBRANE FOR A FESTPOLYMER FUEL CELL, MANUFACTURING METHOD AND MEMBRANE ELECTRODE ASSEMBLY FOR A FESTPOLYMER FUEL CELL
US7995012B2 (en) 2005-12-27 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP6462311B2 (en) * 2014-10-24 2019-01-30 日立オートモティブシステムズ株式会社 Engine control device
JP2016130495A (en) * 2015-01-14 2016-07-21 トヨタ自動車株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP2004204704A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
US5666916A (en) Apparatus for and method of controlling internal combustion engine
EP0882877B1 (en) Controller for an internal combustion engine
EP1234960B1 (en) Combustion control apparatus for engine
US8050846B2 (en) Apparatus and method for controlling engine
JP2001152919A (en) Compressed self-ignition gasoline engine
KR101016924B1 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP2001003800A (en) Engine control system and control method
JP4062870B2 (en) Combustion control device for internal combustion engine
JP2001323828A (en) Compression self-ignition gasoline engine
JPWO2002090746A1 (en) Control device for in-cylinder injection internal combustion engine
JP2007016685A (en) Internal combustion engine control device
JP4161789B2 (en) Fuel injection control device
JP4110836B2 (en) Control device for internal combustion engine
JP4239584B2 (en) Ignition timing control device for in-cylinder direct injection spark ignition engine
JP7145006B2 (en) CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE
JP2001214741A (en) Compressed self-ignition type internal combustion engine
JP2007132286A (en) Control device for direct injection gasoline engine
JP2002256924A (en) Combustion control device of compression ignition engine
JP5593827B2 (en) Control device for spark ignition engine
JP3767383B2 (en) Ignition timing control device for in-cylinder direct injection spark ignition engine
JP2004197642A (en) Control device for cylinder direct injection type spark ignition engine
JP2023053505A (en) Control method for engine and engine system
JP2023053508A (en) Engine system and control method for engine
JP2023053507A (en) Engine system and control method for engine
JP2023053506A (en) Engine system and control method for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees