JP4191644B2 - Gas proportional control valve - Google Patents

Gas proportional control valve Download PDF

Info

Publication number
JP4191644B2
JP4191644B2 JP2004121044A JP2004121044A JP4191644B2 JP 4191644 B2 JP4191644 B2 JP 4191644B2 JP 2004121044 A JP2004121044 A JP 2004121044A JP 2004121044 A JP2004121044 A JP 2004121044A JP 4191644 B2 JP4191644 B2 JP 4191644B2
Authority
JP
Japan
Prior art keywords
control valve
flow rate
gas
valve mechanism
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004121044A
Other languages
Japanese (ja)
Other versions
JP2005299899A (en
Inventor
則夫 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2004121044A priority Critical patent/JP4191644B2/en
Publication of JP2005299899A publication Critical patent/JP2005299899A/en
Application granted granted Critical
Publication of JP4191644B2 publication Critical patent/JP4191644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

本発明は、例えばガスバーナへのガス供給管に介設され、ガスバーナへのガス供給量を増減制御するガス比例制御弁に関する。   The present invention relates to a gas proportional control valve that is provided, for example, in a gas supply pipe to a gas burner and controls increase / decrease of the gas supply amount to the gas burner.

ガスバーナへ供給するガス量を小流量から大流量まで制御する場合、1つの流量制御弁機構で制御しようとすると、大流量時に対応するため弁体を大きくしなければならないので小流量側の制御を安定して正確に行うことが難しくなる。   When controlling the amount of gas supplied to the gas burner from a small flow rate to a large flow rate, if one control valve mechanism is used to control the gas flow, the valve body must be enlarged to cope with the large flow rate. It becomes difficult to perform stably and accurately.

そこで、小流量領域での制御を行う小流量制御弁機構と大流量領域での制御を行う大流量制御弁機構とを並列に設けると共に、大流量制御弁機構の下流に電磁開閉弁を設け、小流量の流量制御する際にはこの電磁開閉弁を閉弁させて小流量制御弁機構のみで流量制御を行うようにしたガス比例制御弁が知られている(例えば、特許文献1参照)。   Therefore, a small flow control valve mechanism that performs control in the small flow region and a large flow control valve mechanism that performs control in the large flow region are provided in parallel, and an electromagnetic on-off valve is provided downstream of the large flow control valve mechanism, A gas proportional control valve is known in which the electromagnetic on-off valve is closed to control the flow rate only by the small flow rate control valve mechanism when performing a small flow rate control (see, for example, Patent Document 1).

また、大流量の流量制御を行う流量制御弁機構と、一定の小流量を流す定流量機構とを設け、流量制御弁機構が閉弁した状態で定流量機構を用いて一定の小流量を確保するようにしたものが知られている(例えば、特許文献2参照)。
特開昭58−37383号公報(第1図) 特公平7−113432号公報(第2図)
In addition, a flow control valve mechanism that controls the flow rate of a large flow rate and a constant flow rate mechanism that flows a constant small flow rate are provided, and a constant small flow rate is secured using the constant flow rate mechanism with the flow control valve mechanism closed. What was made to do is known (for example, refer patent document 2).
JP 58-37383 A (FIG. 1) Japanese Patent Publication No.7-113432 (FIG. 2)

上記特許文献1に記載されたものでは、小流量から大流量に至るまでガスの流量を安定して比例制御することはできるものの、小流量制御弁機構および大流量制御弁機構を開閉するアクチュエータのほかに、大流量制御弁機構の下流に電磁開閉弁を設けなければならず、ガス比例制御弁全体が大型化するという問題が生じる。   In the device described in Patent Document 1, although the gas flow rate can be stably proportionally controlled from the small flow rate to the large flow rate, the small flow rate control valve mechanism and the actuator that opens and closes the large flow rate control valve mechanism are provided. In addition, an electromagnetic on-off valve must be provided downstream of the large flow rate control valve mechanism, resulting in a problem that the entire gas proportional control valve is increased in size.

これに対して上記特許文献2に記載のものでは電磁開閉弁を用いないので、ガス比例制御弁全体が大型化することはないが、小流量領域での比例制御をすることができず、流量制御弁機構が閉弁したあとは一定の小流量を確保するにすぎない。   On the other hand, in the thing of the said patent document 2, since an electromagnetic on-off valve is not used, the whole gas proportional control valve does not enlarge, but proportional control in a small flow area cannot be performed, and flow volume After the control valve mechanism is closed, only a constant small flow rate is ensured.

そこで本発明は、上記の問題点に鑑み、電磁開閉弁等の別途の機構を用いることなく小流量から大流量に至るまで安定して比例制御することできるガス比例制御弁を提供することを課題とする。   In view of the above problems, the present invention has an object to provide a gas proportional control valve that can stably perform proportional control from a small flow rate to a large flow rate without using a separate mechanism such as an electromagnetic on-off valve. And

上記課題を解決するために本発明によるガス比例制御弁は、往復移動自在の可動子を備え、この可動子の往動方向の移動に伴ってガスの流量を増加させる流量制御弁機構を備えたガス比例制御弁において、可動子の移動開始位置からの往動に伴ってガスの流量を小流量領域で増加させる小流量制御弁機構と、可動子の移動に伴ってガスの流量を大流量領域で増加させる少なくとも1つの大流量制御弁機構と、可動子の往動方向への移動量が所定の移動量に達した時点で、小流量制御弁機構の一部が大流量制御弁機構に当接して小流量制御弁機構を通過するガス流を可動子の移動によって停止させる停止手段とを備え、可動子の往動方向への移動量が上記所定の移動量を超えた状態では可動子の往動を小流量制御弁機構を介して大流量制御弁機構に伝達し、大流量制御弁機構によってガス流量を増加させることを特徴とする。 In order to solve the above-described problems, a gas proportional control valve according to the present invention includes a movable element that can freely move back and forth, and a flow rate control valve mechanism that increases the flow rate of gas as the movable element moves in the forward movement direction. In the gas proportional control valve, a small flow rate control valve mechanism that increases the gas flow rate in the small flow rate region as the mover moves from the movement start position, and the gas flow rate in the large flow rate region as the mover moves. At least one large flow rate control valve mechanism and when the amount of movement of the mover in the forward movement direction reaches a predetermined amount of movement, a part of the small flow rate control valve mechanism contacts the large flow rate control valve mechanism. mover in a state where the gas flow through the small flow control valve mechanism and a stopping means for stopping the movement of the movable element, the movement amount in the forward direction of the mover exceeds the predetermined amount of movement in contact The large flow control valve machine through the small flow control valve mechanism Transmitted to, and characterized by increasing the gas flow by the high flow control valve mechanism.

可動子が往動方向への移動を開始すると、最初に小流量制御弁機構が開弁して可動子の移動量に対応してガス流量を比例制御する。可動子の移動量が所定量に達すると、電磁開閉弁等の別途の機構を用いることなく可動子の移動によって小流量制御弁機構に対するガス流が停止される。これにより小流量制御弁機構の機能が停止する。可動子がさらに往動方向へ移動すると、小流量制御弁機構に代わって大流量領域での制御を行う大流量制御機構が開弁するので、ガス流はこの大流量制御弁機構によって引き続き比例制御される。   When the mover starts moving in the forward movement direction, the small flow rate control valve mechanism is first opened to proportionally control the gas flow rate corresponding to the amount of movement of the mover. When the moving amount of the mover reaches a predetermined amount, the gas flow to the small flow rate control valve mechanism is stopped by moving the mover without using a separate mechanism such as an electromagnetic on-off valve. This stops the function of the small flow control valve mechanism. When the mover moves further in the forward direction, the large flow control mechanism that controls in the large flow region opens instead of the small flow control valve mechanism, so the gas flow continues to be proportionally controlled by this large flow control valve mechanism. Is done.

ところで、上記大流量制御弁機構は可動子によって移動される弁体を備えており、上記小流量制御弁機構は大流量制御弁機構の弁体に取り付けられるように構成すればガス比例制御弁全体をさらに小型化することができる。   By the way, the large flow rate control valve mechanism includes a valve body that is moved by a mover, and the small flow rate control valve mechanism is configured to be attached to the valve body of the large flow rate control valve mechanism. Can be further reduced in size.

なお、上記小流量制御弁機構は可動子によって移動される弁体を備えており、可動子の往動方向への移動量が上記所定の移動量に達した時点で、この弁体がガス流路を閉塞してガス流を停止させる停止手段として機能させてもよい。   The small flow rate control valve mechanism includes a valve body that is moved by a mover. When the amount of movement of the mover in the forward movement direction reaches the predetermined movement amount, the valve body You may make it function as a stop means which obstruct | occludes a path | route and stops a gas flow.

上記小流量制御弁機構および大流量制御弁機構は共にダイアフラム式のガバナ機構を備えており、両流量制御弁機構で用いるダイアフラムを一部材で構成することにより部品点数を減少させることができる。   Both the small flow control valve mechanism and the large flow control valve mechanism are provided with a diaphragm type governor mechanism, and the number of parts can be reduced by configuring the diaphragm used in both flow control valve mechanisms as one member.

以上の説明から明らかなように、本発明は、小流量制御弁機構と大流量比例制御弁機構とを備え、さらに可動子の移動によってガス流を停止させる停止手段を有するので、ガス比例制御弁全体の大きさを大型化することなく、小流量から大流量に至るまで正確にかつ安定して比例制御することができる。   As is apparent from the above description, the present invention includes a small flow rate control valve mechanism and a large flow rate proportional control valve mechanism, and further includes a stopping means for stopping the gas flow by moving the mover. Proportional control can be accurately and stably performed from a small flow rate to a large flow rate without increasing the overall size.

図1を参照して、1は本発明によるガス比例制御弁である。このガス比例制御弁1は小流量比例制御弁機構を構成する小弁体2と、大流量比例制御弁機構を構成する大弁体3とを有している。小弁体2は大弁体3の内部に収納されており、大弁体3内に固定された固定板7との間に縮設されたバネ21によって上方に付勢されている。また、大弁体3は底板1Bとの間に縮設されたバネ31によって上方に付勢されている。   Referring to FIG. 1, reference numeral 1 denotes a gas proportional control valve according to the present invention. This gas proportional control valve 1 has a small valve body 2 constituting a small flow proportional control valve mechanism and a large valve body 3 constituting a large flow proportional control valve mechanism. The small valve body 2 is housed in the large valve body 3 and is urged upward by a spring 21 that is contracted between the fixed plate 7 fixed in the large valve body 3. Further, the large valve body 3 is biased upward by a spring 31 which is contracted between the large valve body 3 and the bottom plate 1B.

このガス比例制御弁1はガス流入口11から流入するガスを比例制御してガス流出口12から流出させるものである。図1に示す状態では、小弁体2および大弁体3は共に上端位置である閉弁位置にあり、従って、ガス流出口12からガスが流出されない状態である。   This gas proportional control valve 1 controls the gas flowing in from the gas inlet 11 to flow out from the gas outlet 12 by proportional control. In the state shown in FIG. 1, both the small valve body 2 and the large valve body 3 are in the closed position, which is the upper end position, and accordingly, no gas flows out from the gas outlet 12.

ガス比例制御弁1の上部にはアクチュエータ4が取り付けられている。このアクチュエータは中央部分に上下方向に往復道自在な可動子41を有しており、この可動子41を囲繞する駆動コイル42に通電されることにより可動子41を下方へ往動させる電磁力が発生し、可動子41は下方へと移動するものである。なお、可動子41を下方へ往動させる電磁力は駆動コイル42に供給されるパルス電力のデューティ比を変化することにより自在に調整することができる。   An actuator 4 is attached to the upper portion of the gas proportional control valve 1. This actuator has a movable element 41 that can reciprocate in the vertical direction at the center, and an electromagnetic force that moves the movable element 41 downward by energizing a drive coil 42 that surrounds the movable element 41. The mover 41 is generated and moves downward. The electromagnetic force that moves the mover 41 downward can be freely adjusted by changing the duty ratio of the pulse power supplied to the drive coil 42.

図2を参照して、駆動コイル42へ通電を開始すると可動子41は下方への往動を開始する。可動子41の下端は小弁体2の上端部21aに当接しており、可動子41を下方へ往動させる電磁力が発生しバネ21の付勢力とガスの1次圧がダイアフラム51を押し上げる力との合力より大きくなると、小弁体2は下方へと移動される。なお、大弁体3を上方へ付勢するバネ31の付勢力はバネ21の付勢力より大きくなるように設定しているので、小弁体2が下方へ移動してもこの状態では大弁体3は下方に移動しない。なお、ガスの1次圧は両ダイアフラム51,52に作用するので、ダイアフラム52の面積がダイアフラム51より大きければ、必ずしもバネ21,31の付勢力がなくても大弁体3は下方に移動することはない。   Referring to FIG. 2, when energization to drive coil 42 is started, mover 41 starts to move downward. The lower end of the mover 41 is in contact with the upper end 21 a of the small valve body 2, and an electromagnetic force that moves the mover 41 downward is generated, and the biasing force of the spring 21 and the primary pressure of the gas push up the diaphragm 51. When the resultant force becomes larger than the resultant force, the small valve body 2 is moved downward. Note that the biasing force of the spring 31 that biases the large valve body 3 upward is set to be larger than the biasing force of the spring 21, so that even if the small valve body 2 moves downward, in this state the large valve The body 3 does not move downward. Since the primary pressure of the gas acts on both diaphragms 51 and 52, if the area of the diaphragm 52 is larger than that of the diaphragm 51, the large valve body 3 moves downward even if there is no biasing force of the springs 21 and 31. There is nothing.

小弁体2が下方に移動すると小弁体2に環状に取り付けたゴム製の弁パッキン22が、大弁体3の内周に形成した弁座30から離れる。すると、大弁体3に形成した通気口3aを介して大弁体3内に流入したガスが、小弁体2と弁座30との間に生じた隙間を通って弁座30より下方に流れる。   When the small valve body 2 moves downward, the rubber valve packing 22 attached to the small valve body 2 in an annular shape is separated from the valve seat 30 formed on the inner periphery of the large valve body 3. Then, the gas that has flowed into the large valve body 3 through the vent 3 a formed in the large valve body 3 passes below the valve seat 30 through the gap formed between the small valve body 2 and the valve seat 30. Flowing.

上記固定板7の中央にはガス通路71が形成されているので、小弁体2と弁座30との隙間を通ったガスは小弁体2の下端を回り込み、このガス通路71を通って大弁体3の内部に流れ、さらにガス流出口12から図外のガスバーナへと流出する。小弁体2と弁座30との間の隙間は可動子41の下方への往動移動量に比例して拡がり、その隙間を通過するガス流量も比例して増加する。   Since the gas passage 71 is formed in the center of the fixed plate 7, the gas passing through the gap between the small valve body 2 and the valve seat 30 wraps around the lower end of the small valve body 2 and passes through the gas passage 71. It flows into the large valve body 3 and flows out from the gas outlet 12 to a gas burner (not shown). The gap between the small valve body 2 and the valve seat 30 increases in proportion to the amount of forward movement of the mover 41 downward, and the gas flow rate passing through the gap also increases in proportion.

小弁体2の位置は可動子41に作用する下方への電磁力とバネ21の付勢力およびダイアフラム51に作用する力の合力とが釣り合う位置で停止する。51はゴムの薄膜からなるダイアフラムであり、ガス流入口11から流入するガスの1次圧が変動し、例えば1次圧が上昇すると、このダイアフラム51が1次圧の圧力上昇を受けて小弁体2を上方へ引き上げるガバナとして機能する。すると、小弁体2と弁座30との隙間が減少してガス流出口12から流出する2次圧が変動せず一定に保たれる。   The position of the small valve body 2 stops at a position where the downward electromagnetic force acting on the movable element 41 and the resultant force of the spring 21 and the force acting on the diaphragm 51 are balanced. Reference numeral 51 denotes a diaphragm made of a rubber thin film. When the primary pressure of the gas flowing in from the gas inlet port 11 fluctuates. For example, when the primary pressure rises, the diaphragm 51 receives a pressure increase of the primary pressure and turns the small valve. It functions as a governor that raises the body 2 upward. Then, the gap between the small valve body 2 and the valve seat 30 is reduced, and the secondary pressure flowing out from the gas outlet 12 is kept constant without fluctuation.

固定板7の上面には停止手段を構成するパッキン72が取り付けられている。可動子41が図2に示す状態からさらに下方へと往動すると、図3に示すように小弁体2の下端がこのパッキン72に押接される。すると、小弁体2と弁座30との間に隙間が形成されていても、この隙間を通ってガス流出口12へと流れるガス流が停止される。   A packing 72 constituting a stopping means is attached to the upper surface of the fixed plate 7. When the mover 41 moves further downward from the state shown in FIG. 2, the lower end of the small valve body 2 is pressed against the packing 72 as shown in FIG. 3. Then, even if a gap is formed between the small valve body 2 and the valve seat 30, the gas flow flowing through the gap to the gas outlet 12 is stopped.

また、この状態では可動子41の下端は大弁体3の上部に連結されている座金6に当接する。従って、可動子41がさらに下方へ往動すると、小弁体2の下端をパッキン72に当接させたままの状態で、座金6を介して大弁体3を下方へ押し下げることになる。   In this state, the lower end of the mover 41 contacts the washer 6 connected to the upper portion of the large valve body 3. Therefore, when the mover 41 moves further downward, the large valve body 3 is pushed downward through the washer 6 with the lower end of the small valve body 2 kept in contact with the packing 72.

図4を参照して、大弁体3の外周に取り付けたゴム製の弁パッキン32は閉弁状態では弁座10に当接しているが、大弁体3がバネ31の付勢力とダイアフラム52に作用する押し上げ力とに抗して下方へ押し下げられると、弁パッキン32が弁座10から離れ、大弁体3と弁座10との間に隙間が生じる。するとガス流入口11から流入したガスは、大弁体3と弁座10との間に生じた隙間を通ってガス流出口12へと流れ、ガス流出口12から流出する。このガス流量は大弁体3と弁座10との間の隙間の大きさに比例するので、可動子41の下方への往動移動量が増加するに伴って、大弁体3と弁座10との間を通るガス流量が増加する。   Referring to FIG. 4, the rubber valve packing 32 attached to the outer periphery of the large valve body 3 is in contact with the valve seat 10 in the closed state, but the large valve body 3 is in contact with the urging force of the spring 31 and the diaphragm 52. When the valve packing 32 is pushed down against the pushing force acting on the valve seat 32, the valve packing 32 is separated from the valve seat 10, and a gap is generated between the large valve body 3 and the valve seat 10. Then, the gas flowing in from the gas inlet 11 flows to the gas outlet 12 through the gap formed between the large valve body 3 and the valve seat 10, and flows out from the gas outlet 12. Since this gas flow rate is proportional to the size of the gap between the large valve body 3 and the valve seat 10, as the amount of forward movement of the mover 41 downward increases, the large valve body 3 and the valve seat. The gas flow rate between 10 and 10 increases.

なお、この状態では大弁体3は可動子41に作用する下方への電磁力とバネ31の付勢力およびダイアフラム52に作用する押し上げ力とが釣り合う位置に停止している。そのため、ダイアフラム52がガバナとして機能し、1次圧が変動しても大弁体3と弁座10との間の隙間の大きさが自動的に調節され、2次圧が変動しない。   In this state, the large valve body 3 is stopped at a position where the downward electromagnetic force acting on the movable element 41 and the urging force of the spring 31 and the pushing force acting on the diaphragm 52 are balanced. Therefore, the diaphragm 52 functions as a governor, and even if the primary pressure varies, the size of the gap between the large valve body 3 and the valve seat 10 is automatically adjusted, and the secondary pressure does not vary.

ところで、上述のように大弁体3の外周にゴム製の弁パッキン32を取り付けたので、大弁体3が弁座10に着座している状態では、弁パッキン32と弁座10との間の気密が確実に保たれる。そのため、小弁体2が開弁している状態で、大弁体3と弁座10との間にガス漏れが生じないので、ダイアフラム51によるガバナ特性が確実に発揮される。   By the way, since the rubber valve packing 32 is attached to the outer periphery of the large valve body 3 as described above, in the state where the large valve body 3 is seated on the valve seat 10, there is a gap between the valve packing 32 and the valve seat 10. The airtightness of the is reliably maintained. Therefore, gas leakage does not occur between the large valve body 3 and the valve seat 10 in a state in which the small valve body 2 is opened, so that the governor characteristics by the diaphragm 51 are reliably exhibited.

ところで、小流量制御弁機構でガバナ機能を発揮するダイアフラム51と大流量制御弁機構用のダイアフラム52とは、図5に示すように、ダイアフラム体5として両者を一体に形成した。   By the way, as shown in FIG. 5, the diaphragm 51 for exhibiting the governor function in the small flow control valve mechanism and the diaphragm 52 for the large flow control valve mechanism are integrally formed as a diaphragm body 5.

図6を参照して、同図において、Sは可動子41の往動に伴って小弁体2と弁座30との隙間を通過するガス流量の変化を示しており、Lは大弁体3と弁座10との隙間を通過するガス流量の変化を示している。   Referring to FIG. 6, in FIG. 6, S indicates a change in the gas flow rate passing through the gap between the small valve body 2 and the valve seat 30 as the mover 41 moves forward, and L indicates the large valve body. The change of the gas flow rate which passes through the clearance gap between 3 and the valve seat 10 is shown.

可動子41が移動開始位置から往動を開始すると、曲線Sに沿ってガス流量が増加する。ポイントP1に到達すると可動子41の位置を一気に往動させ、曲線L上のポイントP2に移動させる。すなわち、この時点で小弁体2がパッキン72に当接し、ガスが大弁体3と弁座10との間を通る状態に切り替えられる。   When the mover 41 starts moving forward from the movement start position, the gas flow rate increases along the curve S. When the point P1 is reached, the position of the mover 41 is moved all at once and moved to a point P2 on the curve L. That is, at this time, the small valve body 2 comes into contact with the packing 72 and the gas is switched to a state of passing between the large valve body 3 and the valve seat 10.

ガス流量を増加させる場合には、さらに可動子41を往動させるが、ガス流量を減少させる場合にはポイントP2を通過してポイントP3までは大弁体3と弁座10との間を通してガスを供給し、それ以上ガス流量を減少させる際には、可動子41を一気に引き上げてポイントP4に移行させるようにした。このように、小流量制御弁機構と大流量制御弁機構との間での切り替えにヒステリシスを設けたので、切り替え時でのチャタリングの発生が防止される。   When the gas flow rate is increased, the mover 41 is further moved forward, but when the gas flow rate is decreased, the gas passes through the point P2 and passes through the point between the large valve body 3 and the valve seat 10 until the point P3. When the gas flow rate is further reduced, the mover 41 is pulled up at a stroke and moved to the point P4. As described above, since the hysteresis is provided for switching between the small flow control valve mechanism and the large flow control valve mechanism, the occurrence of chattering at the time of switching is prevented.

ところで、上記の形態では小弁体2と大弁体3との2つの弁体を用いて、各々が制御する流量領域を小流量領域と大流量領域との2つに分けたが、3つ以上の領域に分けて1つの弁体が制御する流量領域をさらに細分化してもよい。例えば、図7に示すように、小流量領域から大流量領域にかけて、順次第1弁体81,第2弁体82,第3弁体83,第4弁体84が開弁するように構成して、各弁体が担当する流量領域を4つに細分化することができる。なお、この図7に示した構成も例示であり、3つの流量領域に分けてもよく、あるいは5つ以上の流量領域に、さらに細分化することも可能である。   By the way, in the above-described embodiment, the flow area controlled by each of the two valve bodies of the small valve body 2 and the large valve body 3 is divided into the small flow area and the large flow area. The flow area controlled by one valve element may be further divided into the above areas. For example, as shown in FIG. 7, the first valve element 81, the second valve element 82, the third valve element 83, and the fourth valve element 84 are sequentially opened from the small flow area to the large flow area. Thus, it is possible to subdivide the flow area that each valve body is responsible for into four. The configuration shown in FIG. 7 is also an example, and may be divided into three flow rate regions, or may be further subdivided into five or more flow rate regions.

また、上述のアクチュエータ4では磁性体からなる可動子41を用いたが、図8に示すようなリニアアクチュエータを用いてもよい。このものでは、コアとなる磁性体からなる可動子9に所定の間隔を設けてN極91とS極92とを設けると共に、これらN極91とS極92とに対向する磁極94,95とこの磁極94,95を励磁する電磁コイル93とを備えている。そして、図示の状態で磁極94をS極に励磁し、磁極95をN極に励磁する方向に電流を電磁コイル93に通電することにより可動子9を下方へ付勢することができる。   In the above-described actuator 4, the mover 41 made of a magnetic material is used, but a linear actuator as shown in FIG. 8 may be used. In this device, the mover 9 made of a magnetic material serving as a core is provided with an N pole 91 and an S pole 92 at a predetermined interval, and magnetic poles 94 and 95 facing the N pole 91 and the S pole 92 are provided. And an electromagnetic coil 93 for exciting the magnetic poles 94 and 95. In the state shown in the figure, the magnetic pole 94 is excited to the S pole, and a current is applied to the electromagnetic coil 93 in the direction to excite the magnetic pole 95 to the N pole, so that the mover 9 can be biased downward.

なお、本発明は上記した形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもかまわない。   In addition, this invention is not limited to an above-described form, You may add a various change in the range which does not deviate from the summary of this invention.

本発明の一実施の形態の構成を示す図The figure which shows the structure of one embodiment of this invention 小弁体の詳細を示す図Diagram showing details of small valve body 停止手段の作動状態を示す図The figure which shows the operating state of the stop means 大弁体の開弁状態を示す図Diagram showing the open state of the large valve disc ダイアフラム体の構成を示す図Diagram showing the configuration of the diaphragm body 流量変化を示すグラフGraph showing flow rate change 他の弁体の構成を示す図The figure which shows the structure of other valve bodies アクチュエータの他の構成を示す図Diagram showing another configuration of actuator

符号の説明Explanation of symbols

1 ガス比例制御弁
2 小弁体
3 大弁体
5 ダイアフラム体
10 弁座
11 ガス流入口
12 ガス流出口
21 バネ
30 弁座
41 可動子
51 ダイアフラム
52 ダイアフラム
72 パッキン
DESCRIPTION OF SYMBOLS 1 Gas proportional control valve 2 Small valve body 3 Large valve body 5 Diaphragm body 10 Valve seat 11 Gas inflow port 12 Gas outflow port 21 Spring 30 Valve seat 41 Movable element 51 Diaphragm 52 Diaphragm 72 Packing

Claims (4)

往復移動自在の可動子を備え、この可動子の往動方向の移動に伴ってガスの流量を増加させる流量制御弁機構を備えたガス比例制御弁において、可動子の移動開始位置からの往動に伴ってガスの流量を小流量領域で増加させる小流量制御弁機構と、可動子の移動に伴ってガスの流量を大流量領域で増加させる少なくとも1つの大流量制御弁機構と、可動子の往動方向への移動量が所定の移動量に達した時点で、小流量制御弁機構の一部が大流量制御弁機構に当接して小流量制御弁機構を通過するガス流を可動子の移動によって停止させる停止手段とを備え、可動子の往動方向への移動量が上記所定の移動量を超えた状態では可動子の往動を小流量制御弁機構を介して大流量制御弁機構に伝達し、大流量制御弁機構によってガス流量を増加させることを特徴とするガス比例制御弁。 In a gas proportional control valve equipped with a reciprocating mover and having a flow rate control valve mechanism for increasing the flow rate of gas as the mover moves in the forward movement direction, the mover moves forward from the movement start position. A small flow rate control valve mechanism for increasing the gas flow rate in the small flow rate region, at least one large flow rate control valve mechanism for increasing the gas flow rate in the large flow rate region as the mover moves, When the amount of movement in the forward direction reaches a predetermined amount of movement, a part of the small flow rate control valve mechanism comes into contact with the large flow rate control valve mechanism and the gas flow passing through the small flow rate control valve mechanism Stop means for stopping by movement, and in a state where the movement amount of the mover in the forward movement direction exceeds the predetermined movement amount, the movement of the mover via the small flow control valve mechanism transmitted to mechanisms, increasing the gas flow by the high flow control valve mechanism Gas proportional control valve, characterized in that. 上記大流量制御弁機構は可動子によって移動される弁体を備えており、上記小流量制御弁機構は大流量制御弁機構の弁体に取り付けられていることを特徴とする請求項1記載のガス比例制御弁。   The said large flow control valve mechanism is provided with the valve body moved with a needle | mover, The said small flow control valve mechanism is attached to the valve body of a large flow control valve mechanism. Gas proportional control valve. 上記小流量制御弁機構は可動子によって移動される弁体を備えており、可動子の往動方向への移動量が上記所定の移動量に達した時点で、この弁体がガス流路を閉塞してガス流を停止させる停止手段として機能することを特徴とする請求項1または請求項2に記載のガス比例制御弁。   The small flow rate control valve mechanism includes a valve body that is moved by a mover. When the amount of movement of the mover in the forward movement direction reaches the predetermined movement amount, the valve body moves through the gas flow path. The gas proportional control valve according to claim 1 or 2, wherein the gas proportional control valve functions as a stopping unit that closes and stops the gas flow. 上記小流量制御弁機構および大流量制御弁機構は共にダイアフラム式のガバナ機構を備えており、両流量制御弁機構で用いるダイアフラムを一部材で構成したことを特徴とする請求項1から請求項3のいずれかに記載のガス比例制御弁。
The small flow rate control valve mechanism and the large flow rate control valve mechanism are both provided with a diaphragm type governor mechanism, and the diaphragm used in both flow rate control valve mechanisms is constituted by one member. The gas proportional control valve according to any one of the above.
JP2004121044A 2004-04-16 2004-04-16 Gas proportional control valve Expired - Fee Related JP4191644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121044A JP4191644B2 (en) 2004-04-16 2004-04-16 Gas proportional control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121044A JP4191644B2 (en) 2004-04-16 2004-04-16 Gas proportional control valve

Publications (2)

Publication Number Publication Date
JP2005299899A JP2005299899A (en) 2005-10-27
JP4191644B2 true JP4191644B2 (en) 2008-12-03

Family

ID=35331662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121044A Expired - Fee Related JP4191644B2 (en) 2004-04-16 2004-04-16 Gas proportional control valve

Country Status (1)

Country Link
JP (1) JP4191644B2 (en)

Also Published As

Publication number Publication date
JP2005299899A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP6931746B2 (en) Proportional valve for controlling gaseous media
JP2016156485A (en) Valve device
JP5773075B2 (en) Normally closed solenoid valve
WO2014174759A1 (en) Valve gear with overflow prevention functionality
JP6531633B2 (en) solenoid valve
WO2015125404A1 (en) Valve device
US20150377378A1 (en) A magnetic valve with an armature arranged inside a piston
JP4191644B2 (en) Gas proportional control valve
JP2006307831A (en) Fuel injection valve
JP6665068B2 (en) Gas fuel supply device
JP5955762B2 (en) Valve structure
JP2012073886A (en) Regulator
JP2011112148A (en) Pilot type solenoid controlled valve
JP5033317B2 (en) Valve mechanism
JP2001041340A (en) Solenoid valve
JP6902674B2 (en) Metering device for controlling gaseous media
JP5044497B2 (en) Flow control valve
TW584704B (en) Electromagnetic water supplying valve
JP5773077B2 (en) solenoid valve
JP2007187222A (en) Solenoid valve
JP2019071353A (en) Gas fuel supply device
JP2006057644A (en) Compact solenoid valve
JP4158038B2 (en) solenoid valve
JP7318915B2 (en) Flow switching valve
JP2022133152A (en) flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4191644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees