JP4160973B2 - Sludge concentration system - Google Patents

Sludge concentration system Download PDF

Info

Publication number
JP4160973B2
JP4160973B2 JP2005205557A JP2005205557A JP4160973B2 JP 4160973 B2 JP4160973 B2 JP 4160973B2 JP 2005205557 A JP2005205557 A JP 2005205557A JP 2005205557 A JP2005205557 A JP 2005205557A JP 4160973 B2 JP4160973 B2 JP 4160973B2
Authority
JP
Japan
Prior art keywords
sludge
gas
drying
exhaust
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005205557A
Other languages
Japanese (ja)
Other versions
JP2007021333A (en
Inventor
稔 中安
隆志 林
真琴 合田
吉和 長野
賢一 桜井
悟 松川
Original Assignee
川崎重工業株式会社
横浜市
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社, 横浜市 filed Critical 川崎重工業株式会社
Priority to JP2005205557A priority Critical patent/JP4160973B2/en
Publication of JP2007021333A publication Critical patent/JP2007021333A/en
Application granted granted Critical
Publication of JP4160973B2 publication Critical patent/JP4160973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Description

本発明は、原動機の排熱または燃料焚ボイラの熱源を有効利用して水処理設備または工場の汚泥処理設備から発生する汚泥を効率的に処理できる汚泥濃縮システムに関する。   The present invention relates to a sludge concentration system capable of efficiently treating sludge generated from a water treatment facility or a sludge treatment facility of a factory by effectively using exhaust heat of a prime mover or a heat source of a fuel boiler.
例えば浄水場などの水処理設備や工場の汚泥処理設備から大量に発生する汚泥は、通常、一定時間放置して重力濃縮した後、濃縮された汚泥を脱水機で脱水処理し、脱水処理した汚泥をさらに乾燥装置で乾燥して固形化・減量化し、園芸用土として利用するか、または、乾燥処理した乾燥汚泥を最終的に焼却炉で焼却している。   For example, sludge generated in large quantities from water treatment facilities such as water treatment plants and factory sludge treatment facilities is usually left for a certain period of time and concentrated by gravity, and then the concentrated sludge is dehydrated with a dehydrator, and the dehydrated sludge is processed. Is further solidified and reduced by drying with a drying device and used as horticultural soil, or the dried sludge that has been dried is finally incinerated in an incinerator.
前記汚泥処理の場合、脱水機稼動にかかる電気代、乾燥装置や焼却炉の稼動にかかるガスや重油などの燃料代を考慮すると、きわめて割高な処理方法となる。また、汚泥の重力濃縮は、一定時間、汚泥を放置し、溶媒(水分)と溶質(実質的な汚泥分)の比重差を利用するものであるから、最終の焼却処理に至るまでの処理時間がかかり、処理効率が低い処理方法であった。   In the case of the sludge treatment, it is an extremely expensive treatment method in consideration of the electricity cost for the operation of the dehydrator and the fuel cost such as gas and heavy oil for the operation of the drying apparatus and the incinerator. Also, gravity concentration of sludge leaves sludge for a certain period of time and uses the difference in specific gravity between solvent (water) and solute (substantial sludge), so the processing time until the final incineration process This is a processing method with low processing efficiency.
また、前記脱水機に代えて蒸発濃縮装置を用いる処理方法も知られている(例えば特許文献1参照)。この処理方法では、後工程のアンモニア除去工程や浄化工程に先立ち、尿および/または浄化槽汚泥からなる被処理物を前工程である濃縮工程において蒸発濃縮しておき、後工程での作業が効率的に行えるようにしている。この処理方法では、蒸発濃縮によって前記し尿および/または浄化槽汚泥を少ないエネルギで効率的に濃縮できるので、前記汚泥の汚泥処理に用いると、汚泥の脱水にかかる電気代、汚泥の乾燥や焼却にかかる燃料代を削減できると考えられる。
特開2001−327999号公報
A processing method using an evaporation concentrator instead of the dehydrator is also known (see, for example, Patent Document 1). In this treatment method, prior to the ammonia removal process and purification process in the subsequent process, the object to be treated consisting of urine and / or septic tank sludge is evaporated and concentrated in the concentration process, which is the previous process, and the work in the subsequent process is efficient To be able to. In this treatment method, the human waste and / or septic tank sludge can be efficiently concentrated with less energy by evaporative concentration. Therefore, when used for sludge sludge treatment, electricity costs for sludge dehydration, sludge drying and incineration are required. It is thought that fuel costs can be reduced.
JP 2001-327999 A
ところが前記先行技術には、次のような不具合がある。すなわち、アンモニアを含むし尿およびし尿用の浄化槽汚泥の処理方法に限定されており、浄水場や工場での汚泥処理には直接適用できない。また、汚泥濃縮システム用の電源、濃縮装置用蒸気、焼却炉用燃料などが個別に必要となるなど、抜本的な省エネルギ化が図れておらず、エネルギを多く使用するシステムである。さらに、地震や停電時などの電力送給停止時には運転できないシステムであった。   However, the prior art has the following problems. That is, it is limited to a treatment method of human waste containing ammonia and septic tank sludge for human waste, and cannot be directly applied to sludge treatment in water purification plants or factories. In addition, since the power source for the sludge concentration system, the steam for the concentrator, the fuel for the incinerator, and the like are individually required, the system does not achieve drastic energy saving and uses a lot of energy. In addition, the system could not be operated when the power supply was stopped due to an earthquake or power failure.
そこで、本発明は、原動機の排熱または燃料焚ボイラの熱源を有効活用して水処理設備または工場の汚泥処理設備で発生する汚泥を省エネルギで効率的に処理できる汚泥濃縮システムを提供することを目的とする。   Accordingly, the present invention provides a sludge concentration system capable of efficiently and efficiently treating sludge generated in water treatment facilities or factory sludge treatment facilities by effectively utilizing the exhaust heat of the prime mover or the heat source of the fuel boiler. With the goal.
上記目的を達成するため、本発明の第1構成に係る汚泥濃縮システムは、動力を発生する原動機と、前記原動機の排ガスを熱源として蒸気もしくは温水を発生する排熱ボイラと、前記蒸気もしくは温水を熱源として導入して汚泥の蒸発濃縮を行う汚泥濃縮装置と、前記排熱ボイラを出た排ガスを熱源として、前記蒸発濃縮された汚泥を乾燥させる汚泥乾燥装置とを備え、前記汚泥濃縮装置は、前記蒸気もしくは温水に加えて、前記汚泥乾燥装置からの汚泥ガスを導入してこの汚泥ガス中の水蒸気潜熱を熱源として汚泥の蒸発濃縮を行うものである。ここで、前記汚泥とは、浄水場などの水処理設備から発生する汚泥や工場の生産工程から発生する汚泥などを含む。また、原動機とは、燃料を燃焼させて動力を発生し、排ガスを放出するものをいい、例えばガスタービンやディーゼルエンジンである。 In order to achieve the above object, a sludge concentration system according to a first configuration of the present invention includes a prime mover that generates power, a waste heat boiler that generates steam or warm water using exhaust gas from the prime mover as a heat source, and the steam or warm water. A sludge concentrating device for evaporating and concentrating sludge introduced as a heat source, and a sludge drying device for drying the evaporated and sludge using the exhaust gas discharged from the exhaust heat boiler as a heat source, the sludge concentrating device, In addition to the steam or hot water, sludge gas from the sludge drying device is introduced and sludge is evaporated and concentrated using the latent heat of water vapor in the sludge gas as a heat source . Here, the sludge includes sludge generated from water treatment facilities such as water purification plants and sludge generated from production processes in factories. The prime mover refers to one that burns fuel to generate power and emits exhaust gas, such as a gas turbine or a diesel engine.
この構成によれば、排熱ボイラからの蒸気もしくは温水を、汚泥を蒸発濃縮するための熱源として利用できる。また、汚泥を蒸発濃縮することで汚泥量を効率的に減少できるので、通常、汚泥の乾燥に先立って行われる脱水に用いる脱水機台数も削減できる。また、汚泥の蒸発濃縮により汚泥温度が上昇して汚泥の粘性が下がるので、脱水機のろ過速度が増し、脱水機台数をさらに削減することができる。このように、汚泥処理に伴う多くのエネルギを原動機の排熱によって賄えるので、環境汚染の少ない省エネルギの汚泥処理を実現できる。また、従来、大気中へ排出していた排熱ボイラ出口からの排ガスも、汚泥乾燥装置において前記蒸発濃縮した汚泥を乾燥させるために有効利用される。その結果、原動機の排熱が一層効果的に利用される。さらに、汚泥の蒸発濃縮の一部分が、汚泥乾燥装置からの乾燥排気である汚泥ガス中の水蒸気潜熱によって行われるので、汚泥濃縮装置への前記蒸気もしくは温水の導入量が少ない場合であっても、汚泥の蒸発濃縮が効果的に行われる。 According to this configuration, steam or hot water from the exhaust heat boiler can be used as a heat source for evaporating and concentrating sludge. In addition, since the amount of sludge can be efficiently reduced by evaporating and concentrating sludge, the number of dehydrators used for dewatering performed prior to sludge drying can be reduced. Moreover, since the sludge temperature rises due to the evaporation and concentration of sludge and the viscosity of the sludge decreases, the filtration speed of the dehydrator increases, and the number of dehydrators can be further reduced. In this way, since much energy associated with the sludge treatment can be covered by the exhaust heat of the prime mover, energy-saving sludge treatment with little environmental pollution can be realized. Further, the exhaust gas from the outlet of the exhaust heat boiler that has been conventionally discharged to the atmosphere is also effectively used to dry the evaporated and concentrated sludge in the sludge drying apparatus. As a result, the exhaust heat of the prime mover is used more effectively. Furthermore, since a part of the sludge evaporative concentration is performed by the latent heat of water vapor in the sludge gas that is the dry exhaust from the sludge drying device, even if the amount of steam or hot water introduced into the sludge concentration device is small, Evaporation and concentration of sludge is performed effectively.
本発明の好ましい実施形態では、汚泥濃縮装置からの凝縮水が前記排熱ボイラのボイラ給水として導入されている。   In a preferred embodiment of the present invention, the condensed water from the sludge concentrator is introduced as boiler feed water for the exhaust heat boiler.
この構成によれば、汚泥濃縮装置からの凝縮水が排熱ボイラへのボイラ給水として利用できる分だけ、水資源を節約できる。しかも、前記凝縮水は汚泥濃縮装置内の汚泥を蒸発濃縮させる際に発生したもので、異物やゴミのない清浄な水であるので、ボイラ給水としてそのまま用いることができる。   According to this configuration, water resources can be saved by the amount that the condensed water from the sludge concentrator can be used as boiler feed water to the exhaust heat boiler. Moreover, the condensed water is generated when the sludge in the sludge concentrating device is evaporated and concentrated, and since it is clean water free from foreign matter and dust, it can be used as it is as boiler feed water.
本発明の好ましい実施形態では、前記汚泥濃縮装置からの臭気成分を含んだ汚泥ガスが前記原動機の吸気に混入されている。   In a preferred embodiment of the present invention, sludge gas containing odor components from the sludge concentrator is mixed in the intake air of the prime mover.
この構成によれば、前記汚泥乾燥装置から排出される臭気成分を含んだ乾燥排気である汚泥ガスは、かなりの残存空気を含んでいるので(少なくとも約13〜16%程度含む)、これを吸気として原動機で利用できる。これにより、臭気成分の熱分解によって周辺環境への臭気対策が図れるので、専用の脱臭設備が不要となり、脱臭設備などの付帯設備が不要になって、システムの簡略化およびコスト低減を実現できる。   According to this configuration, the sludge gas, which is the dry exhaust gas containing the odor component discharged from the sludge drying device, contains a considerable amount of residual air (including at least about 13 to 16%). As available on the prime mover. As a result, odor countermeasures to the surrounding environment can be achieved by thermal decomposition of odor components, so that a dedicated deodorization facility is not required, and ancillary facilities such as a deodorization facility are not required, and the system can be simplified and the cost can be reduced.
本発明の汚泥濃縮システムによれば、汚泥処理に伴う多くのエネルギを原動機の排熱または燃料焚ボイラの熱源によって賄えるので、環境汚染の少ない省エネルギの汚泥処理が得られる。   According to the sludge concentration system of the present invention, a large amount of energy associated with the sludge treatment can be provided by the exhaust heat of the prime mover or the heat source of the fuel boiler, so that an energy-saving sludge treatment with less environmental pollution can be obtained.
以下、本発明の好ましい実施形態について図面にしたがって説明する。図1は、本発明の第1実施形態に係る汚泥濃縮システムを示す系統図である。この実施形態で示される汚泥濃縮システムは、電気と蒸気を発生するコージェネレーション設備の排熱を、汚泥濃縮システムで有効に利用されるように両者を組み合わせた構成となっている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a sludge concentration system according to the first embodiment of the present invention. The sludge concentration system shown in this embodiment has a configuration in which both are combined so that the exhaust heat of the cogeneration facility that generates electricity and steam is effectively used in the sludge concentration system.
図1に示す汚泥濃縮システムは、動力を発生するガスタービン(原動機)1と、このガスタービン1の排ガスを熱源とする排熱ボイラ2と、汚泥SWの蒸発濃縮を行う汚泥濃縮装置3と、蒸発濃縮した濃縮汚泥CSWを乾燥する汚泥乾燥装置4とから基本的に構成されている。   A sludge concentration system shown in FIG. 1 includes a gas turbine (prime mover) 1 that generates power, a waste heat boiler 2 that uses exhaust gas from the gas turbine 1 as a heat source, a sludge concentrator 3 that evaporates and concentrates sludge SW, The sludge drying apparatus 4 basically dries the concentrated sludge CSW evaporated and concentrated.
前記ガスタービン1は、圧縮機Cと燃焼器FCとタービンTとを有し、その回転軸X1に負荷である発電機Gが連結されている。燃焼器FCには、都市ガスのような燃料f1が供給され、圧縮機Cには、吸気冷却器5を介して吸気が導入される。この吸気冷却器5は、外部から取り入れた空気A1を、例えば地下水Wの循環により冷却する。   The gas turbine 1 includes a compressor C, a combustor FC, and a turbine T, and a generator G, which is a load, is connected to the rotation shaft X1. A fuel f1 such as city gas is supplied to the combustor FC, and intake air is introduced into the compressor C via the intake air cooler 5. The intake air cooler 5 cools the air A1 taken from the outside, for example, by circulating the groundwater W.
前記タービンTと排熱ボイラ2の間は、タービン排気通路P2で連結され、タービンTからの排ガスEGが排熱ボイラ2に供給される。   The turbine T and the exhaust heat boiler 2 are connected by a turbine exhaust passage P <b> 2, and the exhaust gas EG from the turbine T is supplied to the exhaust heat boiler 2.
前記排熱ボイラ2と汚泥乾燥装置4との間の排ガス導入通路P3には、エコノマイザ6と、三方排気ダンパ7とが設けられ、前記三方排気ダンパ7には不要な排ガスEGを大気に放出する排気筒8が取り付けられている。この三方排気ダンパ7は、ダンパ角度調整の制御によって、排ガスEGを汚泥乾燥装置4側に供給したり、汚泥乾燥装置4の停止時には前記排ガスEGが排気筒8側に流して大気へ放出することができるようになっている。   An exhaust gas introduction passage P3 between the exhaust heat boiler 2 and the sludge drying device 4 is provided with an economizer 6 and a three-way exhaust damper 7. The three-way exhaust damper 7 releases unnecessary exhaust gas EG to the atmosphere. An exhaust cylinder 8 is attached. The three-way exhaust damper 7 supplies the exhaust gas EG to the sludge drying device 4 side by controlling the damper angle, and when the sludge drying device 4 is stopped, the exhaust gas EG flows to the exhaust tube 8 side and is released to the atmosphere. Can be done.
前記排熱ボイラ2のドラム10と排熱ボイラ2用の給水タンク9との間は、給水通路P4によって連結され、前記給水タンク9内の水は、給水ポンプにより加圧され、前記給水通路P4によりエコノマイザ6を経て排熱ボイラ2のドラム10内に供給される。   The drum 10 of the exhaust heat boiler 2 and the water supply tank 9 for the exhaust heat boiler 2 are connected by a water supply passage P4, and the water in the water supply tank 9 is pressurized by a water supply pump, and the water supply passage P4. Is supplied into the drum 10 of the exhaust heat boiler 2 through the economizer 6.
前記汚泥乾燥装置4には、都市ガスのような燃料f2の供給を受けて燃焼し、外部から取り入れた空気A2を加熱して乾燥用加熱ガスHGとするガスバーナ41を備えた乾燥用ガス通路P5が接続され、この乾燥用ガス通路P5の下流部に前記排ガス導入通路P3の下流部を合流させて接続することで、前記排熱ボイラ2からの排ガスEGと前記乾燥用加熱ガスHGとが、乾燥用熱源として汚泥乾燥装置4 内に導入される。   The sludge drying device 4 is supplied with a fuel f2 such as city gas, burns, and heats the air A2 taken from the outside to heat the drying gas HG as a drying gas HG. The exhaust gas EG from the exhaust heat boiler 2 and the drying heating gas HG are combined by connecting the downstream portion of the exhaust gas introduction passage P3 to the downstream portion of the drying gas passage P5. It is introduced into the sludge dryer 4 as a heat source for drying.
この汚泥乾燥装置4には乾燥ガス排出通路P6が接続され、前記乾燥用熱源である排ガスEGと乾燥用加熱ガスHGを汚泥乾燥装置4内に導入して後述する汚泥ケーキSCを乾燥処理したとき、前記汚泥ケーキSCに含まれていた臭気成分を含む乾燥排気である汚泥ガスSGを乾燥ガス排出通路P6を通して排出できるようになっている。   A drying gas discharge passage P6 is connected to the sludge drying device 4, and when the exhaust gas EG and the drying heating gas HG, which are the heat sources for drying, are introduced into the sludge drying device 4 and a sludge cake SC described later is dried. The sludge gas SG, which is dry exhaust gas containing odor components contained in the sludge cake SC, can be discharged through the dry gas discharge passage P6.
この排出用通路P6には、マルチサイクロン42が取り付けられ、前記排ガスEGと乾燥用加熱ガスHG中に含まれるゴミや異物を除去してから排風機43で強制的に大気中に排出させることもできるが、この実施形態では、前記乾燥ガス排出通路P6の下流端と吸気冷却器5の間を汚泥ガス導入通路P7で連結して、汚泥ガスSGを原動機1の吸気に混入させて利用するようになっている。   A multi-cyclone 42 is attached to the discharge passage P6, and after the dust and foreign matter contained in the exhaust gas EG and the drying heating gas HG are removed, the exhaust fan 43 forcibly discharges them into the atmosphere. In this embodiment, the downstream end of the dry gas discharge passage P6 and the intake air cooler 5 are connected by the sludge gas introduction passage P7 so that the sludge gas SG is mixed with the intake air of the prime mover 1 for use. It has become.
上記構成よりなる諸設備に対して、浄水場のような水処理設備または工場の生産工程などで発生する汚泥SWを溜める汚泥槽11と、この汚泥槽11からの汚泥SWを蒸発濃縮する汚泥濃縮装置3と、汚泥濃縮装置3で蒸発濃縮した濃縮汚泥CSW中から水分を除去する脱水機12を含む汚泥処理設備が組み合わせられている。この脱水機12は例えば遠心式または加圧式である。汚泥濃縮装置3は、蒸気Sもしくは温水(以下「蒸気S等」という。)により汚泥を加熱し、汚泥中の水分のみを蒸発させることで汚泥SWの固形分濃度を高める。この蒸発した水分と蒸気の凝縮水は、合わせて凝縮水として回収され、ボイラ給水として再利用される。   Sludge tank 11 for collecting sludge SW generated in water treatment facilities such as water treatment plants or factory production processes, and sludge concentration for evaporating and concentrating sludge SW from this sludge tank 11 for various facilities having the above-described configuration. The apparatus 3 and a sludge treatment facility including a dehydrator 12 that removes moisture from the concentrated sludge CSW evaporated and concentrated by the sludge concentration apparatus 3 are combined. The dehydrator 12 is, for example, a centrifugal type or a pressure type. The sludge concentrating device 3 heats the sludge with steam S or warm water (hereinafter referred to as “steam S”) and evaporates only the moisture in the sludge, thereby increasing the solid content concentration of the sludge SW. The evaporated water and steam condensate are collected together as condensate and reused as boiler feed water.
汚泥槽11と汚泥濃縮装置3の間は、汚泥供給通路P8で連結され、汚泥槽11の汚泥SWが、汚泥濃縮装置3側に連続的にあるいは断続的に供給される。前記汚泥濃縮装置3に供給される汚泥SWは、汚泥濃縮装置3に供給される前に、つまり、浄水場や工場の汚泥処理設備から発生した汚泥SWが汚泥槽11に供給される前に、汚泥重力濃縮を行うか、あるいは汚泥槽11内で汚泥重力濃縮を行ったものが汚泥濃縮装置3側に供給される。汚泥濃縮装置3には、蒸気導入通路P9により排熱ボイラ2からの蒸気S等が導入される。この汚泥濃縮装置3には、タービン排気通路P2から分岐させて設けた排ガス導入通路P10が接続されており、前記蒸気S等に加え、排ガス導入通路P10を経由してガスタービン1からの排ガスEGの一部が汚泥濃縮装置3に導入されている。但し、この通路P10は割愛し、前記蒸気S等のみを汚泥濃縮装置3に導入して汚泥SWの蒸発濃縮を行ってもよい。   The sludge tank 11 and the sludge concentrator 3 are connected by a sludge supply passage P8, and the sludge SW in the sludge tank 11 is continuously or intermittently supplied to the sludge concentrator 3 side. Before the sludge SW supplied to the sludge concentrator 3 is supplied to the sludge concentrator 3, that is, before the sludge SW generated from the sludge treatment facility of the water purification plant or factory is supplied to the sludge tank 11, The sludge gravity concentration or sludge gravity concentration in the sludge tank 11 is supplied to the sludge concentration device 3 side. Steam S and the like from the exhaust heat boiler 2 are introduced into the sludge concentrating device 3 through the steam introduction passage P9. The sludge concentrator 3 is connected to an exhaust gas introduction passage P10 that is branched from the turbine exhaust passage P2, and in addition to the steam S and the like, the exhaust gas EG from the gas turbine 1 passes through the exhaust gas introduction passage P10. Is introduced into the sludge concentrator 3. However, this passage P10 may be omitted, and only the steam S or the like may be introduced into the sludge concentrating device 3 to evaporate and concentrate the sludge SW.
前記汚泥濃縮装置3と脱水機12の間は濃縮汚泥導入通路P11で連結され、汚泥濃縮装置3で蒸発濃縮されて濃度が高くなった濃縮汚泥CSWが濃縮汚泥導入通路P11を通って脱水機12に送られる。前記脱水機12と汚泥乾燥装置4とは、汚泥ケーキ供給通路P12で連結され、脱水機12で脱水処理されて固化された汚泥ケーキSCは汚泥乾燥装置4の中に投入され、乾燥処理に付される。また、前記汚泥濃縮装置3と給水タンク9との間は、凝縮水補給通路P13で連結されており、この凝縮水補給通路P13により前記汚泥濃縮装置3にて汚泥SWを蒸発濃縮する際に発生した凝縮水CWを給水タンク9に戻してボイラ用給水として利用する。これにより、水資源の有効利用を図っている。なお、前記汚泥濃縮装置3には、望ましくは冷却塔31を付設して前記凝縮水CWが速やかに得られるようにしているが、この冷却塔31は必ずしも付設されなくてもよく、汚泥濃縮システムの運転に影響を及ぼさない。   The sludge concentrator 3 and the dehydrator 12 are connected by a concentrated sludge introduction passage P11, and the concentrated sludge CSW which has been evaporated and concentrated in the sludge concentrator 3 and has a high concentration passes through the concentrated sludge introduction passage P11, and then the dehydrator 12 is connected. Sent to. The dehydrator 12 and the sludge drying device 4 are connected by a sludge cake supply passage P12, and the sludge cake SC dehydrated and solidified by the dehydrator 12 is put into the sludge drying device 4 and subjected to the drying treatment. Is done. The sludge concentrating device 3 and the water supply tank 9 are connected by a condensed water replenishment passage P13, and is generated when the sludge SW is evaporated and concentrated in the sludge concentrating device 3 by the condensed water replenishment passage P13. The condensed water CW is returned to the feed water tank 9 and used as boiler feed water. As a result, water resources are effectively used. The sludge concentrator 3 is desirably provided with a cooling tower 31 so that the condensed water CW can be obtained quickly. However, the cooling tower 31 does not necessarily have to be provided, and the sludge concentration system. Does not affect driving.
上記構成において、ガスタービン1により発電機Gが駆動されて電力が得られる。ガスタービン1が通常運転を行っているとき、タービンTからの排ガスEGはタービン排気通路P2を通って排熱ボイラ2に供給されて熱回収される。他方、給水タンク9から給水ポンプにて加圧された水は、給水通路P4によりエコノマイザ6を通って予熱されたのち、排熱ボイラ2の上部のドラム10に入り、ここから排熱ボイラ2内の水管に入って、排ガスEGにより加熱されて蒸気化される。こうして得られた蒸気S等は、ドラム10を経て、蒸気導入通路P9により汚泥濃縮装置3内に導入される。   In the above configuration, the generator G is driven by the gas turbine 1 to obtain electric power. When the gas turbine 1 is performing normal operation, the exhaust gas EG from the turbine T is supplied to the exhaust heat boiler 2 through the turbine exhaust passage P2 and is recovered. On the other hand, the water pressurized by the water supply pump from the water supply tank 9 is preheated through the economizer 6 through the water supply passage P4, and then enters the drum 10 at the upper part of the exhaust heat boiler 2 and from there into the exhaust heat boiler 2 Are heated by the exhaust gas EG and vaporized. The steam S and the like thus obtained are introduced into the sludge concentrating device 3 through the drum 10 through the steam introduction passage P9.
汚泥濃縮装置3には、汚泥槽11から汚泥SW(例えば固形分濃度2.5%)が連続的に供給されており、前記汚泥濃縮装置3内に蒸気S等が導入されると、これらの間の熱交換により、前記汚泥SWの蒸発濃縮が行われる。これにより、汚泥濃縮装置の下流にある脱水機12の設置台数を削減でき、脱水機12を稼動するための電気エネルギーを節減できる。汚泥濃縮装置3での蒸発濃縮には蒸気S等のみならず、原動機1からの排ガスEGも利用されるので、前記蒸発濃縮がより促進される。蒸発濃縮が促進されることで、脱水機12の設置台数をさらに削減できる。   Sludge SW (for example, solid content concentration 2.5%) is continuously supplied from the sludge tank 11 to the sludge concentrator 3, and when steam S or the like is introduced into the sludge concentrator 3, these The sludge SW is evaporated and concentrated by heat exchange in the meantime. Thereby, the installation number of the dehydrators 12 downstream of the sludge concentrating device can be reduced, and the electric energy for operating the dehydrators 12 can be saved. The evaporative concentration in the sludge concentrating device 3 uses not only the steam S and the like but also the exhaust gas EG from the prime mover 1, so that the evaporative concentration is further promoted. By promoting the evaporation concentration, the number of dehydrators 12 installed can be further reduced.
続いて、汚泥濃縮装置3での蒸発濃縮により得られた濃縮汚泥CSW(例えば固形分濃度6%)は濃縮汚泥導入通路P11を経て脱水機12に送られる。この脱水機12での脱水処理により前記濃縮汚泥CSWは所定水分含量(例えば水分65%)まで脱水され、汚泥ケーキSC(例えば固形分濃度35%)となる。その後、この汚泥ケーキSCは、汚泥ケーキ供給通路P12を経て汚泥乾燥装置4内に投入される。   Subsequently, the concentrated sludge CSW (for example, solid content concentration 6%) obtained by the evaporation concentration in the sludge concentrating device 3 is sent to the dehydrator 12 through the concentrated sludge introduction passage P11. By the dehydration process in the dehydrator 12, the concentrated sludge CSW is dehydrated to a predetermined moisture content (for example, 65% moisture) to become a sludge cake SC (for example, a solid content concentration of 35%). Thereafter, the sludge cake SC is introduced into the sludge drying device 4 through the sludge cake supply passage P12.
前記汚泥乾燥装置4には、排ガス導入通路P3を通って導かれた排熱ボイラ2からの排ガスEG(例えば温度約150℃)が導入されており、この排ガスEGによって前記汚泥ケーキSCを乾燥処理する。この乾燥により、前記汚泥ケーキSC中の水分を一定以下の水分量(例えば水分35%以下)まで乾燥してのち、固形の乾燥ケーキDCとして回収する。このとき、この汚泥乾燥装置4には、乾燥用ガス通路P5から乾燥用ガスHGも導入されるが、前記排熱ボイラ2からの排ガスEGが導入されることで、ガスバーナ41での都市ガス使用量を削減できる。前記、乾燥ケーキDCは、例えばそのまま園芸用土として用いるか、例えば型に入れて焼き、レンガ材として用いられる。   Exhaust gas EG (for example, a temperature of about 150 ° C.) from the exhaust heat boiler 2 introduced through the exhaust gas introduction passage P3 is introduced into the sludge drying device 4, and the sludge cake SC is dried by the exhaust gas EG. To do. By this drying, the moisture in the sludge cake SC is dried to a certain amount of moisture (for example, moisture of 35% or less), and then recovered as a solid dry cake DC. At this time, although the drying gas HG is also introduced into the sludge drying device 4 from the drying gas passage P5, the use of the city gas in the gas burner 41 by introducing the exhaust gas EG from the exhaust heat boiler 2 The amount can be reduced. The dry cake DC is used, for example, as horticultural soil as it is, or, for example, put in a mold and baked to be used as a brick material.
このように、この汚泥濃縮システムでは、コージェネレーション設備と組み合わせ、コージェネレーション設備の排熱を、汚泥濃縮装置3では汚泥SWの蒸発濃縮用の蒸気S等として利用し、汚泥乾燥装置4では乾燥ケーキDCを造るための高温ガスとして利用することで、排熱を有効利用できる。また、汚泥濃縮装置3での蒸発濃縮時に発生する臭気成分を含んだ汚泥ガスSGは、吸気としてガスタービン1で処理されるので、脱臭設備も不要となる。   Thus, in this sludge concentration system, combined with the cogeneration facility, the waste heat of the cogeneration facility is used as the steam S for evaporating and concentrating the sludge SW in the sludge concentration device 3, and the dried cake in the sludge drying device 4. By using it as a high-temperature gas for producing DC, exhaust heat can be used effectively. Moreover, since the sludge gas SG containing the odor component generated at the time of evaporation and concentration in the sludge concentrating device 3 is processed by the gas turbine 1 as intake air, no deodorizing equipment is required.
図2に示す第2実施形態は、前記第1実施形態(図1)の汚泥乾燥装置4の代わりに焼却炉13を用いたものを示し、汚泥ケーキSCを汚泥乾燥装置4で乾燥処理に付するのではなく、焼却炉13で焼却処理に付する場合を示している。この第2実施形態の基本的構成は、前記第1実施形態と同様であり、同一構成部分についてはその説明を省略し、相異点についてのみ説明する。図2に示すように、排熱ボイラ2出口から延びる排ガス導入通路P3の下流側に前記第1実施形態の汚泥乾燥装置4に代えて焼却炉13を配置している。この焼却炉13は、内部に投入される汚泥ケーキSCを単に乾燥ではなく、完全に焼却処理するのもので、ガスバーナ部131と排ガス排出部132とを備え、上方のホッパ133から内部に投入された汚泥ケーキSCは、排熱ボイラ2出口からの排ガスEGを燃焼用空気とする前記ガスバーナ部131からの高温ガスによって焼却される。汚泥ケーキSCが焼却されると、焼却灰BAとして下部から取り出し、例えば埋め立て用材として用いる。なお、前記排ガス排出部132は、第1実施形態の乾燥ガス排出通路P6と同様、前記排気排出用通路132aとマルチサイクロン132bおよび排風機132cが設けられており、異物やゴミを取り除いたガスが大気に排出されるようになっている。   The second embodiment shown in FIG. 2 shows an example in which an incinerator 13 is used instead of the sludge drying device 4 of the first embodiment (FIG. 1), and the sludge cake SC is subjected to drying treatment by the sludge drying device 4. Instead, the case where the incinerator 13 is subjected to incineration processing is shown. The basic configuration of the second embodiment is the same as that of the first embodiment. The description of the same components is omitted, and only the differences are described. As shown in FIG. 2, an incinerator 13 is disposed on the downstream side of the exhaust gas introduction passage P3 extending from the outlet of the exhaust heat boiler 2 in place of the sludge drying device 4 of the first embodiment. This incinerator 13 is for completely incinerating the sludge cake SC thrown into the interior, not simply drying. The incinerator 13 includes a gas burner part 131 and an exhaust gas discharge part 132 and is introduced into the interior from an upper hopper 133. The sludge cake SC is incinerated by the high-temperature gas from the gas burner 131 using the exhaust gas EG from the outlet of the exhaust heat boiler 2 as combustion air. When the sludge cake SC is incinerated, it is taken out from the lower part as incinerated ash BA and used, for example, as a landfill material. The exhaust gas discharge section 132 is provided with the exhaust discharge path 132a, the multi-cyclone 132b, and the exhaust fan 132c, similar to the dry gas discharge path P6 of the first embodiment. It comes to be discharged into the atmosphere.
図3に示す第3実施形態は、汚泥濃縮装置3で汚泥SWを蒸発濃縮する熱源として前記第1実施形態(図1)の原動機1からの排ガスEGに代えて、排熱ボイラ2出口からの排ガスEGを利用したものを示している。この第3実施形態の基本的構成は、前記第1実施形態と同様であり、同一構成部分についてはその説明を省略し、相異点についてのみ説明する。図3において、排熱ボイラ2出口からの排ガスEGは、原動機1からの排ガスEG(約500℃前後)に比べ、比較的低温(約150℃)であるが、前記汚泥SWを蒸発濃縮するに足りる熱量を保有している。そこで、前記排ガス導入通路P3の下流側から分岐させた排ガス導入通路P14を汚泥濃縮装置3に接続し、排熱ボイラ2出口からの排ガスEGの一部を汚泥濃縮装置3に導入する。これにより、汚泥濃縮装置3での汚泥SWの蒸発濃縮は、前記蒸気S等に加え、排熱ボイラ2出口からの排ガスEGによっても行われ、蒸発濃縮が促進される。   In the third embodiment shown in FIG. 3, instead of the exhaust gas EG from the prime mover 1 of the first embodiment (FIG. 1) as a heat source for evaporating and concentrating the sludge SW in the sludge concentrating device 3, The thing using exhaust gas EG is shown. The basic configuration of the third embodiment is the same as that of the first embodiment. The description of the same components is omitted, and only the differences are described. In FIG. 3, the exhaust gas EG from the outlet of the exhaust heat boiler 2 has a relatively low temperature (about 150 ° C.) as compared with the exhaust gas EG (about 500 ° C.) from the prime mover 1, but evaporates and concentrates the sludge SW. Has enough heat. Therefore, the exhaust gas introduction passage P14 branched from the downstream side of the exhaust gas introduction passage P3 is connected to the sludge concentrating device 3, and a part of the exhaust gas EG from the outlet of the exhaust heat boiler 2 is introduced into the sludge concentrating device 3. Thereby, the evaporation concentration of the sludge SW in the sludge concentrating device 3 is also performed by the exhaust gas EG from the outlet of the exhaust heat boiler 2 in addition to the steam S and the like, and the evaporation concentration is promoted.
図4に示す第4実施形態は、第2実施形態(図2)の原動機1の排ガスに代えて、排熱ボイラ2出口からの排ガスEGを,排ガス導入通路P14により汚泥濃縮装置3に導入して利用している。この第4実施形態による汚泥濃縮装置3での蒸発濃縮の促進効果は、前記第3実施形態(図3)の場合と同一である。   In the fourth embodiment shown in FIG. 4, instead of the exhaust gas of the prime mover 1 of the second embodiment (FIG. 2), the exhaust gas EG from the outlet of the exhaust heat boiler 2 is introduced into the sludge concentrator 3 through the exhaust gas introduction passage P14. It is used. The effect of promoting evaporation concentration in the sludge concentrating device 3 according to the fourth embodiment is the same as that of the third embodiment (FIG. 3).
図5に示す第5実施形態は、汚泥乾燥装置4からの汚泥ガスを汚泥濃縮装置3での蒸発濃縮を行う熱源として利用できるように構成したものを示している。この第5実施形態の基本的構成は、前記第1実施形態(図1)と同様であり、同一構成部分についてはその説明を省略し、相異点についてのみ説明する。図5に示すように、汚泥乾燥装置4からの排ガス排出通路P6の下流端と汚泥濃縮装置3との間を汚泥ガス導入通路P15で連結している。これにより、排熱ボイラ2からの蒸気S等に加え、汚泥乾燥装置4での乾燥処理時に発生する汚泥ガスSGを汚泥濃縮装置3に導入している。この汚泥ガスSG中には多量の水蒸気が含まれているから、その水蒸気潜熱を汚泥SWの蒸発濃縮を行う熱源とすることで、蒸発濃縮が一層促進される。   The fifth embodiment shown in FIG. 5 shows a configuration in which the sludge gas from the sludge drying device 4 can be used as a heat source for evaporating and concentrating in the sludge concentrating device 3. The basic configuration of the fifth embodiment is the same as that of the first embodiment (FIG. 1). The description of the same components will be omitted, and only the differences will be described. As shown in FIG. 5, the sludge gas introduction passage P15 connects the downstream end of the exhaust gas discharge passage P6 from the sludge drying device 4 and the sludge concentrating device 3. Thereby, in addition to the steam S and the like from the exhaust heat boiler 2, the sludge gas SG generated during the drying process in the sludge drying device 4 is introduced into the sludge concentrating device 3. Since a large amount of water vapor is contained in the sludge gas SG, evaporative concentration is further promoted by using the latent heat of the water vapor as a heat source for evaporating and concentrating the sludge SW.
図6に示す第6実施形態は、前記第1〜5実施形態の原動機1の排ガスを熱源として蒸気S等を発生する排熱ボイラ2に代えて、図示した燃料焚ボイラ20からの蒸気S等を、汚泥濃縮装置3での蒸発濃縮を行う熱源として利用し、さらに、前記燃料焚ボイラを出た排ガスを、汚泥乾燥装置4の熱源として利用している。この第6実施形態の基本的構成は、図1に示した第1実施形態と同様であり、同一構成部分についてはその説明を省略し、相異点についてのみ説明する。図6に示すように、燃料f3の供給によって運転され、蒸気S等を発生する燃料焚ボイラ20と、汚泥槽11からの汚泥SWを蒸発濃縮する汚泥濃縮装置3とが、熱源供給通路P20で連結されている。これにより、汚泥濃縮装置3において汚泥SWは、燃料焚ボイラ20からの蒸気S等を熱源として蒸発濃縮され、濃縮汚泥CSWとなる。   In the sixth embodiment shown in FIG. 6, instead of the exhaust heat boiler 2 that generates steam S or the like using the exhaust gas of the prime mover 1 of the first to fifth embodiments as a heat source, the steam S or the like from the illustrated fuel-fired boiler 20 or the like. Is used as a heat source for evaporating and concentrating in the sludge concentrating device 3, and the exhaust gas from the fuel boiler is used as a heat source for the sludge drying device 4. The basic configuration of the sixth embodiment is the same as that of the first embodiment shown in FIG. 1, and the description of the same components will be omitted, and only the differences will be described. As shown in FIG. 6, a fuel tank boiler 20 that operates by supplying fuel f3 and generates steam S and the sludge concentrator 3 that evaporates and concentrates the sludge SW from the sludge tank 11 are provided in a heat source supply passage P20. It is connected. Thereby, in the sludge concentrating device 3, the sludge SW is evaporated and concentrated using the steam S or the like from the fuel tank boiler 20 as a heat source to become a concentrated sludge CSW.
つづいて、前記濃縮汚泥CSWは脱水機12で脱水され、汚泥ケーキSCとしてガスバーナ41を備えた汚泥乾燥装置4に供給され、固形の乾燥ケーキDCとされる。また、燃料焚ボイラ20からのボイラ出口排ガスEGの一部が排ガス供給通路P21により前記汚泥乾燥装置4に供給され、汚泥ケーキSCを乾燥させるようになっているので、前記ガスバーナ41での燃料f2の使用量を削減できる。さらに、汚泥乾燥装置4での乾燥時に発生する臭気成分を含んだ汚泥ガスSGは、汚泥ガス供給通路P22により燃料焚ボイラ20に戻されて燃焼処理されるので、脱臭設備も不要となる。また、汚泥濃縮装置3と燃料焚ボイラ20との間は凝縮水補給通路P23で連結されており、この凝縮水補給通路P23により、汚泥濃縮装置3にて汚泥SWを蒸発濃縮する際に発生した凝縮水CWを、燃料焚ボイラ20に戻してボイラ用給水として利用する。これにより、前記第1実施形態の場合と同様、水資源の有効利用を図っている。   Subsequently, the concentrated sludge CSW is dehydrated by the dehydrator 12 and is supplied as a sludge cake SC to the sludge drying device 4 provided with the gas burner 41 to obtain a solid dry cake DC. Further, a part of the boiler outlet exhaust gas EG from the fuel tank boiler 20 is supplied to the sludge drying device 4 through the exhaust gas supply passage P21 so as to dry the sludge cake SC. Therefore, the fuel f2 in the gas burner 41 Can be reduced. Furthermore, since the sludge gas SG containing the odor component generated at the time of drying in the sludge drying device 4 is returned to the fuel tank boiler 20 through the sludge gas supply passage P22 and burned, no deodorizing equipment is required. Further, the sludge concentrator 3 and the fuel tank boiler 20 are connected by a condensed water replenishment passage P23, which is generated when the sludge SW is evaporated and concentrated in the sludge concentrator 3 by the condensed water replenishment passage P23. The condensed water CW is returned to the fuel tank boiler 20 and used as boiler feed water. Thereby, as in the case of the first embodiment, effective use of water resources is achieved.
この第6実施形態に係る汚泥濃縮システムによれば、燃料焚ボイラ20からの蒸気S等を、汚泥濃縮装置3での蒸発濃縮を行う熱源として利用するのに加えて、燃料焚ボイラ20からのボイラ出口排ガスEGの一部が、排ガス供給通路P21により汚泥乾燥装置4に供給されるので、燃料焚ボイラ20の排熱が有効利用される。また、汚泥SWを蒸発濃縮することで汚泥(SW)量を効率的に減少できるので、汚泥SWの汚泥乾燥装置4での乾燥に先立って脱水を行う脱水機12の台数も削減できる。さらに、汚泥SWの蒸発濃縮により汚泥温度が上昇して汚泥の粘性が下がるので、脱水機12のろ過速度が増し、脱水機台数をさらに削減することができる。このように、汚泥処理に伴う多くのエネルギを燃料焚ボイラ20からの蒸気S等、および排熱によって賄えるので、環境汚染の少ない省エネルギの汚泥処理を実現できる。   According to the sludge concentration system according to the sixth embodiment, in addition to using the steam S and the like from the fuel soot boiler 20 as a heat source for performing evaporation and concentration in the sludge concentrating device 3, Since a part of the boiler outlet exhaust gas EG is supplied to the sludge drying device 4 through the exhaust gas supply passage P21, the exhaust heat of the fuel tank boiler 20 is effectively used. In addition, since the amount of sludge (SW) can be efficiently reduced by evaporating and concentrating the sludge SW, the number of dehydrators 12 that perform dehydration prior to drying of the sludge SW by the sludge drying device 4 can also be reduced. Furthermore, since the sludge temperature rises due to the evaporation and concentration of the sludge SW and the viscosity of the sludge decreases, the filtration speed of the dehydrator 12 increases, and the number of dehydrators can be further reduced. In this way, a large amount of energy associated with the sludge treatment can be provided by the steam S from the fuel fired boiler 20 and the exhaust heat, so that energy-saving sludge treatment with little environmental pollution can be realized.
なお、図1、図3、図5および図6に示した第1,第3,第5,第6実施形態では、汚泥乾燥装置4と脱水機12の一方を省略することができ、図2および図4に示した第2、第4実施形態では、脱水機12を省略できる。   In the first, third, fifth, and sixth embodiments shown in FIGS. 1, 3, 5, and 6, one of the sludge drying device 4 and the dehydrator 12 can be omitted. In the second and fourth embodiments shown in FIG. 4, the dehydrator 12 can be omitted.
本発明の汚泥濃縮システムは、浄水場などの水処理設備から発生する汚泥や工場の生産工程から発生する汚泥の処理に対して、付帯設備に改良を加えることで比較的容易に適用でき、コージェネレーション設備からの排熱を有効利用するシステムとして幅広く利用できる。   The sludge concentration system of the present invention can be applied relatively easily by modifying the incidental equipment for the treatment of sludge generated from water treatment facilities such as water treatment plants and sludge generated from the production process of a factory. It can be widely used as a system that effectively uses exhaust heat from generation facilities.
本発明の第1実施形態に係る汚泥濃縮システムを示す系統図である。It is a distribution diagram showing the sludge concentration system concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る汚泥濃縮システムを示す系統図である。It is a systematic diagram which shows the sludge concentration system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る汚泥濃縮システムを示す系統図である。It is a systematic diagram which shows the sludge concentration system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る汚泥濃縮システムを示す系統図である。It is a systematic diagram which shows the sludge concentration system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る汚泥濃縮システムを示す系統図である。It is a systematic diagram which shows the sludge concentration system which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る汚泥濃縮システムを示す系統図である。It is a systematic diagram which shows the sludge concentration system which concerns on 6th Embodiment of this invention.
符号の説明Explanation of symbols
1 ガスタービン(原動機)
2 排熱ボイラ
3 汚泥濃縮装置
4 汚泥乾燥装置
13 焼却炉
20 燃料焚ボイラ
CSW 濃縮汚泥
DC 乾燥ケーキ
EG 排ガス
S 蒸気
SW 汚泥
SC 汚泥ケーキ
SG 汚泥ガス
1 Gas turbine (motor)
2 Waste heat boiler 3 Sludge concentrator 4 Sludge dryer 13 Incinerator 20 Fuel boiler Boiler CSW Concentrated sludge DC Dry cake EG Exhaust gas S Steam SW Sludge SC Sludge cake SG Sludge gas

Claims (3)

  1. 動力を発生する原動機と、
    前記原動機の排ガスを熱源として蒸気もしくは温水を発生する排熱ボイラと、
    前記蒸気もしくは温水を熱源として導入して汚泥の蒸発濃縮を行う汚泥濃縮装置と、
    前記排熱ボイラを出た排ガスを熱源として、前記蒸発濃縮された汚泥を乾燥させる汚泥乾燥装置とを備え、
    前記汚泥濃縮装置は、前記蒸気もしくは温水に加えて、前記汚泥乾燥装置からの汚泥ガスを導入してこの汚泥ガス中の水蒸気潜熱を熱源として汚泥の蒸発濃縮を行うものである汚泥濃縮システム。
    A prime mover generating power,
    An exhaust heat boiler that generates steam or hot water using the exhaust gas of the prime mover as a heat source;
    A sludge concentrator for evaporating and concentrating sludge by introducing the steam or hot water as a heat source;
    The exhaust gas from the exhaust heat boiler is used as a heat source, and a sludge drying device for drying the evaporated and concentrated sludge is provided.
    The sludge concentrating apparatus, prior Symbol steam or in addition to the hot water, the sludge concentration system the sludge gas by introducing steam latent heat of the sludge in the gas and performs evaporation of the sludge as a heat source from the sludge drying apparatus.
  2. 請求項1において、前記汚泥濃縮装置からの凝縮水が前記排熱ボイラのボイラ給水として導入されている汚泥濃縮システム。 The sludge concentration system according to claim 1 , wherein the condensed water from the sludge concentrator is introduced as boiler feed water for the exhaust heat boiler.
  3. 請求項1において、前記汚泥乾燥装置からの臭気成分を含んだ汚泥ガスが前記原動機の吸気に混入されている汚泥濃縮システム。 The sludge concentration system according to claim 1 , wherein a sludge gas containing an odor component from the sludge drying device is mixed in the intake air of the prime mover.
JP2005205557A 2005-07-14 2005-07-14 Sludge concentration system Active JP4160973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205557A JP4160973B2 (en) 2005-07-14 2005-07-14 Sludge concentration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205557A JP4160973B2 (en) 2005-07-14 2005-07-14 Sludge concentration system

Publications (2)

Publication Number Publication Date
JP2007021333A JP2007021333A (en) 2007-02-01
JP4160973B2 true JP4160973B2 (en) 2008-10-08

Family

ID=37782786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205557A Active JP4160973B2 (en) 2005-07-14 2005-07-14 Sludge concentration system

Country Status (1)

Country Link
JP (1) JP4160973B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7610692B2 (en) * 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
BRPI0719832B1 (en) 2006-10-09 2018-05-08 Moncrieff Ian integrated utility system
CN102167488B (en) * 2011-01-21 2012-11-21 上海伏波环保设备有限公司 Non-contact type sludge drying system utilizing flue gas afterheat
CN102173555B (en) * 2011-03-16 2012-07-04 上海伏波环保设备有限公司 Boiler unit steam extraction and drying sludge system with thermal compensation
WO2013094859A1 (en) * 2011-12-21 2013-06-27 Kang Seok-Woong Operation logic of an organic material thermohydrolysis system
DE202013105737U1 (en) 2013-12-17 2014-02-12 mecoplan GmbH drying plant
CN104150732B (en) * 2014-08-29 2016-05-25 凤阳海泰科能源环境管理服务有限公司 A kind of mud two-stage anhydration system

Also Published As

Publication number Publication date
JP2007021333A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4160973B2 (en) Sludge concentration system
US3954069A (en) Process and apparatus for the incineration of aqueous sewage sludge
CN107923608B (en) Cogeneration systems
JP5135369B2 (en) Sludge drying method
JP2005321131A (en) Sludge incinerating system
WO2014038392A1 (en) Power generation device using organic rankine cycle and power generation method
JP2005090901A (en) Energy supply system effectively using waste
JP6522085B1 (en) Heat recovery power generation equipment from flue gas and control method thereof
KR101154826B1 (en) Sewage sludge processing equipment using direct buring deo-dorization device
JPH0932513A (en) Exhaust washing waste water power generation system
JP2011020060A (en) Garbage disposal system
JP6586252B1 (en) Sludge drying carrier gas treatment system
KR20130120748A (en) Contaminated soil remediation system
WO2007132312A2 (en) A process for improving efficiency, while also decreasing flue gas emissions in stations producing power and heat and the implementation system of this process
JP2016083645A (en) Sludge drying system and sludge drying method
JP6047340B2 (en) Water-containing material treatment system and water-containing material treatment method
KR101171288B1 (en) A damp garbage processing equipment using waste heat
JP2019141769A (en) Plant, biomass fuel manufacturing system, biomass power generation facility, plant operating method, and biomass fuel manufacturing method
JPH11200882A (en) Sludge power generation equipment
JP2001029939A (en) Wastewater treatment facility
JPH1057998A (en) Treatment of sludge and system therefor
KR101937759B1 (en) Compact Sludge Drying System Excluding Formation of the Glue zone
CN212334981U (en) System for utilize flue evaporation sludge drying waste water
CN107473552B (en) Comprehensive utilization method of heat energy of sludge pyrolysis system of multi-hearth furnace
JP3769204B2 (en) Combustion treatment method of waste including organic waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4160973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250