JP4223551B2 - Method for manufacturing floating gate nonvolatile memory device - Google Patents

Method for manufacturing floating gate nonvolatile memory device Download PDF

Info

Publication number
JP4223551B2
JP4223551B2 JP53417497A JP53417497A JP4223551B2 JP 4223551 B2 JP4223551 B2 JP 4223551B2 JP 53417497 A JP53417497 A JP 53417497A JP 53417497 A JP53417497 A JP 53417497A JP 4223551 B2 JP4223551 B2 JP 4223551B2
Authority
JP
Japan
Prior art keywords
polycrystalline
layer
amorphous silicon
gate
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53417497A
Other languages
Japanese (ja)
Other versions
JPH11505675A (en
Inventor
ギド ヨゼフ マリア ドルマンス
ロベルタス ドミニカス ヨセフ フェルハール
ロジャー クッペンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP BV
Original Assignee
NXP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP BV filed Critical NXP BV
Publication of JPH11505675A publication Critical patent/JPH11505675A/en
Application granted granted Critical
Publication of JP4223551B2 publication Critical patent/JP4223551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/42Simultaneous manufacture of periphery and memory cells
    • H10B41/43Simultaneous manufacture of periphery and memory cells comprising only one type of peripheral transistor
    • H10B41/48Simultaneous manufacture of periphery and memory cells comprising only one type of peripheral transistor with a tunnel dielectric layer also being used as part of the peripheral transistor

Description

本発明は、多結晶又はアモルファスシリコンの絶縁ゲートを有する第1のMOSトランジスタと、電気的にフローティングされた多結晶又はアモルファスシリコンのゲート及び前記フローティングゲートの上側に位置しこのフローティングゲートから電気的に絶縁されている多結晶又はアモルファスシリコンの制御電極を有する第2のMOSトランジスタの形態の不揮発性の書き込み可能なメモリ素子とが表面に設けられているシリコンから成る半導体本体を有する半導体デバイスに関するものである。また、本発明は、多結晶又はアモルファスシリコンの絶縁ゲートを有する第1のMOSトランジスタと、電気的にフローティングされた多結晶又はアモルファスシリコンのゲート及び前記フローティングゲートの上側に位置しこのフローティングゲートから電気的に絶縁されている多結晶又はアモルファスシリコンの制御電極を有する第2のMOSトランジスタの形態の不揮発性の書き込み可能なメモリ素子とが表面に設けられているシリコンから成る半導体本体を有する半導体デバイス製造方法に関するものである。
用語「ポリ」は以下の説明において短縮して用いるものであり、この用語は単結晶シリコンだけでなくアモルファスシリコンも含むものである。
この半導体デバイス及びこの半導体デバイスの製造方法は、本願人の米国特許第5395778号から既知である。このメモリ素子及び多数の同様な素子は、通常EEPROM又は(フラッシュ)EPROMの名称で広く知られている不揮発性メモリの一部を構成する。このメモリ素子は孤立型とすることができ、その場合半導体デバイスは主としてメモリとこのメモリ用に必要な周辺電子回路とで構成することができる。従って、上述した第1のMOSトランジスタは周辺回路のトランジスタにより構成することができるが、メモリ半導体と共にメモリセルを構成する選択トランジスタにより構成することもできる。特に限定されるものではないが、本発明が特に重要になる別の例において、メモリは埋込形成することができ、半導体デバイスは組み込まれている不揮発性メモリを有する集積化した信号処理回路とすることができる。このような回路を製造するためには、信号処理部分(以後、ロジックと称する)のメモリのための数個の付加的な処理工程を含む標準のCMOSプロセスが広く用いられる。一般的に知られているように、情報は、フローティングゲートに蓄積されトランジスタの閾値電圧を規定する電荷の形態として書込まれる。制御電極に適切な電圧を印加すれば、トランジスタが導通するか否かが確認されるので、情報を読み出すことができる。
上記米国特許第5395778号は、フローティングゲート及び制限電極が、ロジックゲートを形成するために必要なポリ堆積が2個の工程で行なわれる分割ポリプロセスにより形成されるプロセスについて記載している。第1の工程において、ロジック用の第1の部分層がフローティングゲートのポリ層と共に形成され、次にこの層に層間誘電体が形成される。第2の工程において、ポリ層の残りの部分がロジックゲート用に形成され、同時に制御電極用のポリがフローティングゲートのポリ層上に層間誘電体により電気的に絶縁されて形成される。
このプロセスにおいて、ロジックのポリ層はメモリの制御電極のポリ層の厚さよりも一層厚い厚さを有し、これはある状況下において欠点となる。すなわち、制御電極及びロジックの絶縁ゲートを同時に規定しエッチングする場合、メモリ部分をオーバエッチングする必要が生ずる。別の欠点は、堆積及び酸化層のエッチバックにより制御電極及び絶縁ゲートの側部にスペーサが形成される場合に生ずるおそれがある。この場合、ポリ層間の厚さの差異の結果としてメモリ部分の酸化層が相対的にエッチングされ過ぎる可能性がある。これにより、既知のサリサイドプロセスにおいてソース及びドレイン領域並びにゲートにシリサイドのコンタクトが形成される場合、短絡(橋絡)が生ずるおそれがある。
本発明の目的は、これらの欠点を少なくともほとんど除去することにある。この目的を達成するため、本発明においては、明細書の冒頭部で述べた型式の半導体デバイスにおいて、前記絶縁ゲートの厚さを、前記フローティングゲートの厚さに等しいか又はそれ以上とすると共に、前記制御電極の厚さに等しいか又は少なくともほぼ等しくしたことを特徴とする。メモリトランジスタの制御電極をMOSロジックトランジスタの絶縁ゲートと同一の厚さにすれば、上述した課題を解消することができる。
絶縁ゲートが単一のポリ層から形成される利点を有する本発明の第1実施例は、フローティングゲート及び絶縁ゲートを、等しい厚さとすると共に共通の第1の堆積したシリコン層から形成し、前記制御電極を第2の堆積したシリコン層から形成することを特徴とする。フローティングゲートの厚さをロジックゲートの厚さから独立して選択することができる利点を有する本発明の第2実施例は、絶縁ゲート及び制御電極が、前記フローティングゲートよりも厚い厚さを有することを特徴とする。本例のポリ層の厚さは薄くすることができるので、得られる構造体は比較的平面的になるので、その後の処理工程において好ましいものとなる。
直列抵抗の小さい利点が得られる本発明による半導体デバイスの別の実施例は、制御電極、絶縁ゲート及びMOSトランジスタのソース領域及びドレイン領域に、シリコンと金属との合金の比較的低オーミックのシリサイドの上側層を設けたことを特徴とする。シリサイドは、好ましくは例えばTi層により自己整列した方法(サリサイド)により形成され、このTi層はシリコンと接触してシリサイドを形成し、酸化物と接触しても変化せず、しかも酸化物の区域おいて選択的に除去することができる。
本発明によれば、明細書の冒頭部で述べた型式の方法において、
前記半導体本体の表面に、第1のMOSトランジスタのための第1のアクティブ領域及び第2のMOSトランジスタのための領域2のアクティブ領域を規定し、
前記第1及び第2のアクティブ領域に電気的に絶縁性の層を設けて第1及び第2のMOSトランジスタのゲート誘電体層をそれぞれ形成し、
前記第1及び第2のアクティブ領域上に前記絶縁層により分離された第1の多結晶又はアモルファスシリコンの層を堆積し、
前記第1のシリコン層上に誘電体層を形成し、
前記第1のシリコン層上に前記誘電体層により分離された第2の多結晶又はアモルファスシリコンの層を堆積し、この第2のシリコン層の厚さを第1のシリコン層の厚さに少なくともほぼ等しくし、
第1のアクティブ領域の第2のシリコン層を除去し、
前記堆積したシリコン層から前記フローティングゲート、制御電極、及び絶縁ゲートを規定することを特徴とする。上述した課題はこの方法により簡単に解消することができる。このプロセスは、第1のポリ層を堆積した後、表面のロジック領域を第1のポリ層でマスクしながら、始めにフローティングゲートを次にメモリトランジスタのソース領域及びドレイン領域を形成し、次に第2の処理工程においてロジック部分を形成するように行うことができる。これにより、米国特許第5395778号に記載されているプロセスの利点を達成することができ、その内容は本明細書において参考とし記載する。
簡単な方法で小さい直列抵抗を得ることができる本発明による方法の重要な別の実施例は、MOSトランジスタのソース領域及びドレイン領域、制御電極及び絶縁ゲートに、サリサイド処理によりシリコンと金属との合金のシリサイドの上側層を形成することを特徴とする。
以下添付図面及び実施例を参照して本発明を詳細に説明する。
図1〜8は本発明による半導体デバイスの製造工程における断面を示す。
図9は製造中のデバイスの変形例を示す。
図1〜7に基づき、以下ポリA,B及びCと称する多結晶シリコンの3個の層を有する集積回路の第1実施例について説明する。第1導電型、本例の場合p形の面2と隣接する表面領域1を有するシリコン本体を用いて処理を開始する。フィールド酸化膜3のパターンにより表面領域1にアクティブ領域を規定し、2個のアクティブ領域を領域4及び5として図示する。アクティブ領域4はメモリセル用のものとし、領域5は以後MOSTと称するロジックMOSトランジスタ用のものとする。フィールド酸化膜は例えばシリコン本体の局部酸化のような通常の方法で形成することができ、例えば550nmの厚さを有する。酸化工程の後酸化マスクを除去し、所望の場合種々のイオン注入を行うことができ、例えば形成すべきpチャネルトランジスタ用のnウエルイオン注入を行う。次の工程において、表面上に例えば12nmの厚さのシリコン酸化膜の形態のゲート誘電体層6を形成する。本例のゲート誘電体層は、アクティブ領域で同一の厚さを有するが、必ずしもこのようにする必要はない。従って、MOSTのゲート酸化膜の厚さはメモリトランジスタのゲート酸化膜の厚さとは異なる。第1の多結晶又はアモルファスシリコン層7、すなわちポリAは、例えば150nmの厚さに堆積する。このポリ層はは堆積中に又は堆積後にn形の不純物が添加され、例えばリンを用いてcm3当たり約1.3×1019原子の濃度で添加する。本例のポリ層7は、酸化からポリ層をマスクする層8により覆われ、この層8はオキシナイトライド層又はシリコン酸化層とナイトライドとの複合層で構成される。次に、フォトレジストマスク9を形成し、ロジックMOSTのアクティブ領域5を覆うと共にメモリセルのアクティブ領域4のフローティングゲートを規定する。次に、層8及びポリ層7をパターンにエッチングし、これによりフローティングゲート10をアクティブ領域4に形成する。アクティブ領域5はその全表面にわたってポリ層Aで覆ったままに維持する。この工程を図1に示す。
この工程でマスク9を除去し、例えばcm2当たり3×1015の不純物濃度で約60keVのエネルギーで砒素をイオン注入することにより、メモリトランジスタのn形ソース領域及びドレイン領域11及び12を形成する。所望の場合、例えばOTP(One Time Programable)メモリの場合、図2に領域13及び14として線図的に示すように、領域11及び12付近のボロンの背景濃度はcm2当たり1014の不純物濃度で約20keVのエネルギーでボロンをイオン注入することにより増強することができる。これらのp形領域は、図面に示す次の工程では図示しないことにする。フラッシュメモリの場合、この工程においてp形領域13の代わりにソース領域11の付近に比較的低い濃度の不純物が添加された領域を形成する。次に、熱酸化により酸化層15をこのポリ層の側部に成長させ、この間にポリ層の上側を層8によりマスクする。図2はこの製造工程におけるデバイスを示す。
次の工程において、層8を除去し、メモリセルのフローティングゲートと制御電極との間の層間ポリ誘電体(IPD)を構成する約35nmの厚さの層16を形成する。本例では、この層はシリコンオキシナイトライド層とするが、約35nmの厚さの複合酸化層−窒化層−酸化層(OND)により構成することができるが、変形例として例えば酸化層だけで構成することもできること明らかである。第2のポリ(又はアモルファス)層17、すなわちポリBを層16上に堆積する。この層17は、第1のポリ層の厚さに等しいか又は少なくともほぼ等しい厚さ、すなわち約150nmの厚さを有する。この層17は、ポリAの濃度に等しいか又はほぼ等しい濃度でリンをイオン注入することによりn形の不純物が添加される。次に、メモリ領域4をフォトマスク18によりマスクする。この工程を図3に示す。
マスク18によりマスクされていない位置、すなわちアクティブ領域5のポリ層17及び層16を除去し、厚さポリ層17の厚さに等しいポリ層だけをアクティブ領域に残存させる。次に、フォトマスク18を除去する。この工程のデバイスを図4に示す。
次の工程において、第3のポリ層19、すなわちポリCを堆積し、このポリ層は以前のポリ層の濃度に等しいか又はほぼ等しい濃度のn形の不純物が添加されている。本例のポリ層の厚さは同様に150nmとし、ポリ層7及び17の厚さに等しくする。一方、変形例として、ポリ層19の厚さは異なる値を有することができ、例えば形成されるゲートが適当な抵抗値を有するように選択することもできる。次に、図5に示すように、アクティブ領域4のメモリトランジスタの制御電極を規定し、アクティブ領域5のロジックMOSトランジスタのゲートを規定する新しいフォトマスク20を形成する。次に、マスクされないポリ層をエッチングにより除去し、(図6)メモリトランジスタの制御電極21及びロジックMOSTの絶縁ゲートを形成する。ゲート21及び22は等しいか又は少なくともほぼ等しい厚さであるので、この場合異なる厚さの層をエッチングする場合にしばしば必要なオーバエッチングが不要である。この後、再びマスク20を除去する。
次の工程において、光酸化工程を行ない、ポリゲート21及び22の側部を酸化物で覆う。次に、アクティブ領域5にLDD構造を形成する。次の工程において、ゲート21及び22の側部に、例えば酸化層の堆積及びエッチングバックのような既知の方法によりスペーサ23を形成する。これとの関連において、ゲート電極21及び22上のスペーサはほぼ同一の寸法とし、これは次に行なうサリサイドプロセスにおいて重要である。次に、マスクとして作用するスペーサ23を用いて、ソース領域及びドレイン領域24及び25を砒素イオンの注入により形成する。これらの領域は、LDD領域24a及び25aによりトランジスタのチャネル領域から分離する。このために用いたマスク並びに層16及びシリコン層6の露光された部分を除去した後、表面上にTiの層26を形成し、これにより図7に示す状態が得られる。図面から明らかなように、Ti層26はシリコン本体1及びポリゲート21及び22と局部的に接触し、スペーサ23及びフィールド酸化膜3の区域でシリコン酸化物と局部的に接触する。このTiは加熱処理のもとでポリゲート21,22上並びにトランジスタのソース及びドレイン領域上においてチタニウムシリサイドを形成し、フィールド酸化膜3上では変化しない。スペーサ23の側部においては、Tiは、シリコンの拡散によりソース及びドレイン領域並びにゲート電極に近接した部分だけがシリサイドに変化し、残りの部分についてはスペーサはTiで覆われる。メモリトランジスタの制御電極及びロジックトランジスタのゲート22は実際に厚さが等しいので、スペーサ23も実際に等しい高さに形成され、橋絡するおそれは極めて小さい。残存するTiはフィールド酸化膜3及びスペーサ23の側部から選択的エッチング工程により除去され、選択的エッチングによりTiはチタニウムシリサイドよりも速く除去されるので、図8に示す相互に分離された低オーミックのシリサイドコンタクト27が得られる。
次に、このデバイスについて、1個又は数個の金属層による導電性接続部の形成及びガラス層の形成のような通常の別の処理を行なう。これらの工程は一般的に既知であり、従って詳細な説明はしないことにする。
ここで説明した実施例において、ポリ層Aからフローティングゲート10全体を形成しゲート22を部分的に形成し、これに続いて2個のポリ層、すなわち制御電極21を(部分的に)形成するポリ層B及び制御電極21及びゲート22の残りの部分を形成するポリ層Cを形成した。この実施例は、フローティングゲートの厚さを比較的広い範囲にわたって独立して選択できる利点がある。可能性のある欠点は、制御電極21及びゲート22が複合ポリ層で形成されるため、ポリ層間の酸化層によりゲートが空乏化する課題があり、この酸化層はドーピング中に不純物に対する障壁を形成し、ポリの不純物濃度が低くなり過ぎてしまう。この欠点を解消するため、上述した処理プロセスの変形例を図9に基いて説明する。図9に示す工程は、第1のプロセスとしてTi層26を堆積した図7に示す工程に対応する。
この変形例において、ポリ層Aの厚さは約300nm、すなわち第1実施例の厚さの2倍とする。上述した方法と同様な方法として、メモリトランジスタのフローティングゲートはこのポリ層から形成する。これまでの処理工程及び図4に示す工程は、ロジックトランジスタのアクティブ領域5がポリ層Aにより覆われている間に行なう。メモリトランジスタの制御電極21を形成するためのポリ層Bも約300nmの厚さとする。次に、メモリトランジスタの制御電極21及びロジックトランジスタのゲート22は、前の実施例(図5)のマスク20に対応するマスクにより形成する。別の処理工程は前の実施例と同一である。制御電極21及びゲート22は等しい厚さであるから、上述したオーバエッチング及び橋絡部の形成の課題を解消し再現性のある方法で処理を行なうことができる。前述した実施例に比べて、フローティングゲート10の厚さを比較的厚くすることにより平面構造性が低下するか、一般的にはその後の処理工程を若干困難なものにするにすぎない。他方において、図9の構造体は、ゲート空乏化を阻止する利点及びフローティングゲートが大きな側部表面を有する利点を有しているので、オーバラップする制御電極21とフローティングゲートとの間の容量が比較的大きくなる。
本発明は上述した実施例だけに限定されず、本発明の範囲内において種々の変形が可能である。従って、本発明はシリサイド層を有しない実施例においても多くの利点を達成する。上述した実施例の導電型を反対にすることも可能である。上述したプロセスの第1実施例において、所望の場合、シリコンオキシナイトライド層8を削除することもできる。
The present invention relates to a first MOS transistor having an insulating gate made of polycrystalline or amorphous silicon, a gate made of polycrystalline or amorphous silicon that is electrically floated, and electrically located from the floating gate located above the floating gate. The invention relates to a semiconductor device having a semiconductor body made of silicon, on the surface of which a nonvolatile writable memory element in the form of a second MOS transistor having a control electrode of polycrystalline or amorphous silicon that is insulated. is there. The present invention also provides a first MOS transistor having an insulating gate made of polycrystalline or amorphous silicon, a gate made of polycrystalline or amorphous silicon that is electrically floated, and the floating gate. Device manufacture having a semiconductor body made of silicon, on the surface of which a nonvolatile writable memory element in the form of a second MOS transistor having a control electrode of polycrystalline or amorphous silicon which is electrically insulated It is about the method.
The term “poly” is abbreviated in the following description, and this term includes not only single crystal silicon but also amorphous silicon.
This semiconductor device and a method for manufacturing this semiconductor device are known from the applicant's US Pat. No. 5,395,778. This memory element and a number of similar elements form part of a non-volatile memory, commonly known by the name of EEPROM or (flash) EPROM. This memory element can be of an isolated type, in which case the semiconductor device can be mainly composed of a memory and peripheral electronic circuits necessary for this memory. Therefore, the first MOS transistor described above can be formed by a transistor in a peripheral circuit, but can also be formed by a select transistor that forms a memory cell together with a memory semiconductor. While not particularly limited, in another example where the invention is particularly important, the memory can be embedded and the semiconductor device can be integrated with an integrated signal processing circuit having a non-volatile memory embedded therein. can do. In order to manufacture such a circuit, a standard CMOS process is widely used which includes several additional processing steps for the memory of the signal processing part (hereinafter referred to as logic). As is generally known, information is written in the form of charge that is stored in the floating gate and defines the threshold voltage of the transistor. When an appropriate voltage is applied to the control electrode, whether or not the transistor is turned on is confirmed, so that information can be read out.
U.S. Pat. No. 5,395,778 describes a process in which the floating gate and the limiting electrode are formed by a split poly process where the poly deposition necessary to form the logic gate is performed in two steps. In the first step, a first partial layer for logic is formed with a floating gate poly layer, and then an interlayer dielectric is formed in this layer. In the second step, the remaining portion of the poly layer is formed for the logic gate, and at the same time, the poly for the control electrode is formed on the floating gate poly layer by being electrically insulated by an interlayer dielectric.
In this process, the logic poly layer has a thickness that is greater than the thickness of the memory control electrode poly layer, which under certain circumstances is a drawback. That is, when the control electrode and the logic insulated gate are simultaneously defined and etched, it is necessary to over-etch the memory portion. Another disadvantage may arise when spacers are formed on the sides of the control electrode and insulated gate by deposition and oxide layer etchback. In this case, the oxide layer in the memory part may be relatively etched too much as a result of the thickness difference between the poly layers. As a result, when silicide contacts are formed in the source and drain regions and the gate in the known salicide process, a short circuit (bridge) may occur.
The object of the present invention is to eliminate at least most of these drawbacks. To achieve this object, in the present invention, in the semiconductor device of the type described at the beginning of the specification, the thickness of the insulated gate is equal to or greater than the thickness of the floating gate, It is characterized by being equal to or at least approximately equal to the thickness of the control electrode. If the control electrode of the memory transistor has the same thickness as the insulated gate of the MOS logic transistor, the above-described problem can be solved.
The first embodiment of the present invention, which has the advantage that the insulated gate is formed from a single poly layer, comprises forming the floating gate and the insulated gate from a common first deposited silicon layer of equal thickness and The control electrode is formed from a second deposited silicon layer. In the second embodiment of the present invention, which has the advantage that the thickness of the floating gate can be selected independently from the thickness of the logic gate, the insulated gate and the control electrode have a thickness greater than that of the floating gate. It is characterized by. Since the thickness of the poly layer in this example can be reduced, the resulting structure is relatively planar, which is preferable in subsequent processing steps.
Another embodiment of the semiconductor device according to the present invention, which provides the advantage of low series resistance, is the use of a relatively low ohmic silicide of an alloy of silicon and metal in the control electrode, insulated gate and source and drain regions of the MOS transistor. An upper layer is provided. The silicide is preferably formed, for example, by a self-aligned method (salicide) with a Ti layer, which forms a silicide in contact with silicon and does not change when in contact with the oxide, and is a region of the oxide. Can be selectively removed.
According to the invention, in a method of the type mentioned at the beginning of the description,
Defining a first active region for a first MOS transistor and an active region of region 2 for a second MOS transistor on the surface of the semiconductor body;
Providing electrically insulating layers in the first and second active regions to form gate dielectric layers of the first and second MOS transistors, respectively;
Depositing a first polycrystalline or amorphous silicon layer separated by the insulating layer on the first and second active regions;
Forming a dielectric layer on the first silicon layer;
A second polycrystalline or amorphous silicon layer separated by the dielectric layer is deposited on the first silicon layer, and the thickness of the second silicon layer is at least equal to the thickness of the first silicon layer. Almost equal,
Removing the second silicon layer of the first active region;
The floating gate, the control electrode, and the insulated gate are defined from the deposited silicon layer. The problems described above can be easily solved by this method. After depositing the first poly layer, the process masks the logic area on the surface with the first poly layer, first forming the floating gate, then the source and drain regions of the memory transistor, and then The logic portion can be formed in the second processing step. This can achieve the advantages of the process described in US Pat. No. 5,395,778, the contents of which are hereby incorporated by reference.
Another important embodiment of the method according to the present invention, which can obtain a small series resistance in a simple manner, is an alloy of silicon and metal by salicide treatment in the source and drain regions, control electrodes and insulated gates of MOS transistors. An upper layer of the silicide is formed.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings and embodiments.
1 to 8 show cross sections in a manufacturing process of a semiconductor device according to the present invention.
FIG. 9 shows a variation of the device being manufactured.
A first embodiment of an integrated circuit having three layers of polycrystalline silicon, hereinafter referred to as poly A, B and C, will be described with reference to FIGS. The process starts with a silicon body having a first conductivity type, in this case a p-type surface 2 and a surface region 1 adjacent. An active region is defined in the surface region 1 by the pattern of the field oxide film 3, and two active regions are illustrated as regions 4 and 5. The active region 4 is for a memory cell, and the region 5 is for a logic MOS transistor, hereinafter referred to as MOST. The field oxide film can be formed by an ordinary method such as local oxidation of a silicon body, and has a thickness of, for example, 550 nm. After the oxidation step, the oxidation mask is removed and various ion implantations can be performed if desired, for example, n-well ion implantation for the p-channel transistor to be formed. In the next step, a gate dielectric layer 6 in the form of a silicon oxide film, for example of 12 nm thickness, is formed on the surface. Although the gate dielectric layer of this example has the same thickness in the active region, this need not be the case. Accordingly, the thickness of the gate oxide film of the MOST is different from the thickness of the gate oxide film of the memory transistor. The first polycrystalline or amorphous silicon layer 7, ie poly A, is deposited to a thickness of, for example, 150 nm. This poly layer is doped with n-type impurities during or after deposition, for example, using phosphorous at a concentration of about 1.3 × 10 19 atoms per cm 3 . The poly layer 7 of this example is covered with a layer 8 that masks the poly layer from oxidation, and this layer 8 is composed of an oxynitride layer or a composite layer of a silicon oxide layer and a nitride. Next, a photoresist mask 9 is formed to cover the active region 5 of the logic MOST and define the floating gate of the active region 4 of the memory cell. Next, the layer 8 and the poly layer 7 are etched into a pattern, thereby forming the floating gate 10 in the active region 4. The active area 5 is kept covered with the poly layer A over its entire surface. This process is shown in FIG.
In this step, the mask 9 is removed, and n-type source and drain regions 11 and 12 of the memory transistor are formed by ion-implanting arsenic with an impurity concentration of 3 × 10 15 per cm 2 and energy of about 60 keV, for example. . If desired, for example in the case of an OTP (One Time Programmable) memory, the background concentration of boron in the vicinity of regions 11 and 12 is 10 14 impurity concentration per cm 2 as shown diagrammatically as regions 13 and 14 in FIG. Can be enhanced by ion implantation of boron with an energy of about 20 keV. These p-type regions are not shown in the next step shown in the drawing. In the case of a flash memory, a region to which an impurity having a relatively low concentration is added in the vicinity of the source region 11 instead of the p-type region 13 in this step. Next, an oxide layer 15 is grown on the side of the poly layer by thermal oxidation, while the upper side of the poly layer is masked by the layer 8 during this time. FIG. 2 shows the device in this manufacturing process.
In the next step, layer 8 is removed to form a layer 16 having a thickness of about 35 nm that constitutes an interlayer polydielectric (IPD) between the floating gate of the memory cell and the control electrode. In this example, this layer is a silicon oxynitride layer, but it can be composed of a composite oxide layer-nitride layer-oxide layer (OND) having a thickness of about 35 nm. Obviously, it can also be configured. A second poly (or amorphous) layer 17, poly B, is deposited on layer 16. This layer 17 has a thickness equal to or at least approximately equal to the thickness of the first poly layer, ie a thickness of about 150 nm. This layer 17 is doped with n-type impurities by ion implantation of phosphorus at a concentration equal to or approximately equal to the concentration of poly A. Next, the memory area 4 is masked with the photomask 18. This process is shown in FIG.
The poly-layer 17 and the layer 16 in the active region 5 that are not masked by the mask 18 are removed, and only the poly layer equal to the thickness of the poly-layer 17 is left in the active region. Next, the photomask 18 is removed. The device of this process is shown in FIG.
In the next step, a third poly layer 19, poly C, is deposited, which is doped with n-type impurities at a concentration equal to or approximately equal to the concentration of the previous poly layer. The thickness of the poly layer in this example is also 150 nm, and is equal to the thickness of the poly layers 7 and 17. On the other hand, as a modification, the thickness of the poly layer 19 can have different values, for example, the gate to be formed can be selected to have an appropriate resistance value. Next, as shown in FIG. 5, a new photomask 20 that defines the control electrode of the memory transistor in the active region 4 and the gate of the logic MOS transistor in the active region 5 is formed. Next, the unmasked poly layer is removed by etching (FIG. 6), and the control electrode 21 of the memory transistor and the insulated gate of the logic MOST are formed. Since the gates 21 and 22 are equal, or at least approximately equal in thickness, in this case the over-etch often required when etching layers of different thickness is unnecessary. Thereafter, the mask 20 is removed again.
In the next step, a photo-oxidation step is performed to cover the sides of the poly gates 21 and 22 with oxide. Next, an LDD structure is formed in the active region 5. In the next step, spacers 23 are formed on the sides of the gates 21 and 22 by a known method such as deposition of an oxide layer and etching back. In this connection, the spacers on the gate electrodes 21 and 22 are approximately the same size, which is important in the subsequent salicide process. Next, the source region and the drain regions 24 and 25 are formed by implanting arsenic ions using the spacer 23 acting as a mask. These regions are separated from the channel region of the transistor by LDD regions 24a and 25a. After removing the mask used for this and the exposed parts of the layer 16 and the silicon layer 6, a Ti layer 26 is formed on the surface, thereby obtaining the state shown in FIG. As is apparent from the drawing, the Ti layer 26 is in local contact with the silicon body 1 and the polygates 21 and 22 and in contact with the silicon oxide in the region of the spacer 23 and the field oxide film 3. This Ti forms titanium silicide on the poly gates 21 and 22 and on the source and drain regions of the transistor under heat treatment, and does not change on the field oxide film 3. At the side of the spacer 23, only the portion of the Ti adjacent to the source and drain regions and the gate electrode is converted into silicide due to silicon diffusion, and the spacer is covered with Ti for the remaining portion. Since the control electrode of the memory transistor and the gate 22 of the logic transistor are actually equal in thickness, the spacer 23 is also formed at an actually equal height and the possibility of bridging is very small. The remaining Ti is removed from the side portions of the field oxide film 3 and the spacer 23 by a selective etching process, and Ti is removed faster than the titanium silicide by the selective etching. The silicide contact 27 is obtained.
The device is then subjected to other conventional processes such as forming a conductive connection with one or several metal layers and forming a glass layer. These steps are generally known and will not be described in detail.
In the embodiment described here, the entire floating gate 10 is formed from the poly layer A and the gate 22 is partially formed, followed by the formation of two poly layers, ie the control electrodes 21 (partially). A poly layer C forming the poly layer B and the remaining portions of the control electrode 21 and the gate 22 was formed. This embodiment has the advantage that the thickness of the floating gate can be independently selected over a relatively wide range. A possible disadvantage is that the control electrode 21 and the gate 22 are formed of a composite poly layer, so that the gate is depleted by an oxide layer between the poly layers, which forms a barrier against impurities during doping. However, the impurity concentration of poly becomes too low. In order to eliminate this drawback, a modification of the above-described processing process will be described with reference to FIG. The step shown in FIG. 9 corresponds to the step shown in FIG. 7 in which the Ti layer 26 is deposited as the first process.
In this modification, the thickness of the poly layer A is about 300 nm, that is, twice the thickness of the first embodiment. As a method similar to that described above, the floating gate of the memory transistor is formed from this poly layer. The processing steps so far and the step shown in FIG. 4 are performed while the active region 5 of the logic transistor is covered with the poly layer A. The poly layer B for forming the control electrode 21 of the memory transistor is also about 300 nm thick. Next, the control electrode 21 of the memory transistor and the gate 22 of the logic transistor are formed by a mask corresponding to the mask 20 of the previous embodiment (FIG. 5). The other processing steps are the same as in the previous embodiment. Since the control electrode 21 and the gate 22 have the same thickness, the above-described problems of over-etching and bridge formation can be solved and processing can be performed in a reproducible manner. Compared to the above-described embodiment, the planar structure is lowered by making the thickness of the floating gate 10 relatively large, or the subsequent processing steps are generally only slightly difficult. On the other hand, the structure of FIG. 9 has the advantage of preventing gate depletion and the advantage that the floating gate has a large side surface, so that the capacitance between the overlapping control electrode 21 and the floating gate is reduced. It becomes relatively large.
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. Thus, the present invention achieves many advantages in embodiments that do not have a silicide layer. It is also possible to reverse the conductivity types of the embodiments described above. In the first embodiment of the process described above, the silicon oxynitride layer 8 can be eliminated if desired.

Claims (4)

多結晶又はアモルファスシリコンの絶縁ゲートを有する第1のMOSトランジスタと、電気的にフローティングの多結晶又はアモルファスシリコンのゲート及び前記フローティングゲートの上側に位置しこのフローティングゲートから電気的に絶縁されている多結晶又はアモルファスシリコンの制御電極を有する第2のMOSトランジスタの形態の不揮発性の書き込み可能なメモリ素子とが表面に設けられているシリコンから成る半導体本体を有する半導体デバイスを製造するに当たり、A first MOS transistor having an insulating gate made of polycrystalline or amorphous silicon; an electrically floating polycrystalline or amorphous silicon gate; and a multi-layer which is located above the floating gate and electrically insulated from the floating gate. In manufacturing a semiconductor device having a semiconductor body made of silicon with a nonvolatile writable memory element in the form of a second MOS transistor having a control electrode of crystalline or amorphous silicon provided on the surface,
前記半導体本体の表面に、前記第1のMOSトランジスタ用の第1のアクティブ領域及び前記第2のMOSトランジスタ用の第2のアクティブ領域を規定し、Defining a first active region for the first MOS transistor and a second active region for the second MOS transistor on a surface of the semiconductor body;
前記第1のアクティブ領域及び前記第2のアクティブ領域に電気的に絶縁性の層を設けて、前記第1のMOSトランジスタのゲート誘電体層及び前記第2のMOSトランジスタのゲート誘電体層をそれぞれ形成し、An electrically insulating layer is provided in the first active region and the second active region, and a gate dielectric layer of the first MOS transistor and a gate dielectric layer of the second MOS transistor are respectively provided. Forming,
前記第1のアクティブ領域上及び前記第2のアクティブ領域上に、前記絶縁層により分離された第1の多結晶又はアモルファスシリコンの層を堆積し、Depositing a first polycrystalline or amorphous silicon layer separated by the insulating layer on the first active region and the second active region;
前記第1の多結晶又はアモルファスシリコン層上に誘電体層を形成し、Forming a dielectric layer on the first polycrystalline or amorphous silicon layer;
前記第1の多結晶又はアモルファスシリコン層上に、前記誘電体層により分離された第2の多結晶又はアモルファスシリコンの層を堆積し、この第2の多結晶又はアモルファスシリコン層の厚さを前記第1の多結晶又はアモルファスシリコン層の厚さに等しくし、A second polycrystalline or amorphous silicon layer separated by the dielectric layer is deposited on the first polycrystalline or amorphous silicon layer, and the thickness of the second polycrystalline or amorphous silicon layer is set to the thickness of the second polycrystalline or amorphous silicon layer. Equal to the thickness of the first polycrystalline or amorphous silicon layer;
前記第1のアクティブ領域上の前記第2の多結晶又はアモルファスシリコン層を除去し、Removing the second polycrystalline or amorphous silicon layer on the first active region;
前記堆積した第1及び第2の多結晶又はアモルファスシリコン層から、前記フローティングゲート、前記制御電極、及び前記絶縁ゲートを規定し、前記フローティングゲートは、前記第2の多結晶又はアモルファスシリコン層を堆積する前に、前記第1の多結晶又はアモルファスシリコン層から形成することによって規定し、前記フローティングゲートを形成した後に、The floating gate, the control electrode, and the insulated gate are defined from the deposited first and second polycrystalline or amorphous silicon layers, and the floating gate deposits the second polycrystalline or amorphous silicon layer. Defined by forming from the first polycrystalline or amorphous silicon layer, and after forming the floating gate,
前記第1のアクティブ領域を前記第1の多結晶又はアモルファスシリコン層によって不純物添加に対してマスクしながら不純物添加することによって、前記第2のMOSトランジスタのソース領域及びドレイン領域を設けるThe source region and the drain region of the second MOS transistor are provided by doping the first active region while masking the impurity addition by the first polycrystalline or amorphous silicon layer.
ことを特徴とする半導体デバイスの製造方法。A method for manufacturing a semiconductor device.
前記第1のアクティブ領域上の前記第2の多結晶又はアモルファスシリコン層を除去した後に、前記第1のアクティブ領域上に第3の多結晶又はアモルファスシリコンの層を堆積し、前記制御電極及び前記絶縁ゲートを、前記第2の多結晶又はアモルファスシリコン層及び前記第3の多結晶又はアモルファスシリコン層の結合から形成することを特徴とする請求項1に記載の方法。After removing the second polycrystalline or amorphous silicon layer on the first active region, a third polycrystalline or amorphous silicon layer is deposited on the first active region, and the control electrode and the 2. The method of claim 1, wherein an insulated gate is formed from a combination of the second polycrystalline or amorphous silicon layer and the third polycrystalline or amorphous silicon layer. 前記第2の多結晶又はアモルファスシリコン層を堆積する前に、熱酸化により前記フローティングゲートの側部をシリコン酸化物層で覆うことを特徴とする請求項1に記載の方法。The method of claim 1 wherein the floating gate side is covered with a silicon oxide layer by thermal oxidation prior to depositing the second polycrystalline or amorphous silicon layer. 前記第1及び第2のMOSトランジスタのソース領域及びドレイン領域、前記制御電極、及び前記絶縁ゲートに、サリサイド処理により、シリコンと金属との合金のシリサイドの上側層を形成することを特徴とする請求項1から3までのいずれか1項に記載の方法。An upper layer of a silicide of an alloy of silicon and metal is formed by salicide treatment in the source region and drain region of the first and second MOS transistors, the control electrode, and the insulating gate. Item 4. The method according to any one of Items 1 to 3.
JP53417497A 1996-03-22 1997-03-10 Method for manufacturing floating gate nonvolatile memory device Expired - Fee Related JP4223551B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP96200791 1996-03-22
EP96200791.0 1996-03-22
PCT/IB1997/000227 WO1997036332A1 (en) 1996-03-22 1997-03-10 Floating gate non-volatile memory device, and a method of manufacturing the device

Publications (2)

Publication Number Publication Date
JPH11505675A JPH11505675A (en) 1999-05-21
JP4223551B2 true JP4223551B2 (en) 2009-02-12

Family

ID=8223809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53417497A Expired - Fee Related JP4223551B2 (en) 1996-03-22 1997-03-10 Method for manufacturing floating gate nonvolatile memory device

Country Status (8)

Country Link
US (1) US5879990A (en)
EP (1) EP0827634B1 (en)
JP (1) JP4223551B2 (en)
KR (1) KR100474631B1 (en)
CN (1) CN1143397C (en)
DE (1) DE69707382T2 (en)
TW (1) TW347567B (en)
WO (1) WO1997036332A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3666973B2 (en) * 1996-03-07 2005-06-29 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device
US20050036363A1 (en) * 1996-05-24 2005-02-17 Jeng-Jye Shau High performance embedded semiconductor memory devices with multiple dimension first-level bit-lines
US7064376B2 (en) * 1996-05-24 2006-06-20 Jeng-Jye Shau High performance embedded semiconductor memory devices with multiple dimension first-level bit-lines
US5748547A (en) * 1996-05-24 1998-05-05 Shau; Jeng-Jye High performance semiconductor memory devices having multiple dimension bit lines
JPH10154802A (en) * 1996-11-22 1998-06-09 Toshiba Corp Manufacture of nonvolatile semiconductor memory
TW360951B (en) * 1997-04-01 1999-06-11 Nxp Bv Method of manufacturing a semiconductor device
US6040216A (en) * 1997-08-11 2000-03-21 Mosel Vitelic, Inc. Method (and device) for producing tunnel silicon oxynitride layer
US6127224A (en) * 1997-12-31 2000-10-03 Stmicroelectronics, S.R.L. Process for forming a non-volatile memory cell with silicided contacts
JPH11265987A (en) 1998-01-16 1999-09-28 Oki Electric Ind Co Ltd Nonvolatile memory and its manufacture
DE59914434D1 (en) * 1998-02-27 2007-09-13 Qimonda Ag METHOD FOR PRODUCING AN ELECTRICALLY PROGRAMMABLE MEMORY CELL ARRANGEMENT
US6846739B1 (en) * 1998-02-27 2005-01-25 Micron Technology, Inc. MOCVD process using ozone as a reactant to deposit a metal oxide barrier layer
US6207991B1 (en) 1998-03-20 2001-03-27 Cypress Semiconductor Corp. Integrated non-volatile and CMOS memories having substantially the same thickness gates and methods of forming the same
US6124157A (en) * 1998-03-20 2000-09-26 Cypress Semiconductor Corp. Integrated non-volatile and random access memory and method of forming the same
US6034388A (en) * 1998-05-15 2000-03-07 International Business Machines Corporation Depleted polysilicon circuit element and method for producing the same
US6159795A (en) * 1998-07-02 2000-12-12 Advanced Micro Devices, Inc. Low voltage junction and high voltage junction optimization for flash memory
KR100297712B1 (en) * 1998-07-23 2001-08-07 윤종용 Nonvolatile memory for high integration & fabricating method the same
TW479364B (en) * 1999-04-28 2002-03-11 Koninkl Philips Electronics Nv Method of manufacturing a semiconductor device comprising a field effect transistor
US6204159B1 (en) * 1999-07-09 2001-03-20 Advanced Micro Devices, Inc. Method of forming select gate to improve reliability and performance for NAND type flash memory devices
US6380031B1 (en) * 1999-09-08 2002-04-30 Texas Instruments Incorporated Method to form an embedded flash memory circuit with reduced process steps
US6329240B1 (en) 1999-10-07 2001-12-11 Monolithic System Technology, Inc. Non-volatile memory cell and methods of fabricating and operating same
US6457108B1 (en) 1999-10-07 2002-09-24 Monolithic System Technology, Inc. Method of operating a system-on-a-chip including entering a standby state in a non-volatile memory while operating the system-on-a-chip from a volatile memory
US6841821B2 (en) * 1999-10-07 2005-01-11 Monolithic System Technology, Inc. Non-volatile memory cell fabricated with slight modification to a conventional logic process and methods of operating same
US6287913B1 (en) 1999-10-26 2001-09-11 International Business Machines Corporation Double polysilicon process for providing single chip high performance logic and compact embedded memory structure
JP2003518742A (en) * 1999-12-21 2003-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Non-volatile memory cells and peripherals
TW461093B (en) 2000-07-07 2001-10-21 United Microelectronics Corp Fabrication method for a high voltage electrical erasable programmable read only memory device
JP2002050705A (en) * 2000-08-01 2002-02-15 Fujitsu Ltd Semiconductor memory device and manufacturing method thereof
US7125763B1 (en) * 2000-09-29 2006-10-24 Spansion Llc Silicided buried bitline process for a non-volatile memory cell
US6518125B1 (en) * 2000-11-17 2003-02-11 Macronix International Co., Ltd. Method for forming flash memory with high coupling ratio
DE10101270A1 (en) 2001-01-12 2002-07-25 Infineon Technologies Ag Process for the production of embedded non-volatile semiconductor memory cells
JP2003023114A (en) * 2001-07-05 2003-01-24 Fujitsu Ltd Semiconductor integrated circuit device and its manufacturing method
JP4672217B2 (en) * 2001-09-04 2011-04-20 ルネサスエレクトロニクス株式会社 Method for manufacturing nonvolatile semiconductor memory device
US6518614B1 (en) * 2002-02-19 2003-02-11 International Business Machines Corporation Embedded one-time programmable non-volatile memory using prompt shift device
US6858514B2 (en) * 2002-03-29 2005-02-22 Sharp Laboratories Of America, Inc. Low power flash memory cell and method
US7416939B2 (en) * 2002-06-20 2008-08-26 Nxp B.V. Conductive spacers extended floating gates
US6909139B2 (en) 2003-06-27 2005-06-21 Infineon Technologies Ag One transistor flash memory cell
US6933199B1 (en) 2003-10-15 2005-08-23 Microchip Technology Incorporated Method for integrating non-volatile memory with high-voltage and low-voltage logic in a salicide process
KR100546392B1 (en) 2003-11-01 2006-01-26 삼성전자주식회사 Semiconductor device having EPROM device and method for manufacturing the same
US7652321B2 (en) 2004-03-08 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
CN100343978C (en) * 2004-06-23 2007-10-17 上海先进半导体制造有限公司 Production of multi-layer poly-silicon memory element
KR100624463B1 (en) * 2005-03-12 2006-09-19 삼성전자주식회사 Nor-type hybrid multi-bit non-volatile memory device and method of operating the same
JP4753413B2 (en) * 2005-03-02 2011-08-24 三洋電機株式会社 Nonvolatile semiconductor memory device and manufacturing method thereof
US20070170489A1 (en) * 2006-01-26 2007-07-26 Fang Gang-Feng Method to increase charge retention of non-volatile memory manufactured in a single-gate logic process
US7382658B2 (en) * 2006-01-26 2008-06-03 Mosys, Inc. Non-volatile memory embedded in a conventional logic process and methods for operating same
JP2006203225A (en) * 2006-02-22 2006-08-03 Renesas Technology Corp Manufacturing method for semiconductor ic device
US20070196971A1 (en) * 2006-02-22 2007-08-23 Bohumil Lojek Scalable embedded EEPROM memory cell
US8629490B2 (en) * 2006-03-31 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor storage device with floating gate electrode and control gate electrode
KR101420603B1 (en) 2007-06-29 2014-07-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8247861B2 (en) 2007-07-18 2012-08-21 Infineon Technologies Ag Semiconductor device and method of making same
CN101964328B (en) * 2009-07-24 2012-12-12 中芯国际集成电路制造(上海)有限公司 Method for manufacturing semiconductor device
KR101829176B1 (en) 2009-11-20 2018-02-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI490982B (en) 2011-08-16 2015-07-01 Maxchip Electronics Corp Semiconductor structure and method of forming the same
TWI485811B (en) 2012-07-18 2015-05-21 Maxchip Electronics Corp Method of forming semiconductor structure
EP2747131B1 (en) * 2012-12-18 2015-07-01 Nxp B.V. Method of processing a silicon wafer
WO2016050927A1 (en) * 2014-10-02 2016-04-07 Elmos Semiconductor Aktiengesellschaft Flash memory cell and method for the production thereof
CN105789036B (en) * 2014-12-25 2018-10-23 中芯国际集成电路制造(上海)有限公司 A kind of manufacturing method and electronic device of semiconductor devices
CN106298674B (en) * 2015-05-25 2019-07-02 中芯国际集成电路制造(上海)有限公司 Memory and forming method thereof
TWI737377B (en) * 2020-07-01 2021-08-21 力晶積成電子製造股份有限公司 Semiconductor structure and method of fabricating the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646425A (en) * 1984-12-10 1987-03-03 Solid State Scientific, Inc. Method for making a self-aligned CMOS EPROM wherein the EPROM floating gate and CMOS gates are made from one polysilicon layer
US4635347A (en) * 1985-03-29 1987-01-13 Advanced Micro Devices, Inc. Method of fabricating titanium silicide gate electrodes and interconnections
IT1196997B (en) * 1986-07-25 1988-11-25 Sgs Microelettronica Spa PROCESS TO CREATE STRUCTURES INCLUDING NON-VOLATILE E2PROM MEMORY CELLS WITH SELF-ALIGNED SILICON LAYERS ASSOCIATED TRANSISTORS
US4775642A (en) * 1987-02-02 1988-10-04 Motorola, Inc. Modified source/drain implants in a double-poly non-volatile memory process
US5188976A (en) * 1990-07-13 1993-02-23 Hitachi, Ltd. Manufacturing method of non-volatile semiconductor memory device
JP3168617B2 (en) * 1990-07-13 2001-05-21 株式会社日立製作所 Manufacturing method of nonvolatile semiconductor memory device
JP3548984B2 (en) * 1991-11-14 2004-08-04 富士通株式会社 Method for manufacturing semiconductor device
CA2107602C (en) * 1992-10-07 2004-01-20 Andrew Jan Walker Method of manufacturing an integrated circuit and integrated circuit obtained by this method

Also Published As

Publication number Publication date
CN1193414A (en) 1998-09-16
KR19990021893A (en) 1999-03-25
EP0827634B1 (en) 2001-10-17
US5879990A (en) 1999-03-09
DE69707382T2 (en) 2002-06-27
DE69707382D1 (en) 2001-11-22
WO1997036332A1 (en) 1997-10-02
TW347567B (en) 1998-12-11
KR100474631B1 (en) 2005-05-16
JPH11505675A (en) 1999-05-21
CN1143397C (en) 2004-03-24
EP0827634A1 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JP4223551B2 (en) Method for manufacturing floating gate nonvolatile memory device
US6627928B2 (en) Method of manufacturing an integrated circuit, for integrating an electrically programmable, non-volatile memory and high-performance logic circuitry in the same semiconductor chip
KR100392532B1 (en) Semiconductor device and manufacturing method thereof
US6159795A (en) Low voltage junction and high voltage junction optimization for flash memory
JP3594550B2 (en) Method for manufacturing semiconductor device
KR20020011317A (en) Semiconductor memory device and manufacturing method thereof
KR100286731B1 (en) Flash memory manufacturing method
JPH11265987A (en) Nonvolatile memory and its manufacture
JPH09283643A (en) Semiconductor device and manufacture of semiconductor device
JPH088314B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US6069033A (en) Method of manufacturing a non-volatile memory and a CMOS transistor
JP3199388B2 (en) Manufacturing method of integrated circuit
JP3516616B2 (en) Semiconductor device manufacturing method and semiconductor device
US20010005610A1 (en) Semiconductor device having metal silicide film and manufacturing method thereof
WO1998044552A9 (en) Method of manufacturing a non-volatile memory combining an eprom with a standard cmos process
US6420223B2 (en) Manufacturing process for non-volatile floating gate memory cells integrated on a semiconductor substrate and comprised in a cell matrix with an associated control circuitry
JP3425882B2 (en) Method for manufacturing semiconductor device
EP1093667B1 (en) Method of manufacturing a semiconductor device comprising a field effect transistor
JPH0210766A (en) Method of programming mos- and cmos-rom memory
JPH11135655A (en) Manufacture of p-channel intrinsic mos transistor
JP2000208638A (en) Double gate forming method for semiconductor element
JPH0831539B2 (en) Non-volatile memory manufacturing method
JPH1126609A (en) Semiconductor memory and manufacture thereof
JP3408743B2 (en) Semiconductor device and manufacturing method thereof
JPH04257255A (en) Manufacture of non-volatile memory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080618

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370