JP4147755B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP4147755B2
JP4147755B2 JP2001231643A JP2001231643A JP4147755B2 JP 4147755 B2 JP4147755 B2 JP 4147755B2 JP 2001231643 A JP2001231643 A JP 2001231643A JP 2001231643 A JP2001231643 A JP 2001231643A JP 4147755 B2 JP4147755 B2 JP 4147755B2
Authority
JP
Japan
Prior art keywords
light
phosphor
light emitting
emitting device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001231643A
Other languages
Japanese (ja)
Other versions
JP2003046141A (en
Inventor
訓宏 泉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2001231643A priority Critical patent/JP4147755B2/en
Publication of JP2003046141A publication Critical patent/JP2003046141A/en
Application granted granted Critical
Publication of JP4147755B2 publication Critical patent/JP4147755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】
【発明の属する技術分野】
本発明は、LEDディスプレイ、バックライト光源、表示器、信号機、照光式スイッチ及び各種インジケータなどに利用される発光装置に係り、特にLEDチップからの発光を波長変換して発光可能な蛍光物質を有する発光装置に関する。
【0002】
【従来技術】
今日、青色光が高輝度に発光可能な半導体発光素子である窒化物半導体(InGaAl1−x−yN、0≦x≦1、0≦y≦1)を利用したLEDチップが開発された。窒化物半導体を利用した発光素子は、他のGaAs、AlInGaP等の材料を利用した赤から黄緑色を発光する発光素子と比較して出力が高い、温度による色シフトが少ないなどの特徴を持っているものの、現在までのところ、緑色以上の波長を有する長波長域で高出力を得られにくいという傾向がある。他方、青色発光LEDチップから放出された青色光の少なくとも一部を吸収して、黄色が発光可能な蛍光物質であるYAG:Ce蛍光体などを前記LEDチップ上に配置させることによって白色系が発光可能な発光装置をも本出願人が開発し、出願(国際公開番号WO98/5078号)した。
【0003】
この発光装置は、例えば、1チップ2端子構造の比較的簡単な構成にも係わらず、リード電極に電気的に接続させたLEDチップからの光と、LEDチップを被覆する透光性樹脂中に含有されたYAG:Ceなど蛍光物質からの光とが混色された白色光を、凸レンズを介して発光する。
【0004】
また、この発光装置は蛍光物質の使用量を調節させることで、発光装置から放出される混色光のうち、青味がかった白色から黄色味がかった白色などの光を任意に放出させることができる。更に、顔料を添加して選択的に他の波長として例えば黄色光や赤色光を得ることも考えられる。
【0005】
【発明が解決しようとする課題】
しかしながら、発光装置の利用分野の広がりと共に、発光のバラツキが極めて少なく高輝度に発光可能な発光装置が求められている。また、焼成された蛍光体粒子は破砕形状を有している。このような表面が粗く堅い無機物が発光素子の周囲に接触すると、該発光素子に悪影響を及ぼすこととなり、発光装置の信頼性が劣化してしまう。
【0006】
そこで、本発明は、上記問題点を解決し、信頼性が高く、より光学特性の優れた発光装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係る発光装置は、発光素子と、該発光素子から発光された波長の少なくとも一部を吸収して異なる波長を発光することが可能な蛍光物質と、これらの蛍光物質が含有された透光性部材からなる色変換層とを有し、前記発光素子が前記色変換層により封止されてなる発光装置において、前記蛍光物質は多面体を有する蛍光体粒子からなり、該蛍光体粒子は表面が前記透光性部材と異なる有機物被膜により包囲されマイクロカプセル化されており、前記蛍光体粒子と前記有機物被膜とにより構成される蛍光体マイクロカプセルにおける、前記蛍光体粒子の含有量は1〜50%であり、前記蛍光体マイクロカプセルは前記発光素子周辺に沈降されていることを特徴とする。本発明において、蛍光体粒子がマイクロカプセル化されて得られた蛍光体マイクロカプセルは、表面が滑らかで且つ柔軟性を有する。これにより隣接する発光素子に悪影響を与えることなく、好ましい状態で分散することができる。また、各蛍光体粒子の間に一定の距離を保持することができるため、発光素子からの光を全ての蛍光体粒子に照射させることができ、各蛍光体粒子の作用を最大限に活用することができるこれにより、必要最小限の含有量でもって所望の光を高輝度に発光することが可能となる。
【0008】
また、前記有機被膜は、前記蛍光体粒子よりも比重が軽い部材からなること
が好ましく、これにより前記透光性部材中での前記蛍光体マイクロカプセルの分散性を更に良好とすることができる。
【0009】
また、前記蛍光体粒子と前記有機物被膜により構成される蛍光体マイクロカプセルにおいて、前記蛍光体粒子の含有量は1%〜50%であることが好ましく、これにより蛍光体粒子の表面全てを前記有機物被膜により覆うことができ、前記蛍光体粒子が良好に保護されると共に、前記蛍光体粒子の表面励起作用を効率よく利用でき、更に輝度が向上される。
【0010】
また、前記蛍光体粒子は、中心粒径が15μm〜50μmの範囲であることが好ましく、より好ましくは20μm〜50μmである。これにより発光効率が向上され、輝度の高い発光装置が得られる。また、光学特性に影響を与える傾向にある密に凝集した凝集体が形成されるのを抑制することができ、良好な色調で且つ高輝度に発光することが可能な発光装置が得られる。また、前記蛍光体粒子は、前記中心粒径の粒子径を有する蛍光体粒子の割合が20%〜50%の範囲であることを特徴とする。このように前記中心粒径の頻度値は20%〜50%の範囲が好ましく、これにより色ムラが抑制され良好なコントラストを有する発光が得られる。本来、熱硬化性樹脂等の透光性部材中において、蛍光体粒子は粒径が大きくなるほど発光素子周辺に蜜に充填しやすいが、本発明の構成によって、粒径の大きな蛍光体粒子を該蛍光体粒子の特性を最大限に生かせる状態で配置させることができる。
【0011】
さらに、前記透光性部材はフィラーを有しており、前記フィラーは前記蛍光体マイクロカプセル間に配置されていることを特徴とするこのように前記封止部材において、前記蛍光体マイクロカプセル間にフィラーを配置させると、より色ムラが抑制されより均一な発光が得られる。
【0012】
また、前記発光素子の主発光ピークは400nm〜530nmであると共に、前記蛍光体は、Y、Lu、Sc、La、Gd及びSmからなる群から選ばれた少なくとも1つの元素とAl、Ga及びInからなる群から選ばれた少なくとも1つの元素とを含み且つCeで付活されたガーネット系蛍光体、Eu及び/又はCrで付活された窒素含有CaO−Al−SiO蛍光体から選択される一種を用いてもよい。これにより、発光素子の発光波長に対応して所望の発光色の発光を得ることができ、簡便で高輝度に信頼性の高い混色発光可能な発光装置とすることができる。
【0013】
また、前記透光性部材からなる発光面は曲面を有することが好ましい。これによって発光素子の光が前記透光性部材から外部へ取り出される際、前記透光性部材と外部の空気層との界面で光が拡散され、大粒径蛍光物質を用いることにより生じやすい色ムラを抑制することができる。また発光面での光の取り出し効率が向上され、更に高出力に発光させることが可能となる。
【0014】
【発明の実施の形態】
本願発明者は種々の実験の結果、色変換型発光装置の発光のバラツキ及び歩留まりの低下は、透光性部材中での蛍光体粒子の配置状態に関係することが主な原因であることを見出し本発明を成すに至った。
【0015】
蛍光物質の比重は、液状樹脂の数倍に達する。特に熱硬化性樹脂は、加熱硬化後粘度が大きく低下するため、発光素子を蛍光物質含有の液状樹脂で覆い熱硬化させると樹脂中の蛍光物質はほとんど発光素子周辺に密に集結して沈降してしまうのが現状である。特に、色調の調整のため蛍光物質の含有量を多くすると、ある程度の嵩を有して発光素子周辺に沈降する。このため、発光素子からの光を最も効率よく吸収できるのは発光素子周辺の最表面に位置する蛍光物質のみと考えられ、ほとんどの蛍光物質は本来の作用を行うことができず、単に光のエネルギーを低下させ光を隠蔽してしまい発光出力の低下を引き起こすと考えられる。このように閉じ込められた光により発光素子周辺の光密度は高くなり、これにより隣接する樹脂が劣化され色ムラの起因となる。
【0016】
また、蛍光体粒子の表面には空気が覆っており、液状樹脂と混ざりにくく、大小の蛍光体が凝集した凝集体となる傾向がある。このような凝集体を形成する各蛍光体に取り込まれ変換された光は、凝集体間で反射、光散乱され外部に放出される。そのため、見かけの光変換効率は一次粒子のときよりも向上されているが、これらの蛍光凝集体が大きすぎると、蛍光体の発光の色ムラの原因となるだけでなく、空気層を取り込み蛍光体からの光を閉じ込める等、光学特性に大きく影響を与えるため所望の色調が得られないと考えられる。このような凝集体は分散剤を用いることによって、ある程度改善できるが、投光性が求められる発光装置では難しく変色が起こる等の種々の不具合が生ずる場合がある。一方、凝集体を分散させるために機械的分散処理を長時間行うと、蛍光体の分散性は向上するものの、蛍光体の表面結晶の摩砕に起因すると思われる発光輝度の低下を引き起こす傾向がある。
【0017】
また、透光性部材である樹脂は、熱により収縮反応を起こす。このため、前記透光性部材に含有され且つ発光素子表面に沈殿してしまった蛍光体粒子は、発光装置に熱が加わることにより隣接する発光素子に押しつけられ前記発光素子表面の保護膜等を破壊し発光装置の信頼性の低下を引き起こす恐れがある。
【0018】
そこで本発明は、蛍光体粒子の表面に有機被膜が形成された蛍光体マイクロカプセルを使用し、発光素子からの光を効率よく励起し、発光輝度、及び歩留まりの向上を図るものである。
【0019】
以下、図面を参照にして、本発明の実施の形態である発光装置について説明する。図1は、本発明の形態であるSMD型発光ダイオードの模式的断面図である。凹部を有し、該凹部底面から一対のリード電極2,3の表面が露出されるようにインサート成形されてなるパッケージ1を用い、前記凹部底面に発光素子が電気的に接続されている。前記発光素子は、サファイア基板上に窒化ガリウムであるバッファ層を介して窒化物半導体(AlGaInN、0≦x≦1、0≦y≦1、0≦z≦1、X+Y+Z=1)からなるpn接合が形成されている。このように設置された発光素子4を封止するように、前記凹部内に透光性部材であるエポキシ樹脂にアクリル樹脂にてマイクロカプセル化された蛍光体粒子が含有されてなる封止部材が充填されている。以下、本発明の実施の形態における各構成について詳述する。
【0020】
(発光素子)
本発明において発光素子1は特に限定されないが、蛍光物質を用いた場合、前記蛍光物質を励起可能な発光波長を発光できる発光層を有する半導体発光素子が好ましい。このような半導体発光素子としてZnSeやGaNなど種々の半導体を挙げることができるが、蛍光物質を効率良く励起できる短波長が発光可能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。
【0021】
窒化物半導体を使用した場合、半導体用基板にはサファイヤ、スピネル、SiC、Si、ZnO等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイヤ基板を用いることが好ましい。このサファイヤ基板上にMOCVD法などを用いて窒化物半導体を形成させることができる。サファイア基板上にGaN、AlN、GaAIN等のバッファー層を形成しその上にpn接合を有する窒化物半導体を形成させる。
【0022】
窒化物半導体を使用したpn接合を有する発光素子例として、バッファ層上に、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成させた第1のクラッド層、窒化インジウム・ガリウムで形成した活性層、p型窒化アルミニウム・ガリウムで形成した第2のクラッド層、p型窒化ガリウムで形成した第2のコンタクト層を順に積層させたダブルへテロ構成などが挙げられる。
【0023】
窒化物半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させるなど所望のn型窒化物半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、p型窒化物半導体を形成させる場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。窒化物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱やプラズマ照射等により低抵抗化させることが好ましい。電極形成後、半導体ウエハーからチップ状にカットさせることで窒化物半導体からなる発光素子を形成させることができる。
【0024】
本発明の発光ダイオードにおいて、白色系を発光させるには、蛍光物質からの発光波長との補色関係や透光性樹脂の劣化等を考慮して、発光素子の発光波長は400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましい。発光素子と蛍光物質との励起、発光効率をそれぞれより向上させるためには、450nm以上475nm以下がさらに好ましい。
【0025】
なお、金属パッケージを用いる場合、紫外線による構成部材の劣化を抑制することができる。よって、本発明の発光装置に400nmより短い紫外線領域、具体的には320nm〜400nmの波長を主発光波長とする発光素子を用い、前記発光素子からの光の一部を吸収して他の波長を発光することが可能な蛍光物質と組み合わせることで、色ムラの少ない色変換型発光装置が得られる。ここで、前記蛍光物質を発光装置にバインダーする際には、比較的紫外線に強い樹脂や無機物であるガラス等を用いることが好ましい。
【0026】
(蛍光体粒子)
本発明の発光装置に用いられる蛍光体粒子は、窒化物系半導体を発光層とする半導体発光素子から発光された光を励起させて発光できるセリウムで付活されたイットリウム・アルミニウム酸化物系蛍光物質をベースとしたものである。具体的なイットリウム・アルミニウム酸化物系蛍光物質としては、YAlO:Ce、YAl12Y:Ce(YAG:Ce)やYAl:Ce、更にはこれらの混合物などが挙げられる。イットリウム・アルミニウム酸化物系蛍光物質にBa、Sr、Mg、Ca、Znの少なくとも一種が含有されていてもよい。また、Siを含有させることによって、結晶成長の反応を抑制し蛍光物質の粒子を揃えることができる。本明細書において、Ceで付活されたイットリウム・アルミニウム酸化物系蛍光物質は特に広義に解釈するものとし、イットリウムの一部あるいは全体を、Lu、Sc、La、Gd及びSmからなる群から選ばれる少なくとも1つの元素に置換され、あるいは、アルミニウムの一部あるいは全体をBa、Tl、Ga、Inの何れが又は両方で置換され蛍光作用を有する蛍光体を含む広い意味に使用する。更に詳しくは、一般式(YGd1−zAl12:Ce(但し、0<z≦1)で示されるフォトルミネッセンス蛍光体や一般式(Re1−aSma)Re‘12:Ce(但し、0≦a<1、0≦b≦1、Reは、Y、Gd、La、Scから選択される少なくとも一種、Re’は、Al、Ga、Inから選択される少なくとも一種である。)で示されるフォトルミネッセンス蛍光体である。この蛍光物質は、ガーネット構造のため、熱、光及び水分に強く、励起スペクトルのピークを450nm付近にさせることができる。また、発光ピークも、580nm付近にあり700nmまですそを引くブロードな発光スペクトルを持つ。
【0027】
またフォトルミネセンス蛍光体は、結晶中にGd(ガドリニウム)を含有することにより、460nm以上の長波長域の励起発光効率を高くすることができる。Gdの含有量の増加により、発光ピーク波長が長波長に移動し全体の発光波長も長波長側にシフトする。すなわち、赤みの強い発光色が必要な場合、Gdの置換量を多くすることで達成できる。一方、Gdが増加すると共に、青色光によるフォトルミネセンスの発光輝度は低下する傾向にある。さらに、所望に応じてCeに加えTb、Cu、Ag、Au、Fe、Cr、Nd、Dy、Co、Ni、Ti、Euらを含有させることもできる。しかも、ガーネット構造を持ったイットリウム・アルミニウム・ガーネット系蛍光体の組成のうち、Alの一部をGaで置換することで発光波長が短波長側にシフトする。また、組成のYの一部をGdで置換することで、発光波長が長波長側にシフトする。Yの一部をGdで置換する場合、Gdへの置換を1割未満にし、且つCeの含有(置換)を0.03から1.0にすることが好ましい。Gdへの置換が2割未満では緑色成分が大きく赤色成分が少なくなるが、Ceの含有量を増やすことで赤色成分を補え、輝度を低下させることなく所望の色調を得ることができる。このような組成にすると温度特性が良好となり発光ダイオードの信頼性を向上させることができる。また、赤色成分を多く有するように調整されたフォトルミネセンス蛍光体を使用すると、ピンク等の中間色を発光することが可能な発光装置を形成することができる。
【0028】
このようなフォトルミネセンス蛍光体は、Y、Gd、Al、及びCeの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウムとを混合して混合原料を得る。これにフラックスとしてフッ化バリウムやフッ化アンモニウム等のフッ化物を適量混合して坩堝に詰め、空気中1350〜1450°Cの温度範囲で2〜5時間焼成して焼成品を得、つぎに焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。本願発明の発光装置において、このようなフォトルミネセンス蛍光体は、2種類以上のセリウムで付活されたイットリウム・アルミニウム・ガーネット蛍光体や他の蛍光体を混合させてもよい。
【0029】
また、本発明で用いられる蛍光体粒子の粒径は10μm〜50μmの範囲が好ましく、より好ましくは15μm〜30μmである。これにより、光の隠蔽を抑制し集積型窒化物半導体発光素子の輝度を向上させることができる。また上記の粒径範囲の蛍光体は、光の吸収率及び変換効率が高く且つ励起波長の幅が広い。このように、光学的に優れた特徴を有する大粒径蛍光体を含有させることにより、発光素子の主波長周辺の光をも良好に変換し発光することができ、集積型窒化物半導体発光素子の量産性が向上される。これに対し、15μmより小さい粒径を有する蛍光体は、比較的凝集体を形成しやすく、液状樹脂中において密になって沈降する傾向にあり、光の透過効率を減少させてしまう。
【0030】
ここで本発明において、粒径とは、体積基準粒度分布曲線により得られる値である。前記体積基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、気温25℃、湿度70%の環境下において、濃度が0.05%であるヘキサメタリン酸ナトリウム水溶液に各物質を分散させ、レーザ回折式粒度分布測定装置(SALD−2000A)により、粒径範囲0.03μm〜700μmにて測定し得られたものである。この体積基準粒度分布曲線において積算値が50%のときの粒径値を中心粒径と定義すると、本発明で用いられる蛍光体の中心粒径は15μm〜50μmの範囲であることが好ましい。また、この中心粒径値を有する蛍光物質が頻度高く含有されていることが好ましく、頻度値は20%〜50%が好ましい。このように粒径のバラツキが小さい蛍光物質を用いることにより色ムラが抑制され良好な色調を有する発光装置が得られる。
【0031】
他にも青色、青緑色や緑色を吸収して赤色が発光可能な蛍光体である、Eu及び/又はCrで付活されたサファイヤ(酸化アルミニウム)蛍光体やEu及び/又はCrで付活された窒素含有CaO−Al−SiO蛍光体(オキシナイトライド蛍光硝子)などが挙げられる。これらの蛍光体を利用して発光素子からの光と蛍光体からの光の混色により白色光を得ることもできる。
【0032】
Eu及び/又はCrで付活された窒素含有CaO−Al−SiO蛍光体は、酸化アルミニウム、酸化イットリウム、酸化珪素及び酸化カルシウムなどの原料に希土類原料を所定に混合した粉末を窒素雰囲気下において1300℃から1900℃(より好ましくは1500℃から1750℃)において溶融し成形させる。成形品をボールミルして洗浄、分離、乾燥、最後に篩を通して蛍光体を形成させることができる。これにより450nmにピークをもった励起スペクトルと約650nmにピークがある青色光により赤色発光が発光可能なEu及び/又はCrで付活されたCa-Al-Si-O-N系オキシナイトライド蛍光硝子とすることができる。
【0033】
なお、Eu及び/又はCrで付活されたCa-Al-Si-O-N系オキシナイトライド蛍光硝子の窒素含有量を増減することによって発光スペクトルのピークを575nmから690nmに連続的にシフトすることができる。同様に、励起スペクトルも連続的にシフトさせることができる。そのため、Mg、Znなどの不純物がドープされたGaNやInGaNを発光層に含む窒化ガリウム系化合物半導体からの光と、約580nmの蛍光体の光の合成光により白色系を発光させることができる。特に、約490nmの光が高輝度に発光可能なInGaNを発光層に含む窒化ガリウム系化合物半導体からなる発光素子との組合せに理想的に発光を得ることもできる。
【0034】
また、上述のCeで付活されたYAG系蛍光体とEu及び/又はCrで付活された窒素含有Ca-Al-Si-O-N系オキシナイトライド蛍光硝子とを組み合わせることにより青色系が発光可能な発光素子を利用してRGB(赤色、緑色、青色)成分を高輝度に含む極めて演色性の高い発光ダイオードを形成させることもできる。このため、所望の顔料を添加するだけで任意の中間色も極めて簡単に形成させることができる。本発明においては何れの蛍光体も無機蛍光体であり、有機の光散乱剤やSiOなどを利用して高コントラストと優れた量産性が両立した発光ダイオードを形成させることができる。
【0035】
(蛍光体マイクロカプセル)
本発明において、上記蛍光体は、周囲に配置される透光性部材と異なる部材からなる有機被膜により包囲され、蛍光体マイクロカプセルとして用いられる。ここで、蛍光体マイクロカプセルの製造方法について述べる。
【0036】
被膜物質として、ゲル化または硬化し得る性質の親水性コロイド、例えばゼラチン、寒天、アルブミン、アルギン酸塩、カゼイン、ペクチン、フィプリノゲンなどの稀薄水ゾルをゲル化温度以上において調整し、これに被覆されるべき蛍光体を懸濁させる。本実施の形態では、被膜物質として耐光性及び耐熱性の強いアクリル樹脂を用いている。つぎに、単純コラセルベーション法をとる場合は、コアセルベーション化剤として、塩化ナトリウム、硫酸ナトリウム、蓚酸アンモニウム、クエン酸ナトリウム、安息香酸ナトリウムなどの塩類水溶液、またはコロイドの溶解が減じるような水溶性溶媒、即ちメタノール、エタノール、プロパノール、アセトン、ジオキサンなどを添加し、また複合コアセルベーション法を取る場合は、コアセルベーション化剤として、高分子物質、例えばアラビアゴム、ポリビニルビロリドンなどを添加する。コアセルベーション化剤添加後、系の温度をコアセルベーション相のゲル化温度以下に冷却して、液中の被膜物質を不溶性で核となる蛍光体の表面にゲル化させそこに固定する。このゲルの膜を更にアルデヒド類で硬化した後、乾燥すると目的とするマイクロカプセルに包まれた蛍光体が得られる。このように、マイクロカプセル化された蛍光体粒子は、表面に膜を有することにより、前記蛍光体粒子の光吸収率及び表面励起効率が高められ、高い色変換効率と支持することができる。また、柔軟性を有する蛍光体マイクロカプセルが発光素子の周囲を覆うため、信頼性が向上されるとともに、良好な光学特性が得られる。
【0037】
(透光性部材)
本発明に好適に用いられる透光性部材の具体的材料としては、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フッ素樹脂など耐候性に優れた透明樹脂やガラスなどが好適に用いられる。これらの透光性部材に、前記蛍光体粒子が前記透光性部材と異なる有機被膜により包囲された蛍光体マイクロカプセルが含有されている。前記透光性部材と前記有機被膜部材は異なることが好ましい。同部材を用いると、加熱等により前記透光性部材と蛍光体マイクロカプセル表面の前記有機被膜部材とが同化してしまい、前記蛍光体マイクロカプセル中の蛍光体粒子を好ましい状態に配置することが困難となる。
【0038】
また、前記透光性部材に、前記蛍光体マイクロカプセルと共にフィラー及び/又は顔料を含有させても良い。これらの透光性部材をモールド部材としてLEDチップ上に配置させる他、ダイボンド部材として利用することもできる。また、他の透明な部材を介して配置させても良い。
【0039】
以下、本発明の実施例について説明する。なお、本発明は以下に示す実施例のみに限定されるものではない。
(実施例1)
図1に示すような表面実装型の発光装置を形成する。LEDチップは、発光層として単色性発光ピークが可視光である475nmのIn0.2Ga0.8N半導体を有する窒化物半導体素子を用いる。より具体的にLEDチップは、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化物半導体を成膜させることにより形成させることができる。ドーパントガスとしてSiH4とCp2Mgを切り替えることによってn型窒化物半導体やp型窒化物半導体となる層を形成させる
【0040】
LEDチップの素子構造としてはサファイア基板上に、アンドープの窒化物半導体であるn型GaN層、Siドープのn型電極が形成されn型コンタクト層となるGaN層、アンドープの窒化物半導体であるn型GaN層、次に発光層を構成するバリア層となるGaN層、井戸層を構成するInGaN層、バリア層となるGaN層を1セットとしGaN層に挟まれたInGaN層を5層積層させた多重量子井戸構造としてある。発光層上にはMgがドープされたp型クラッド層としてAlGaN層、Mgがドープされたp型コンタクト層であるGaN層を順次積層させた構成としてある。(なお、サファイヤ基板上には低温でGaN層を形成させバッファ層とさせてある。また、p型半導体は、成膜後400℃以上でアニールさせてある。)
【0041】
エッチングによりサファイア基板上の窒化物半導体に同一面側で、pn各コンタクト層表面を露出させる。各コンタクト層上に、スパッタリング法を用いて正負各台座電極をそれぞれ形成させた。なお、p型窒化物半導体上の全面には金属薄膜を透光性電極として形成させた後に、透光性電極の一部に台座電極を形成させてある。出来上がった半導体ウエハーにスクライブラインを引いた後、外力により分割させ半導体発光素子であるLEDチップを形成させる。
【0042】
次に、正及び負からなる一対のリード電極がインサートされて閉じられた金型内に、パッケージ成形体の下面側にあるゲートから溶融された成形樹脂を流し込み硬化してパッケージを形成する。前記パッケージは、発光素子を収納可能な凹部を有し、該凹部底面から正及び負のリード電極が一方の主面が露出されるように一体成形されている。尚、このパッケージにおいて、正及び負のリード電極のアウタリード部は、パッケージの接合面の両端部でその接合面に沿って内側に折り曲げられてなり、その内側に折り曲げられた部分ではんだ付けされるように構成されている。
【0043】
このように形成されたパッケージの凹部底面に前記LEDチップをエポキシ樹脂にてLEDチップをダイボンドする。ここでダイボンドに用いられる接合部材は特に限定されず、Au−Sn合金や導電性材料が含有された樹脂又はガラス等を用いることができる。含有される導電性材料はAgが好ましく、含有量が80%〜90%であるAgペーストを用いると放熱性に優れて且つ接合後の応力が小さい発光装置が得られる。次に、ダイボンドされたLEDチップの各電極と、パッケージ凹部底面から露出された各リード電極とをそれぞれAuワイヤにて電気的導通を取る。本実施例ではワイヤーにて電気的接続を取ったが、各電極とリード電極とを対向させるフリップチップ実装をすることも可能である。
【0044】
一方、蛍光体として、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈させる。これを焼成して得られる共沈酸化物と、酸化アルミニウムと混合して混合原料を得る。これにフラックスとしてフッ化バリウムを混合して坩堝に詰め、空気中1400°Cの温度で3時間焼成して焼成品を得られる。焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して中心粒径が22μmである(Y0.995Gd0.0052.750Al12:Ce0.250蛍光体粒子を形成する。
【0045】
このようにして得られた蛍光体粒子をアクリル樹脂にて被膜し、蛍光体粒子の含有量が20%で且つ粒径値が前記蛍光体粒子の5倍である蛍光体マイクロカプセルを形成する。
【0046】
次に、透光性樹脂として液状で室温粘度が50Pであるエポキシ樹脂を用い、上記のようにして作成した蛍光体マイクロカプセルと前記エポキシ樹脂との重量比が5.4:100となるよう混合する。この色変換部材をLEDチップが配置された金属パッケージの凹部に流し込み120℃×4時間で硬化成形させる。
【0047】
次に、パッケージ内の水分を十分に排除した後、中央部にガラス窓部を有するコバール製リッドにて封止し低抵抗シーム溶接を行う。
【0048】
このようにして得られた色変換型発光装置500個に対し、光度及び色調の測定を行うと、各発光装置間において収束した色調が得られ且つ高い光度を有する発光装置が得られる。また、高温保管試験(100℃)、高温高湿保管試験(80℃、85%RH)、低温保管試験(−40℃)において、出力の低下はほとんどみられず、高い信頼性を有するといえる。
【0049】
【発明の効果】
以上説明したように、本発明は、発光素子と、該発光素子から発光された波長の少なくとも一部を吸収して異なる波長を発光することが可能な蛍光物質と、これらの蛍光物質が含有された透光性部材からなる色変換層とを有し、前記発光素子が前記色変換層により封止されてなる発光装置において、前記蛍光物質は多面体を有する蛍光体粒子からなり、該蛍光体粒子は表面が前記透光性部材と異なる有機物被膜により包囲されマイクロカプセル化されていることを特徴とする。前記透光性部材中に多数の前記蛍光体マイクロカプセルが均一に分散しており、各蛍光体マイクロカプセル間をほぼ等間隔となるように配置させることにより、歩留まり良く、収束した色調を有し且つ光度の高い発光装置が得られる。
【0050】
また、蛍光体粒子は、粒径が大きくなるほど表面に凸凹を有し信頼性及び光学特性に悪影響を及ぼしやすい。本発明は、上記構成により、輝度の高い大粒径蛍光体粒子を透光性部材中に好ましい分散状態にて配置させることができ、高輝度で且つ色ムラの抑制された発光装置を容易に得ることができる。
【図面の簡単な説明】
【図1】 図1は本発明の発光装置を示す模式的平面図及び模式的断面図である。
【符号の説明】
1・・・パッケージ
2、3・・・リード電極
4・・・発光素子
5・・・ダイボンド部材
6・・・ワイヤ
7・・・蛍光体粒子
8・・・蛍光体マイクロカプセル
9・・・透光性部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device used for an LED display, a backlight light source, a display, a traffic light, an illuminated switch, various indicators, and the like, and particularly has a fluorescent material capable of emitting light by converting the wavelength of light emitted from the LED chip. The present invention relates to a light emitting device.
[0002]
[Prior art]
Today, an LED chip using a nitride semiconductor (In x Ga y Al 1-xy N, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1), which is a semiconductor light emitting device capable of emitting blue light with high luminance, is available. It has been developed. Light emitting devices using nitride semiconductors have features such as higher output and less color shift due to temperature than light emitting devices that emit red to yellow-green light using other materials such as GaAs and AlInGaP. However, until now, there is a tendency that it is difficult to obtain high output in a long wavelength region having a wavelength of green or more. On the other hand, by absorbing at least a part of the blue light emitted from the blue light emitting LED chip and arranging a YAG: Ce phosphor or the like, which is a fluorescent material capable of emitting yellow light, on the LED chip, white light is emitted. A possible light-emitting device has also been developed and filed by the present applicant (International Publication No. WO 98/5078).
[0003]
This light-emitting device has, for example, light from an LED chip electrically connected to a lead electrode and a translucent resin that covers the LED chip, despite a relatively simple configuration of a one-chip two-terminal structure. White light mixed with light from a fluorescent substance such as YAG: Ce contained is emitted through a convex lens.
[0004]
In addition, this light-emitting device can arbitrarily emit light from a bluish white to a yellowish white among mixed color light emitted from the light-emitting device by adjusting the amount of fluorescent material used. . Furthermore, it is also conceivable to add a pigment and selectively obtain, for example, yellow light or red light as another wavelength.
[0005]
[Problems to be solved by the invention]
However, with the expansion of the field of use of light-emitting devices, there is a need for light-emitting devices that can emit light with very little variation in light emission and high brightness. The fired phosphor particles have a crushed shape. When such an inorganic material having a rough surface comes into contact with the periphery of the light emitting element, the light emitting element is adversely affected and the reliability of the light emitting device is deteriorated.
[0006]
In view of the above, an object of the present invention is to solve the above-described problems and to provide a light-emitting device with high reliability and excellent optical characteristics.
[0007]
[Means for Solving the Problems]
A light-emitting device according to the present invention includes a light-emitting element, a fluorescent material that can absorb at least a part of wavelengths emitted from the light-emitting element and emit different wavelengths, and a transparent material containing these fluorescent substances. A light-emitting device in which the light-emitting element is sealed by the color conversion layer, and the phosphor is composed of phosphor particles having a polyhedron, the phosphor particles having a surface Is surrounded by an organic coating different from the translucent member and is microencapsulated, and the phosphor microcapsule constituted by the phosphor particles and the organic coating has a content of the phosphor particles of 1 to 50 %, And the phosphor microcapsules are settled around the light emitting element . In the present invention, a phosphor microcapsule obtained by microencapsulating phosphor particles has a smooth surface and flexibility. Thereby, it can disperse | distribute in a preferable state, without exerting a bad influence on the adjacent light emitting element. In addition, since a certain distance can be maintained between the respective phosphor particles, it is possible to irradiate all the phosphor particles with light from the light emitting element, and to make the best use of the action of each phosphor particle. it is possible. As a result, it is possible to emit desired light with high luminance with the minimum necessary content.
[0008]
Further, the organic coating is preferably made of a member having a specific gravity lighter than that of the phosphor particles, whereby the dispersibility of the phosphor microcapsules in the translucent member can be further improved.
[0009]
In the phosphor microcapsule composed of the phosphor particles and the organic coating, the phosphor particles preferably have a content of 1% to 50%, whereby the entire surface of the phosphor particles is covered with the organic matter. The phosphor particles can be well protected, the surface excitation action of the phosphor particles can be used efficiently, and the luminance is further improved.
[0010]
The phosphor particles preferably have a center particle size in the range of 15 μm to 50 μm, more preferably 20 μm to 50 μm. Thereby, luminous efficiency is improved and a light emitting device with high luminance is obtained. In addition, it is possible to suppress the formation of densely aggregated aggregates that tend to affect the optical characteristics, and it is possible to obtain a light emitting device capable of emitting light with a good color tone and high luminance. The phosphor particles are characterized in that the ratio of the phosphor particles having the particle diameter of the central particle diameter is in the range of 20% to 50%. Thus, the frequency value of the center particle diameter is preferably in the range of 20% to 50%, and thereby, light emission having a good contrast can be obtained while suppressing color unevenness. Originally, in a translucent member such as a thermosetting resin, the phosphor particles are more easily filled in the periphery of the light emitting element as the particle size becomes larger. It can arrange | position in the state which can utilize the characteristic of a fluorescent substance particle to the maximum.
[0011]
Furthermore, the translucent member has a filler, and the filler is disposed between the phosphor microcapsules . In this way, when the filler is disposed between the phosphor microcapsules in the sealing member, color unevenness is further suppressed and more uniform light emission is obtained.
[0012]
The main light emission peak of the light emitting element is 400 nm to 530 nm, and the phosphor includes at least one element selected from the group consisting of Y, Lu, Sc, La, Gd and Sm, Al, Ga and In. A garnet-based phosphor activated with Ce and at least one element selected from the group consisting of: a nitrogen-containing CaO—Al 2 O 3 —SiO 2 phosphor activated with Eu and / or Cr One kind selected may be used. Thereby, light emission of a desired light emission color can be obtained corresponding to the light emission wavelength of the light emitting element, and a light emitting device capable of light emission with simple and high luminance and high reliability can be obtained.
[0013]
Moreover, it is preferable that the light emission surface which consists of the said translucent member has a curved surface. As a result, when the light of the light emitting element is extracted from the light transmissive member to the outside, the light is diffused at the interface between the light transmissive member and the external air layer. Unevenness can be suppressed. Further, the light extraction efficiency on the light emitting surface is improved, and it is possible to emit light with higher output.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various experiments, the inventor of the present application has found that the variation in light emission and the decrease in yield of the color conversion type light-emitting device are mainly due to the arrangement state of the phosphor particles in the translucent member. The inventor has made the present invention.
[0015]
The specific gravity of the fluorescent material reaches several times that of the liquid resin. In particular, thermosetting resins have a greatly reduced viscosity after heat-curing, so when the light-emitting element is covered with a liquid resin containing a fluorescent substance and thermally cured, the fluorescent substance in the resin is almost concentrated around the light-emitting element and settles. This is the current situation. In particular, when the content of the fluorescent material is increased to adjust the color tone, the phosphor settles around the light emitting element with a certain volume. For this reason, it is considered that only the fluorescent material located on the outermost surface around the light emitting element can absorb light from the light emitting element most efficiently. It is thought that energy is concealed and light is concealed, resulting in a decrease in light emission output. The light density in the vicinity of the light emitting element is increased by the light confined in this way, and thereby the adjacent resin is deteriorated, causing color unevenness.
[0016]
Moreover, the surface of the phosphor particles is covered with air, and is difficult to mix with the liquid resin, and tends to be an aggregate in which large and small phosphors are aggregated. The light that is taken in and converted into each phosphor forming such an aggregate is reflected and scattered between the aggregates and emitted to the outside. Therefore, the apparent light conversion efficiency is improved compared to the case of primary particles. However, if these fluorescent aggregates are too large, they not only cause color unevenness in the emission of the phosphor, but also take in the air layer and fluoresce. It is considered that the desired color tone cannot be obtained because the optical characteristics are greatly affected, such as by confining light from the body. Such agglomerates can be improved to some extent by using a dispersant, but various problems such as difficult color change may occur in a light emitting device that requires light projecting properties. On the other hand, if mechanical dispersion treatment is performed for a long time in order to disperse the aggregates, the dispersibility of the phosphors is improved, but there is a tendency to cause a decrease in emission luminance that may be caused by grinding of the surface crystals of the phosphors. is there.
[0017]
Moreover, the resin which is a translucent member raise | generates a shrinkage reaction with a heat | fever. For this reason, the phosphor particles contained in the translucent member and precipitated on the surface of the light emitting element are pressed against the adjacent light emitting element by applying heat to the light emitting device, and the protective film on the surface of the light emitting element is formed. There is a risk that it will be destroyed and the reliability of the light emitting device will be lowered.
[0018]
Therefore, the present invention uses phosphor microcapsules in which an organic coating is formed on the surface of the phosphor particles, and efficiently excites light from the light emitting element to improve the light emission luminance and the yield.
[0019]
Hereinafter, a light emitting device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an SMD type light emitting diode which is an embodiment of the present invention. A light emitting element is electrically connected to the bottom surface of the concave portion using a package 1 having a concave portion and insert-molded so that the surfaces of the pair of lead electrodes 2 and 3 are exposed from the bottom surface of the concave portion. The light-emitting element has a nitride semiconductor (Al x Ga y In z N, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, X + Y + Z = through a buffer layer made of gallium nitride on a sapphire substrate. A pn junction consisting of 1) is formed. A sealing member comprising phosphor particles microencapsulated with an acrylic resin in an epoxy resin, which is a translucent member, is contained in the recess so as to seal the light emitting element 4 thus installed. Filled. Hereafter, each structure in embodiment of this invention is explained in full detail.
[0020]
(Light emitting element)
In the present invention, the light-emitting element 1 is not particularly limited. However, when a fluorescent material is used, a semiconductor light-emitting element having a light-emitting layer capable of emitting an emission wavelength capable of exciting the fluorescent material is preferable. Can be mentioned various semiconductors such as ZnSe or GaN as such semiconductor light emitting device, a short wavelength capable of emitting nitride semiconductor capable of efficiently exciting the fluorescent substance (In X Al Y Ga 1- X-Y N, Preferred examples include 0 ≦ X, 0 ≦ Y, and X + Y ≦ 1). Examples of the semiconductor structure include a homostructure having a MIS junction, a PIN junction, and a pn junction, a heterostructure, and a double heterostructure. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal. In addition, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed in a thin film in which a quantum effect is generated can be used.
[0021]
When a nitride semiconductor is used, a material such as sapphire, spinel, SiC, Si, ZnO is preferably used for the semiconductor substrate. In order to form a nitride semiconductor with good crystallinity with high productivity, it is preferable to use a sapphire substrate. A nitride semiconductor can be formed on the sapphire substrate by MOCVD or the like. A buffer layer made of GaN, AlN, GaAIN or the like is formed on the sapphire substrate, and a nitride semiconductor having a pn junction is formed thereon.
[0022]
As an example of a light emitting device having a pn junction using a nitride semiconductor, a first contact layer formed of n-type gallium nitride, a first cladding layer formed of n-type aluminum nitride / gallium, and a nitride layer on a buffer layer Examples include a double hetero structure in which an active layer formed of indium gallium, a second cladding layer formed of p-type aluminum nitride / gallium, and a second contact layer formed of p-type gallium nitride are sequentially stacked.
[0023]
Nitride semiconductors exhibit n-type conductivity without being doped with impurities. When forming a desired n-type nitride semiconductor, for example, to improve luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, etc. as an n-type dopant. On the other hand, when forming a p-type nitride semiconductor, the p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba are doped. Since nitride semiconductors are not easily converted to p-type by simply doping with a p-type dopant, it is preferable to reduce resistance by heating in a furnace or plasma irradiation after introducing the p-type dopant. After the electrodes are formed, a light emitting element made of a nitride semiconductor can be formed by cutting the semiconductor wafer into chips.
[0024]
In the light emitting diode of the present invention, in order to emit white light, the emission wavelength of the light emitting element is preferably 400 nm or more and 530 nm or less in consideration of the complementary color relationship with the emission wavelength from the fluorescent material, deterioration of the translucent resin, and the like. 420 nm or more and 490 nm or less is more preferable. In order to further improve the excitation and emission efficiency of the light emitting element and the fluorescent material, 450 nm or more and 475 nm or less are more preferable.
[0025]
In addition, when using a metal package, deterioration of the structural member by ultraviolet rays can be suppressed. Therefore, the light emitting device of the present invention uses a light emitting element whose main emission wavelength is an ultraviolet region shorter than 400 nm, specifically 320 nm to 400 nm, and absorbs part of the light from the light emitting element to other wavelengths. By combining with a fluorescent material capable of emitting light, a color conversion light-emitting device with little color unevenness can be obtained. Here, when the fluorescent substance is bound to a light emitting device, it is preferable to use a resin that is relatively resistant to ultraviolet rays, glass that is an inorganic substance, or the like.
[0026]
(Phosphor particles)
The phosphor particles used in the light emitting device of the present invention are cerium-activated yttrium / aluminum oxide phosphors capable of emitting light by exciting light emitted from a semiconductor light emitting device having a nitride semiconductor as a light emitting layer. It is based on. Specific examples of the yttrium / aluminum oxide fluorescent material include YAlO 3 : Ce, Y 3 Al 5 O 12 Y: Ce (YAG: Ce), Y 4 Al 2 O 9 : Ce, and a mixture thereof. Can be mentioned. The yttrium / aluminum oxide fluorescent material may contain at least one of Ba, Sr, Mg, Ca, and Zn. Moreover, by containing Si, the reaction of crystal growth can be suppressed and the particles of the fluorescent material can be aligned. In this specification, the yttrium / aluminum oxide phosphor activated by Ce is to be interpreted in a broad sense, and a part or all of yttrium is selected from the group consisting of Lu, Sc, La, Gd and Sm. Or a part or all of aluminum is used in a broad sense including a phosphor having a fluorescent action in which any one or both of Ba, Tl, Ga, and In are substituted. More specifically, the photoluminescence phosphor represented by the general formula (Y z Gd 1-z ) 3 Al 5 O 12 : Ce (where 0 <z ≦ 1) or the general formula (Re 1-a Sma) 3 Re ′ 5 O 12 : Ce (where 0 ≦ a <1, 0 ≦ b ≦ 1, Re is at least one selected from Y, Gd, La, and Sc, and Re ′ is selected from Al, Ga, and In At least one kind). Since this fluorescent material has a garnet structure, it is resistant to heat, light and moisture, and the peak of the excitation spectrum can be made around 450 nm. In addition, the emission peak is in the vicinity of 580 nm and has a broad emission spectrum that extends to 700 nm.
[0027]
Further, the photoluminescence phosphor can increase the excitation light emission efficiency in a long wavelength region of 460 nm or more by containing Gd (gadolinium) in the crystal. As the Gd content increases, the emission peak wavelength shifts to a longer wavelength, and the entire emission wavelength also shifts to the longer wavelength side. That is, when a strong reddish emission color is required, it can be achieved by increasing the amount of Gd substitution. On the other hand, as Gd increases, the emission luminance of photoluminescence by blue light tends to decrease. Furthermore, in addition to Ce, Tb, Cu, Ag, Au, Fe, Cr, Nd, Dy, Co, Ni, Ti, Eu, and the like can be contained as desired. Moreover, in the composition of the yttrium / aluminum / garnet phosphor having a garnet structure, the emission wavelength is shifted to the short wavelength side by replacing a part of Al with Ga. Further, by substituting part of Y in the composition with Gd, the emission wavelength is shifted to the longer wavelength side. When substituting a part of Y with Gd, it is preferable that the substitution with Gd is less than 10%, and the Ce content (substitution) is 0.03 to 1.0. If the substitution with Gd is less than 20%, the green component is large and the red component is small. However, by increasing the Ce content, the red component can be supplemented and a desired color tone can be obtained without lowering the luminance. With such a composition, the temperature characteristics are good and the reliability of the light emitting diode can be improved. In addition, when a photoluminescent phosphor adjusted to have a large amount of red component is used, a light emitting device capable of emitting an intermediate color such as pink can be formed.
[0028]
Such photoluminescent phosphors use oxides or compounds that easily become oxides at high temperatures as raw materials for Y, Gd, Al, and Ce, and mix them well in a stoichiometric ratio. Get raw materials. Alternatively, a mixed raw material obtained by mixing a coprecipitation oxide obtained by firing a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, and Ce in an acid in a stoichiometric ratio with oxalic acid and aluminum oxide. Get. A suitable amount of fluoride such as barium fluoride or ammonium fluoride is mixed as a flux and packed in a crucible, and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a fired product, and then fired. The product can be obtained by ball milling in water, washing, separating, drying and finally passing through a sieve. In the light emitting device of the present invention, such a photoluminescent phosphor may be a mixture of yttrium / aluminum / garnet phosphor activated by two or more kinds of cerium and other phosphors.
[0029]
The particle size of the phosphor particles used in the present invention is preferably in the range of 10 μm to 50 μm, more preferably 15 μm to 30 μm. Thereby, concealment of light can be suppressed and the luminance of the integrated nitride semiconductor light emitting device can be improved. In addition, the phosphor having the above particle diameter range has high light absorptance and conversion efficiency and a wide excitation wavelength range. Thus, by including a large particle size phosphor having optically excellent characteristics, light around the main wavelength of the light emitting element can be converted and emitted well, and an integrated nitride semiconductor light emitting element The mass productivity is improved. On the other hand, the phosphor having a particle size smaller than 15 μm is relatively easy to form an aggregate, tends to be densely settled in the liquid resin, and reduces the light transmission efficiency.
[0030]
Here, in the present invention, the particle size is a value obtained from a volume-based particle size distribution curve. The volume-based particle size distribution curve is obtained by measuring the particle size distribution by a laser diffraction / scattering method. Specifically, in an environment of an air temperature of 25 ° C. and a humidity of 70%, hexametalin having a concentration of 0.05%. Each substance was dispersed in an aqueous sodium acid solution and measured with a laser diffraction particle size distribution analyzer (SALD-2000A) in a particle size range of 0.03 μm to 700 μm. If the particle size value when the integrated value is 50% in this volume-based particle size distribution curve is defined as the center particle size, the center particle size of the phosphor used in the present invention is preferably in the range of 15 μm to 50 μm. Moreover, it is preferable that the fluorescent substance which has this center particle size value is contained frequently, and the frequency value is preferably 20% to 50%. In this way, by using a fluorescent material with small variation in particle size, a light emitting device having a favorable color tone with suppressed color unevenness can be obtained.
[0031]
In addition, it is a phosphor capable of absorbing blue, blue-green and green and emitting red, and is activated by Eu and / or Cr-activated sapphire (aluminum oxide) phosphor and Eu and / or Cr. Ni-containing CaO—Al 2 O 3 —SiO 2 phosphor (oxynitride fluorescent glass) and the like. Using these phosphors, white light can also be obtained by mixing the light from the light emitting element and the light from the phosphor.
[0032]
A nitrogen-containing CaO—Al 2 O 3 —SiO 2 phosphor activated with Eu and / or Cr is a powder obtained by mixing a rare earth material with a predetermined material such as aluminum oxide, yttrium oxide, silicon oxide and calcium oxide. It is melted and molded at 1300 ° C. to 1900 ° C. (more preferably 1500 ° C. to 1750 ° C.) in an atmosphere. The molded product can be ball milled, washed, separated, dried, and finally passed through a sieve to form a phosphor. As a result, Ca—Al—Si—O—N-based oxynitride fluorescence activated by Eu and / or Cr that can emit red light by an excitation spectrum having a peak at 450 nm and blue light having a peak at about 650 nm. Can be glass.
[0033]
The peak of the emission spectrum is continuously shifted from 575 nm to 690 nm by increasing or decreasing the nitrogen content of the Ca—Al—Si—O—N-based oxynitride fluorescent glass activated with Eu and / or Cr. be able to. Similarly, the excitation spectrum can be shifted continuously. Therefore, white light can be emitted by the combined light of light from a gallium nitride compound semiconductor containing GaN or InGaN doped with impurities such as Mg and Zn in the light emitting layer and light of a phosphor of about 580 nm. In particular, light emission can be obtained ideally in combination with a light-emitting element made of a gallium nitride-based compound semiconductor containing InGaN capable of emitting light of about 490 nm with high luminance in a light-emitting layer.
[0034]
Further, by combining the YAG phosphor activated with Ce and the nitrogen-containing Ca—Al—Si—O—N oxynitride fluorescent glass activated with Eu and / or Cr, a blue color can be obtained. By using a light emitting element capable of emitting light, a light emitting diode having extremely high color rendering properties including RGB (red, green, blue) components with high luminance can be formed. For this reason, an arbitrary intermediate color can be formed very simply by adding a desired pigment. In the present invention, any phosphor is an inorganic phosphor, and an organic light scattering agent, SiO 2 or the like can be used to form a light-emitting diode having both high contrast and excellent mass productivity.
[0035]
(Phosphor microcapsules)
In the present invention, the phosphor is surrounded by an organic film made of a member different from the translucent member disposed around and used as a phosphor microcapsule. Here, a method for manufacturing the phosphor microcapsule will be described.
[0036]
As a coating material, a hydrophilic colloid having a property of gelling or hardening, for example, a dilute water sol such as gelatin, agar, albumin, alginate, casein, pectin, fiprigen, etc., is prepared at a temperature above the gelation temperature and coated. Suspend the phosphor. In this embodiment, an acrylic resin having strong light resistance and heat resistance is used as the coating material. Next, in the case of taking the simple coacervation method, as a coacervation agent, an aqueous salt solution such as sodium chloride, sodium sulfate, ammonium oxalate, sodium citrate, sodium benzoate or the like, which reduces the dissolution of the colloid. In the case of adding a coexisting solvent such as methanol, ethanol, propanol, acetone, dioxane, etc. and taking a complex coacervation method, a polymer substance such as gum arabic, polyvinyl pyrrolidone, etc. is used as a coacervation agent. Added. After the coacervation agent is added, the temperature of the system is cooled below the gelation temperature of the coacervation phase, and the coating substance in the solution is gelled on the surface of the insoluble and core phosphor and fixed there. The gel film is further cured with aldehydes and dried to obtain a phosphor encapsulated in the desired microcapsules. As described above, the microencapsulated phosphor particles have a film on the surface, so that the light absorption rate and surface excitation efficiency of the phosphor particles are increased, and can be supported with high color conversion efficiency. In addition, since the flexible phosphor microcapsules cover the periphery of the light emitting element, reliability is improved and good optical characteristics are obtained.
[0037]
(Translucent member)
As a specific material of the translucent member suitably used in the present invention, a transparent resin or glass having excellent weather resistance such as an epoxy resin, an acrylic resin, a silicone resin, or a fluororesin is preferably used. These translucent members contain phosphor microcapsules in which the phosphor particles are surrounded by an organic film different from that of the translucent member. The translucent member and the organic coating member are preferably different. When the same member is used, the translucent member and the organic coating member on the surface of the phosphor microcapsule are assimilated by heating or the like, and the phosphor particles in the phosphor microcapsule are arranged in a preferable state. It becomes difficult.
[0038]
Moreover, you may make the said translucent member contain a filler and / or a pigment with the said fluorescent substance microcapsule. In addition to disposing these translucent members on the LED chip as mold members, they can also be used as die bond members. Moreover, you may arrange | position through another transparent member.
[0039]
Examples of the present invention will be described below. In addition, this invention is not limited only to the Example shown below.
(Example 1)
A surface mount type light emitting device as shown in FIG. 1 is formed. The LED chip uses a nitride semiconductor element having a 475 nm In0.2Ga0.8N semiconductor having a monochromatic emission peak of visible light as a light emitting layer. More specifically, in the LED chip, TMG (trimethylgallium) gas, TMI (trimethylindium) gas, nitrogen gas and dopant gas are flowed together with a carrier gas on a cleaned sapphire substrate, and a nitride semiconductor is formed by MOCVD. Can be formed. A layer to be an n-type nitride semiconductor or a p-type nitride semiconductor is formed by switching between SiH 4 and Cp 2 Mg as dopant gases.
As an element structure of the LED chip, an n-type GaN layer which is an undoped nitride semiconductor on a sapphire substrate, a GaN layer where an Si-doped n-type electrode is formed and serving as an n-type contact layer, and n which is an undoped nitride semiconductor. 5 layers of InGaN layers sandwiched between GaN layers, each comprising a type GaN layer, a GaN layer that constitutes a light emitting layer, a InGaN layer that constitutes a well layer, and a GaN layer that constitutes a barrier layer It is a multiple quantum well structure. On the light emitting layer, an AlGaN layer as a p-type cladding layer doped with Mg and a GaN layer as a p-type contact layer doped with Mg are sequentially laminated. (Note that a GaN layer is formed on the sapphire substrate at a low temperature to serve as a buffer layer. The p-type semiconductor is annealed at 400 ° C. or higher after film formation.)
[0041]
Etching exposes the surface of each pn contact layer on the same side as the nitride semiconductor on the sapphire substrate. Positive and negative pedestal electrodes were formed on each contact layer by sputtering. A metal thin film is formed on the entire surface of the p-type nitride semiconductor as a translucent electrode, and then a pedestal electrode is formed on a part of the translucent electrode. After a scribe line is drawn on the completed semiconductor wafer, it is divided by an external force to form LED chips that are semiconductor light emitting elements.
[0042]
Next, a mold resin melted from a gate on the lower surface side of the package molded body is poured into a mold closed by inserting a pair of positive and negative lead electrodes and closed to form a package. The package has a recess capable of accommodating the light emitting element, and the positive and negative lead electrodes are integrally formed so that one main surface is exposed from the bottom surface of the recess. In this package, the outer lead portions of the positive and negative lead electrodes are bent inward along the bonding surfaces at both ends of the bonding surface of the package, and are soldered at the bent portions. It is configured as follows.
[0043]
The LED chip is die-bonded to the bottom surface of the concave portion of the package formed in this way with an epoxy resin. Here, the bonding member used for die bonding is not particularly limited, and a resin or glass containing an Au—Sn alloy or a conductive material can be used. The conductive material contained is preferably Ag. When an Ag paste having a content of 80% to 90% is used, a light emitting device having excellent heat dissipation and low stress after bonding can be obtained. Next, each electrode of the die-bonded LED chip and each lead electrode exposed from the bottom surface of the package recess are electrically connected by an Au wire. In this embodiment, the electrical connection is made with the wire, but it is also possible to perform flip chip mounting in which each electrode and the lead electrode face each other.
[0044]
On the other hand, as a phosphor, a solution obtained by dissolving rare earth elements of Y, Gd, and Ce in acid at a stoichiometric ratio is coprecipitated with oxalic acid. A co-precipitated oxide obtained by firing this and aluminum oxide are mixed to obtain a mixed raw material. This is mixed with barium fluoride as a flux and packed in a crucible and fired in air at a temperature of 1400 ° C. for 3 hours to obtain a fired product. The fired product is ball milled in water, washed, separated, dried, and finally passed through a sieve to have a center particle size of 22 μm (Y 0.995 Gd 0.005 ) 2.750 Al 5 O 12 : Ce 0.250 phosphor Form particles.
[0045]
The phosphor particles thus obtained are coated with an acrylic resin to form phosphor microcapsules having a phosphor particle content of 20% and a particle size value five times that of the phosphor particles.
[0046]
Next, a liquid epoxy resin having a room temperature viscosity of 50 P is used as the translucent resin, and the phosphor microcapsules prepared as described above and the epoxy resin are mixed so that the weight ratio is 5.4: 100. To do. The color conversion member is poured into the recess of the metal package in which the LED chip is arranged, and is cured and molded at 120 ° C. for 4 hours.
[0047]
Next, after sufficiently removing moisture in the package, the package is sealed with a Kovar lid having a glass window at the center, and low resistance seam welding is performed.
[0048]
When the light intensity and the color tone are measured for 500 color conversion light-emitting devices obtained in this way, a light-emitting device having a high light intensity with a converged color tone between the light-emitting devices can be obtained. Further, in the high temperature storage test (100 ° C.), the high temperature and high humidity storage test (80 ° C., 85% RH), and the low temperature storage test (−40 ° C.), almost no decrease in output is observed, and it can be said that the device has high reliability. .
[0049]
【The invention's effect】
As described above, the present invention includes a light-emitting element, a fluorescent material that can absorb at least a part of wavelengths emitted from the light-emitting element and emit different wavelengths, and these fluorescent materials. A light-emitting device in which the light-emitting element is sealed by the color conversion layer, and the phosphor is composed of phosphor particles having a polyhedron, and the phosphor particles Is characterized in that the surface is surrounded by an organic coating different from the light-transmitting member and is microencapsulated. A large number of the phosphor microcapsules are uniformly dispersed in the translucent member, and by arranging the phosphor microcapsules at almost equal intervals, the yield and the converged color tone are obtained. In addition, a light emitting device with high luminous intensity can be obtained.
[0050]
In addition, the phosphor particles have irregularities on the surface as the particle size increases, and are liable to adversely affect reliability and optical characteristics. According to the above configuration, the present invention can arrange a phosphor particle having a high luminance and a large particle size in a light-transmitting member in a preferable dispersed state, and can easily achieve a light emitting device with high luminance and suppressed color unevenness. Obtainable.
[Brief description of the drawings]
FIG. 1 is a schematic plan view and a schematic cross-sectional view showing a light emitting device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Package 2, 3 ... Lead electrode 4 ... Light emitting element 5 ... Die-bonding member 6 ... Wire 7 ... Phosphor particle 8 ... Phosphor microcapsule 9 ... Transparent Optical member

Claims (4)

発光素子と、該発光素子から発光された波長の少なくとも一部を吸収して異なる波長を発光することが可能な蛍光物質と、これらの蛍光物質が含有された透光性部材からなる色変換層とを有し、前記発光素子が前記色変換層により封止されてなる発光装置において、
前記蛍光物質は多面体を有する蛍光体粒子からなり、該蛍光体粒子は表面が前記透光性部材と異なる有機物被膜により包囲されマイクロカプセル化されており、
前記蛍光体粒子と前記有機物被膜とにより構成される蛍光体マイクロカプセルにおける、前記蛍光体粒子の含有量は1〜50%であり、前記蛍光体マイクロカプセルは前記発光素子周辺に沈降されていることを特徴とする発光装置。
A color conversion layer comprising a light emitting element, a fluorescent material capable of absorbing at least a part of wavelengths emitted from the light emitting element and emitting different wavelengths, and a translucent member containing these fluorescent materials In the light emitting device in which the light emitting element is sealed by the color conversion layer,
The phosphor is composed of phosphor particles having a polyhedron, and the phosphor particles are encapsulated in a microcapsule with a surface surrounded by an organic coating different from the translucent member,
In the phosphor microcapsule composed of said organic film and the phosphor particles, the content of the phosphor particles Ri 1% to 50% der, the phosphor microcapsules that are settled around the light emitting element A light emitting device characterized by that.
前記蛍光体粒子は、中心粒径が15μm〜50μmの範囲であることを特徴とする請求項1に記載の発光装置。The light emitting device according to claim 1, wherein the phosphor particles have a center particle diameter in a range of 15 μm to 50 μm. 前記蛍光体粒子は、前記中心粒径の粒子径を有する蛍光体粒子の割合が20%〜50%の範囲であることを特徴とする請求項2に記載の発光装置。The light emitting device according to claim 2, wherein the phosphor particles have a ratio of phosphor particles having a particle diameter of the central particle diameter in a range of 20% to 50%. 前記透光性部材はフィラーを有しており、前記フィラーは前記蛍光体マイクロカプセル間に配置されていることを特徴とする請求項1乃至3のいずれか一項に記載の発光装置。The light-emitting device according to claim 1, wherein the translucent member includes a filler, and the filler is disposed between the phosphor microcapsules.
JP2001231643A 2001-07-31 2001-07-31 Light emitting device and manufacturing method thereof Expired - Fee Related JP4147755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231643A JP4147755B2 (en) 2001-07-31 2001-07-31 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231643A JP4147755B2 (en) 2001-07-31 2001-07-31 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003046141A JP2003046141A (en) 2003-02-14
JP4147755B2 true JP4147755B2 (en) 2008-09-10

Family

ID=19063668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231643A Expired - Fee Related JP4147755B2 (en) 2001-07-31 2001-07-31 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4147755B2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148332B1 (en) 2003-04-30 2012-05-25 크리, 인코포레이티드 High powered light emitter packages with compact optics
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
US7915085B2 (en) 2003-09-18 2011-03-29 Cree, Inc. Molded chip fabrication method
JP4285198B2 (en) * 2003-10-28 2009-06-24 パナソニック電工株式会社 Light emitting device
JP4492189B2 (en) * 2004-04-07 2010-06-30 日亜化学工業株式会社 Light emitting device
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
JP4786886B2 (en) * 2004-08-11 2011-10-05 ローム株式会社 Semiconductor light emitting device
JP4516378B2 (en) * 2004-08-13 2010-08-04 ローム株式会社 Semiconductor light emitting device
JP4880887B2 (en) * 2004-09-02 2012-02-22 株式会社東芝 Semiconductor light emitting device
KR101204115B1 (en) 2005-02-18 2012-11-22 니치아 카가쿠 고교 가부시키가이샤 Light emitting device with light distribution characteristic controlling lens
JP4953578B2 (en) * 2005-02-18 2012-06-13 日亜化学工業株式会社 Light emitting device
JP4707433B2 (en) * 2005-03-29 2011-06-22 京セラ株式会社 Light emitting device and lighting device
KR100691273B1 (en) 2005-08-23 2007-03-12 삼성전기주식회사 Complex Phosphor Powder, Light Emitting Device using the Same and Method for Preparing Complex Phosphor Powder
JP2007091960A (en) * 2005-09-30 2007-04-12 Nitto Denko Corp Resin composition for sealing optical semiconductor element and optical semiconductor device obtained by using the same
EP1969633B1 (en) 2005-12-22 2018-08-29 Cree, Inc. Lighting device
JP4213168B2 (en) * 2006-03-28 2009-01-21 アルプス電気株式会社 Light emitting device
EP2011164B1 (en) 2006-04-24 2018-08-29 Cree, Inc. Side-view surface mount white led
US8425271B2 (en) 2006-09-01 2013-04-23 Cree, Inc. Phosphor position in light emitting diodes
JP2008115223A (en) 2006-11-01 2008-05-22 Nec Lighting Ltd Phosphor-containing glass sheet, method for producing the same and light-emitting device
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
KR100849782B1 (en) 2007-02-12 2008-07-31 삼성전기주식회사 Method for manufacturing led package
JP2008308510A (en) * 2007-06-12 2008-12-25 Sony Corp Light emission composition, optical apparatus using this, and display apparatus using this
DE102007042642A1 (en) * 2007-09-07 2009-03-12 Osram Gesellschaft mit beschränkter Haftung Method for producing an optoelectronic component and optoelectronic component
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
JP2011210891A (en) * 2010-03-29 2011-10-20 Hitachi Chem Co Ltd Wavelength-converting solar cell sealing sheet, and solar cell module
JP5799487B2 (en) * 2010-04-09 2015-10-28 日立化成株式会社 Spherical phosphor for wavelength conversion type solar cell encapsulant, wavelength conversion type solar cell encapsulant, solar cell module and production method thereof
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
CN104241262B (en) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 Light emitting device and display device
JP6237174B2 (en) * 2013-12-05 2017-11-29 日亜化学工業株式会社 Light emitting device
US9954148B2 (en) 2014-10-24 2018-04-24 Citizen Electronics Co., Ltd. Light-emitting apparatus with optical element and method of manufacturing the same
KR101641266B1 (en) * 2015-02-05 2016-07-20 엘지전자 주식회사 Display apparatus having light emitting device package
TWI776143B (en) * 2019-05-03 2022-09-01 勤倫股份有限公司 High-brightness luminous yarn and its manufacturing method
CN110289341A (en) * 2019-06-12 2019-09-27 浙江英特来光电科技有限公司 A kind of full-color SMD LED and its installation method increasing binding force with printed wiring board

Also Published As

Publication number Publication date
JP2003046141A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
JP4147755B2 (en) Light emitting device and manufacturing method thereof
JP4991026B2 (en) Light emitting device
JP4055373B2 (en) Method for manufacturing light emitting device
JP4415548B2 (en) Light emitting device using oxynitride phosphor
JP3655267B2 (en) Semiconductor light emitting device
JP4244653B2 (en) Silicon nitride phosphor and light emitting device using the same
US7462870B2 (en) Molded package and semiconductor device using molded package
US6924514B2 (en) Light-emitting device and process for producing thereof
JP4010299B2 (en) Semiconductor light emitting device and method for forming the same
JP4430264B2 (en) Surface mount light emitting device
JP4222017B2 (en) Light emitting device
JP5066786B2 (en) Nitride phosphor and light emitting device using the same
JPWO2006077740A1 (en) Light emitting device and manufacturing method thereof
JP4222059B2 (en) Light emitting device
JP2002252372A (en) Light-emitting diode
JP2004221163A (en) Light emitting device, its forming method, planar light emitting device using the light emitting device
JP2004210921A (en) Oxynitride fluorophor and method for producing the same and light-emitting device using the same
JP4874510B2 (en) Light emitting device and manufacturing method thereof
JP4442101B2 (en) Oxynitride phosphor and light emitting device using the same
JP4218328B2 (en) Nitride phosphor and light emitting device using the same
JP2002050800A (en) Light-emitting device and forming method therefor
JP4221950B2 (en) Phosphor
JP4466446B2 (en) Light emitting device using oxynitride phosphor
JP4613546B2 (en) Light emitting device
JP4991027B2 (en) Oxynitride phosphor and light emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4147755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees