JP4166604B2 - Winch speed control device and crane - Google Patents

Winch speed control device and crane Download PDF

Info

Publication number
JP4166604B2
JP4166604B2 JP2003086461A JP2003086461A JP4166604B2 JP 4166604 B2 JP4166604 B2 JP 4166604B2 JP 2003086461 A JP2003086461 A JP 2003086461A JP 2003086461 A JP2003086461 A JP 2003086461A JP 4166604 B2 JP4166604 B2 JP 4166604B2
Authority
JP
Japan
Prior art keywords
motor
pressure
control
capacity
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003086461A
Other languages
Japanese (ja)
Other versions
JP2004292102A (en
Inventor
和明 井上
Original Assignee
日立住友重機械建機クレーン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立住友重機械建機クレーン株式会社 filed Critical 日立住友重機械建機クレーン株式会社
Priority to JP2003086461A priority Critical patent/JP4166604B2/en
Publication of JP2004292102A publication Critical patent/JP2004292102A/en
Application granted granted Critical
Publication of JP4166604B2 publication Critical patent/JP4166604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、リモコン弁の操作に応じてウインチの駆動速度を制御するウインチの速度制御装置およびクレーンに関する。
【0002】
【従来の技術】
この種のウインチ装置として、ウインチ駆動用モータに可変容量モータを用いたものが知られている(例えば特許文献1参照)。これによればリモコン弁の操作圧力が所定値になるまで、すなわち方向制御弁が最大に切り換わるまでモータ容量は最大値に保たれ、操作圧力が所定値以上になるとモータ容量は減少する。
【0003】
【特許文献1】
実公平7−30628号公報
【0004】
【発明が解決しようとする課題】
【0005】
上述した公報記載のウインチ装置にあっては、高速と高トルクとを両立させるためにはモータの小容量を小さくする必要がある。小容量が小さくなると回路圧が上昇し、容量制御装置の容量減少禁止手段が作動しやすくなるが、バケット作業等の複索作業で前記容量減少禁止手段が作動すると、作動点のバラツキのため速度が同期しなくなり、結果低速でしか使用できなくなるが、この方式では低速の速度が相当遅いため作業性に劣る。
【0006】
本発明は、ウインチ速度を適切に制御し得るウインチの速度制御装置およびクレーンを提供するものである。
【0007】
【課題を解決するための手段】
本発明によるウインチの速度制御装置は、少なくとも2つの油圧ポンプと、巻上ドラム駆動用の可変容量形油圧モータと、操作量に応じたモータ駆動指令を出力する操作部材と、操作部材の操作に応じた操作圧力を発生する圧力発生手段と、圧力発生手段による操作圧力により切り換わり、2つの油圧ポンプから可変容量形油圧モータへの圧油の流れを制御する低速用および高速用の2つの方向制御弁と、可変容量形油圧モータの傾転を変更する油圧アクチュエータ、油圧アクチュエータに駆動圧油を導くアクチュエータ駆動回路、および圧力発生手段による操作圧力により切り換わり、アクチュエータへの駆動圧油の流れを制御するモータ容量制御弁を有するモータ容量制御装置とを備え、操作部材の操作量が第1の所定値未満では、方向制御弁は、低速用の方向制御弁のみが切り換わるように設定され、可変容量形油圧モータは、その容量がモータ容量制御弁により最大値となるように制御され、操作部材の操作量が第1の所定値以上かつ第2の所定値未満では、方向制御弁は、少なくとも低速用の方向制御弁が切り換わるように設定され、可変容量形油圧モータは、その容量がモータ容量制御弁により操作部材の操作量の増加に伴い徐々に減少するように制御され、操作部材の操作量が第2の所定値以上では、方向制御弁は、低速用および高速用の双方の方向制御弁が切り換わるように設定され、可変容量形油圧モータは、その容量が前記モータ容量制御弁により最小値となるように制御されることを特徴とする。
また、本発明によるクレーンは、上述したウインチの速度制御装置を備える。
【0008】
【発明の実施の形態】
以下、図1〜図8を参照して本発明によるウインチの速度制御装置の実施の形態について説明する。
図1は、本発明が適用されるクレーンの構成を示す外観側面図であり、図2はクレーンの油圧回路図である。図1のクレーンは、走行体101と、走行体101上に旋回可能に搭載される旋回体102と、旋回体102に起伏可能に支持されたブーム103とを有する。旋回体102には巻上ドラム105と起伏ドラム107が搭載され、巻上ドラム1の駆動により巻上ロープ104が巻き取りまたは繰り出され、吊り荷106が昇降する。また、起伏ドラム107の駆動により起伏ロープ108が巻き取りまたは繰り出され、ブーム103が起伏する。
【0009】
走行体101は一対のクローラを有し、クローラは一対の走行モータ20,21の回転により駆動する。巻上ドラム105は主巻ウインチ用の主巻ドラムまたは補巻ウインチ用の補巻ドラムであり、主巻ドラムは主巻モータ24の回転により駆動し、補巻ドラムは補巻モータ25の回転により駆動する。なお、旋回体102には第3モータ22の回転によって駆動する第3ドラムが搭載される場合もある。起伏ドラム107は起伏モータ23の回転により駆動する。
【0010】
図2に示すようにクレーンには2つの油圧ポンプ10A,10Bが設けられている。油圧ポンプ10Aに対しては、走行モータ20への圧油の流れを制御する方向制御弁30、第3モータ22への圧油の流れを制御する方向制御弁32、主巻モータ24への圧油の流れを制御する方向制御弁34A,および補巻モータ25への圧油の流れを制御する方向制御弁35Aが直列に配設されている。油圧ポンプ10Bに対しては、走行モータ21への圧油の流れを制御する方向制御弁31、起伏モータ23への圧油の流れを制御する方向制御弁33、主巻モータ24への圧油の流れを制御する方向制御弁34B,および補巻モータ25への圧油の流れを制御する方向制御弁35Bが直列に配設されている。これにより油圧ポンプ10Aからの圧油は方向制御弁30,32,34A,35Aへと順次導かれ、油圧ポンプ10Bからの圧油は方向制御弁31,33,34B,35Bへと順次導かれる。主巻モータ24と補巻モータ25には油圧ポンプ10A,10Bからの圧油が合流して導かれる。なお、図2の36,37は、ポンプ吐出圧を制限するリリーフ弁である。
【0011】
本実施の形態の速度制御装置は、主巻ウインチと補巻ウインチに適用される。図3は、主巻ウインチの速度制御装置の構成を示す油圧回路図であり、主巻モータ24の駆動回路図に相当する。なお、補巻ウインチの速度制御装置の構成も図3と同様であり、図示を省略する。
【0012】
図3に示すように、速度制御装置は、2つの可変容量形油圧ポンプ10A,10Bと、2つの方向制御弁34A,34Bと、可変容量形主巻モータ24と、後述するようにモータ24の容量を制御するモータ容量制御装置50と、方向制御弁34A,34Bと主巻モータ24の間に介装されるカウンターバランス弁41と、主巻ウインチの駆動を指令する操作レバー42と、パイロット油圧源49と、操作レバー42の操作に応じたパイロット圧(2次圧)を発生するリモコン弁43と、リモコン弁43からの巻上側2次圧または巻下側2次圧のいずれか高圧を選択するシャトル弁44と、シャトル弁44からモータ容量制御装置50への2次圧(制御圧)の流れを許容または禁止する電磁切換弁45とを有する。
【0013】
操作レバー42を巻上または巻下方向に操作すると、操作量の増加に伴いリモコン弁43からの2次圧が上昇する。この2次圧は方向制御弁34A,34Bのパイロットポートにそれぞれ導かれ、方向制御弁34A,34Bを切り換える。操作レバー42の操作量と方向制御弁34A,34Bの切換量との関係の一例を図4に示す。すなわち特性aに示すように方向制御弁(低速用弁)34Aの切換量(バルブストローク)は、操作レバー42の操作量(リモコン弁操作角)αが所定値略α1に至るまで、操作量の増加に伴い比例的に増加し、所定値α1以上では最大ストロークに保持される。一方、特性bに示すように方向制御弁(高速用弁)34Bの切換量は、操作レバー42の操作量αが所定値α1に至るまでは0であり、所定値略α1以上になると操作量αの増加に伴い比例的に増加する。
【0014】
これにより操作レバー42の操作量αが少ない領域(α<α1)では方向制御弁34Aのみが切り換えられ、主巻モータ24には油圧ポンプ10Aからの圧油が供給される。操作レバー42の操作量αが所定値α1以上になると方向制御弁34A,34Bが双方切り換えられ、主巻モータ24には油圧ポンプ10Aからの圧油だけでなく油圧ポンプ10Bからの圧油も供給される。その結果、操作レバー42の操作量の増加に伴い主巻モータ24に供給される圧油量が増加する。
【0015】
ここで、モータ容量制御装置50の構成について説明する。図3に示すようにモータ容量制御装置50は、モータ傾転(モータ吸収量ともいう)を変化させるピストン51と、ポンプ10A,10Bの吐出圧の高圧側を選択する高圧選択弁52と、高圧選択弁52からの圧油P1またはモータ24に接続されたメイン管路46,47からの圧油P2の高圧側を選択し、ピストン51の油室51a,51bに導く高圧選択弁53と、油室51aへの圧油の流れを制御する制御弁54と、高圧選択弁53から制御弁54への圧油の流れをカットするカットオフ弁55と、フィードバック機構56とを有する。なお、ピストン51、制御弁54、フィードバック機構56とでサーボ機構を構成している。
【0016】
油室51a内のピストン径は油室51b内のピストン径よりも大きい。したがって、制御弁54およびカットオフ弁55が図示p1位置に切り換わり、油室51a,51bに互いに等しい圧力が作用すると、ピストン51は図示b方向に移動し、モータ傾転(モータ容量)は減少する。一方、制御弁54がp3位置に切り換わり、油室51a内の圧力がタンク圧になると、ピストン51はa方向に移動し、モータ傾転qは増加する。このとき、モータ容量の変化はフィードバック機構56により制御弁54にフィードバックされ、サーボ機構として作用する。
【0017】
制御弁54は、シャトル弁44,電磁切換弁45を介して導かれるリモコン弁43からの2次圧p、すなわち操作レバー42の操作量に応じて切り換わる。例えば操作レバー42の操作量αが所定値α2を超えると、制御弁54はp1位置に切り換わり、圧油が油室51aに導かれてピストン51が移動し、モータ容量が減少する。減少量はフィードバック機構56により制御弁54にフィードバックされ、2次圧pに対応する容量に達すると制御弁54はp2位置に切り換わり安定する。そして所定値α3(>α2)になるとモータ容量が最小の状態で制御弁54はp2位置に切り換わる。これにより図4の特性cに示すように、モータ傾転は、操作レバー42の操作量αが所定値α2未満のとき最大qmaxとなり、所定値α2以上所定値α3未満のとき操作量αの増加に伴い徐々に減少し、所定値α3以上のとき最小qminとなる。なお、制御弁54の特性は、ばね54aの設定を変更することで調整可能である。
【0018】
図3に示すようにカットオフ弁55は高圧選択弁53からの圧力に応じて切り換わる。高圧選択弁53からの圧力がばね55aの付勢力(カットオフ圧)よりも小さいとカットオフ弁55はp1位置に切り換わり、高圧選択弁53から油室51aへの圧油の供給を許容する。高圧選択弁53からの圧力がカットオフ圧と等しくなるとp2位置に切り換わり、油室51aへの圧油の供給を禁止し、モータ傾転がこれ以上減少することを阻止する。高圧選択弁53からの圧力がカットオフ圧より大きくなるとp3位置に切り換わり、油圧51aの圧油をタンクに流しモータ傾転を大きくする。カットオフ圧は、リリーフ弁36,37(図2)のリリーフ圧(ポンプリリーフ圧)よりも低く設定されている。
【0019】
電磁切換弁45は、運転室内の同調解除スイッチ45aの操作により切り換えられる。同調解除スイッチ45aがオンされると電磁切換弁45はp1位置に切り換えられ、リモコン弁43から制御弁54への2次圧の流れを許容する。同調解除スイッチ45aがオフされるとp2位置に切り換えられ、リモコン弁43から制御弁54への2次圧の流れを遮断する。同調解除スイッチ45aは、例えば押し操作の度にオン、オフを繰り返す押し釦式スイッチであり、操作レバー42のグリップ部などに設けられる。
【0020】
以上のように構成した速度制御装置の動作を説明する。
(1)主巻ウインチの単独操作
例えば主巻ウインチを単独で操作する場合、同調解除スイッチ45aをオンし、電磁切換弁45をp1位置に切り換える。この状態で、主巻ウインチ用の操作レバー42を巻上または巻下操作すると、操作量αの増加に伴い方向制御弁34A,34Bのパイロットポートおよび制御弁54のパイロットポートに作用する2次圧がそれぞれ増加する。
【0021】
操作量αが所定値略α1未満の領域では、操作量αの増加に伴い方向制御弁34Aの切換量が増加し、方向制御弁34Bは中立位置のままである。これにより油圧ポンプ10Aから油圧モータ24へ圧油が供給され、油圧ポンプ10Aの圧油によって油圧モータ24が巻上または巻下方向に回転し、主巻ドラム1が巻上または巻下駆動される。このとき、操作量αが所定値α2未満であれば、制御弁54はp3位置に切り換わり、油室51aはタンクにつながった状態となる。その結果、モータ傾転は最大傾転qmaxに保たれ、図4の特性L1に示すように、ウインチ速度は方向制御弁34Aの切換量に応じた割合で増加する。すなわち操作量αがα<α2の領域(1速領域)では、方向制御弁34Aの切換によるバルブ制御によりウインチ速度が制御される。
【0022】
操作レバー42の操作量αが所定値α2以上になると、制御弁54がp1位置に切り換わり、油室51aには、高圧選択弁53で選択された油圧ポンプ10A,10Bの圧油P1またはメイン管路46,47の圧油P2のいずれか高圧側が作用する。これによりモータ傾転が減少し、図4の特性L2に示すように、ウインチ速度は方向制御弁34Aの切換量とモータ傾転の減少量に応じた割合で増加する。
【0023】
このとき、油圧モータ24の発生トルクT,モータ駆動圧P2,モータ傾転qの間には、T=P2×q/200πの関係があり、レバー操作量αの増加に伴いモータ傾転qが減少すると図5に示すようにモータ駆動圧P2が増加する。そして、モータ駆動圧P2がカットオフ弁55のカットオフ圧に達すると、カットオフ弁55が図3のp2位置に切り換わる。これにより、図6に示すようにモータ傾転(モータ吸収量)が一定に保たれ、モータ駆動圧Pの増加が抑えられる。カットオフ圧はポンプリリーフ圧より低く設定されているので、モータ傾転制御時にポンプ吐出圧がリリーフ弁36,37からリリーフすることなく、発生トルクTの不足を防止できる。
【0024】
操作レバー42の操作量αが所定値α1(=α3)に達すると、モータ傾転が最小qminになるとともに、方向制御弁34Aが最大に切り換わる。この状態からさらに操作レバー42を操作すると、操作量αに応じて方向制御弁34Bが切り換わる。これにより油圧ポンプ10Aおよび油圧ポンプ10Bの圧油が合流して油圧モータ24に供給され、図4の特性L3に示すように、ウインチ速度はモータ傾転が最小qminにおいて方向制御弁34Bの切換量に応じた割合で増加する。これにより高速又は高トルクでウインチを駆動することができる。なお、操作レバー42にはデテント機構が設けられている。したがって、例えば操作レバー42を最大に操作した状態でデテント機構を作動すると、操作レバー42から手を離した状態でレバー操作量を最大に保持できる。以上の動作は、補巻ウインチの単独操作についても同様である。
【0025】
(2)主巻ウインチと起伏ウインチの同時操作
主巻ウインチと起伏ウインチを同時に駆動する場合、主巻ウインチ用の操作レバー42と起伏ウインチ用の操作レバーを同時に操作する。これにより方向制御弁33,34がそれぞれ切り換えられ、油圧ポンプ10Bからの圧油が起伏モータ23と主巻モータ24にそれぞれ供給される。このとき、油圧ポンプ10Bの吐出圧は起伏ウインチで消費された後、主巻ウインチに供給されるので、主巻モータ24の駆動圧P2はポンプ吐出圧P1よりも小さい。したがって、高圧選択弁53でポンプ吐出圧P1が選択され、モータ駆動圧P2がカットオフ圧に達する前にカットオフ弁55がp2位置に切り換わる。これにより主巻モータ24の駆動圧P2が大きくなりすぎて起伏モータ23の駆動圧を加えるとリリーフ弁37がリリーフするといったことがなく、主巻ウインチと起伏ウインチを同時に駆動することができる。
【0026】
(3)主巻ウインチと補巻ウインチの同時操作
複索によるバケット作業等、主巻ウインチと補巻ウインチを同調して操作する場合、同調解除スイッチ45aをオフし、電磁切換弁45をp2位置に切り換える。これによりリ制御弁54へのパイロット圧の供給が阻止され、図7に示すように操作レバー42の操作量に拘わらずモータ傾転は最大傾転qmaxに保たれる。この状態で操作レバー42を操作すると、操作量αが所定値α1未満の領域(1速領域)では、ウインチ速度は方向制御弁34Aの切換量に応じた割合で増加し(特性L4)、所定値α1以上の領域(2速領域)では、ウインチ速度は方向制御弁34Bの切換量に応じた割合で増加する(特性L5)。なお、特性L4は図4に示した特性L1を延長したものであり、特性L5は図4に示した特性L3に平行である。
【0027】
この場合、主巻ウインチと補巻ウインチの速度はバルブ制御により増加するので、主巻ウインチと補巻ウインチに異なる負荷が作用しても、同調操作を容易に行える。
【0028】
本実施の形態に係わるウインチの速度制御装置によれば以下のような作用効果を奏する。
(1)操作レバー42の操作に応じたリモコン弁43からの2次圧によりモータ傾転制御用の制御弁54を駆動するようにしたので、操作レバー42の操作に応じてモータ傾転が制御され、操作レバー42の操作量αとウインチ速度とを精度よく対応させることができる。その結果、操作レバー42の操作量αに応じてウインチ速度を適切に制御できる。
(2)2つの油圧ポンプ10A,10Bと方向制御弁34A,34Bによりモータ駆動回路を形成し、操作レバー42の操作量が大きい領域で油圧ポンプ10A,10Bからの圧油を合流して油圧モータ24に導くとともに、モータ傾転を最小傾転qminに制御するようにしたので、高速又は高トルクでウインチを駆動することができる。
(3)操作レバーの操作量αが所定値α1未満ではレバー操作量に応じた方向制御弁34Aのバルブ制御により油圧ポンプ10Aからの圧油供給量を徐々に増加し、操作量αが所定値α1以上では方向制御弁34Bのバルブ制御により油圧ポンプ10Bからの圧油供給量を徐々に増加するようにした。また、操作量αが所定値α2を超え所定値α3未満でレバー操作量に応じたモータ容量制御によりモータ傾転を徐々に減少させるようにした。これにより1本の操作レバー42の操作により幅広い速度制御域を得ることができる。
(5)操作レバー42の操作量αがα2<α<α3の領域でモータ容量を減少するようにしたので、操作レバー42を半分程度操作することでウインチ速度を大幅に高めることができ、作業性が良好である。
(6)モータ容量制御用の駆動圧の供給回路にカットオフ弁55を設け、カットオフ弁55のカットオフ圧をリリーフ弁36,37のリリーフ圧よりも低く設定するとともに、モータ駆動圧P2またはポンプ吐出圧P1がカットオフ圧に達するとカットオフ弁55を切り換え、モータ傾転の減少を阻止するようにした。これにより、モータ容量制御時にリリーフ弁36,37から圧油がリリーフすることを防止でき、モータ24の発生トルクTが不足することを防止できる。
(7)同調解除スイッチ45aの操作により電磁切換弁45を切り換え、モータ容量制御を禁止するようにしたので、主巻ウインチと補巻ウインチの同調操作を容易に行うことができる。
(8)油圧ポンプ10Bからの圧油の流れに対し、起伏モータ23を主巻モータ24よりも上流側に設けるとともに、ポンプ吐出圧に応じてカットオフ弁55を駆動するようにしたので、主巻モータ駆動圧が高くなりすぎることなく、起伏ウインチと巻上ウインチを同時に駆動することができる。
(9)デテント機構により操作レバー42を最大操作付近で保持可能としたので、操作レバー42から手を離した状態でウインチの最高速度を維持できる。
【0029】
なお、上記実施の形態では、レバー操作量αが所定値α1未満で方向切換弁34Aのみを切り換え、所定値α1以上で方向切換弁34A,34Bの双方を切り換えるとともに、レバー操作量αが所定値α2を超え所定値α3未満でモータ傾転を最大傾転qmaxから最小傾転qminまで減少させるようにした。そして、所定値α2を所定値α1よりも小さく、所定値α3を所定値α1と等しく設定したが、所定値α1と所定値α2,α3の関係はこれに限らない。例えば、図8の特性c1(点線)に示すようにレバー操作量αが所定値α1以上になるとモータ傾転を減少させるようにしてもよい。すなわち、所定値α2を所定値α1に等しく設定し、所定値α3を所定値α1より大きく設定してもよい。これにより操作量αが所定値α1以下の領域でモータ傾転は最大qmaxとなり、ウインチ速度の変化量が小さいので、低速域で速度調整を容易に行える。また、図8の特性c2(一点鎖線)に示すようにレバー操作量αが所定値α1に達する前にモータ傾転の減少を開始し、所定値α1を超えてからモータ傾転が最小qminとなるようにしてもよい。すなわち、所定値α2を所定値α1よりも小さく設定し、所定値α3を所定値α1より大きく設定してもよい。
【0030】
本発明は、操作レバー42の操作による圧力(操作圧力)に応じて方向制御弁34A,34Bとモータ容量を制御することで、レバー操作量とウインチ速度を精度よく対応付けるようにしたことを特徴とするのであり、操作圧力に応じてモータ容量を制御するのであれば、モータ容量制御装置の構成は上述したものに限らない。例えば、モータ傾転変更用の油圧アクチュエータとしてピストン51を用い、シャトル弁53からピストン51の油室51aに圧油を導くようにアクチュエータ駆動回路を形成し、制御弁54により油室51aへの圧油の流れを制御するようにしたが、他の油圧アクチュエータ、アクチュエータ駆動回路、およびモータ容量制御弁を用いてもよい。
【0031】
また、上記実施の形態では、操作レバー42の操作によりモータ駆動指令を出力するようにしたが、他の操作部材により駆動指令を出力させてもよい。操作レバー42の操作に応じた2次圧をリモコン弁43により発生するようにしたが、圧力発生手段としての構成はこれに限らない。モータ容量指令部材として同調解除スイッチ45aを設け、スイッチ操作に応じて容量制御禁止手段としての電磁切換弁45を切り換えるようにしたが、同調操作を行うことがない作業機(例えばクレーン作業専用機)などでは、スイッチ45aおよび電磁切換弁45を省略してもよい。モータ駆動圧P2またはポンプ吐出圧P1の少なくとも一方がカットオフ圧(制限値)に達するとカットオフ弁55を切り換え、モータ容量の減少を禁止するようにしたが、カットオフ弁55以外によりモータ容量減少禁止手段を構成してもよい。
【0032】
【発明の効果】
以上詳細に説明したように本発明によれば、操作部材の操作に応じた操作圧力により方向制御弁を制御するとともに、操作圧力の入力に応じて巻上ウインチ駆動用の油圧モータの容量を制御するようにしたので、操作部材の操作量とウインチ速度とが精度よく対応し、操作部材の操作量に応じてウインチ速度を適切に制御できる。
【図面の簡単な説明】
【図1】本発明が適用されるタワークレーンの外観側面図。
【図2】図1のクレーンの油圧回路図。
【図3】本発明の実施の形態に係わる速度制御装置の構成を示す油圧回路図。
【図4】本実施の形態に係わる速度制御装置による操作レバーの操作量と方向制御弁の切換量、モータ容量、ウインチ速度の各関係を示す図。
【図5】モータ駆動圧が低い状態でのモータ駆動圧とモータ傾転の関係を示す図。
【図6】モータ駆動圧が高い状態でのモータ駆動圧とモータ傾転の関係を示す図。
【図7】同調操作時における操作レバーの操作量と方向制御弁の切換量、モータ容量、ウインチ速度の各関係を示す図。
【図8】本実施の形態に係わる速度制御装置による操作レバーの操作量とモータ容量の関係の変形例を示す図。
【符号の説明】
10A,10B 油圧ポンプ 24 主巻モータ
25 補巻モータ 34A,34B 方向制御弁
42 操作レバー 43 リモコン弁
45 電磁切換弁 45a 同調解除スイッチ
50 モータ容量制御装置 51 ピストン
51a,51b 油室 53 高圧選択弁
54 制御弁 55 カットオフ弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a winch speed control device and a crane for controlling the drive speed of a winch according to the operation of a remote control valve.
[0002]
[Prior art]
As this type of winch device, a device using a variable capacity motor as a winch driving motor is known (for example, see Patent Document 1). According to this, the motor capacity is maintained at the maximum value until the operating pressure of the remote control valve reaches a predetermined value, that is, until the directional control valve is switched to the maximum, and the motor capacity decreases when the operating pressure exceeds the predetermined value.
[0003]
[Patent Document 1]
Japanese Utility Model Publication No. 7-30628
[Problems to be solved by the invention]
[0005]
In the winch device described in the above publication, in order to achieve both high speed and high torque, it is necessary to reduce the small capacity of the motor. When the small capacity becomes small, the circuit pressure rises, and the capacity reduction prohibiting means of the capacity control device becomes easy to operate.However, when the capacity reduction prohibiting means is activated in a double cable work such as bucket work, the operating point varies due to variations in operating points. Will not be synchronized and can only be used at low speeds. However, this method is inferior in workability because the low speed is considerably slow.
[0006]
The present invention provides a winch speed control device and a crane capable of appropriately controlling the winch speed.
[0007]
[Means for Solving the Problems]
A winch speed control device according to the present invention includes at least two hydraulic pumps, a variable displacement hydraulic motor for driving a hoisting drum, an operation member that outputs a motor drive command according to an operation amount, and operation of the operation member. Two directions for low speed and high speed that control the flow of pressure oil from the two hydraulic pumps to the variable displacement hydraulic motor, switching according to the pressure generated by the pressure generator and the pressure generated by the pressure generator The control valve, the hydraulic actuator that changes the tilt of the variable displacement hydraulic motor, the actuator drive circuit that directs the drive pressure oil to the hydraulic actuator, and the operating pressure generated by the pressure generator switch the flow of the drive pressure oil to the actuator. and a motor displacement control unit that have a motor capacity control valve for controlling, in the operation amount of the operation member is less than a first predetermined value, the direction The control valve is set so that only the direction control valve for low speed is switched, and the variable displacement hydraulic motor is controlled so that its capacity becomes the maximum value by the motor capacity control valve, and the operation amount of the operation member is the first. When the value is greater than or equal to a predetermined value of 1 and less than the second predetermined value, the direction control valve is set so that at least the direction control valve for low speed is switched, and the capacity of the variable displacement hydraulic motor is operated by the motor capacity control valve. When the operation amount of the operation member is greater than or equal to the second predetermined value, the direction control valve is switched between the low-speed and high-speed direction control valves. is set to the variable displacement hydraulic motor is characterized Rukoto is controlled to a minimum by its capacity the motor displacement control valve.
Moreover, the crane by this invention is equipped with the speed control apparatus of the winch mentioned above.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a winch speed control apparatus according to the present invention will be described below with reference to FIGS.
FIG. 1 is an external side view showing a configuration of a crane to which the present invention is applied, and FIG. 2 is a hydraulic circuit diagram of the crane. The crane shown in FIG. 1 includes a traveling body 101, a revolving body 102 that is turnably mounted on the traveling body 101, and a boom 103 that is supported by the revolving body 102 so as to be raised and lowered. A hoisting drum 105 and a hoisting drum 107 are mounted on the revolving body 102, and the hoisting rope 104 is wound or unwound by driving of the hoisting drum 1, and the suspended load 106 moves up and down. In addition, the hoisting rope 107 is wound or unwound by driving the hoisting drum 107, and the boom 103 is hoisted.
[0009]
The traveling body 101 has a pair of crawlers, and the crawler is driven by the rotation of the pair of traveling motors 20 and 21. The winding drum 105 is a main winding drum for the main winding winch or an auxiliary winding drum for the auxiliary winding winch. The main winding drum is driven by the rotation of the main winding motor 24, and the auxiliary winding drum is driven by the rotation of the auxiliary winding motor 25. To drive. Note that a third drum that is driven by the rotation of the third motor 22 may be mounted on the revolving structure 102. The hoisting drum 107 is driven by the rotation of the hoisting motor 23.
[0010]
As shown in FIG. 2, the crane is provided with two hydraulic pumps 10A and 10B. For the hydraulic pump 10 </ b> A, a direction control valve 30 that controls the flow of pressure oil to the traveling motor 20, a direction control valve 32 that controls the flow of pressure oil to the third motor 22, and the pressure to the main winding motor 24. A directional control valve 34A for controlling the flow of oil and a directional control valve 35A for controlling the flow of pressure oil to the auxiliary winding motor 25 are arranged in series. For the hydraulic pump 10B, a directional control valve 31 that controls the flow of pressure oil to the traveling motor 21, a directional control valve 33 that controls the flow of pressure oil to the undulation motor 23, and a pressure oil to the main winding motor 24. A directional control valve 34B that controls the flow of the oil and a directional control valve 35B that controls the flow of pressure oil to the auxiliary winding motor 25 are arranged in series. Thus, the pressure oil from the hydraulic pump 10A is sequentially guided to the direction control valves 30, 32, 34A, and 35A, and the pressure oil from the hydraulic pump 10B is sequentially guided to the direction control valves 31, 33, 34B, and 35B. Pressure oil from the hydraulic pumps 10 </ b> A and 10 </ b> B joins and is guided to the main winding motor 24 and the auxiliary winding motor 25. Note that reference numerals 36 and 37 in FIG. 2 denote relief valves that limit the pump discharge pressure.
[0011]
The speed control device of the present embodiment is applied to the main winding winch and the auxiliary winding winch. FIG. 3 is a hydraulic circuit diagram showing the configuration of the main winding winch speed control device, and corresponds to a driving circuit diagram of the main winding motor 24. The configuration of the speed control device for the auxiliary winding winch is the same as that shown in FIG.
[0012]
As shown in FIG. 3, the speed control device includes two variable displacement hydraulic pumps 10A and 10B, two directional control valves 34A and 34B, a variable displacement main winding motor 24, and a motor 24 as will be described later. A motor capacity control device 50 for controlling the capacity, a counter balance valve 41 interposed between the direction control valves 34A and 34B and the main winding motor 24, an operation lever 42 for commanding driving of the main winding winch, and a pilot hydraulic pressure A source 49, a remote control valve 43 that generates a pilot pressure (secondary pressure) according to the operation of the operation lever 42, and either a higher secondary pressure or lower secondary pressure from the remote control valve 43 is selected. And a solenoid switching valve 45 that allows or prohibits the flow of the secondary pressure (control pressure) from the shuttle valve 44 to the motor capacity control device 50.
[0013]
When the operation lever 42 is operated in the hoisting or lowering direction, the secondary pressure from the remote control valve 43 increases as the operation amount increases. This secondary pressure is guided to the pilot ports of the direction control valves 34A and 34B, respectively, and switches the direction control valves 34A and 34B. An example of the relationship between the operation amount of the operation lever 42 and the switching amounts of the direction control valves 34A and 34B is shown in FIG. That is, as shown in the characteristic a, the switching amount (valve stroke) of the directional control valve (low speed valve) 34A is the amount of operation until the operation amount (remote control valve operation angle) α of the operation lever 42 reaches a predetermined value approximately α1. It increases proportionally with the increase, and is maintained at the maximum stroke at a predetermined value α1 or more. On the other hand, as shown by the characteristic b, the switching amount of the direction control valve (high speed valve) 34B is 0 until the operation amount α of the operation lever 42 reaches the predetermined value α1, and the operation amount when the operation amount α reaches the predetermined value α1. It increases proportionally as α increases.
[0014]
As a result, only the direction control valve 34A is switched in a region where the operation amount α of the operation lever 42 is small (α <α1), and the main volume motor 24 is supplied with pressure oil from the hydraulic pump 10A. When the operation amount α of the operation lever 42 exceeds the predetermined value α1, both the direction control valves 34A and 34B are switched, and not only the pressure oil from the hydraulic pump 10A but also the pressure oil from the hydraulic pump 10B is supplied to the main winding motor 24. Is done. As a result, the amount of pressure oil supplied to the main winding motor 24 increases as the operation amount of the operation lever 42 increases.
[0015]
Here, the configuration of the motor capacity control device 50 will be described. As shown in FIG. 3, the motor capacity control device 50 includes a piston 51 that changes the motor tilt (also referred to as motor absorption amount), a high-pressure selection valve 52 that selects the high-pressure side of the discharge pressure of the pumps 10A and 10B, and a high-pressure A high pressure selection valve 53 for selecting the high pressure side of the pressure oil P1 from the selection valve 52 or the pressure oil P2 from the main pipelines 46, 47 connected to the motor 24, and leading to the oil chambers 51a, 51b of the piston 51; A control valve 54 for controlling the flow of pressure oil to the chamber 51a, a cut-off valve 55 for cutting the flow of pressure oil from the high pressure selection valve 53 to the control valve 54, and a feedback mechanism 56 are provided. The piston 51, the control valve 54, and the feedback mechanism 56 constitute a servo mechanism.
[0016]
The piston diameter in the oil chamber 51a is larger than the piston diameter in the oil chamber 51b. Therefore, when the control valve 54 and the cut-off valve 55 are switched to the illustrated p1 position and equal pressures act on the oil chambers 51a and 51b, the piston 51 moves in the illustrated b direction, and the motor tilt (motor capacity) decreases. To do. On the other hand, when the control valve 54 is switched to the p3 position and the pressure in the oil chamber 51a becomes the tank pressure, the piston 51 moves in the direction a, and the motor tilt q increases. At this time, the change in the motor capacity is fed back to the control valve 54 by the feedback mechanism 56 and acts as a servo mechanism.
[0017]
The control valve 54 is switched according to the secondary pressure p from the remote control valve 43 guided through the shuttle valve 44 and the electromagnetic switching valve 45, that is, the operation amount of the operation lever 42. For example, when the operation amount α of the operation lever 42 exceeds a predetermined value α2, the control valve 54 is switched to the p1 position, pressure oil is guided to the oil chamber 51a, the piston 51 moves, and the motor capacity decreases. The amount of decrease is fed back to the control valve 54 by the feedback mechanism 56, and when the capacity corresponding to the secondary pressure p is reached, the control valve 54 is switched to the p2 position and stabilized. When the predetermined value α3 (> α2) is reached, the control valve 54 is switched to the p2 position with the motor capacity being minimized. As a result, as shown by the characteristic c in FIG. 4, the motor tilt becomes the maximum qmax when the operation amount α of the operation lever 42 is less than the predetermined value α2, and increases when the operation amount α is greater than the predetermined value α2 and less than the predetermined value α3. Gradually decreases, and reaches a minimum qmin when the predetermined value α3 or more. The characteristics of the control valve 54 can be adjusted by changing the setting of the spring 54a.
[0018]
As shown in FIG. 3, the cut-off valve 55 is switched according to the pressure from the high pressure selection valve 53. When the pressure from the high pressure selection valve 53 is smaller than the biasing force (cutoff pressure) of the spring 55a, the cutoff valve 55 is switched to the p1 position, and the supply of pressure oil from the high pressure selection valve 53 to the oil chamber 51a is allowed. . When the pressure from the high-pressure selection valve 53 becomes equal to the cut-off pressure, the position is switched to the p2 position, prohibiting the supply of pressure oil to the oil chamber 51a and preventing further reduction of the motor tilt. When the pressure from the high pressure selection valve 53 becomes larger than the cut-off pressure, the position is switched to the p3 position, and the hydraulic oil of the hydraulic pressure 51a is supplied to the tank to increase the motor tilt. The cut-off pressure is set lower than the relief pressure (pump relief pressure) of the relief valves 36 and 37 (FIG. 2).
[0019]
The electromagnetic switching valve 45 is switched by operating the synchronization release switch 45a in the cab. When the synchronization release switch 45a is turned on, the electromagnetic switching valve 45 is switched to the p1 position, allowing the secondary pressure to flow from the remote control valve 43 to the control valve 54. When the synchronization release switch 45a is turned off, the position is switched to the p2 position, and the flow of the secondary pressure from the remote control valve 43 to the control valve 54 is cut off. The synchronization release switch 45a is, for example, a push button switch that repeatedly turns on and off each time a push operation is performed, and is provided on a grip portion of the operation lever 42 or the like.
[0020]
The operation of the speed control apparatus configured as described above will be described.
(1) Single operation of main winding winch For example, when operating the main winding winch alone, the tuning release switch 45a is turned on and the electromagnetic switching valve 45 is switched to the p1 position. In this state, when the operation lever 42 for the main winding winch is wound up or down, the secondary pressure acting on the pilot ports of the directional control valves 34A and 34B and the pilot port of the control valve 54 as the operation amount α increases. Each increases.
[0021]
In the region where the operation amount α is less than the predetermined value α1, the switching amount of the direction control valve 34A increases as the operation amount α increases, and the direction control valve 34B remains in the neutral position. As a result, pressure oil is supplied from the hydraulic pump 10A to the hydraulic motor 24, and the hydraulic motor 24 rotates in the hoisting or lowering direction by the pressure oil of the hydraulic pump 10A, and the main winding drum 1 is driven to hoist or lower. . At this time, if the operation amount α is less than the predetermined value α2, the control valve 54 is switched to the p3 position, and the oil chamber 51a is connected to the tank. As a result, the motor tilt is maintained at the maximum tilt qmax, and the winch speed increases at a rate corresponding to the switching amount of the direction control valve 34A, as shown by the characteristic L1 in FIG. That is, in the region where the operation amount α is α <α2 (first speed region), the winch speed is controlled by valve control by switching the direction control valve 34A.
[0022]
When the operation amount α of the operation lever 42 becomes equal to or greater than the predetermined value α2, the control valve 54 is switched to the p1 position, and the oil chamber 51a has the pressure oil P1 of the hydraulic pumps 10A and 10B selected by the high pressure selection valve 53 or the main Either high pressure side of the pressure oil P2 of the pipes 46 and 47 acts. As a result, the motor tilt decreases, and the winch speed increases at a rate corresponding to the switching amount of the direction control valve 34A and the motor tilt decrease amount, as shown by the characteristic L2 in FIG.
[0023]
At this time, there is a relationship of T = P2 × q / 200π between the torque T generated by the hydraulic motor 24, the motor driving pressure P2, and the motor tilt q, and the motor tilt q increases as the lever operation amount α increases. When it decreases, the motor driving pressure P2 increases as shown in FIG. When the motor driving pressure P2 reaches the cutoff pressure of the cutoff valve 55, the cutoff valve 55 is switched to the p2 position in FIG. Thereby, as shown in FIG. 6, the motor tilt (motor absorption amount) is kept constant, and an increase in the motor driving pressure P is suppressed. Since the cut-off pressure is set lower than the pump relief pressure, the pump discharge pressure does not relieve from the relief valves 36 and 37 at the time of motor tilt control, and the shortage of the generated torque T can be prevented.
[0024]
When the operation amount α of the operation lever 42 reaches a predetermined value α1 (= α3), the motor tilt becomes the minimum qmin and the direction control valve 34A is switched to the maximum. When the operation lever 42 is further operated from this state, the direction control valve 34B is switched according to the operation amount α. As a result, the pressure oils of the hydraulic pump 10A and the hydraulic pump 10B join together and are supplied to the hydraulic motor 24. As shown by the characteristic L3 in FIG. 4, the winch speed is the switching amount of the direction control valve 34B when the motor tilt is minimum qmin. It increases at a rate according to. As a result, the winch can be driven at high speed or high torque. The operation lever 42 is provided with a detent mechanism. Therefore, for example, when the detent mechanism is operated in a state where the operation lever 42 is operated to the maximum, the lever operation amount can be held to the maximum with the hand released from the operation lever 42. The above operation is the same for the independent operation of the auxiliary winding winch.
[0025]
(2) Simultaneous operation of main winding winch and undulation winch When the main winding winch and the undulation winch are driven simultaneously, the operation lever 42 for the main winding winch and the operation lever for the undulation winch are operated simultaneously. As a result, the direction control valves 33 and 34 are respectively switched, and the pressure oil from the hydraulic pump 10B is supplied to the undulation motor 23 and the main winding motor 24, respectively. At this time, since the discharge pressure of the hydraulic pump 10B is consumed by the undulating winch and then supplied to the main winding winch, the driving pressure P2 of the main winding motor 24 is smaller than the pump discharge pressure P1. Accordingly, the pump discharge pressure P1 is selected by the high pressure selection valve 53, and the cutoff valve 55 is switched to the p2 position before the motor drive pressure P2 reaches the cutoff pressure. As a result, when the driving pressure P2 of the main winding motor 24 becomes too large and the driving pressure of the hoisting motor 23 is applied, the relief valve 37 does not relieve, and the main winding winch and the hoisting winch can be driven simultaneously.
[0026]
(3) When the main winding winch and the auxiliary winding winch are operated in synchronism, such as bucket work by simultaneous operation of the main winding winch and auxiliary winding winch, etc., the synchronization release switch 45a is turned off and the electromagnetic switching valve 45 is set to the p2 position. Switch to. Thereby, the supply of the pilot pressure to the re-control valve 54 is blocked, and the motor tilt is kept at the maximum tilt qmax regardless of the operation amount of the operation lever 42 as shown in FIG. When the operation lever 42 is operated in this state, in a region where the operation amount α is less than the predetermined value α1 (first speed region), the winch speed increases at a rate corresponding to the switching amount of the direction control valve 34A (characteristic L4). In the region of the value α1 or more (second speed region), the winch speed increases at a rate corresponding to the switching amount of the direction control valve 34B (characteristic L5). The characteristic L4 is an extension of the characteristic L1 shown in FIG. 4, and the characteristic L5 is parallel to the characteristic L3 shown in FIG.
[0027]
In this case, since the speeds of the main winding winch and the auxiliary winding winch are increased by the valve control, the tuning operation can be easily performed even if different loads are applied to the main winding winch and the auxiliary winding winch.
[0028]
The winch speed control apparatus according to this embodiment has the following effects.
(1) Since the control valve 54 for motor tilt control is driven by the secondary pressure from the remote control valve 43 according to the operation of the operation lever 42, the motor tilt is controlled according to the operation of the operation lever 42. Thus, the operation amount α of the operation lever 42 can be made to correspond to the winch speed with high accuracy. As a result, the winch speed can be appropriately controlled according to the operation amount α of the operation lever 42.
(2) A motor drive circuit is formed by the two hydraulic pumps 10A and 10B and the directional control valves 34A and 34B, and the hydraulic oil from the hydraulic pumps 10A and 10B is joined in a region where the operation amount of the operation lever 42 is large. Since the motor tilt is controlled to the minimum tilt qmin, the winch can be driven at high speed or high torque.
(3) When the operation amount α of the operation lever is less than the predetermined value α1, the amount of pressure oil supplied from the hydraulic pump 10A is gradually increased by the valve control of the direction control valve 34A according to the lever operation amount, and the operation amount α is a predetermined value. Above α1, the amount of pressure oil supplied from the hydraulic pump 10B is gradually increased by valve control of the direction control valve 34B. Further, when the operation amount α exceeds the predetermined value α2 and less than the predetermined value α3, the motor tilt is gradually reduced by the motor capacity control corresponding to the lever operation amount. Thus, a wide speed control range can be obtained by operating one operating lever 42.
(5) Since the motor capacity is reduced when the operation amount α of the operation lever 42 is in the range of α2 <α <α3, the winch speed can be significantly increased by operating the operation lever 42 by about half. Good properties.
(6) A cut-off valve 55 is provided in a drive pressure supply circuit for motor capacity control, the cut-off pressure of the cut-off valve 55 is set lower than the relief pressure of the relief valves 36 and 37, and the motor drive pressure P2 or When the pump discharge pressure P1 reaches the cut-off pressure, the cut-off valve 55 is switched to prevent a decrease in motor tilt. Thereby, it is possible to prevent pressure oil from being relieved from the relief valves 36 and 37 during motor capacity control, and it is possible to prevent the generated torque T of the motor 24 from being insufficient.
(7) Since the electromagnetic switching valve 45 is switched by operating the tuning release switch 45a and the motor capacity control is prohibited, the tuning operation of the main winding winch and the auxiliary winding winch can be easily performed.
(8) The undulation motor 23 is provided on the upstream side of the main winding motor 24 with respect to the flow of pressure oil from the hydraulic pump 10B, and the cut-off valve 55 is driven according to the pump discharge pressure. The hoisting winch and the hoisting winch can be driven simultaneously without the winding motor driving pressure becoming too high.
(9) Since the operation lever 42 can be held in the vicinity of the maximum operation by the detent mechanism, the maximum speed of the winch can be maintained with the hand released from the operation lever 42.
[0029]
In the above embodiment, switching only the directional control valve 34A lever operation amount alpha is a predetermined value alpha 1 less than, the directional control valve 34A at a predetermined value α1 above, switches the both 34B, the lever operation amount alpha predetermined value exceeds a predetermined value alpha 2 alpha 3 the motor displacement at less than was to reduce the maximum tilt qmax to the minimum tilting qmin. The predetermined value α2 is set smaller than the predetermined value α1 and the predetermined value α3 is set equal to the predetermined value α1, but the relationship between the predetermined value α1 and the predetermined values α2 and α3 is not limited thereto. For example, as shown by the characteristic c1 (dotted line) in FIG. 8, the motor tilt may be reduced when the lever operation amount α is equal to or greater than a predetermined value α1 . That is, the predetermined value α2 may be set equal to the predetermined value α1, and the predetermined value α3 may be set larger than the predetermined value α1. As a result, the motor tilt becomes a maximum qmax when the operation amount α is equal to or less than the predetermined value α1, and the change amount of the winch speed is small, so that the speed adjustment can be easily performed in the low speed region. Further, as shown by the characteristic c2 (dashed line) in FIG. 8, the motor tilt starts to decrease before the lever operation amount α reaches the predetermined value α1, and after the predetermined value α1 is exceeded, the motor tilt becomes the minimum qmin. It may be made to become. That is, the predetermined value α2 may be set smaller than the predetermined value α1, and the predetermined value α3 may be set larger than the predetermined value α1.
[0030]
The present invention is characterized in that the lever operation amount and the winch speed are accurately associated by controlling the direction control valves 34A and 34B and the motor capacity in accordance with the pressure (operation pressure) due to the operation of the operation lever 42. Therefore, if the motor capacity is controlled according to the operation pressure, the configuration of the motor capacity control device is not limited to that described above. For example, the piston 51 is used as a hydraulic actuator for changing the motor tilt, an actuator drive circuit is formed so as to guide the pressure oil from the shuttle valve 53 to the oil chamber 51a of the piston 51, and the pressure to the oil chamber 51a is controlled by the control valve 54. Although the flow of oil is controlled, other hydraulic actuators, actuator drive circuits, and motor capacity control valves may be used.
[0031]
In the above embodiment, the motor drive command is output by operating the operation lever 42, but the drive command may be output by another operation member. Although the secondary pressure corresponding to the operation of the operation lever 42 is generated by the remote control valve 43, the configuration as the pressure generating means is not limited to this. A synchronization release switch 45a is provided as a motor capacity command member, and the electromagnetic switching valve 45 is switched as a capacity control prohibiting means in accordance with the switch operation. However, a work machine that does not perform the synchronization operation (for example, a crane work dedicated machine). For example, the switch 45a and the electromagnetic switching valve 45 may be omitted. When at least one of the motor drive pressure P2 and the pump discharge pressure P1 reaches the cut-off pressure (limit value), the cut-off valve 55 is switched to prohibit the motor capacity from being reduced. You may comprise a reduction prohibition means.
[0032]
【The invention's effect】
As described above in detail, according to the present invention, the direction control valve is controlled by the operation pressure according to the operation of the operation member, and the capacity of the hydraulic motor for driving the hoisting winch is controlled according to the input of the operation pressure. Thus, the operation amount of the operation member and the winch speed correspond with high accuracy, and the winch speed can be appropriately controlled according to the operation amount of the operation member.
[Brief description of the drawings]
FIG. 1 is an external side view of a tower crane to which the present invention is applied.
FIG. 2 is a hydraulic circuit diagram of the crane of FIG.
FIG. 3 is a hydraulic circuit diagram showing a configuration of a speed control device according to an embodiment of the present invention.
FIG. 4 is a diagram showing each relationship between the operation amount of the operation lever, the switching amount of the direction control valve, the motor capacity, and the winch speed by the speed control device according to the present embodiment.
FIG. 5 is a diagram showing the relationship between motor drive pressure and motor tilt when the motor drive pressure is low.
FIG. 6 is a diagram showing the relationship between motor drive pressure and motor tilt when the motor drive pressure is high.
FIG. 7 is a diagram showing each relationship between an operation amount of an operation lever, a switching amount of a directional control valve, a motor capacity, and a winch speed during a tuning operation.
FIG. 8 is a view showing a modification of the relationship between the operation amount of the operation lever and the motor capacity by the speed control device according to the present embodiment.
[Explanation of symbols]
10A, 10B Hydraulic pump 24 Main winding motor 25 Supplementary winding motor 34A, 34B Direction control valve 42 Operation lever 43 Remote control valve 45 Electromagnetic switching valve 45a Tuning release switch 50 Motor capacity control device 51 Piston 51a, 51b Oil chamber 53 High pressure selection valve 54 Control valve 55 Cut-off valve

Claims (4)

  1. 少なくとも2つの油圧ポンプと、
    巻上ドラム駆動用の可変容量形油圧モータと、
    操作量に応じたモータ駆動指令を出力する操作部材と、
    前記操作部材の操作量に応じた操作圧力を発生する圧力発生手段と、
    前記圧力発生手段による操作圧力により切り換わり、前記2つの油圧ポンプから前記可変容量形油圧モータへの圧油の流れを制御する低速用および高速用の2つの方向制御弁と、
    前記可変容量形油圧モータの傾転を変更する油圧アクチュエータ、前記油圧アクチュエータに駆動圧油を導くアクチュエータ駆動回路、および前記圧力発生手段による操作圧力により切り換わり、前記アクチュエータへの駆動圧油の流れを制御するモータ容量制御弁を有するモータ容量制御装置とを備え
    前記操作部材の操作量が第1の所定値未満では、前記方向制御弁は、前記低速用の方向制御弁のみが切り換わるように設定され、前記可変容量形油圧モータは、その容量が前記モータ容量制御弁により大容量側となるように制御され、
    前記操作部材の操作量が前記第1の所定値以上かつ第2の所定値未満では、前記方向制御弁は、少なくとも前記低速用の方向制御弁が切り換わるように設定され、前記可変容量形油圧モータは、その容量が前記モータ容量制御弁により前記操作部材の操作量の増加に伴い徐々に減少するように制御され、
    前記操作部材の操作量が前記第2の所定値以上では、前記方向制御弁は、前記低速用および高速用の双方の方向制御弁が切り換わるように設定され、前記可変容量形油圧モータは、その容量が前記モータ容量制御弁により最小値となるように制御されることを特徴とするウインチの速度制御装置。
    At least two hydraulic pumps;
    A variable displacement hydraulic motor for driving the hoisting drum;
    An operation member that outputs a motor drive command according to the operation amount;
    Pressure generating means for generating an operation pressure corresponding to an operation amount of the operation member;
    Two directional control valves for low speed and for high speed, which are switched by operating pressure by the pressure generating means and control the flow of pressure oil from the two hydraulic pumps to the variable displacement hydraulic motor;
    The hydraulic actuator that changes the tilt of the variable displacement hydraulic motor, the actuator drive circuit that guides the drive pressure oil to the hydraulic actuator, and the operation pressure generated by the pressure generating means switch the flow of the drive pressure oil to the actuator. and a motor displacement control unit that have a motor capacity control valve for controlling,
    When the operation amount of the operation member is less than a first predetermined value, the direction control valve is set so that only the low-speed direction control valve is switched, and the variable displacement hydraulic motor has a capacity of the motor. It is controlled to be on the large capacity side by the capacity control valve,
    When the operation amount of the operation member is not less than the first predetermined value and less than the second predetermined value, the direction control valve is set so that at least the low-speed direction control valve is switched, and the variable displacement hydraulic pressure The motor is controlled such that its capacity gradually decreases with an increase in the operation amount of the operation member by the motor capacity control valve,
    When the operation amount of the operation member is equal to or greater than the second predetermined value, the direction control valve is set so that both the low-speed and high-speed direction control valves are switched, and the variable displacement hydraulic motor is speed control device for a winch whose capacity is characterized Rukoto is controlled to a minimum value by the motor displacement control valve.
  2. 請求項1に記載のウインチの速度制御装置において、
    モータ傾転制御の許容または禁止指令を出力するモータ容量指令部材と、
    前記モータ容量指令部材により許容指令が出力されると前記モータ容量制御装置によるモータ容量の制御を許容し、禁止指令が出力されると前記モータ容量制御装置によるモータ容量の制御を禁止する容量制御禁止手段とを備えることを特徴とするウインチの速度制御装置。
    The winch speed control device according to claim 1,
    A motor capacity command member that outputs a command to allow or prohibit motor tilt control;
    When the allowance command is output by the motor capacity command member, the control of the motor capacity by the motor capacity control device is permitted, and when the prohibition command is output, the control of the motor capacity by the motor capacity control device is prohibited. Means for controlling the speed of the winch.
  3. 請求項1または2に記載のウインチの速度制御装置において、
    前記油圧モータの駆動圧力または前記油圧ポンプの吐出圧力の少なくとも一方が所定の制限値以上になると、前記モータ容量制御装置によるモータ容量の減少を禁止する容量減少禁止手段とを備えることを特徴とするウインチの速度制御装置。
    The winch speed control device according to claim 1 or 2,
    And a capacity reduction prohibiting means for prohibiting a reduction in motor capacity by the motor capacity control device when at least one of the driving pressure of the hydraulic motor or the discharge pressure of the hydraulic pump exceeds a predetermined limit value. Winch speed control device.
  4. 請求項1〜3のいずれか1項記載のウインチの速度制御装置を備えることを特徴とするクレーン。  The crane provided with the speed control apparatus of the winch of any one of Claims 1-3.
JP2003086461A 2003-03-26 2003-03-26 Winch speed control device and crane Expired - Fee Related JP4166604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086461A JP4166604B2 (en) 2003-03-26 2003-03-26 Winch speed control device and crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086461A JP4166604B2 (en) 2003-03-26 2003-03-26 Winch speed control device and crane

Publications (2)

Publication Number Publication Date
JP2004292102A JP2004292102A (en) 2004-10-21
JP4166604B2 true JP4166604B2 (en) 2008-10-15

Family

ID=33401115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086461A Expired - Fee Related JP4166604B2 (en) 2003-03-26 2003-03-26 Winch speed control device and crane

Country Status (1)

Country Link
JP (1) JP4166604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103072896A (en) * 2013-01-28 2013-05-01 徐州重型机械有限公司 Split-type electric proportional pilot control valve and mobile crane
CN103697000A (en) * 2013-12-03 2014-04-02 上海中联重科桩工机械有限公司 Hydraulic control system for realizing stepless speed change of actuating mechanism

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797916B2 (en) * 2006-09-28 2011-10-19 コベルコクレーン株式会社 Control device for variable displacement hydraulic motor
CN102381652B (en) * 2011-10-28 2013-03-20 中联重科股份有限公司 Control device and method for winching mechanism and winching mechanism test platform
EP3135625B1 (en) * 2015-08-25 2018-05-23 XCMG European Research Center GmbH Hydraulic device for a hydraulically actuated raisable and lowerable hook of a crane

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197194A (en) * 1982-05-10 1983-11-16 Kitagawa Iron Works Co Structure of hydraulic circuit of double-drum winch
JPH0240595B2 (en) * 1984-03-13 1990-09-12 Fukushima Ltd
JPH0453798B2 (en) * 1985-11-15 1992-08-27 Kobe Steel Ltd
JPH0517961B2 (en) * 1985-12-04 1993-03-10 Hitachi Construction Machinery
JPH0730628Y2 (en) * 1990-02-08 1995-07-12 住友建機株式会社 Hydraulic winch control device
JPH08169691A (en) * 1994-12-20 1996-07-02 Hitachi Constr Mach Co Ltd Winch control circuit
JP4206546B2 (en) * 1999-02-15 2009-01-14 コベルコクレーン株式会社 Hydraulic winch control device
JP2001158598A (en) * 1999-12-03 2001-06-12 Sumitomo Constr Mach Co Ltd Hydraulic control of construction machine
JP4527860B2 (en) * 2000-08-30 2010-08-18 株式会社タダノ Speed control method and apparatus for hydraulic winch of crane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103072896A (en) * 2013-01-28 2013-05-01 徐州重型机械有限公司 Split-type electric proportional pilot control valve and mobile crane
CN103697000A (en) * 2013-12-03 2014-04-02 上海中联重科桩工机械有限公司 Hydraulic control system for realizing stepless speed change of actuating mechanism
CN103697000B (en) * 2013-12-03 2015-11-04 上海中联重科桩工机械有限公司 Realize the infinite variable speed hydraulic control system of actuator

Also Published As

Publication number Publication date
JP2004292102A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
KR100807923B1 (en) Speed controller for work vehicle and its control method
KR101155717B1 (en) Apparatus for controlling the boom-swing combined motion of an excavator
KR970001723B1 (en) Hydraulic control system for construction machine
EP2524995A1 (en) Work machine drive control device
JP4166604B2 (en) Winch speed control device and crane
EP2918733B1 (en) Construction machine
JP2018071573A (en) Hydraulic drive system of construction machine
CN109715889B (en) Control system for construction machine and control method for construction machine
JP6095547B2 (en) Swivel control device for construction machinery
JP2014240629A (en) Hydraulic shovel hydraulic controller
JP4381781B2 (en) Pump controller for construction machinery
JP2008002505A (en) Energy saving device for construction machine
JP2002265187A (en) Revolution control device
JP2019002558A (en) Rotary driving device, and work machine with the same
JP4291110B2 (en) Hydraulic winch control device
WO2017145658A1 (en) Work machine hydraulic circuit
JP2014095394A (en) Control system of hybrid construction machine
JPH068641B2 (en) Hydraulic circuit
JP2001247293A (en) Hydraulic winch circuit for crane
JP3594637B2 (en) Hydraulic drive of hydraulic working machine
JP2018184299A (en) Revolving drive device and work machine with the same
JP2002081409A (en) Hydraulic circuit for traveling vehicle
JPH0723588Y2 (en) Variable pump flow control valve device
JP6731387B2 (en) Hydraulic drive for construction machinery
CN109563851B (en) Construction machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Ref document number: 4166604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees