JP4146364B2 - Method for manufacturing plastic working member - Google Patents

Method for manufacturing plastic working member Download PDF

Info

Publication number
JP4146364B2
JP4146364B2 JP2004017958A JP2004017958A JP4146364B2 JP 4146364 B2 JP4146364 B2 JP 4146364B2 JP 2004017958 A JP2004017958 A JP 2004017958A JP 2004017958 A JP2004017958 A JP 2004017958A JP 4146364 B2 JP4146364 B2 JP 4146364B2
Authority
JP
Japan
Prior art keywords
molding material
plastic working
experimental example
mold
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004017958A
Other languages
Japanese (ja)
Other versions
JP2005213529A (en
Inventor
昌典 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004017958A priority Critical patent/JP4146364B2/en
Publication of JP2005213529A publication Critical patent/JP2005213529A/en
Application granted granted Critical
Publication of JP4146364B2 publication Critical patent/JP4146364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は時効硬化型のアルミニウム合金からなる塑性加工部材及びその製造方法に関するものであり、特に、コンプレッサ用のスクロール部材に用いられる塑性加工部材の製造方法に関するものである。 The present invention relates to plastic working member and a manufacturing method thereof consisting age hardening type aluminum alloy, in particular, to a method for manufacturing a plastic working member for use in a scroll member for a compressor.

従来、コンプレッサ等に用いられるスクロール部材は、アルミニウム合金を原料として鍛造で製造されている。ここで用いられるアルミニウム合金としては、例えば、Cuの析出硬化で最終的な強度を持たせたAl−Si−Cu−Mg系の時効硬化型合金等を例示できる。   Conventionally, scroll members used in compressors and the like are manufactured by forging using an aluminum alloy as a raw material. As an aluminum alloy used here, for example, an Al—Si—Cu—Mg age-hardening type alloy having a final strength by precipitation hardening of Cu can be exemplified.

図13にスクロール部材の斜視図を示し、図14にスクロール部材を製造する際に使用する金型の斜視図を示す。図13に示すように、スクロール部材(塑性加工部材)1は、円盤状のフランジ2と、このフランジ2の一面2a上に立設された渦巻き状のフィン3とから構成されている。また図14に示すように、スクロール部材1の製造に使用する金型(工具)4は、スクロール部材1のフィン3を成型するための下型5と、下型5にアルミニウム合金からなるビレット(合金塊)6を押し込んで鍛造する上パンチ7とから構成されている。   FIG. 13 shows a perspective view of the scroll member, and FIG. 14 shows a perspective view of a mold used when the scroll member is manufactured. As shown in FIG. 13, the scroll member (plastic working member) 1 is composed of a disc-shaped flange 2 and a spiral fin 3 erected on one surface 2 a of the flange 2. As shown in FIG. 14, a mold (tool) 4 used for manufacturing the scroll member 1 includes a lower mold 5 for molding the fins 3 of the scroll member 1, and a billet ( It is composed of an upper punch 7 forging and forging the alloy lump 6.

また、図15にスクロール部材1の従来の製造工程を示す。従来のスクロール部材1の製造工程は、鍛造工程と、溶体化処理工程と、時効硬化処理(T6)工程とから構成されている。
鍛造工程では、まず連続鋳造で鋳造棒を製造し、この鋳造棒を輪切りにしてビレット6とする。次にこのビレット6を図14に示した金型4で鍛造する。鍛造の際には、金型4を予め200〜350℃に予熱しておき、次いでビレット6を400℃程度まで加熱してから、ビレット6を下型5に入れて上パンチ7を上から押し込んで鍛造し、この鍛造材を金型4から取り出して空冷する。
次に、溶体化処理工程では、鍛造材を例えば510℃で5時間の条件で加熱することによりCuを完全に固溶させ、続いて水焼き入れにより急冷して固溶体とする。そのあと、時効硬化処理工程として、170℃、6時間の条件でT6処理を行うことによりAlCu化合物を析出させる。その後、最終的な仕上げ加工を行って、図13に示すようなスクロール部材1が得られる。
FIG. 15 shows a conventional manufacturing process of the scroll member 1. The manufacturing process of the conventional scroll member 1 is comprised from the forge process, the solution treatment process, and the age hardening process (T6) process.
In the forging process, a cast bar is first manufactured by continuous casting, and this cast bar is cut into rounds to form billets 6. Next, the billet 6 is forged with the mold 4 shown in FIG. At the time of forging, the mold 4 is preheated to 200 to 350 ° C., and then the billet 6 is heated to about 400 ° C., then the billet 6 is put into the lower mold 5 and the upper punch 7 is pushed in from above. The forging material is taken out from the mold 4 and air-cooled.
Next, in the solution treatment step, the forged material is heated, for example, at 510 ° C. for 5 hours to completely dissolve Cu, and then rapidly quenched by water quenching to obtain a solid solution. Thereafter, as an age hardening treatment step, an Al 2 Cu compound is precipitated by performing a T6 treatment at 170 ° C. for 6 hours. Thereafter, final finishing is performed to obtain a scroll member 1 as shown in FIG.

上述したように、従来の製造方法では、所定の形状に加工する塑性加工(鍛造)と溶体化処理とを別々に行っていたが、最近では工程を省力化すべく、塑性加工と溶体化処理とを連続して行うことが試みられている。下記特許文献1〜3には、塑性加工と溶体化処理とを連続して行う方法が開示されている。   As described above, in the conventional manufacturing method, plastic processing (forging) for processing into a predetermined shape and solution treatment are performed separately, but recently, plastic processing and solution treatment are performed in order to save the process. Attempts have been made to carry out the above continuously. The following Patent Documents 1 to 3 disclose a method of continuously performing plastic working and solution treatment.

特開2000−212708号公報JP 2000-212708 A 特開2000−239810号公報JP 2000-239810 A 特開平11−12705号公報Japanese Patent Laid-Open No. 11-12705

しかし、特許文献1及び2に記載の方法では、塑性加工後の製品の温度が540〜560℃と高温であり、また後段の冷却漕に達するまでの間、製品温度を520℃以上に維持するため、冷却されるまでに長時間を要する。この間に、塑性加工による歪みが解放されて再結晶および粒成長が生じて粗大結晶粒組織となり、十分な靱性が得られないという課題があった。
また、特許文献3に記載の方法においても、熱間鍛造後のアルミニウム合金が420℃未満になる前に焼き入れ処理を行うため、焼き入れまでの間に塑性加工による歪みが解放されてしまい、これにより再結晶粒が粗大化し、十分な靱性が得られないという課題があった。
However, in the methods described in Patent Documents 1 and 2, the temperature of the product after the plastic working is as high as 540 to 560 ° C., and the product temperature is maintained at 520 ° C. or higher until the subsequent cooling tub is reached. Therefore, it takes a long time to cool. During this time, strain due to plastic working is released, recrystallization and grain growth occur, resulting in a coarse grain structure, and there is a problem that sufficient toughness cannot be obtained.
Also, in the method described in Patent Document 3, since the quenching treatment is performed before the aluminum alloy after hot forging is less than 420 ° C., strain due to plastic working is released before quenching, As a result, the recrystallized grains become coarse and there is a problem that sufficient toughness cannot be obtained.

本発明は上記事情に鑑みてなされたものであり、結晶粒径が小さく靱性に優れた時効硬化型アルミニウム合金からなる塑性加工部材、製造工程を大幅に省略しながら製造する方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, to provide a method of manufacturing a plastic working member the crystal grain size is made of excellent age hardening type aluminum alloy to reduce toughness, while significantly saving short manufacturing process With the goal.

上記の目的を達成するために、本発明は、時効硬化型アルミニウム合金からなる合金塊を鋳造した後、合金塊を予め400℃以上融点未満に加熱してから、予め−100〜100℃に保持された工具によって合金塊を塑性加工することにより時効析出元素が固溶されるとともに、高密度の転位がそのまま維持されてなる過飽和かつ過冷却状態の成型材を得る工程と、成型材に対して時効硬化処理を行う工程と、を備えたことを特徴とする塑性加工部材の製造方法を提供する。なお、時効硬化処理は、合金組成に対応させてT5処理、T6処理などを選択できる。 In order to achieve the above object, according to the present invention, after casting an alloy lump made of an age-hardening type aluminum alloy, the alloy lump is heated to 400 ° C. or higher and lower than the melting point, and then held at −100 to 100 ° C. in advance. A process of obtaining a supersaturated and supercooled molding material in which the aging precipitation elements are solid-dissolved by plastic working the alloy lump with the prepared tool and high density dislocations are maintained as it is, There is provided a method for producing a plastically processed member, comprising the step of performing age hardening. The age hardening treatment can be selected from T5 treatment, T6 treatment, etc., corresponding to the alloy composition.

本発明によれば、所定温度に加熱した合金塊を、予め−100〜100℃に保持された工具によって所定の形状に成型すると同時に、温度の低い工具によって合金塊が急冷されることにより、過飽和かつ過冷却状態の固溶体(成型材)が得られる。この成型材にはCu等の時効析出元素が固溶している。またこの成型材には、合金塊が高温で塑性変形を受けたことにより蓄積された高密度の転位がそのまま維持(本願明細書では組織凍結という)できている。このような特殊な状態の成型材に対して時効硬化処理を行うと、Cu等の時効析出元素の析出と、(高密度)転位部を起点とする再結晶とが同時に起こり、析出したAlCu化合物によって再結晶粒界がピン止めされて再結晶粒の粗大化が抑制される。その結果、平均結晶粒径が10μm以下というきわめて微細結晶組織が得られると同時にAlCu化合物の時効析出による強化も可能である。このように本発明によれば、成型材の時効析出強化と微細結晶粒組織を同時に達成することができ、高強度且つ靭性に優れた塑性加工部材を提供することができる。 According to the present invention, an alloy lump heated to a predetermined temperature is molded into a predetermined shape by a tool previously held at −100 to 100 ° C., and at the same time, the alloy lump is rapidly cooled by a tool having a low temperature. And the solid solution (molding material) of a supercooled state is obtained. An aging precipitation element such as Cu is dissolved in the molding material. Further, in this molding material, the high-density dislocation accumulated by the alloy lump undergoing plastic deformation at a high temperature can be maintained as it is (referred to as structure freezing in the present specification). When an age hardening treatment is performed on a molding material in such a special state, precipitation of an aging precipitation element such as Cu and recrystallization starting from a (high density) dislocation portion occur simultaneously, and the precipitated Al 2 The recrystallized grain boundary is pinned by the Cu compound, and coarsening of the recrystallized grains is suppressed. As a result, an extremely fine crystal structure with an average crystal grain size of 10 μm or less can be obtained, and at the same time, strengthening by aging precipitation of the Al 2 Cu compound is possible. Thus, according to the present invention, the aging precipitation strengthening and the fine crystal grain structure of the molding material can be achieved at the same time, and a plastic working member having high strength and excellent toughness can be provided.

また本発明によれば、予め−100〜100℃に保持された工具を用いるため、塑性加工と溶体化処理が同時に行われることになるため、塑性加工後に溶体化処理を行っていた従来よりも工程を短縮することができる。なお、塑性加工と同時になされる合金塊の冷却は、塑性加工直後の合金塊温度を170℃以下にすることが本発明の効果を享受する上で望ましい。 Further, according to the present invention, since a tool previously held at −100 to 100 ° C. is used, plastic processing and solution treatment are performed at the same time, so that the conventional solution treatment after plastic processing is performed. The process can be shortened. In order to enjoy the effect of the present invention, the cooling of the alloy lump performed simultaneously with the plastic working is preferably performed at 170 ° C. or less immediately after the plastic working.

また、本発明においては、前記工具を予め−10〜10℃の範囲に保持することが望ましい。そうすることにより、成型材の組織中に凍結される転位が過剰になることがなく、時効析出元素の析出と再結晶粒の析出とをバランスよく起こすことができ、平均粒径が5μm以下のより微細な微細結晶組織を得ることができる。 Moreover, in this invention, it is desirable to hold | maintain the said tool in the range of -10-10 degreeC previously . By doing so, dislocations frozen in the structure of the molding material do not become excessive, precipitation of aging precipitation elements and precipitation of recrystallized grains can be caused in a well-balanced manner, and the average particle diameter is 5 μm or less. A finer fine crystal structure can be obtained.

また、本発明においては、工具により合金塊を塑性加工してから成型材を水中に投入して急冷処理(以下、水中急冷)することもできる。この構成により、工具の温度が比較的高い場合でも合金塊を十分に急冷することができ、過飽和かつ過冷却状態の固溶体を容易に得ることができる。なお、水中急冷する場合には、塑性加工終了後に成型材を工具にて実質的に保持する必要がない場合もある。   In the present invention, the alloy ingot can be plastically processed with a tool, and then the molding material can be put into water to be rapidly cooled (hereinafter referred to as underwater quenching). With this configuration, even when the temperature of the tool is relatively high, the alloy lump can be sufficiently quenched, and a supersaturated and supercooled solid solution can be easily obtained. When quenching in water, there is a case where it is not necessary to substantially hold the molding material with a tool after the plastic working.

さらに本発明では、塑性加工終了後、数秒から数分の間保持して成型材が十分に冷却された後に成型材を工具から取り出しても良い。また、塑性加工としては、鍛造、押し出し等の手法を用いることができる。更に、工具としては、鍛造用の金型や、押し出し成型用の金型を例示することができる。
また、本発明において合金塊を加熱する温度は、Cu等の添加元素の固溶温度より低めの温度でも良いが、固溶温度より高温であってもよく、例えば、400℃以上、さらには500℃以上にしてもよい。さらに、結晶粒を十分に微細化するために、時効処理の条件として保持温度が160〜180の範囲で、所定時間保持する条件とすることが望ましい。
Furthermore, in the present invention, after the plastic working is completed, the molding material may be taken out from the tool after the molding material is sufficiently cooled by holding for several seconds to several minutes. Further, as the plastic working, a technique such as forging or extrusion can be used. Furthermore, examples of the tool include a forging die and an extrusion molding die.
In the present invention, the temperature for heating the alloy ingot may be lower than the solid solution temperature of the additive element such as Cu, but may be higher than the solid solution temperature, for example, 400 ° C. or higher, and further 500 It may be higher than ° C. Furthermore, in order to make the crystal grains sufficiently fine, it is desirable that the aging treatment is performed under a condition of holding for a predetermined time in a holding temperature range of 160 to 180.

また、本発明に適用可能な時効硬化型アルミニウム合金としては、塑性加工できる程度の強度と伸びを有するものであればよい。特に、時効析出元素としてCu等を含有するものが望ましい。具体的には、2000系、6000系アルミニウム合金または7000系アルミニウム合金を用いることが望ましい。また、JISで規定される鋳物用アルミニウム合金、例えばAC8C等を用いることもできる。   Moreover, as an age-hardening type aluminum alloy applicable to this invention, what is necessary is just to have the intensity | strength and elongation which can be plastically processed. In particular, those containing Cu or the like as an aging precipitation element are desirable. Specifically, it is desirable to use 2000 series, 6000 series aluminum alloy or 7000 series aluminum alloy. Further, an aluminum alloy for castings defined by JIS, for example, AC8C can be used.

本発明の塑性加工部材の製造方法によれば、塑性加工部材の金属組織に平均粒径10μm以下の微細結晶粒を析出させることができ、靭性に優れた塑性加工部材を製造することができる。また、塑性加工と溶体化処理を同時に行うので、従来の方法と比べて製造工程を省略することができ、塑性加工部材の生産性を向上することができる。
また、本発明により製造される塑性加工部材によれば、平均結晶粒径10μm以下の微細結晶組織を有しており、靭性を向上することができる。
更に本発明により製造される塑性加工部材を適用したスクロール部材によれば、靭性及び疲労強度が高く、高性能なスクロール部材とすることができる。
According to the method for producing a plastic working member of the present invention, fine crystal grains having an average particle size of 10 μm or less can be precipitated in the metal structure of the plastic working member, and a plastic working member having excellent toughness can be produced. Moreover, since the plastic working and the solution treatment are performed simultaneously, the manufacturing process can be omitted as compared with the conventional method, and the productivity of the plastic working member can be improved.
In addition, the plastic working member produced according to the present invention has a fine crystal structure with an average crystal grain size of 10 μm or less, and can improve toughness.
Furthermore, according to the scroll member to which the plastic working member manufactured according to the present invention is applied, a high-performance scroll member having high toughness and fatigue strength can be obtained.

以下、本発明の塑性加工部材の製造方法を、コンプレッサ用のスクロール部材に適用した例について説明する。この製造方法は、図1に示すように、合金塊を鍛造・溶体化処理して成型材を得る工程と、成型材を時効硬化処理してスクロール部材を得る工程とから構成されている。以下、各工程について図1を参照しつつ説明する。   Hereinafter, the example which applied the manufacturing method of the plastic working member of the present invention to the scroll member for compressors is explained. As shown in FIG. 1, this manufacturing method includes a process of obtaining a molding material by forging and solution treatment of an alloy lump, and a process of obtaining a scroll member by age-hardening the molding material. Hereinafter, each process will be described with reference to FIG.

まず、合金塊を鍛造・溶体化処理する工程では、時効硬化型アルミニウム合金からなる合金塊を鋳造し、この合金塊を予め400℃〜融点の温度範囲に加熱してから、−100〜100℃に保持した金型によって鍛造(塑性加工)する。金型を−100〜100℃の範囲に保持しているため、合金塊は鍛造開始と同時に急冷される。この急冷は、例えば時効硬化処理の保持温度である170℃以下まで行う。この工程により、Cu等の時効析出元素が固溶されるとともに、高密度の転位がそのまま組織凍結されてなる過飽和かつ過冷却状態の固溶体(成型材)が得られる。   First, in the step of forging and solution treatment of the alloy lump, an alloy lump made of an age-hardening aluminum alloy is cast, and the alloy lump is heated in advance to a temperature range of 400 ° C. to a melting point, and then −100 to 100 ° C. Forging (plastic working) with a mold held in Since the mold is held in the range of −100 to 100 ° C., the alloy ingot is rapidly cooled simultaneously with the start of forging. This rapid cooling is performed, for example, up to 170 ° C., which is the retention temperature of the age hardening treatment. By this step, an aging precipitation element such as Cu is solid-dissolved, and a supersaturated and supercooled solid solution (molding material) in which high-density dislocations are frozen as they are is obtained.

素材としての時効硬化型アルミニウム合金には、少なくとも添加元素としてCuを有するものを用いることができる。また、鍛造等の塑性加工が可能な程度に強度や伸びを有するものが好ましい。このような合金の具体例として例えば、JIS 2000系、JIS 6000系の合金(例えば、A6061、A6063)やJIS 7000系(例えば、A7075)の合金を例示することができる。また、Cuを含有する鋳物用アルミニウム合金を用いることもできる。   As the age-hardening type aluminum alloy as a material, one having at least Cu as an additive element can be used. Moreover, what has intensity | strength and elongation to such an extent that plastic processing, such as forging, is possible is preferable. Specific examples of such alloys include JIS 2000 series and JIS 6000 series alloys (for example, A6061, A6063) and JIS 7000 series (for example, A7075) alloys. Moreover, the aluminum alloy for castings containing Cu can also be used.

合金塊は予め、400℃以上、好ましくは450℃以上、より好ましくは500℃以上に加熱しておく。合金塊を加熱しておくことで、鍛造前において合金塊に含まれる添加元素を固溶させることができる。なお、合金塊をアルミニウムの融点温度以上にすると、合金塊の鍛造が困難になるので好ましくない。   The alloy lump is previously heated to 400 ° C. or higher, preferably 450 ° C. or higher, more preferably 500 ° C. or higher. By heating the alloy lump, the additive element contained in the alloy lump can be solid-solved before forging. Note that it is not preferable to make the alloy ingot at or above the melting point temperature of aluminum because it becomes difficult to forge the alloy ingot.

次に、鍛造に用いる工具として、図14に示す金型4を用いることができる。この金型4は、予め−100〜100℃の範囲に維持しておくことが望ましく、−10〜10℃の範囲にしておくのがより望ましい。金型4の温度を低くするには、例えば、液体窒素中に金型4を浸積させればよい。このようにして金型4を予め−100〜100℃の範囲にしておくことで、鍛造するのと同時に合金塊を急冷させることができる。これにより、Cu等の時効析出元素をアルミニウムに固溶させたままにしておくことができる。また、合金塊が高温で塑性変形を受けたことにより蓄積される高密度の転位を組織凍結させることができる。こうすることで、後述する時効硬化処理を行ったときに、スクロール部材の組織中に微細結晶粒組織を発現させることができる。
金型4の温度が100℃を超えると、合金塊を十分に冷却できず、Cu等の添加元素が析出してしまい、完全な固溶体が得られないので好ましくない。また金型4の温度が−100℃より低くなると、組織中に過剰な転位が形成され、却って結晶粒が粗大化してしまうので好ましくない。
Next, a die 4 shown in FIG. 14 can be used as a tool used for forging. The mold 4 is preferably maintained in the range of −100 to 100 ° C. in advance, and more preferably in the range of −10 to 10 ° C. In order to lower the temperature of the mold 4, for example, the mold 4 may be immersed in liquid nitrogen. In this way, by setting the mold 4 in the range of −100 to 100 ° C. in advance, the alloy lump can be rapidly cooled at the same time as forging. Thereby, an aging precipitation element such as Cu can be kept in solid solution in aluminum. In addition, it is possible to freeze structure of high-density dislocations accumulated due to the alloy lump undergoing plastic deformation at high temperature. By carrying out like this, when the age hardening process mentioned later is performed, a fine crystal grain structure can be expressed in the structure | tissue of a scroll member.
If the temperature of the mold 4 exceeds 100 ° C., the alloy lump cannot be sufficiently cooled, and additional elements such as Cu are precipitated, and a complete solid solution cannot be obtained. On the other hand, when the temperature of the mold 4 is lower than −100 ° C., excessive dislocations are formed in the structure, and on the contrary, the crystal grains become coarse, which is not preferable.

また、鍛造後の成型材が高温状態であると、鍛造により生じた転位が解放されるとともに、Cuが析出してしまう虞がある。従って鍛造と同時に成型材を170℃以下、より好ましくは100℃以下まで急冷することが望ましい。通常、金型4の温度を50℃以下に冷やしておけば、成型材を170℃以下に容易に冷却できるが、万一、成型材が170℃以下まで冷却されない場合には、金型4から成型材を取り出してすぐに水中急冷することが望ましい。   Moreover, when the molding material after forging is in a high temperature state, dislocations generated by forging are released and Cu may be precipitated. Therefore, it is desirable to rapidly cool the molding material to 170 ° C. or lower, more preferably 100 ° C. or lower simultaneously with forging. Usually, if the temperature of the mold 4 is cooled to 50 ° C. or lower, the molding material can be easily cooled to 170 ° C. or lower. However, if the molding material is not cooled to 170 ° C. or lower, It is desirable to quench the water immediately after taking out the molding material.

成型材が170℃以下、好ましくは100℃以下に冷却されていれば、直ちに時効硬化処理に移すことが望ましい。こうすることで、成型材が室温まで冷却された場合と比べて、時効硬化処理時の昇温時間が短くなり、製造コストを低減することができる。
また、鍛造後の成型材が170℃以下に冷却されると見込める場合でも、水中急冷を更に行うことにより、成型材を室温まで冷却させ、これにより成型材のハンドリングを容易にして生産性を高めることもできる。
If the molding material is cooled to 170 ° C. or lower, preferably 100 ° C. or lower, it is desirable to immediately transfer to age hardening. By carrying out like this, compared with the case where a shaping | molding material is cooled to room temperature, the temperature rising time at the age hardening process becomes short, and manufacturing cost can be reduced.
Moreover, even when it is expected that the molded material after forging is cooled to 170 ° C. or lower, further cooling in water allows the molded material to be cooled to room temperature, thereby facilitating handling of the molded material and increasing productivity. You can also.

また、成型材を十分に冷却するには、鍛造してから60秒程度の間、成型材を金型4内に保持しておいても良い。成型材を金型4に接触させておくことで、成型材の熱を金型4に放熱させて成型材を冷却するのである。ただし、60秒に限るものではなく、60秒を超えても同等の効果が得られるし、60秒未満でも効果が得られる場合がある。   In order to sufficiently cool the molding material, the molding material may be held in the mold 4 for about 60 seconds after forging. By bringing the molding material into contact with the mold 4, heat of the molding material is radiated to the mold 4 to cool the molding material. However, it is not limited to 60 seconds, and the same effect can be obtained even if it exceeds 60 seconds, and the effect can be obtained even if it is less than 60 seconds.

また、鍛造の際には、上パンチ7の押出速度を20mm/秒以上とすることが好ましい。押出速度が低すぎると、鍛造途中で冷却が進むことにより変形抵抗が高くなり、成形中割れが生じて上手く成形できなくなる恐れ等があるためである。   Further, at the time of forging, the extrusion speed of the upper punch 7 is preferably set to 20 mm / second or more. This is because if the extrusion speed is too low, cooling progresses during forging, resulting in an increase in deformation resistance, resulting in cracks during molding, which may prevent successful molding.

次に、鍛造後の成型材に対して時効硬化処理を行う。この工程により、成型材の組織中に平均結晶粒径が10μm以下の微細結晶組織が形成される。と同時に析出強化できる。   Next, an age hardening treatment is performed on the molded material after forging. By this step, a fine crystal structure having an average crystal grain size of 10 μm or less is formed in the structure of the molding material. At the same time, precipitation strengthening is possible.

時効硬化処理は、合金組成に対応させてT5処理、T6処理を選択できる。時効硬化処理としてT6処理を行う場合は、160℃以上180℃以下の保持温度で、2時間以上の範囲で保持することが望ましい。保持温度及び保持時間が不十分だと、AlCuの時効析出と再結晶が不十分であるので好ましくなく、保持温度及び保持時間が過剰になると、結晶粒が粗大化するおそれがあるので好ましくない。 The age hardening treatment can be selected from T5 treatment and T6 treatment corresponding to the alloy composition. When performing the T6 treatment as an age hardening treatment, it is desirable to keep the temperature at a holding temperature of 160 ° C. or higher and 180 ° C. or lower for 2 hours or longer. Insufficient holding temperature and holding time are not preferable because aging precipitation and recrystallization of Al 2 Cu are insufficient, and if the holding temperature and holding time are excessive, crystal grains may be coarsened. Absent.

鍛造・溶体化処理された成型材に対して時効硬化処理を行うと、Cu等の時効析出元素の析出と、組織凍結された転位を起点とする再結晶化とが同時に起こり、析出したAlCuによって再結晶粒界がピン止めされて再結晶粒の粗大化が抑制される。このようにして、平均結晶粒径が10μm以下の微細結晶組織を有するスクロール部材1が得られる。得られたスクロール部材1は、靭性が高く、疲労強度に優れたものとなる。 When age-hardening treatment is performed on a forged / solution-treated molding material, precipitation of an aging precipitation element such as Cu and recrystallization starting from dislocations frozen in the structure occur simultaneously, and precipitated Al 2 The recrystallized grain boundary is pinned by Cu, and coarsening of the recrystallized grains is suppressed. In this manner, the scroll member 1 having a fine crystal structure with an average crystal grain size of 10 μm or less is obtained. The obtained scroll member 1 has high toughness and excellent fatigue strength.

得られたスクロール部材1は、平均結晶粒径が10μm以下、好ましくは5μm以下、さらに好ましくは3μm以下の微細結晶組織を備えた時効硬化型の鍛造品である。従来から、時効硬化型アルミニウム合金で、時効効果処理後に於いてこれほど微細な結晶粒組織を有する鍛造品は他に例がない。塑性加工を繰り返すことによって結晶粒を微細化させた塑性加工品は従来からあるが、このような従来の塑性加工品は熱処理工程を経ていないため、加熱されると結晶粒が容易に粗大化して靭性が大幅に低下してしまう。本発明に係るスクロール部材1は、析出したAlCu化合物によって再結晶粒界がピン止めされているので、熱処理しても結晶粒の粗大化が起こりにくい。従って、本発明に係る塑性加工部材と従来品とを区別するには、熱処理してから結晶組織を観察すればよい。 The obtained scroll member 1 is an age-hardened forged product having a fine crystal structure with an average crystal grain size of 10 μm or less, preferably 5 μm or less, more preferably 3 μm or less. Conventionally, there is no other forged product that is an age-hardening type aluminum alloy and has such a fine grain structure after aging effect treatment. There are conventional plastic processed products in which crystal grains are refined by repeating plastic processing, but since these conventional plastic processed products have not undergone a heat treatment step, the crystal grains easily become coarse when heated. Toughness is greatly reduced. Since the recrystallized grain boundary is pinned by the precipitated Al 2 Cu compound, the scroll member 1 according to the present invention is less likely to be coarsened even after heat treatment. Therefore, in order to distinguish the plastic working member according to the present invention from the conventional product, the crystal structure may be observed after heat treatment.

以下、実施例により本発明を更に詳細に説明する。
鋳物用のアルミニウム合金(JIS AC8C−T6相当品(Al−9Si−2Cu−0.4Mg)を鋳造して鋳造棒とし、この鋳造棒にピーリング、輪切り加工を施すことにより、直径79mm、厚さ28mmの円板状の合金塊を製造した。次に、図14に示す金型4を室温(25℃)程度に保持しておき、金型4の上パンチ7と下型5の間に500℃に加熱した合金塊を配置し、20mm/秒の押出速度で上パンチ7を下型5に向けて約1秒間押し込んで鍛造を終了した後に、そのままの状態で30秒間保持することにより成型材を得た。30秒保持後の成型材の温度は110℃であり、金型4から成型材を取り出してすぐに成型材を水中急冷した。
次に、得られた成型材に対して、保持温度170℃、保持時間6時間の条件でT6熱処理を行った。このようにして実験例1(実施例)のスクロール部材を製造した。
Hereinafter, the present invention will be described in more detail with reference to examples.
Casting aluminum alloy (JIS AC8C-T6 equivalent (Al-9Si-2Cu-0.4Mg) is cast into a casting rod. The casting rod is peeled and rounded to give a diameter of 79mm and a thickness of 28mm. Next, the mold 4 shown in Fig. 14 is kept at about room temperature (25 ° C), and the mold 4 is placed between the upper punch 7 and the lower mold 5 at 500 ° C. The heated alloy lump is placed on the upper punch 7 at the extrusion speed of 20 mm / second and pushed into the lower die 5 for about 1 second to complete the forging, and then held for 30 seconds as it is. The temperature of the molding material after being held for 30 seconds was 110 ° C., and immediately after the molding material was taken out from the mold 4, the molding material was quenched in water.
Next, T6 heat treatment was performed on the obtained molding material under the conditions of a holding temperature of 170 ° C. and a holding time of 6 hours. Thus, the scroll member of Experimental Example 1 (Example) was manufactured.

次に、実験例2(比較例)のスクロール部材を以下の工程により製造した。
まず、図14に示す金型4を250℃に加熱しておき、金型4の上パンチ7と下型5の間に、500℃に加熱した先程と同じ合金塊を配置し、20mm/秒の押出速度で上パンチ7を下型5に向けて 約1秒間押し込んで鍛造を終了した後に成形体を直ちに取り出した。取り出し直後の成型材の温度は360℃であり、金型4から成型材を取り出してから空冷した。次に、空冷後の成型材に対して、保持温度510℃、保持時間5時間、保持後に水焼き入れする条件で溶体化処理を行った。更に溶体化処理後の成型材に対して、実験例1と同様にT6熱処理を行った。このようにして実験例2(比較例)のスクロール部材を製造した。
Next, the scroll member of Experimental Example 2 (Comparative Example) was manufactured by the following steps.
First, the mold 4 shown in FIG. 14 is heated to 250 ° C., and the same alloy lump as previously heated to 500 ° C. is placed between the upper punch 7 and the lower mold 5 of the mold 4 and 20 mm / second. After pressing the upper punch 7 toward the lower mold 5 at an extrusion speed of about 1 second and finishing forging, the molded body was immediately taken out. The temperature of the molding material immediately after taking out was 360 ° C., and the molding material was taken out from the mold 4 and then air-cooled. Next, the air-cooled molding material was subjected to a solution treatment under the conditions of holding temperature 510 ° C., holding time 5 hours, and water quenching after holding. Further, T6 heat treatment was performed on the molded material after the solution treatment in the same manner as in Experimental Example 1. Thus, the scroll member of Experimental Example 2 (Comparative Example) was manufactured.

実験例1及び2のスクロール部材について、光学顕微鏡により金属組織観察を行った。図2に実験例1の顕微鏡写真を示し、図3に実験例2の顕微鏡写真を示す。また、実験例1及び2のスクロール部材について、T6熱処理時の時効硬化曲線を測定した。図4には、実験例1及び2について、ビッカース硬度(Hv)と熱処理時間との関係をグラフで示す。   About the scroll member of Experimental example 1 and 2, metal structure observation was performed with the optical microscope. FIG. 2 shows a photomicrograph of Experimental Example 1, and FIG. 3 shows a photomicrograph of Experimental Example 2. Moreover, the age hardening curve at the time of T6 heat processing was measured about the scroll member of Experimental example 1 and 2. FIG. FIG. 4 is a graph showing the relationship between Vickers hardness (Hv) and heat treatment time for Experimental Examples 1 and 2.

図2に示すように、実験例1(実施例)では、平均粒径が2〜3μm程度の微細結晶組織が形成されていることが分かる。一方、図3に示すように、実験例2(比較例)では、平均粒径が100μm以上の粗大な結晶粒が形成されていることが分かる。実験例2(比較例)で結晶粒が粗大化したのは、鍛造後の空冷によってAlCu化合物相が形成され、このAlCu化合物相が溶体化処理によっても溶体化せずにそのまま残存し、完全な固溶体が得られなかったためと解される。
また、図4に示すように、実験例1(実施例)ではT6熱処理の開始とともに硬度が直ちに上昇し、Hv150以上の硬度が得られているが、実験例2(比較例)では硬度の上昇が緩慢で、硬度もHv140程度と実験例1(実施例)よりも低くなっている。これは、結晶粒の大きさの違いによるものと考えられる。
As shown in FIG. 2, in Experimental Example 1 (Example), it can be seen that a fine crystal structure having an average particle diameter of about 2 to 3 μm is formed. On the other hand, as shown in FIG. 3, in Experimental Example 2 (Comparative Example), it can be seen that coarse crystal grains having an average grain size of 100 μm or more are formed. The reason why the crystal grains coarsened in Experimental Example 2 (Comparative Example) was that an Al 2 Cu compound phase was formed by air cooling after forging, and this Al 2 Cu compound phase remained as it was without being solutionized by the solution treatment. However, it is understood that a complete solid solution was not obtained.
Further, as shown in FIG. 4, in Experimental Example 1 (Example), the hardness immediately increased with the start of the T6 heat treatment, and a hardness of Hv 150 or higher was obtained. In Experimental Example 2 (Comparative Example), the hardness increased. The hardness is low and the hardness is about Hv140, which is lower than that of Experimental Example 1 (Example). This is thought to be due to the difference in crystal grain size.

鍛造終了後の金型内での保持時間を0秒としたこと以外は上記実験例1と同様にして実験例3(実施例)のスクロール部材を製造した。
また、鍛造終了後の金型内での保持時間を15秒としたこと以外は上記実験例1と同様にして実験例4(実施例)のスクロール部材を製造した。
さらに上記実験例1と同様にして、鍛造終了後の金型内での保持時間が30秒である実験例5(実施例)のスクロール部材を製造した。
さらにまた、鍛造終了後の金型内での保持時間を60秒としたこと以外は上記実験例1と同様にして実験例6(実施例)のスクロール部材を製造した。
A scroll member of Experimental Example 3 (Example) was manufactured in the same manner as in Experimental Example 1 except that the holding time in the mold after completion of forging was 0 second.
Further, a scroll member of Experimental Example 4 (Example) was manufactured in the same manner as Experimental Example 1 except that the holding time in the mold after the forging was set to 15 seconds.
Further, in the same manner as in Experimental Example 1, a scroll member of Experimental Example 5 (Example) in which the holding time in the mold after forging was 30 seconds was manufactured.
Furthermore, the scroll member of Experimental Example 6 (Example) was manufactured in the same manner as Experimental Example 1 except that the holding time in the mold after the forging was changed to 60 seconds.

実験例3(実施例)のスクロール部材について、光学顕微鏡により金属組織観察を行った。図5及び図6に実験例3の顕微鏡写真を示す。また、実験例2(比較例)及び実験例3〜6(実施例)のスクロール部材について、T6熱処理時の時効硬化曲線の測定結果を図7に示す。   About the scroll member of Experimental example 3 (Example), metal structure observation was performed with the optical microscope. 5 and 6 show micrographs of Experimental Example 3. Moreover, about the scroll member of Experimental example 2 (comparative example) and Experimental example 3-6 (Example), the measurement result of the age hardening curve at the time of T6 heat processing is shown in FIG.

図5及び図6に示すように、実験例3(実施例)では、平均粒径が2〜3μm程度の微細結晶組織が形成されており、図3の実験例2(比較例)よりも微細な結晶粒組織を有していることが分かる。
また、図7に示すように、実験例3〜6(実施例)ではT6熱処理の開始とともに硬度が直ちに上昇し、Hv145以上の硬度が得られているが、実験例2(比較例)では硬度の上昇が緩慢で、硬度もHv140程度と実験例3〜6(実施例)よりも低くなっている。これは、結晶粒の大きさの違いによるものと考えられる。また、実験例3〜6(実施例)の間では、鍛造時の保持時間の違いの影響は特に見られない。
As shown in FIGS. 5 and 6, in Experimental Example 3 (Example), a fine crystal structure having an average particle size of about 2 to 3 μm is formed, which is finer than Experimental Example 2 (Comparative Example) in FIG. 3. It can be seen that it has a fine grain structure.
Further, as shown in FIG. 7, in Experimental Examples 3 to 6 (Examples), the hardness immediately increased with the start of the T6 heat treatment, and a hardness of Hv145 or higher was obtained. In Experimental Example 2 (Comparative Example), the hardness was Rise is slow, and the hardness is about Hv140, which is lower than Experimental Examples 3 to 6 (Examples). This is thought to be due to the difference in crystal grain size. Moreover, the influence of the difference in the holding time at the time of forging is not especially seen among Experimental Examples 3-6 (Example).

合金塊の温度を420℃とし、金型を液体窒素で冷却して−50℃とし、鍛造終了後の金型内での保持時間を0秒としたこと以外は実験例1と同様にして成型材を得た。鍛造終了直後の成型材を金型から取り出してすぐに水中急冷した。
次に、水中急冷後の成型材に対して、保持温度170℃、保持時間6時間の条件でT6熱処理を行った。このようにして実験例7(実施例)のスクロール部材を製造した。
The temperature of the alloy lump was set to 420 ° C., the mold was cooled with liquid nitrogen to −50 ° C., and the holding time in the mold after forging was set to 0 second. A mold was obtained. The molding material immediately after forging was taken out of the mold and immediately quenched in water.
Next, T6 heat treatment was performed on the molding material after quenching in water under the conditions of a holding temperature of 170 ° C. and a holding time of 6 hours. Thus, the scroll member of Experimental Example 7 (Example) was manufactured.

実験例7(実施例)のスクロール部材について、光学顕微鏡により金属組織の顕微鏡観察を行った。結果を図8及び図9に示す。また、実験例7(実施例)及び上記の実験例2(比較例)のスクロール部材について、T6熱処理時の時効硬化曲線を測定した。結果を図10に示す。   About the scroll member of Experimental example 7 (Example), the microscopic observation of the metal structure was performed with the optical microscope. The results are shown in FIGS. Moreover, the age hardening curve at the time of T6 heat processing was measured about the scroll member of Experimental example 7 (Example) and said Experimental example 2 (comparative example). The results are shown in FIG.

図8及び図9に示すように、実験例7(実施例)では、平均粒径が3〜4μm程度の微細結晶組織が形成されており、図3の実験例2(比較例)よりも微細な結晶粒組織を有していることが分かる。
また、図10に示すように、実験例7(実施例)では熱処理時間が5時間を超えると硬度が低下していることが分かる。従って、実験例7の製造条件ではT6熱処理を5時間程度にするのが良いことがわかる。
As shown in FIGS. 8 and 9, in Experimental Example 7 (Example), a fine crystal structure having an average particle size of about 3 to 4 μm is formed, which is finer than Experimental Example 2 (Comparative Example) in FIG. It can be seen that it has a fine grain structure.
In addition, as shown in FIG. 10, in Experimental Example 7 (Example), it can be seen that the hardness decreases when the heat treatment time exceeds 5 hours. Therefore, it can be seen that the T6 heat treatment should be performed for about 5 hours under the manufacturing conditions of Experimental Example 7.

また、実験例7の製造条件では、金型を−50℃にしているため、成型材を十分に急冷することができる。このため、成型材の金型内保持を省略することができ、工程の所要時間を大幅に低減することができる。
更に、実験例7の製造条件では、合金塊の温度を、Cuの固溶温度より低い420℃にしているにもかかわらず、微細結晶粒を析出させることが可能になっている。これにより本発明では、合金塊の温度を比較的低温にすることが可能であり、製造コストを大幅に低減できる。また、合金塊を加熱する際の加熱炉等の設備の長寿命化も図れる。
Moreover, in the manufacturing conditions of Experimental Example 7, since the mold is set to −50 ° C., the molding material can be sufficiently quenched. For this reason, holding | maintenance in a metal mold | die can be abbreviate | omitted and the time required for a process can be reduced significantly.
Furthermore, in the manufacturing conditions of Experimental Example 7, it is possible to precipitate fine crystal grains despite the fact that the temperature of the alloy lump is 420 ° C. which is lower than the solid solution temperature of Cu. Thereby, in this invention, it is possible to make the temperature of an alloy lump comparatively low temperature, and can reduce manufacturing cost significantly. In addition, the life of equipment such as a heating furnace when heating the alloy lump can be extended.

合金塊の温度を500℃とし、金型を液体窒素で冷却して−10〜10℃程度とし、金型内での保持時間を30秒とする条件で実験例1と同様にして成型材を得た。30秒保持後の成型材の温度は50℃であり、この成型材を金型から取り出してすぐに水で焼き入れした。
次に、焼き入れ後の成型材に対して、保持温度170℃、保持時間6時間の条件でT6熱処理を行った。このようにして実験例8(実施例)のスクロール部材を製造した。
The molding material was formed in the same manner as in Experimental Example 1 under the condition that the temperature of the alloy lump was 500 ° C., the mold was cooled with liquid nitrogen to about −10 to 10 ° C., and the holding time in the mold was 30 seconds. Obtained. The temperature of the molding material after holding for 30 seconds was 50 ° C. The molding material was taken out of the mold and immediately quenched with water.
Next, T6 heat treatment was performed on the molding material after quenching under conditions of a holding temperature of 170 ° C. and a holding time of 6 hours. Thus, the scroll member of Experimental Example 8 (Example) was manufactured.

実験例8(実施例)のスクロール部材について、光学顕微鏡により金属組織観察を行った。結果を図11に示す。また、実験例8(実施例)及び上記の実験例2(比較例)のスクロール部材について、T6熱処理時の時効硬化曲線を測定した。結果を図12に示す。   About the scroll member of Experimental example 8 (Example), metal structure observation was performed with the optical microscope. The results are shown in FIG. Moreover, the age hardening curve at the time of T6 heat processing was measured about the scroll member of Experimental example 8 (Example) and said Experimental example 2 (comparative example). The results are shown in FIG.

図11に示すように、実験例8(実施例)では、平均粒径が1μm程度の微細結晶組織が形成されており、図3の実験例2(比較例)よりも微細な結晶粒組織を有していることが分かる。
また、図12に示すように、実験例8(実施例)では熱処理時間が3時間の時にHv150を超える硬度を示していることが分かる。更に加熱を続けると硬度は若干低下するが、それでもHv150以上の硬度を示すことが分かる。他の実験例と比較しても、実験例8のスクロール部材は優れた硬度を示していることが分かる。
As shown in FIG. 11, in Experimental Example 8 (Example), a fine crystal structure having an average particle diameter of about 1 μm is formed, and a finer grain structure than in Experimental Example 2 (Comparative Example) of FIG. You can see that
Also, as shown in FIG. 12, it can be seen that Experimental Example 8 (Example) shows a hardness exceeding Hv150 when the heat treatment time is 3 hours. It can be seen that when the heating is further continued, the hardness slightly decreases, but still exhibits a hardness of Hv 150 or higher. Even when compared with other experimental examples, it can be seen that the scroll member of Experimental Example 8 exhibits excellent hardness.

本発明の実施形態であるスクロール部材の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the scroll member which is embodiment of this invention. 実験例1(実施例)の金属組織の光学顕微鏡写真である。It is an optical microscope photograph of the metal structure of Experimental example 1 (Example). 実験例2(比較例)の金属組織の光学顕微鏡写真である。It is an optical microscope photograph of the metal structure of Experimental example 2 (comparative example). 実験例1(実施例)及び実験例2(比較例)の硬度と熱処理時間との関係を示すグラフである。It is a graph which shows the relationship between the hardness of Experimental example 1 (Example) and Experimental example 2 (comparative example), and heat processing time. 実験例3(実施例)の金属組織の光学顕微鏡写真である。It is an optical microscope photograph of the metal structure of Experimental example 3 (Example). 図5の拡大写真である。It is an enlarged photograph of FIG. 実験例2(比較例)及び実験例3〜6(比較例)の硬度と熱処理時間との関係を示すグラフである。It is a graph which shows the relationship between the hardness of Experimental example 2 (comparative example) and Experimental example 3-6 (comparative example), and heat processing time. 実験例7(実施例)の金属組織の光学顕微鏡写真である。It is an optical microscope photograph of the metal structure of Experimental example 7 (Example). 図8の拡大写真である。It is an enlarged photograph of FIG. 実験例7(実施例)及び実験例2(比較例)の硬度と熱処理時間との関係を示すグラフである。It is a graph which shows the relationship between the hardness of Experimental example 7 (Example) and Experimental example 2 (comparative example), and heat processing time. 実験例8(実施例)の金属組織の光学顕微鏡写真である。It is an optical microscope photograph of the metal structure of Experimental example 8 (Example). 実験例8(実施例)及び実験例2(比較例)の硬度と熱処理時間との関係を示すグラフである。It is a graph which shows the relationship between the hardness of Experimental example 8 (Example) and Experimental example 2 (comparative example), and heat processing time. スクロール部材を示す斜視図である。It is a perspective view which shows a scroll member. スクロール部材の鍛造に用いる金型を示す斜視図である。It is a perspective view which shows the metal mold | die used for forging of a scroll member. 従来のスクロール部材の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the conventional scroll member.

符号の説明Explanation of symbols

1…スクロール部材(塑性加工部材)、2…フランジ、3…フィン、4…金型(工具)、5…下型、6…ビレット(合金塊)、7…上パンチ   DESCRIPTION OF SYMBOLS 1 ... Scroll member (plastic processing member), 2 ... Flange, 3 ... Fin, 4 ... Die (tool), 5 ... Lower die, 6 ... Billet (alloy lump), 7 ... Upper punch

Claims (5)

時効硬化型アルミニウム合金からなる合金塊を鋳造した後、前記合金塊を予め400℃以上融点未満に加熱してから、予め−100〜100℃に保持された工具によって前記合金塊を塑性加工することにより時効析出元素が固溶されるとともに、高密度の転位がそのまま維持されてなる過飽和かつ過冷却状態の成型材を得る工程と、
前記成型材に対して時効硬化処理を行う工程と、
を備えたことを特徴とする塑性加工部材の製造方法。
After casting an alloy lump made of age-hardening type aluminum alloy, the alloy lump is preliminarily heated to 400 ° C. or higher and lower than the melting point, and then the alloy lump is plastically processed with a tool previously held at −100 to 100 ° C. A step of obtaining a supersaturated and supercooled molding material in which the aging precipitation elements are dissolved and the high density dislocations are maintained as they are,
Performing an age hardening treatment on the molding material;
A method for producing a plastically processed member, comprising:
前記工具が予め−10〜10℃に保持されたことを特徴とする請求項1に記載の塑性加工部材の製造方法。 The method for manufacturing a plastic working member according to claim 1, wherein the tool is held at −10 to 10 ° C. in advance . 前記塑性加工終了後に所定時間工具にて前記成型材を保持することを特徴とする請求項1又は2に記載の塑性加工部材の製造方法。   The method of manufacturing a plastic working member according to claim 1 or 2, wherein the molding material is held with a tool for a predetermined time after the plastic working is completed. 前記塑性加工終了後に前記成型材を水中に投入して急冷処理することを特徴とする請求項1〜3のいずれかに記載の塑性加工部材の製造方法。   The method for producing a plastic working member according to any one of claims 1 to 3, wherein after the plastic working is finished, the molding material is put into water and rapidly cooled. 前記塑性加工終了後に前記成型材を前記工具にて実質的に保持することなく、前記成型材を水中に投入して急冷処理することを特徴とする請求項4に記載の塑性加工部材の製造方法。   5. The method of manufacturing a plastic working member according to claim 4, wherein after the plastic working is completed, the molding material is poured into water and rapidly cooled without substantially holding the molding material with the tool. .
JP2004017958A 2004-01-27 2004-01-27 Method for manufacturing plastic working member Expired - Fee Related JP4146364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017958A JP4146364B2 (en) 2004-01-27 2004-01-27 Method for manufacturing plastic working member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017958A JP4146364B2 (en) 2004-01-27 2004-01-27 Method for manufacturing plastic working member

Publications (2)

Publication Number Publication Date
JP2005213529A JP2005213529A (en) 2005-08-11
JP4146364B2 true JP4146364B2 (en) 2008-09-10

Family

ID=34902603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017958A Expired - Fee Related JP4146364B2 (en) 2004-01-27 2004-01-27 Method for manufacturing plastic working member

Country Status (1)

Country Link
JP (1) JP4146364B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082483B2 (en) * 2007-02-13 2012-11-28 トヨタ自動車株式会社 Method for producing aluminum alloy material
JP2010159488A (en) * 2008-12-09 2010-07-22 Sumitomo Light Metal Ind Ltd Method for molding 2,000 series aluminum alloy material, and formed product molded by the same
JP2010159489A (en) * 2008-12-09 2010-07-22 Sumitomo Light Metal Ind Ltd Method for molding 7,000 series aluminum alloy material, and formed product molded by the same
JP2011252212A (en) * 2010-06-03 2011-12-15 Sumitomo Light Metal Ind Ltd Method for forming processing of 6000 series aluminum alloy material, and forming processed product
MX352255B (en) 2010-09-08 2017-11-16 Alcoa Inc Star Improved 6xxx aluminum alloys, and methods for producing the same.
JP5693904B2 (en) * 2010-10-05 2015-04-01 株式会社Uacj Manufacturing method of superplastic molded product
WO2013172910A2 (en) 2012-03-07 2013-11-21 Alcoa Inc. Improved 2xxx aluminum alloys, and methods for producing the same
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
JP7215923B2 (en) * 2019-02-15 2023-01-31 昭和電工株式会社 Manufacturing method and manufacturing apparatus for forged products for scroll members

Also Published As

Publication number Publication date
JP2005213529A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US4415374A (en) Fine grained metal composition
KR101827498B1 (en) Method of Forming a Component of Complex Shape from Sheet Material
JP3861720B2 (en) Forming method of magnesium alloy
CN103361520A (en) Aluminum alloy forged material for automobile and method for manufacturing the same
RU2007127862A (en) THERMAL TREATMENT OF ALUMINUM ALLOY CASTINGS OBTAINED BY HIGH PRESSURE CASTING
EP1649950A2 (en) Method for manufacturing copper alloys
JP4146364B2 (en) Method for manufacturing plastic working member
JPH09249951A (en) Production of aluminum forged product having fine structure
US5098490A (en) Super position aluminum alloy can stock manufacturing process
US20170356072A1 (en) Al-Zn ALLOY COMPRISING PRECIPITATES WITH IMPROVED STRENGTH AND ELONGATION AND METHOD OF MANUFACTURING THE SAME
JP3485577B2 (en) Diffusion bonded sputter target assembly having a precipitation hardened backing plate and method of making same
JP2001059124A (en) Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION
KR100768568B1 (en) Method of carrying out ecap at room temperature for magnesium materials
JP2001288517A (en) Cu-BASED ALLOY, CASTING HAVING HIGH STRENGTH AND HIGH THERMAL CONDUCTIVITY USING THE SAME AND METHOD FOR PRODUCING CASTING
RU2314362C2 (en) METHOD OF MANUFACTURE OF INTERMEDIATE BLANK FROM α- OR α+β-TITANIUM ALLOYS
JP2002254132A (en) Hot forging and forming method for magnesium alloy member
JP4755072B2 (en) Method for manufacturing aluminum alloy cylinder block
KR20170031754A (en) Steering support yoke
KR100510012B1 (en) High strength and high thermal conductive Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article
WO2002038821A1 (en) A method for producing formed products of an aluminium alloy and the use of such products
US20190249283A1 (en) Heat treatment of aluminum alloys containing silicon and scandium
JP2005133112A (en) Aluminum alloy member and its manufacturing method
US11746404B2 (en) Beryllium copper alloy ring and method for producing same
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JPH06248402A (en) Production of member made of magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees