JP4152695B2 - Method for producing fresh frozen raw vegetables - Google Patents

Method for producing fresh frozen raw vegetables Download PDF

Info

Publication number
JP4152695B2
JP4152695B2 JP2002248570A JP2002248570A JP4152695B2 JP 4152695 B2 JP4152695 B2 JP 4152695B2 JP 2002248570 A JP2002248570 A JP 2002248570A JP 2002248570 A JP2002248570 A JP 2002248570A JP 4152695 B2 JP4152695 B2 JP 4152695B2
Authority
JP
Japan
Prior art keywords
magnetic field
frozen
fresh
vegetables
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002248570A
Other languages
Japanese (ja)
Other versions
JP2004081133A (en
Inventor
哲男 大和田
Original Assignee
株式会社アビー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アビー filed Critical 株式会社アビー
Priority to JP2002248570A priority Critical patent/JP4152695B2/en
Publication of JP2004081133A publication Critical patent/JP2004081133A/en
Application granted granted Critical
Publication of JP4152695B2 publication Critical patent/JP4152695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Description

【0001】
【発明の属する技術分野】
本発明は、生野菜の冷凍方法に係り、とくに、生野菜の組織細胞体の破壊を抑制し、生野菜の鮮度が維持できる、高鮮度凍結生野菜の製造方法に関する。
【0002】
【従来の技術】
従来から、食材、食品や生体等の被冷凍物の鮮度を長期にわたって維持して保存する方法として冷凍保存がある。しかし、従来の冷凍保存方法では、被冷凍物の色調の変化、味覚の劣化、ドリップ (解凍時の液汁の流出)の発生等の品質の低下や鮮度の低下を完全に防止することができなかった。食材、食品や生体等の被冷凍物には、それらを構成する蛋白質等の分子に拘束された結合水、およびこれら分子に拘束されずに被冷凍物内を自由に移動することができる自由水からなる、多量の水分が含まれている。冷凍時には、この自由水が凍結し、氷の結晶として成長する。この氷の結晶が粗大化すると、被冷凍物の細胞が破壊され、食材、食品等では解凍時にドリップが発生し、生体の元の状態への復元が困難となり、品質の低下や鮮度の低下が問題となっていた。
【0003】
氷結晶の粗大化は、冷凍時に氷結晶生成温度域を通過する時間が緩慢である場合に発生する。そこで、被冷凍物を液体冷媒に浸漬、あるいは被冷凍物に液体冷媒を散布して、かかる氷結晶生成温度域を速やかに通過させるべく急速冷却し、氷の結晶の粗大化を抑制して冷凍する方法が考えられる。
【0004】
【発明が解決しようとする課題】
この急速冷却・冷凍を利用して、従来から、野菜を冷凍し凍結野菜とすることが行なわれていた。しかし、被冷凍物を液体冷媒に浸漬する方法では、表層は急速冷却が可能となるが、表層に凍結層が形成される。被冷凍物内部の冷却は、表面からの熱伝達により律速されるが、表層の凍結層の存在により、内部への熱伝達が阻害され、内部の冷却が遅れるため、被冷凍物の内部では氷結晶の粗大化が起きてしまい、氷結晶の粗大化を防止できないという問題があった。このため、この急速冷却・冷凍を利用した凍結野菜の製造方法では生野菜の細胞組織体が破壊され、粉末状の野菜とするにはよいが、生野菜の新鮮な味覚や元の状態を維持することができないという問題があった。
【0005】
本発明は、上記したような従来技術の問題に鑑みてなされたものであり、少なくとも生野菜の新鮮な味覚を維持できる高鮮度凍結生野菜の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、上記した課題を達成するために、氷結晶の粗大化に及ぼす要因について、 鋭意検討した。 その結果、変動磁場および静磁場あるいはさらに交番電界の作用下で急速冷却し、冷凍することにより、被冷凍物の細胞組織体が破壊されず、被冷凍物が生野菜であっても鮮度・品質の維持が可能であることを見い出した。そして、とくに生野菜においては、生野菜の新鮮な味覚を維持するためには、作用する変動磁場および静磁場あるいはさらに交番電界の均一性が大切であることを見い出した。
【0007】
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。
すなわち、本発明の要旨は次のとおりである。
(1)生野菜または湯通しした生野菜を、静磁場発生手段および変動磁場発生手段を有する冷凍庫の内部閉空間に収容して静磁場および変動磁場の作用下で所定の温度まで急速冷却したのち、該所定の温度で速やかに冷凍する凍結生野菜の製造方法において、前記静磁場発生手段が1〜10000Gaus の静磁場を発生する静磁場発生手段であり、前記変動磁場発生手段が、交流を通電して0.1 〜1000Gausの変動磁場を発生する電磁コイル構造体を複数個有し、該電磁コイル構造体を、前記生野菜を保持する保持具にまたがるように、あるいは前記生野菜を保持する保持具を囲むように、かつ複数の該電磁コイル構造体が前記保持具に沿って並行、直行または交叉するように配設した変動磁場発生手段であることを特徴とする高鮮度凍結生野菜の製造方法。
(2)(1)において、前記変動磁場発生手段が、交流を通電して変動磁場を発生する電磁コイル構造体を、前記生野菜を保持するネットコンベアベルトを挟むように一対配設し、かつネットコンベアベルトの進行方向に沿って複数対を並設した変動磁場発生手段とすることを特徴とする高鮮度凍結生野菜の製造方法。
(3)(1)または(2)において、前記電磁コイル構造体が、所定形状を有するコイル形成用の基材と、該基材に絶縁被膜付き高電導性線材を巻き付けて形成される電磁コイルとを有し、該電磁コイルをコーキング材により密閉してなる電磁コイル構造体であることを特徴とする高鮮度凍結生野菜の製造方法。
(4)(1)ないし(3)のいずれかにおいて、前記静磁場および変動磁場に加えて、さらに、周波数:50Hz〜5MHz の可変周波数の交番電界を作用させることを特徴とする高鮮度凍結生野菜の製造方法。
(5)(1)ないし(4)のいずれかにおいて、前記生野菜が、静磁場および変動磁場、あるいはさらに交番電界の作用下で急速冷却したのち冷凍された凍結生野菜を湯通ししたものであることを特徴とする高鮮度凍結生野菜の製造方法。
(6)(1)ないし(5)のいずれかにおいて、前記冷凍庫内の冷気冷風にイオン風を重畳させることを特徴とする高鮮度凍結生野菜の製造方法。
(7)(1)ないし(6)のいずれかに記載の高鮮度凍結生野菜の製造方法で調整されてなる高鮮度凍結生野菜。
【0008】
【発明の実施の形態】
本発明では、被冷凍物として生野菜または湯通しした生野菜を、静磁場および変動磁場発生手段を有する冷凍庫の内部閉空間に収容して静磁場および変動磁場の作用下で、水分の凍結を抑制しつつ所定の温度まで急速冷却したのち、磁場の印加を停止し、該所定の温度で瞬時に冷凍する。所定の温度としては−20〜−50℃の間の温度とすることが好ましい。また、本発明では、静磁場および変動磁場に加えてさらに、交番電界を作用させてもよい。
【0009】
変動磁場、静磁場あるいはさらに交番電界の作用下で、所定の温度まで急速冷却することにより、水分の凍結が抑制され、被冷凍物である生野菜の細胞組織体の破壊が抑制され、生野菜の新鮮な味覚やもとの状態で維持できる。
本発明では、とくに被冷凍物である生野菜に、強くしかも均一な変動磁場を印加するため、冷凍庫に配設する変動磁場発生手段を、被冷凍物(生野菜)を保持する保持具にまたがるように、あるいは被冷凍物(生野菜)を保持する保持具を囲むように、あるいは被冷凍物(生野菜)を保持する保持具を挟み込むように配置し、かつ複数の変動磁場発生手段を被冷凍物(生野菜)に並行、直行または交叉するように配設して、変動磁場を被冷凍物である生野菜に作用(印加)させる。
【0010】
本発明では、変動磁場発生手段は、交流を通電して変動磁場を発生する電磁コイル構造体1とする。
電磁コイル構造体1は、所定形状を有するコイル形成用の基材11と、この基材11に絶縁被膜付き高電導性線材121 を所定回数巻き付けて形成される電磁コイル12とを有する。この電磁コイル12はコーキング材13により密閉される。なお、この基材は、上記した電磁コイルを格納可能なように断面ケース状とすることが好ましい。コーキング材13により密閉された電磁コイルを格納した、断面がケース状をした基材には、さらに、同種材料製の蓋が取り付けられ接着剤等によりケース状の基材と接合されて、電磁コイル12を密閉格納した電磁コイル構造体1となる。
【0011】
基材11としては、電気絶縁性、耐水性、耐熱性、および透磁性を有する材料とすることが好ましい。このような材料としては、プラスチック、ゴム類、木材またはそれらの複合材が好ましい。
なお、断面ケース状をした基材11の形状は、対象物を搭載または保持する保持具に応じた所定形状とすることが好ましく特に限定されない。保持具が、ラック型保持具であれば、長方形、 正方形のリング状とすることが好ましく、ネットベルトコンベア式保持具であれば、長方形または正方形のリング状とすることが好ましい。
【0012】
また、使用する高電導性線材としては単線または撚線のCu線が例示される。なお、基材に巻き付けて電磁コイルを形成する高電導性線材は、高電気絶縁性の絶縁被膜で被覆(コート)されている。高電気絶縁性の絶縁被膜としては、ポリイミド樹脂、ナイロン、ポリテトラフルオロエチレン(商品名:テフロン)等が例示される。
【0013】
図3に、基材の形状を長方形のリング状とした、電磁コイル構造体1の一例を模式的に示す。
このような構造の電磁コイル構造体1を複数個配設し、交流を通電して変動磁場を発生させることにより、均一な強さの変動磁場が得られ、被冷凍物(生野菜)に均一強さの変動磁場を印加することができる。なお、本発明で使用する電磁コイル構造体はこれに限定されるものではないことはいうまでもない。また、電磁コイル構造体1の配設個数および配設間隔は、保持具の長さ、磁場強さの均一性の度合い等によって適宜決定することが好ましい。
【0014】
電磁コイル構造体1の電磁コイル12に一定周波数の交流電流を流すことにより、磁場の方向が周期的に変動する変動磁場を形成することができる。電磁コイル12に流す交流電流は、周波数:50Hz〜5MHz の交流電流とすることが好ましく、変動磁場の強さは、生野菜の種類により適正値があり、0.1 〜1000Gausとすることが好ましい。変動磁場の強さが0.1 Gaus未満では、磁気の効果の判別がつきにくく、一方1000Gausを超えると必要以上に大きな磁場がかかるという問題がある。
【0015】
本発明に好適な、変動磁場発生手段を有する冷凍庫の一例を図1に示す。
冷凍庫が、ラック型バッチ式の冷凍庫の場合には、図1に示すように、電磁コイル構造体1を、被冷凍物 (生野菜)2を保持するラック型保持具(ラック型トレイ)4にまたがるように、あるいは被冷凍物 (生野菜)を保持するラック式保持具(ラック型トレイ)4を囲むように設け、かつ電磁コイル構造体1がラック式保持具に沿って並行するように複数個並設することが好ましい。なお、並行に代えて、直行または交叉するように複数個並設してもよい。
【0016】
このように電磁コイル構造体を配設することにより、被冷凍物には、水平方向に均一な強さを有する変動磁場が印加される。
また、冷凍庫が、トンネル型あるいはスパイラル型で、冷凍庫の内部閉空間に被冷凍物をネットコンベアベルトにより連続的に収容、 冷凍する冷凍庫の場合には、長方形リング状の電磁コイル構造体を、被冷凍物を保持する保持具(ネットコンベアベルト)を挟むように、上側下側にそれぞれ1個ずつ、 すなわち一対配設し、かつネットコンベアベルトの進行方向に複数対を並行するように配設(並設)することが好ましい。
【0017】
また、本発明では、被冷凍物である生野菜に、変動磁場に加えて、さらに静磁場を作用させる。静磁場を作用させる静磁場発生手段7としては、永久磁石とすることが好ましい。永久磁石は、冷凍庫31の内部空間に載置される被冷凍物 (生野菜)2に静磁場が作用するように、冷凍庫31の側壁に極性を揃えて設けられことが好ましい。なお、静磁場発生手段7としての永久磁石は、被冷凍物(生野菜)2に静磁場が作用するように極性を揃えて、被冷凍物2(生野菜)を保持する保持手段41の裏側に設けてもよい。
【0018】
また、被冷凍物 (生野菜)に作用する静磁場の強さは1〜10000Gaus とすることが好ましい。静磁場の強さが、1Gaus未満では地磁気に影響されて静磁場の効果の判別がつきにくくなる。一方、永久磁石の製造限界を考慮すると、静磁場の上限は10000Gaus とすることが好ましい。なお、図1、図2では、鉛直方向に静磁場が作用するように静磁場発生手段7が冷凍庫31の側壁に極性を揃えて設けられた状態が示されているが、静磁場の方向は水平方向でもよいことはいうまでもない。
【0019】
本発明に好適な、冷凍庫には、変動磁場発生手段1、静磁場発生手段7以外に、図1に示すように、冷凍庫の内部空間に収容されている被冷凍物(生野菜)2を冷却する冷気を発生する冷凍手段5、および冷気を被冷凍物(生野菜)に供給する、冷凍庫内部に設けられた送風手段55を有することは言うまでもない。なお、とくに図示されないが、冷凍庫31の外郭壁と内壁の間には、断熱部材が配設されることはいうまでもない。
【0020】
冷凍手段5は、圧縮機53、凝縮器54、膨張弁52、冷却パイプ (蒸発器)51とが連結され冷媒が循環する、通常公知の冷凍サイクルがいずれも適用できる。なお、膨張弁52、冷却パイプ (蒸発器)51は冷凍庫31の内部空間に設置され、冷気の発生に寄与する。また、被冷凍物(生野菜)の急速な温度低下を助長するために、冷凍庫の内壁面を、遠赤外放射吸収能を有する部材で構成することが好ましい。内壁面に遠赤外放射吸収能を有する材料を内壁面にコーティングしてもよく、また、内壁面にプレート状の遠赤外放射吸収能を有する部材を配設してもよい。これにより、被冷凍物(生野菜)から放射される輻射熱(遠赤外線)を速やかに吸収することができ、被冷凍物の温度低下を速やかに達成する助けとなる。内壁面に配設された遠赤外放射吸収能を有する部材により、被冷凍物の温度と内壁面との温度差ΔTの4乗に比例した被冷凍物の熱が吸収され、被冷凍物の急速冷却に大きく寄与できる。
【0021】
また、図2に示すように、上記した送風手段である送風ファン55により送風された冷気冷風57に、イオン風発生装置6により発生されたマイナスの空気イオンからなるイオン風を重畳させてもよい。イオン風を重畳させた冷気冷風を被冷凍物(生野菜)に供給すると、被冷凍物(生野菜)への直接熱伝達を促進し、被冷凍物からの抜熱が促進され被冷凍物の急速な温度低下が助長されると共に、生野菜の鮮度が一層助長される。イオン風発生装置としては、管状の正極と、この管状の正極の内部に装入された線状の負極と、これら正極と負極の間に電圧を印加する電圧発生装置とを有することが好ましい。また、図2に示すようにさらに、冷凍庫内の冷気冷風の通路に高熱伝導性材料からなるハニカム構造体56を配設することが好ましい。冷気冷風を、ハニカム構造体56に通気することにより、冷気冷風の温度低下と均一な整流を助長することができる。ハニカム構造体56は、冷気冷風が通気できる構造であればよく、その構造はとくに限定されないが、断面を格子状とし長手方向に通気可能とした構造体とすることがより好ましい。また、ハニカム構造体の設置場所は、冷気冷風の通路であれば特に限定されない。
【0022】
なお、図1、図2にはとくに図示されていないが、本発明では、被冷凍物である生野菜に、上記した変動磁場、および静磁場に加えて、さらに交番電界を作用させてもよい。被冷凍物である生野菜に、変動磁場、静磁場に加えて、交番電界を作用させることにより、生野菜を高鮮度・高品質に保持することがより容易となる。
【0023】
なお、交番電界を印加する、交番電界発生手段は、被冷凍物である生野菜を挟み込むように互いに対向して配設される少なくとも1対の電極と、該一対の電極間に交番電界を印加する交番電界発生装置とを有し、1対の電極を介し、被冷凍物(生野菜)に交番電界を作用させることが好ましい。交番電界発生装置は、周波数発生装置を有し、周波数可変とすることが好ましく、また、増幅回路を有し、所望の電界強さ(10V/cm 〜70V/cm )を少なくとも一対の電極に印加することが好ましい。作用させる交番電界は、周波数50Hz〜5MHz の電界エネルギーを連続的に走査するか、あるいは周波数を段階的 (ステップ状)に変化させた電界エネルギーとすることが有効である。被冷凍物に、交番電界と磁場とを同時に作用させることにより、被冷凍物に含まれる自由水が、結合水に移行し、このため自由水が減少して、氷結晶の生成確率が減少し、氷結晶の核生成およびその粗大化をさらに抑制することができる。これにより、冷気を被冷凍物の内部へさらに効果的に伝達できるため、被冷凍物の冷却速度を顕著に増加することができる。
【0024】
上記したように、生野菜を、静磁場および変動磁場、あるいはさらに交番電界の作用下で急速冷却、冷凍することにより、氷結晶の核生成およびその粗大化が抑制されることにより、生野菜の細胞組織体の破壊が防止され、生の状態を冷凍時にも保持できる。このようにして冷凍されたものは、解凍時にドリップを生じることがなく、生野菜のままの新鮮なおいしさが確保できる。
【0025】
なお、生野菜は冷凍前に60℃程度の温水で湯通ししたのち、上記したように少なくとも静磁場および均一変動磁場の作用下で冷凍することが好ましい。また、少なくとも静磁場および均一変動磁場の作用下で生のまま凍結した生野菜を60℃程度の温水で湯通し再度、少なくとも静磁場および均一変動磁場の作用下で冷凍してもよい。凍結した生野菜を60℃程度の温水で湯通しすることにより、高鮮度高品質の生野菜を確保することができる。
【0026】
【実施例】
(実施例1)
図1に示すような、変動磁場発生手段として電磁コイル構造体1を保持具 (ラック型トレイ)4の長手方向に並行して4基配設し、 静磁場発生手段として永久磁石7を冷凍庫の側面に有する冷凍庫31の内部空間内で、被冷凍物として生野菜(ほうれん草、ちんげん菜各1束)を保持具 (ラック型トレイ)4に保持し、静磁場および変動磁場の作用下で−30℃まで急速冷却し凍結生野菜とした。なお、被冷凍物に静磁場と変動磁場からなる磁場が作用するように調整した結果、保持具上での磁場強さは、5〜10Gausでほとんど均一であった。なお、磁場の作用(印加)なしで、 −30℃まで急速冷却し凍結生野菜とした場合を比較例とした。
【0027】
得られた凍結生野菜を自然解凍したのち、60℃の温水に湯通ししたのち食し、その味覚を調べた。その結果、磁場作用下で急速冷却し、冷凍した本発明例では、解凍によって、ドリップが生ぜず、生の美味しさが再現できた。一方、比較例は、解凍により凍結野菜の細胞が破壊されて本来の状態が保持できずへたりを生じてドリップが生じ、美味しさに欠けるものとなっていた。
【0028】
(実施例2)
実施例1と同様な方法で凍結生野菜とした凍結ほうれん草、凍結ちんげん菜各1束を、60℃の温水で湯通ししたのち、再度実施例1と同様な条件で−30℃まで急速冷却し、その温度で冷凍して凍結生野菜(凍結ほうれん草、凍結ちんげん菜)とした。得られた凍結生野菜を自然解凍したのち、食し、その味覚を調べた。その結果、実施例1と同様に磁場作用下で急速冷却し冷凍した本発明例では、解凍によって、ドリップも生ぜず、美味しさを確保できることがわかった。
【0029】
(実施例3)
生野菜(ほうれん草、ちんげん菜各1束)を60℃の温水で30秒間湯通してから、 水切りし、図2に示す冷凍庫内で、実施例1と同様な磁場作用下の条件で−30℃まで急速冷却し、その温度で冷凍し凍結生野菜とした。また、実施例1と同様に磁場印加を行なわず急速冷却し冷凍した場合を比較例とした。得られた凍結生野菜を自然解凍したのち、食し、その味覚を調べた。その結果、磁場の作用下で急速冷却し冷凍された本発明例の凍結生野菜は、いずれも解凍によって、ドリップが生ぜず、元の生の美味しさが再現できた。一方、比較例は、解凍によりドリップが生じ、美味しさに欠けるものとなっていた。
【0030】
(実施例4)
実施例1と同様に、変動磁場発生手段として電磁コイル構造体1を保持具(ラック型トレイ)4の長手方向に並行して4基配設し、静磁場発生手段として永久磁石7を冷凍庫の側面に有する冷凍庫31の内部空間内に、さらに、図2に示すようにマイナスイオン発生装置6を冷気冷風57の通路に配設し、被冷凍物として生野菜(ほうれん草1束)を保持具(ラック型トレイ)4に保持し、静磁場および変動磁場の作用下で−30℃まで急速冷却し凍結生野菜とした。なお、被冷凍物に作用する静磁場、変動磁場の大きさは実施例1と同様とした。また、マイナスイオン発生装置6は、直径20mm×長さ50mmのステンレス製円筒を+極とし、−極として針状の電極を円筒空間の中心に15mm挿入した形状とした。これら電極に交流静電位7000Vを印加しイオン風を発生させ冷気冷風57に重畳した。
【0031】
得られた凍結ほうれん草は、イオン風を重畳させない場合にくらべ、高鮮度で、かつ色鮮やかであった。冷気冷風にイオン風を重畳させることにより、冷熱伝達が促進されるとともに酸化が抑制され、高鮮度保持がより一層助長されたものと考えられる。
【0032】
【発明の効果】
以上、詳述したように、本発明によれば、生野菜と同等の、高鮮度を維持し、 生の美味しさが再現できる凍結生野菜を、容易に、 しかも安定して製造でき、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】 本発明に好適な冷凍庫の一例を模式的に示す概略説明図である。
【図2】 本発明に好適な冷凍庫の一例を模式的に示す概略説明図である。
【図3】 本発明に好適な変動磁場発生手段である、電磁コイル構造体の一例を模式的に示す概略説明図である。
【符号の説明】
1 電磁コイル構造体
11 基材
12 電磁コイル
121 絶縁被覆付き高電導性線材
13 コーキング材
1a 交流供給手段
2 被冷凍物(生野菜)
31 冷凍庫
4 保持具(ラック型保持具、ラック型トレイ)
5 冷凍手段(冷媒)
6 イオン風発生装置
7 静磁場発生手段(永久磁石)
56 ハニカム構造体
51 冷却器(クーラー)
52 膨張弁
53 凝縮器
54 冷凍機
55 送風(冷気)ファン
57 冷気冷風
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for freezing fresh vegetables, and more particularly, to a method for producing fresh fresh frozen vegetables that can suppress the destruction of tissue cell bodies of fresh vegetables and maintain the freshness of fresh vegetables.
[0002]
[Prior art]
Conventionally, there is frozen storage as a method for maintaining and maintaining the freshness of foods, foods, living bodies and the like for a long period of time. However, conventional frozen storage methods cannot completely prevent deterioration in quality and deterioration in freshness, such as changes in the color of the object to be frozen, deterioration in taste, and the occurrence of drip. It was. To-be-frozen items such as foodstuffs, foods and living organisms are bound water bound to molecules such as proteins constituting them, and free water that can freely move within the to-be-frozen object without being bound by these molecules. Contains a large amount of water. When frozen, this free water freezes and grows as ice crystals. If the ice crystals become coarse, the cells of the object to be frozen are destroyed, and in foods, foods, etc., drip is generated when thawing, making it difficult to restore the original state of the living body, reducing the quality and freshness. It was a problem.
[0003]
Ice crystal coarsening occurs when the time for passing through the ice crystal formation temperature range is slow during freezing. Therefore, the object to be frozen is immersed in the liquid refrigerant, or sprayed with the liquid refrigerant on the object to be frozen, and rapidly cooled so as to pass through the ice crystal generation temperature range quickly, and the ice crystals are prevented from coarsening and frozen. A way to do this is considered.
[0004]
[Problems to be solved by the invention]
Conventionally, using this rapid cooling / freezing, vegetables have been frozen to be frozen vegetables. However, in the method of immersing the object to be frozen in the liquid refrigerant, the surface layer can be rapidly cooled, but a frozen layer is formed on the surface layer. Cooling of the object to be frozen is controlled by heat transfer from the surface, but due to the presence of the surface frozen layer, heat transfer to the inside is hindered and internal cooling is delayed. There is a problem that the coarsening of the crystal occurs, and the coarsening of the ice crystal cannot be prevented. For this reason, in this frozen vegetable manufacturing method using rapid cooling / freezing, the cell organization of raw vegetables is destroyed, and it is good to make powdery vegetables, but the fresh taste and original state of raw vegetables are maintained. There was a problem that could not be done.
[0005]
This invention is made | formed in view of the problem of the above prior arts, and it aims at providing the manufacturing method of the high freshness frozen raw vegetable which can maintain the fresh taste of a raw vegetable at least.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described problems, the present inventor diligently studied the factors affecting the coarsening of ice crystals. As a result, by rapidly cooling and freezing under the action of fluctuating magnetic field and static magnetic field or even alternating electric field, the cell tissue of the object to be frozen is not destroyed, and even if the object to be frozen is fresh vegetables, freshness and quality It was found that it is possible to maintain. And in fresh vegetables, in order to maintain the fresh taste of raw vegetables, it was found that the fluctuating magnetic field and the static magnetic field or even the uniformity of the alternating electric field is important.
[0007]
The present invention has been completed based on the above findings and further studies.
That is, the gist of the present invention is as follows.
(1) After storing raw vegetables or boiled raw vegetables in an internal closed space of a freezer having a static magnetic field generating means and a variable magnetic field generating means and rapidly cooling to a predetermined temperature under the action of the static magnetic field and the variable magnetic field, In the method for producing frozen raw vegetables that is quickly frozen at the predetermined temperature, the static magnetic field generating means is a static magnetic field generating means for generating a static magnetic field of 1 to 10000 Gaus, and the variable magnetic field generating means is energized with alternating current. A plurality of electromagnetic coil structures that generate a varying magnetic field of 0.1 to 1000 Gaus, and the electromagnetic coil structure spans a holder that holds the raw vegetables, or a holder that holds the raw vegetables A method for producing high freshness frozen raw vegetables, characterized in that it is a variable magnetic field generating means arranged so as to surround and a plurality of the electromagnetic coil structures arranged in parallel, perpendicularly or crossing along the holder.
(2) In (1), the fluctuating magnetic field generating means arranges a pair of electromagnetic coil structures that generate a fluctuating magnetic field by energizing an alternating current so as to sandwich a net conveyor belt that holds the raw vegetables, and A method for producing high freshness frozen raw vegetables, characterized in that a plurality of pairs are arranged in parallel along the traveling direction of the net conveyor belt.
(3) In (1) or (2), the electromagnetic coil structure is formed by winding a coil-forming base material having a predetermined shape and a highly conductive wire with an insulating coating around the base material. A method for producing a fresh and fresh frozen vegetable, characterized in that the electromagnetic coil structure is formed by sealing the electromagnetic coil with a caulking material.
(4) In any one of (1) to (3), in addition to the static magnetic field and the variable magnetic field, an alternating electric field having a variable frequency of 50 Hz to 5 MHz is further applied. A method for producing vegetables.
(5) In any one of (1) to (4), the raw vegetables are boiled with frozen raw vegetables frozen after being rapidly cooled under the action of a static magnetic field and a variable magnetic field, or an alternating electric field. A method for producing a fresh fresh frozen vegetable characterized by the above.
(6) In any one of (1) to (5), an ion wind is superimposed on the cold air in the freezer.
(7) A high freshness frozen raw vegetable prepared by the method for producing a high freshness frozen raw vegetable according to any one of (1) to (6).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, raw vegetables or boiled raw vegetables are stored in a closed space of a freezer having a static magnetic field and a variable magnetic field generating means to suppress freezing of moisture under the action of the static magnetic field and the variable magnetic field. However, after rapidly cooling to a predetermined temperature, the application of the magnetic field is stopped, and freezing is instantaneously performed at the predetermined temperature. The predetermined temperature is preferably -20 to -50 ° C. In the present invention, an alternating electric field may be applied in addition to the static magnetic field and the variable magnetic field.
[0009]
By rapidly cooling to a predetermined temperature under the action of a variable magnetic field, a static magnetic field, or even an alternating electric field, freezing of moisture is suppressed, and destruction of the cellular tissue of raw vegetables that are to be frozen is suppressed, and raw vegetables The fresh taste and the original state can be maintained.
In the present invention, in order to apply a strong and uniform variable magnetic field to raw vegetables that are to be frozen in particular, the variable magnetic field generating means disposed in the freezer spans a holder that holds the object to be frozen (raw vegetables). Or surrounding the holder for holding the object to be frozen (raw vegetables), or sandwiching the holder for holding the object to be frozen (raw vegetables), It arrange | positions so that it may be parallel, orthogonal, or cross | intersect with frozen thing (raw vegetable), and a fluctuation magnetic field is made to act (apply) to the raw vegetable which is to-be-frozen.
[0010]
In the present invention, the varying magnetic field generating means is the electromagnetic coil structure 1 that generates a varying magnetic field by energizing an alternating current.
The electromagnetic coil structure 1 includes a coil-forming base material 11 having a predetermined shape and an electromagnetic coil 12 formed by winding a high-conductivity wire 121 with an insulating coating around the base material 11 a predetermined number of times. The electromagnetic coil 12 is sealed with a caulking material 13. In addition, it is preferable that this base material is made into a cross-sectional case shape so that the above-mentioned electromagnetic coil can be stored. The electromagnetic coil sealed with the caulking material 13 is housed in a base material with a case-shaped cross section, and a lid made of the same material is attached to the base material in the case shape with an adhesive or the like. The electromagnetic coil structure 1 in which 12 is hermetically stored is obtained.
[0011]
The substrate 11 is preferably a material having electrical insulation, water resistance, heat resistance, and magnetic permeability. As such a material, plastic, rubber, wood or a composite material thereof is preferable.
Note that the shape of the base material 11 having a cross-sectional case shape is preferably not particularly limited, and is preferably a predetermined shape corresponding to a holding tool for mounting or holding an object. If the holder is a rack-type holder, a rectangular or square ring shape is preferred, and if it is a net belt conveyor type holder, a rectangular or square ring shape is preferred.
[0012]
Moreover, as a highly conductive wire to be used, a single wire or a stranded Cu wire is exemplified. Note that a highly conductive wire wound around a substrate to form an electromagnetic coil is coated (coated) with a highly electrically insulating insulating coating. Examples of the high electrical insulating insulating film include polyimide resin, nylon, polytetrafluoroethylene (trade name: Teflon), and the like.
[0013]
FIG. 3 schematically shows an example of the electromagnetic coil structure 1 in which the base material has a rectangular ring shape.
By arranging a plurality of electromagnetic coil structures 1 having such a structure and generating a variable magnetic field by energizing an alternating current, a variable magnetic field with a uniform strength can be obtained and uniformly applied to the object to be frozen (raw vegetables). A varying magnetic field of strength can be applied. Needless to say, the electromagnetic coil structure used in the present invention is not limited to this. In addition, it is preferable to appropriately determine the number and interval of the electromagnetic coil structures 1 according to the length of the holder, the degree of uniformity of the magnetic field strength, and the like.
[0014]
By flowing an alternating current having a constant frequency through the electromagnetic coil 12 of the electromagnetic coil structure 1, a variable magnetic field in which the direction of the magnetic field periodically varies can be formed. The alternating current flowing through the electromagnetic coil 12 is preferably an alternating current having a frequency of 50 Hz to 5 MHz, and the strength of the variable magnetic field has an appropriate value depending on the type of raw vegetables, and is preferably 0.1 to 1000 Gaus. If the strength of the fluctuating magnetic field is less than 0.1 Gaus, it is difficult to determine the effect of magnetism, while if it exceeds 1000 Gaus, there is a problem that an unnecessarily large magnetic field is applied.
[0015]
An example of a freezer having a fluctuating magnetic field generating means suitable for the present invention is shown in FIG.
When the freezer is a rack-type batch type freezer, as shown in FIG. 1, the electromagnetic coil structure 1 is placed on a rack-type holder (rack-type tray) 4 that holds an object to be frozen (raw vegetables) 2. A plurality of rack-shaped holders (rack-type trays) 4 that hold the object to be frozen (raw vegetables) are provided so as to extend over and the electromagnetic coil structures 1 are parallel to the rack-type holder. It is preferable to arrange them in parallel. In addition, it may replace with parallel and may be arranged in parallel so that it may be orthogonal or crossed.
[0016]
By arranging the electromagnetic coil structure in this way, a fluctuating magnetic field having a uniform strength in the horizontal direction is applied to the object to be frozen.
In addition, when the freezer is a tunnel type or spiral type, and the object to be frozen is continuously stored and frozen in the closed space inside the freezer by the net conveyor belt, the rectangular ring-shaped electromagnetic coil structure is A pair of holders (net conveyor belts) for holding frozen products are placed on the upper and lower sides, ie, a pair, and a plurality of pairs are arranged in parallel in the traveling direction of the net conveyor belt ( It is preferable to arrange them side by side.
[0017]
Moreover, in this invention, in addition to a fluctuation | variation magnetic field, a static magnetic field is made to act on the raw vegetable which is to-be-frozen. The static magnetic field generating means 7 for applying a static magnetic field is preferably a permanent magnet. The permanent magnet is preferably provided with the same polarity on the side wall of the freezer 31 so that a static magnetic field acts on the object to be frozen (raw vegetables) 2 placed in the internal space of the freezer 31. In addition, the permanent magnet as the static magnetic field generating means 7 has the same polarity so that the static magnetic field acts on the object to be frozen (raw vegetables) 2 and the back side of the holding means 41 for holding the objects to be frozen 2 (raw vegetables). May be provided.
[0018]
The strength of the static magnetic field acting on the object to be frozen (raw vegetables) is preferably 1 to 10000 Gaus. If the strength of the static magnetic field is less than 1 Gaus, it is difficult to distinguish the effect of the static magnetic field due to the influence of geomagnetism. On the other hand, considering the production limit of the permanent magnet, the upper limit of the static magnetic field is preferably 10000 Gaus. 1 and 2 show a state in which the static magnetic field generating means 7 is provided with the same polarity on the side wall of the freezer 31 so that the static magnetic field acts in the vertical direction. Needless to say, it may be in the horizontal direction.
[0019]
In the freezer suitable for the present invention, in addition to the variable magnetic field generating means 1 and the static magnetic field generating means 7, as shown in FIG. 1, the object to be frozen (raw vegetables) 2 housed in the internal space of the freezer is cooled. Needless to say, it has a refrigeration means 5 for generating cold air and a blower means 55 provided inside the freezer for supplying the cold air to the object to be frozen (raw vegetables). Although not particularly illustrated, it goes without saying that a heat insulating member is disposed between the outer wall and the inner wall of the freezer 31.
[0020]
As the refrigeration means 5, any of the generally known refrigeration cycles in which the compressor 53, the condenser 54, the expansion valve 52, and the cooling pipe (evaporator) 51 are connected and the refrigerant circulates can be applied. The expansion valve 52 and the cooling pipe (evaporator) 51 are installed in the internal space of the freezer 31 and contribute to the generation of cold air. Moreover, in order to promote the rapid temperature fall of a to-be-frozen thing (raw vegetables), it is preferable to comprise the inner wall surface of a freezer with the member which has a far-infrared radiation absorption ability. The inner wall surface may be coated with a material having far-infrared radiation absorption ability, and a plate-like member having far-infrared radiation absorption ability may be disposed on the inner wall surface. Thereby, the radiant heat (far infrared rays) radiated | emitted from a to-be-frozen thing (raw vegetables) can be absorbed rapidly, and it helps to achieve the temperature fall of a to-be-frozen object rapidly. The member having the far-infrared radiation absorbing ability disposed on the inner wall surface absorbs the heat of the object to be frozen in proportion to the fourth power of the temperature difference ΔT between the temperature of the object to be frozen and the inner wall surface. Can greatly contribute to rapid cooling.
[0021]
In addition, as shown in FIG. 2, an ionic wind composed of negative air ions generated by the ionic wind generator 6 may be superimposed on the cold air 57 blown by the blower fan 55 which is the blower unit. . Supplying cold air with superposed ionic wind to the object to be frozen (raw vegetables) promotes direct heat transfer to the object to be frozen (raw vegetables), promotes heat removal from the object to be frozen, A rapid temperature drop is promoted, and the freshness of the raw vegetables is further promoted. The ion wind generator preferably includes a tubular positive electrode, a linear negative electrode inserted in the tubular positive electrode, and a voltage generator that applies a voltage between the positive electrode and the negative electrode. Further, as shown in FIG. 2, it is preferable to dispose a honeycomb structure 56 made of a high thermal conductivity material in the passage of cool air in the freezer. By allowing the cool air to flow through the honeycomb structure 56, it is possible to promote a temperature drop and uniform rectification of the cold air. The honeycomb structure 56 may be any structure as long as it allows air to pass through cool air and cold air, and the structure is not particularly limited. Further, the installation location of the honeycomb structure is not particularly limited as long as it is a passage of cool air and cold air.
[0022]
Although not particularly shown in FIGS. 1 and 2, in the present invention, an alternating electric field may be further applied to the raw vegetables that are to be frozen, in addition to the above-described fluctuating magnetic field and static magnetic field. . By applying an alternating electric field to a raw vegetable that is to be frozen in addition to a variable magnetic field and a static magnetic field, it becomes easier to maintain the raw vegetable with high freshness and high quality.
[0023]
The alternating electric field generating means for applying the alternating electric field applies at least one pair of electrodes arranged opposite to each other so as to sandwich the raw vegetable as the object to be frozen, and applies the alternating electric field between the pair of electrodes. It is preferable to have an alternating electric field generator that performs an alternating electric field on a material to be frozen (raw vegetables) through a pair of electrodes. The alternating electric field generator has a frequency generator, preferably a variable frequency, has an amplifier circuit, and applies a desired electric field strength (10 V / cm to 70 V / cm 2) to at least a pair of electrodes. It is preferable to do. As the alternating electric field to be applied, it is effective to continuously scan the electric field energy having a frequency of 50 Hz to 5 MHz, or to make the electric field energy by changing the frequency stepwise (stepped). By causing an alternating electric field and a magnetic field to act on the object to be frozen at the same time, free water contained in the object to be frozen moves to combined water, which reduces the free water and reduces the probability of ice crystal formation. Further, nucleation of ice crystals and coarsening thereof can be further suppressed. Thereby, since cool air can be more effectively transmitted to the inside of the object to be frozen, the cooling rate of the object to be frozen can be remarkably increased.
[0024]
As described above, by rapidly cooling and freezing raw vegetables under the action of a static magnetic field and a variable magnetic field, or even an alternating electric field, nucleation of ice crystals and their coarsening are suppressed, The destruction of the cell tissue is prevented, and the raw state can be maintained even when frozen. The product frozen in this way does not cause drip when thawing, and can ensure the fresh taste of raw vegetables.
[0025]
It is preferable that raw vegetables are boiled with warm water of about 60 ° C. before freezing and then frozen at least under the action of a static magnetic field and a uniform magnetic field as described above. Alternatively, raw vegetables frozen as raw under the action of at least a static magnetic field and a uniform fluctuation magnetic field may be boiled with hot water of about 60 ° C. and frozen again under the action of at least a static magnetic field and a uniform fluctuation magnetic field. By freezing the frozen raw vegetables with hot water of about 60 ° C., it is possible to ensure fresh vegetables with high freshness and quality.
[0026]
【Example】
Example 1
As shown in FIG. 1, four electromagnetic coil structures 1 are arranged in parallel with the longitudinal direction of a holder (rack-type tray) 4 as a variable magnetic field generating means, and permanent magnets 7 are installed in a freezer as a static magnetic field generating means. In the internal space of the freezer 31 on the side, hold raw vegetables (spinach and chilli bean) in a holder (rack-type tray) 4 under the action of a static magnetic field and a variable magnetic field. It was rapidly cooled to 30 ° C. to obtain a frozen raw vegetable. In addition, as a result of adjusting so that the magnetic field which consists of a static magnetic field and a fluctuation | variation magnetic field might act on a to-be-frozen object, the magnetic field strength on a holder was almost uniform at 5-10Gaus. In addition, the case where it cooled rapidly to -30 degreeC without the effect | action (application) of a magnetic field, and was set as the frozen raw vegetable was made into the comparative example.
[0027]
The obtained frozen raw vegetables were naturally thawed, then boiled in warm water at 60 ° C., and the taste was examined. As a result, in the example of the present invention that was rapidly cooled and frozen under the action of a magnetic field, no drip was produced by thawing, and the raw taste was reproduced. On the other hand, in the comparative example, the frozen vegetable cells were destroyed by thawing, and the original state could not be maintained, causing dripping, drip, and lacking in taste.
[0028]
(Example 2)
Frozen spinach and frozen lentil as a frozen raw vegetable in the same manner as in Example 1 were boiled with warm water at 60 ° C, and then rapidly cooled to -30 ° C under the same conditions as in Example 1. The frozen vegetables were frozen at that temperature to obtain frozen raw vegetables (frozen spinach, frozen green beans). The obtained frozen raw vegetables were naturally thawed and then eaten, and the taste was examined. As a result, it was found that, in the same manner as in Example 1, in the present invention example that was rapidly cooled and frozen under the action of a magnetic field, drip was not generated by thawing, and deliciousness could be ensured.
[0029]
Example 3
Raw vegetables (1 spinach and 1 piece each) are drained with 60 ° C hot water for 30 seconds, drained, and -30 ° C under the same magnetic field conditions as in Example 1 in the freezer shown in FIG. It was rapidly cooled to a temperature and frozen at that temperature to obtain a frozen raw vegetable. Moreover, the case where it cooled rapidly and frozen without applying a magnetic field similarly to Example 1 was made into the comparative example. The obtained frozen raw vegetables were naturally thawed and then eaten, and the taste was examined. As a result, all of the frozen raw vegetables of the present invention that were rapidly cooled and frozen under the action of a magnetic field did not produce drip by thawing, and the original raw taste could be reproduced. On the other hand, in the comparative example, drip was generated by thawing, and the taste was lacking.
[0030]
Example 4
As in the first embodiment, four electromagnetic coil structures 1 are arranged in parallel with the longitudinal direction of the holder (rack type tray) 4 as the variable magnetic field generating means, and the permanent magnet 7 is used as the static magnetic field generating means of the freezer. In the internal space of the freezer 31 on the side surface, a negative ion generator 6 is further disposed in the passage of the cold air 57 as shown in FIG. 2 to hold a raw vegetable (one spinach bundle) as an object to be frozen ( Rack type tray) 4 and rapidly cooled to −30 ° C. under the action of a static magnetic field and a variable magnetic field to obtain frozen raw vegetables. In addition, the magnitude | size of the static magnetic field and fluctuation | variation magnetic field which act on a to-be-frozen object was made the same as that of Example 1. Further, the negative ion generator 6 has a shape in which a stainless steel cylinder having a diameter of 20 mm and a length of 50 mm is used as a positive electrode, and a needle electrode as a negative electrode is inserted 15 mm into the center of the cylindrical space. An AC electrostatic potential of 7000 V was applied to these electrodes to generate an ion wind, which was superimposed on the cold air 57.
[0031]
The obtained frozen spinach was higher in freshness and brighter than when the ionic wind was not superimposed. It is considered that by superimposing the ion wind on the cold air, the heat transfer is promoted and the oxidation is suppressed, and the high freshness maintenance is further promoted.
[0032]
【The invention's effect】
As described above in detail, according to the present invention, frozen raw vegetables that maintain high freshness and can reproduce raw deliciousness equivalent to raw vegetables can be easily and stably produced. There is a remarkable effect.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view schematically showing an example of a freezer suitable for the present invention.
FIG. 2 is a schematic explanatory view schematically showing an example of a freezer suitable for the present invention.
FIG. 3 is a schematic explanatory view schematically showing an example of an electromagnetic coil structure which is a fluctuating magnetic field generating means suitable for the present invention.
[Explanation of symbols]
1 Electromagnetic coil structure
11 Substrate
12 Electromagnetic coil
121 Highly conductive wire with insulation coating
13 Caulking material
1a AC supply means 2 Object to be frozen (raw vegetables)
31 Freezer 4 Holder (Rack type holder, Rack type tray)
5 Freezing means (refrigerant)
6 Ion wind generator 7 Static magnetic field generating means (permanent magnet)
56 Honeycomb structure
51 Cooler
52 Expansion valve
53 Condenser
54 Refrigerator
55 Blower (cold) fan
57 Cold air

Claims (7)

生野菜または湯通しした生野菜を、静磁場発生手段および変動磁場発生手段を有する冷凍庫の内部閉空間に収容して静磁場および変動磁場の作用下で所定の温度まで急速冷却したのち、該所定の温度で速やかに冷凍する凍結生野菜の製造方法において、前記静磁場発生手段が1〜10000Gaus の静磁場を発生する静磁場発生手段であり、前記変動磁場発生手段が、交流を通電して0.1 〜1000Gausの変動磁場を発生する電磁コイル構造体を複数個有し、該電磁コイル構造体を、前記生野菜を保持する保持具にまたがるように、あるいは前記生野菜を保持する保持具を囲むように、かつ複数の該電磁コイル構造体が前記保持具に沿って並行、直行または交叉するように配設した変動磁場発生手段であることを特徴とする高鮮度凍結生野菜の製造方法。Raw vegetables or boiled raw vegetables are stored in an internal closed space of a freezer having a static magnetic field generating means and a variable magnetic field generating means, rapidly cooled to a predetermined temperature under the action of a static magnetic field and a variable magnetic field, In the method for producing a frozen raw vegetable that is quickly frozen at a temperature, the static magnetic field generating means is a static magnetic field generating means that generates a static magnetic field of 1 to 10000 Gaus, A plurality of electromagnetic coil structures that generate a 1000 Gaus variable magnetic field, and the electromagnetic coil structure spans a holder that holds the raw vegetables or surrounds the holder that holds the raw vegetables And a method for producing a fresh frozen raw vegetable, wherein the plurality of electromagnetic coil structures are variable magnetic field generating means arranged so as to be parallel, orthogonal, or crossed along the holder. 前記変動磁場発生手段が、交流を通電して変動磁場を発生する電磁コイル構造体を、前記生野菜を保持するネットコンベアベルトを挟むように一対配設し、かつネットコンベアベルトの進行方向に沿って複数対を並設した変動磁場発生手段とすることを特徴とする請求項1に記載の高鮮度凍結生野菜の製造方法。The fluctuating magnetic field generating means is provided with a pair of electromagnetic coil structures that generate a fluctuating magnetic field by energizing alternating current so as to sandwich the net conveyor belt holding the raw vegetables, and along the traveling direction of the net conveyor belt The method for producing fresh vegetables with high freshness according to claim 1, characterized in that a plurality of pairs are arranged in parallel to generate a varying magnetic field generating means. 前記電磁コイル構造体が、所定形状を有するコイル形成用の基材と、該基材に絶縁被膜付き高電導性線材を巻き付けて形成される電磁コイルとを有し、該電磁コイルをコーキング材により密閉してなる電磁コイル構造体であることを特徴とする請求項1または2に記載の高鮮度凍結生野菜の製造方法。The electromagnetic coil structure has a coil-forming base material having a predetermined shape, and an electromagnetic coil formed by winding a high-conductivity wire with an insulating coating around the base material, and the electromagnetic coil is made of a caulking material. It is an electromagnetic coil structure formed by sealing, The manufacturing method of the high freshness frozen raw vegetables of Claim 1 or 2 characterized by the above-mentioned. 前記静磁場および変動磁場に加えてさらに、周波数:50Hz〜5MHz の可変周波数の交番電界を作用させることを特徴とする請求項1ないし3 のいずれかに記載の高鮮度凍結生野菜の製造方法。4. The method for producing fresh fresh frozen vegetables according to claim 1, wherein an alternating electric field having a frequency of 50 Hz to 5 MHz is applied in addition to the static magnetic field and the variable magnetic field. 前記生野菜が、静磁場および変動磁場、あるいはさらに交番電界の作用下で急速冷却され冷凍された凍結生野菜を湯通ししたものであることを特徴とする請求項1ないし4のいずれかに記載の高鮮度凍結生野菜の製造方法。5. The fresh vegetable according to claim 1, wherein the fresh vegetable is boiled with a frozen fresh vegetable that has been rapidly cooled and frozen under the action of a static magnetic field and a variable magnetic field, or an alternating electric field. A method for producing high freshness frozen raw vegetables. 前記冷凍庫内の冷気冷風にイオン風を重畳させることを特徴とする請求項1ないし5のいずれかに記載の高鮮度凍結生野菜の製造方法。The method for producing fresh fresh frozen vegetables according to any one of claims 1 to 5, wherein an ionic wind is superposed on the cold air in the freezer. 請求項1ないし6のいずれかに記載の高鮮度凍結生野菜の製造方法で調整されてなる高鮮度凍結生野菜。A fresh fresh frozen vegetable prepared by the method for producing fresh fresh frozen vegetables according to claim 1.
JP2002248570A 2002-08-28 2002-08-28 Method for producing fresh frozen raw vegetables Expired - Fee Related JP4152695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248570A JP4152695B2 (en) 2002-08-28 2002-08-28 Method for producing fresh frozen raw vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248570A JP4152695B2 (en) 2002-08-28 2002-08-28 Method for producing fresh frozen raw vegetables

Publications (2)

Publication Number Publication Date
JP2004081133A JP2004081133A (en) 2004-03-18
JP4152695B2 true JP4152695B2 (en) 2008-09-17

Family

ID=32055912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248570A Expired - Fee Related JP4152695B2 (en) 2002-08-28 2002-08-28 Method for producing fresh frozen raw vegetables

Country Status (1)

Country Link
JP (1) JP4152695B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8175698B2 (en) * 2000-02-17 2012-05-08 Novocure Ltd. Treating bacteria with electric fields
CA2563817C (en) 2004-04-23 2018-07-10 Yoram Palti Treating a tumor or the like with electric fields at different frequencies
JP5100998B2 (en) * 2005-10-26 2012-12-19 国立大学法人広島大学 Cryopreservation method of tooth extraction body
US8019414B2 (en) 2006-04-05 2011-09-13 Novocure Ltd. Treating cancer using electromagnetic fields in combination with other treatment regimens
KR101273464B1 (en) * 2006-09-06 2013-06-14 삼성전자주식회사 Control system of refrigerating and freezing
JP2011017472A (en) * 2009-07-08 2011-01-27 Hitachi Appliances Inc Refrigerator
JP2011101602A (en) 2009-11-10 2011-05-26 Univ Of Tokyo Freezing method
JP5288287B2 (en) * 2010-03-08 2013-09-11 独立行政法人国立高等専門学校機構 Cooling device in refrigeration / freezer
JP5805375B2 (en) * 2010-05-21 2015-11-04 米田工機株式会社 Quick freezing equipment
JP5637773B2 (en) * 2010-08-17 2014-12-10 株式会社東芝 Food storage
US10285420B2 (en) 2013-07-30 2019-05-14 California Institute Of Technology Magnetite-based heterogeneous ice-crystal nucleation
US9339027B2 (en) * 2013-07-30 2016-05-17 California Institute Of Technology Enhancement of electromagnetic freezing by stabilization and oscillation of biogenic magnetite particles
WO2015089112A1 (en) 2013-12-10 2015-06-18 University Of Hawaii Method of supercooling perishable materials
CN111578595A (en) * 2020-05-25 2020-08-25 珠海格力电器股份有限公司 Super-ice-temperature refrigerator and food fresh-keeping method
JP7029827B1 (en) * 2020-10-30 2022-03-04 株式会社大都技研 Game table
CN115704637A (en) * 2021-08-11 2023-02-17 青岛海尔电冰箱有限公司 Magnetic field fresh-keeping storage container and refrigerator
WO2023016227A1 (en) * 2021-08-11 2023-02-16 青岛海尔电冰箱有限公司 Fresh-keeping storage container for refrigerator, and refrigerator
CN114009660A (en) * 2021-10-29 2022-02-08 江苏大学 High-voltage pulse electric field and low-frequency alternating magnetic field coordinated quick-freezing device and method for quickly-freezing instant rice

Also Published As

Publication number Publication date
JP2004081133A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4152695B2 (en) Method for producing fresh frozen raw vegetables
US7237400B2 (en) Highly-efficient freezing apparatus and highly-efficient freezing method
JP4041673B2 (en) Ultra-rapid freezing method and apparatus
JP4243924B2 (en) High-functional refrigeration apparatus and high-functional refrigeration method
US10111452B2 (en) Method of supercooling perishable materials
JP4424693B2 (en) CORE UNIT FOR REFRIGERATOR AND REFRIGERATOR INCLUDING THE SAME
CN101371091A (en) Non-freezing refrigerator
CN111578595A (en) Super-ice-temperature refrigerator and food fresh-keeping method
JP2002206852A (en) Refrigerating machine
JP2017161189A (en) Freezing apparatus
JP3570330B2 (en) Refrigeration method and apparatus
JP2005291525A (en) Food freezer and food thawing apparatus
JP2013169194A (en) Freshness retaining apparatus
CN208983725U (en) The uniform low frequency alternating magnetic field generation device fresh-keeping for the cold overlength of fresh food ice
JP3973429B2 (en) Refrigeration equipment
JP4209157B2 (en) Production method and apparatus for edible rice
JP2015094564A (en) Voltage control device, electrostatic field generator, and refrigerator
WO2004110179A1 (en) Electric filed treatment device for applying alternating voltage of same polarity and its application device
WO2020226533A1 (en) Method of hight entropy freezing and device for implementation thereof
JP2004147548A (en) Method for freezing frozen commodity
JPH10148464A (en) Freezing and cooling auxiliary apparatus and method of freezing and cooling
JP2024042169A (en) Frozen food thawing device and frozen food thawing method
JPH11313653A (en) Thawed state preservation of frozen food
JPH11313652A (en) Thawed state preservation of frozen food
SU1174694A1 (en) Quick-freezing apparatus for unit food products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees