JP4130980B2 - Method for recovering nickel from nickel-containing aqueous solution - Google Patents

Method for recovering nickel from nickel-containing aqueous solution Download PDF

Info

Publication number
JP4130980B2
JP4130980B2 JP2003106769A JP2003106769A JP4130980B2 JP 4130980 B2 JP4130980 B2 JP 4130980B2 JP 2003106769 A JP2003106769 A JP 2003106769A JP 2003106769 A JP2003106769 A JP 2003106769A JP 4130980 B2 JP4130980 B2 JP 4130980B2
Authority
JP
Japan
Prior art keywords
nickel
aqueous solution
organic solvent
extracted
solvent phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003106769A
Other languages
Japanese (ja)
Other versions
JP2004307983A (en
Inventor
幹也 田中
裕隆 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Kanigen Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Japan Kanigen Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Kanigen Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Kanigen Co Ltd
Priority to JP2003106769A priority Critical patent/JP4130980B2/en
Publication of JP2004307983A publication Critical patent/JP2004307983A/en
Application granted granted Critical
Publication of JP4130980B2 publication Critical patent/JP4130980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Physical Water Treatments (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル含有水溶液からニッケルを効率よく抽出し、回収する方法に関するものである。
【0002】
【従来の技術】
電子部品、精密機械部品などの表面処理に用いられる無電解ニッケルめっき液は、硫酸ニッケル(ニッケル供給源)、次亜リン酸ナトリウム(還元剤)及び乳酸やクエン酸などの錯化剤から構成されている。このめっき液をめっきに使用すると、次亜リン酸ナトリウムは酸化されて亜リン酸ナトリウムとなり、還元力が低下すると共にニッケルが消費されるため、随時硫酸ニッケル、次亜リン酸ナトリウム及びpH調節剤として水酸化ナトリウムをめっき液に補充しながら使用している。しかしながら、めっき液を繰り返し使用するうちに、硫酸イオン、ナトリウムイオン、亜リン酸イオン、被めっき物の表面から溶出する亜鉛や鉄などがめっき液中に蓄積し、めっき皮膜の品質を維持することが難しくなるので、ある程度まで使用しためっき液は廃液として処分されている。ところが、近年の環境保全及び資源保護の観点から、使用済みめっき液の再利用法の開発が期待されている。
【0003】
そこで、使用済み無電解ニッケルめっき液を再利用する方法として、例えば、2−ヒドロキシ−5−ノニルアセトフェノンオキシムなどのニッケル抽出剤を用いて、無電解ニッケルめっき廃液から無電解ニッケル補充液を調製する方法が開示されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−192846号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記の方法を工業規模の連続抽出装置や多段抽出装置などに適用した場合、ニッケルの抽出速度が低いために、ニッケルを効率よく回収することができなかった。
本発明は、上記のような課題を解決するためになされたものであり、ニッケル含有水溶液からニッケルを効率よく抽出し、回収する方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明は、β−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を含有する有機溶媒を、ニッケル含有水溶液と接触させ、ニッケルを有機溶媒相中に抽出することを特徴とするニッケル含有水溶液からのニッケルの抽出方法である。
【0007】
また、本発明は、抽出されたニッケルを含有する有機溶媒相を、鉱酸を含有する水溶液と接触させ、ニッケルを水相中に逆抽出することを特徴とするニッケル含有水溶液からのニッケル回収方法である。
【0008】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。
本発明の処理対象となるニッケル含有水溶液は、例えば、使用済みの電解ニッケルめっき液、使用済みの無電解ニッケルめっき液、廃Ni−Cd電池を浸出して得られる溶液、含ニッケル鉱を浸出して得られる溶液などが挙げられ、これらの水溶液は、約1g/L〜約100g/LのNi2+を含有するものである。本発明のニッケル回収方法は、使用済み無電解ニッケルめっき液に適用した場合に効果が大きい。
【0009】
使用済み無電解ニッケルめっきの組成は、めっき条件などによって異なるが、通常、Ni2+濃度が2〜6g/L、Na濃度が20〜100g/L、SO 2−濃度が5〜70g/L、HPO 濃度が10〜20g/L、HPO 2−濃度が15〜110g/L、錯化剤濃度が30〜50g/Lの範囲にあり、pHは、通常、4.0〜7.0の範囲にある水溶液である。
【0010】
本発明によるニッケルの回収は、β−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を含有する有機溶媒を、ニッケル含有水溶液と接触させ、ニッケル含有水溶液から有機溶媒相中にニッケルを抽出することによって行うことができる。その接触方法は特に限定されないが、大量のニッケル含有水溶液を連続的に接触させる装置、例えば、多段ミキサーセトラーや上下動式カラムなどの連続抽出装置を用いることが好ましい。ニッケルを抽出するときのニッケル含有水溶液のpHは、例えば、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、炭酸ナトリウム、炭酸アンモニウムのようなpH調整剤を添加して、好ましくはpH3.5〜pH7.0に調整することが好ましい。この範囲内であれば、ニッケルの抽出率をより向上させることができる。また、抽出温度は特に限定されず、室温で十分であるが、好ましくは20℃〜35℃である。
【0011】
また、本発明によるニッケルの回収方法は、抽出されたニッケルを含有する有機溶媒相を、鉱酸を含有する水溶液と接触させ、そしてニッケルを水相中に逆抽出することによっておこなうことができる。ニッケルの逆抽出に用いる鉱酸の濃度は、好ましくは0.1mol/L以上、より好ましくは0.2mol/L以上である。
【0012】
(β−ヒドロキシオキシム系抽出剤)
本発明に使用するβ−ヒドロキシオキシム系抽出剤としては、例えば、下記一般式(4)を有する化合物が挙げられる。
【0013】
【化4】

Figure 0004130980
(式中、Rは、炭素数5〜12のアルキル基を表わし、Xは、水素原子、炭素数1〜4のアルキル基又はフェニル基を表わす)
【0014】
一般式(4)で表わされるβ−ヒドロキシオキシム系抽出剤としては、例えば、2−ヒドロキシ−5−ノニルアセトフェノンオキシム、5−ドデシルサリチルアルドキシム及び5−ノニルサリチルアルドキシムが挙げられ、これらを単独で又は二種以上を組み合わせて用いることができる。
【0015】
有機溶媒中に含まれるβ−ヒドロキシオキシム系抽出剤の量は、有機溶媒に対して、5体積%〜40体積%が好ましく、10体積%〜30体積%がより好ましい。この範囲内であれば、ニッケル含有水溶液から有機溶媒相中へニッケルを効率よく抽出することができる。
【0016】
(酸性有機リン化合物)
本発明に使用する酸性有機リン化合物としては、有機溶媒に可溶なものであって、下記一般式(1)で表わされるアルキルリン酸、下記一般式(2)で表わされるアルキルホスホン酸、下記一般式(3)で表わされるアルキルホスフィン酸が挙げられ、これらを単独で又は二種以上を組み合わせて用いることができる。
【0017】
【化5】
Figure 0004130980
(式中、Rは、炭素数4〜20の直鎖状又は分岐鎖状のアルキル基を表わし、同一でも異なっていてもよい)
【0018】
【化6】
Figure 0004130980
(式中、Rは、炭素数4〜20の直鎖状又は分岐鎖状のアルキル基を表わし、同一でも異なっていてもよい)
【0019】
【化7】
Figure 0004130980
(式中、Rは、炭素数4〜20の直鎖状又は分岐鎖状のアルキル基を表わし、同一でも異なっていてもよい)
【0020】
一般式(1)で表わされるアルキルリン酸の具体例としては、例えば、ビス(2−エチルヘキシル)リン酸が挙げられ、一般式(2)で表わされるアルキルホスホン酸の具体例としては、例えば、2−エチルヘキシルリン酸モノ−2−エチルヘキシルエステルが挙げられ、一般式(3)で表わされるアルキルホスフィン酸の具体例としては、例えば、ビス(2,4,4−トリメチルペンチル)ホスフィン酸が挙げられる。
【0021】
有機溶媒中に含まれる酸性有機リン化合物の量は、β−ヒドロキシオキシム系抽出剤に対して、10体積%〜50体積%であり10体積%〜30体積%であることが好ましい。酸性有機リン化合物量が少なすぎる場合には、ニッケルの抽出効率が十分とならず、多すぎる場合には添加したほどには抽出効率が向上せずコスト的に無駄が多くなって好ましくない。
【0022】
(有機溶媒)
本発明に使用する有機溶媒としては、特に限定されず、β−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を溶解することができ、水と混和しないものであればよく、例えば、ケロシン、キシレン、ベンゼン、トルエン、シクロヘキサンなどの芳香族炭化水素、ヘキサン、ヘプタン、ノルマルパラフィンなどの脂肪族炭化水素、1−ナフテン酸、2−ナフテン酸などのナフテン系炭化水素が挙げられ、これらを単独で又は二種以上を組み合わせて用いることができる。
【0023】
(鉱酸)
本発明で使用する鉱酸としては、ニッケル塩を形成しやすいものであればよく、例えば、硫酸、塩酸、硝酸、リン酸、亜リン酸、次亜リン酸などが挙げられ、これらを単独で又は二種以上を組み合わせて用いることができる。特に、処理対象が使用済みの無電解ニッケルめっき液である場合、鉱酸として次亜リン酸を用いることにより、回収したニッケルを無電解ニッケル液に再利用しても被膜の品質を維持することができる。
【0024】
【実施例】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。
(実施例1)
β−ヒドロキシオキシム系抽出剤である2−ヒドロキシ−5−ノニルアセトフェノンオキシム(コグニス社製LIX84I、以下ではLIX84Iと略す)20体積%、酸性有機リン化合物であるビス(2−エチルヘキシル)リン酸(大八化学社製DP8R、以下ではDP8Rと略す)2体積%及び有機溶媒であるシェルゾールD70(シェル化学社製、パラフィン55質量%、ナフテン45質量%、以下ではD70と略す)78体積%を混合して、β−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を含有する有機溶媒相を調製した。
この有機溶媒相10mlと、表1に示す組成の無電解ニッケルめっきモデル液8mlに2mol/Lの水酸化ナトリウム水溶液2mlを添加した水溶液とを容量50mlのスキーブ型分液ロートに入れ、25℃、振とう幅45mm、振とう速度240rpmの条件で、振とう時間を変えてニッケルの抽出を行った。表2に、各振とう時間におけるニッケルの抽出率を示した。
【0025】
【表1】
Figure 0004130980
【0026】
(ニッケル抽出率)
抽出後、水相と有機溶媒相とを分相し、水相中のニッケル濃度をICP発光分光分析装置(セイコー電子製SPS4000)によって測定し、以下の式によりニッケルの抽出率を計算した。
【0027】
【数1】
Figure 0004130980
【0028】
(実施例2)
DP8Rの代わりに、2−エチルヘキシルリン酸モノ−2−エチルヘキシルエステル(大八化学社製PC88A)を用いた以外は実施例1と同様にしてニッケルの抽出を行った。表2に、各振とう時間におけるニッケルの抽出率を示した。
【0029】
(実施例3)
DP8Rの代わりに、ビス(2,4,4−トリメチルペンチル)ホスフィン酸(サイテック社製Cyanex272)を用いた以外は実施例1と同様にしてニッケルの抽出を行った。表2に、各振とう時間におけるニッケルの抽出率を示した。
【0030】
(比較例1)
酸性有機リン化合物を添加せずに、LIX84I 20体積%及びD70 80体積%の割合で混合して、β−ヒドロキシオキシム系抽出剤のみを含有する有機溶媒相を調製した以外は実施例1と同様にしてニッケルの抽出を行った。表2に、各振とう時間におけるニッケルの抽出率を示した。
【0031】
(比較例2)
酸性有機リン化合物の代わりに、下記一般式(5)で表わされる3級カルボン酸(シェル化学社製VA10)を用いた以外は実施例1と同様にしてニッケルの抽出を行った。表2に、各振とう時間におけるニッケルの抽出率を示した。
【0032】
【化8】
Figure 0004130980
(式中、R、R及びRはアルキル基を表わし、R〜Rの炭素数の合計は8である)
【0033】
(比較例3)
酸性有機リン化合物の代わりに、5,8−ジエチル−7−ヒドロキシ−6−ドデカンオキシム(コグニス社製LIX63)を用いた以外は実施例1と同様にしてニッケルの抽出を行った。表2に、各振とう時間におけるニッケルの抽出率を示した。
【0034】
表2から明らかなように、β−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を含有する有機溶媒相を用いることにより、ニッケルの抽出速度を大幅に向上させることができる。特に、酸性有機リン化合物としてビス(2−エチルヘキシル)リン酸を用いた場合には、振とう開始後5分で約92%抽出することができるので、工業的に極めて有効である。
【0035】
【表2】
Figure 0004130980
【0036】
(実施例4)
表3に示すような割合で、LIX84I、DP8R及びD70を混合してβ−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を含有する有機溶媒相をそれぞれ調製した。
これらの有機溶媒相10mlと、表1に示す組成の無電解ニッケルめっき液8mlに2mol/Lの水酸化ナトリウム水溶液2mlを添加した水溶液とを容量50mlのスキーブ型分液ロートにそれぞれ入れ、25℃、振とう幅45mm、振とう速度240rpm、振とう時間2分の条件でニッケルの抽出を行い、実施例1と同様にニッケルの抽出率を計算した。表3にニッケルの抽出率を示した。
【0037】
(比較例4)
振とう時間を2分とした以外は比較例1と同様にしてニッケルの抽出を行った。表3にニッケルの抽出率を示した。
【0038】
【表3】
Figure 0004130980
【0039】
表3から明らかなように、β−ヒドロキシオキシム系抽出剤に対する酸性有機リン化合物の割合を変えることよって、抽出速度を調節することができる。
【0040】
(実施例5)
実施例1で用いた有機溶媒相にニッケルを抽出させ、Ni2+濃度を8.6g/Lとした有機溶媒相10mlと、1mol/Lの硫酸水溶液10mlとを容量50mlのスキーブ型分液ロートに入れ、25℃、振とう幅45mm、振とう速度240rpmの条件で、振とう時間を変えてニッケルの逆抽出を行った。表4に、各振とう時間におけるニッケルの逆抽出率を示した。
【0041】
(実施例6)
実施例2で用いた有機溶媒相にニッケルを抽出させ、Ni2+濃度を8.3g/Lとした有機溶媒相10mlと、1mol/Lの硫酸水溶液10mlとを容量50mlのスキーブ型分液ロートに入れ、25℃、振とう幅45mm、振とう速度240rpmの条件で、振とう時間を変えてニッケルの逆抽出を行った。表4に、各振とう時間におけるニッケルの逆抽出率を示した。
【0042】
(実施例7)
実施例3で用いた有機溶媒相にニッケルを抽出させ、Ni2+濃度を8.6g/Lとした有機溶媒相10mlと、1mol/Lの硫酸水溶液10mlとを容量50mlのスキーブ型分液ロートに入れ、25℃、振とう幅45mm、振とう速度240rpmの条件で、振とう時間を変えてニッケルの逆抽出を行った。表4に、各振とう時間におけるニッケルの逆抽出率を示した。
【0043】
(比較例5)
比較例1で用いた有機溶媒相にニッケルを抽出させ、Ni2+濃度を8.3g/Lとした有機溶媒相10mlと、1mol/Lの硫酸水溶液10mlとを容量50mlのスキーブ型分液ロートに入れ、25℃、振とう幅45mm、振とう速度240rpmの条件で、振とう時間を変えてニッケルの逆抽出を行った。表4に、各振とう時間におけるニッケルの逆抽出率を示した。
【0044】
【表4】
Figure 0004130980
【0045】
表4から明らかなように、β−ヒドロキシオキシム系抽出剤のみを含有する有機溶媒相を用いる場合、逆抽出率が100%に達するまでに70分必要であるのに対して、β−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を含有する有機溶媒相を用いる場合、逆抽出率が100%に達する時間を40分以下に短縮することができる。
【0046】
(実施例8)
実施例4で用いた有機溶媒相にニッケルを抽出させ、Ni2+濃度を8.7〜9.5g/Lとした有機溶媒相10mlと、1mol/Lの硫酸水溶液10mlとを容量50mlのスキーブ型分液ロートにそれぞれ入れ、25℃、振とう幅45mm、振とう速度240rpm、振とう時間2分の条件でニッケルの逆抽出を行った。表5にニッケルの逆抽出率を示した。
【0047】
(比較例6)
比較例1で用いた有機溶媒相にニッケルを抽出させ、Ni2+濃度を8.5g/Lとした有機溶媒相10mlと、1mol/Lの硫酸水溶液10mlとを容量50mlのスキーブ型分液ロートに入れ、25℃、振とう幅45mm、振とう速度240rpm、振とう時間2分の条件でニッケルの逆抽出を行った。表5にニッケルの逆抽出率を示した。
【0048】
【表5】
Figure 0004130980
【0049】
表5から明らかなように、β−ヒドロキシオキシム系抽出剤に対する酸性有機リン化合物の割合を変えることよって、逆抽出速度を調節することができる。
【0050】
(実施例9)
表6に示すような割合で、LIX84I、DP8R及びD70を混合してβ−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を含有する有機溶媒相をそれぞれ調製した。
これらの有機溶媒相10mlと、表1に示す組成の無電解ニッケルめっき8mlにpH調節剤2mlを添加してpHを調節した水溶液10mlとを容量50mlのスキーブ型分液ロートにそれぞれ入れ、25℃、振とう幅45mm、振とう速度240rpmの条件で一晩振とうをおこない、平衡化させ、平衡抽出率を計算した。表6に、水溶液の各平衡pHにおけるニッケルの平衡抽出率を示した。
【0051】
(比較例7)
酸性有機リン化合物を添加せずに、β−ヒドロキシオキシム系抽出剤である2−ヒドロキシ−5−ノニルアセトフェノンオキシム(コグニス社製LIX84I)20体積%及び有機溶媒であるシェルゾールD70(シェル化学社製、パラフィン55質量%、ナフテン45質量%)80体積%を混合して、β−ヒドロキシオキシム系抽出剤を含有する有機溶媒相を調製した。
この有機溶媒相10mlと、表1に示す組成の無電解ニッケルめっき8mlにpH調節剤2mlを添加してpHを調節した水溶液10mlとを容量50mlのスキーブ型分液ロートにそれぞれ入れ、25℃、振とう幅45mm、振とう速度240rpmの条件で一晩振とうをおこない、平衡化させ、平衡抽出率を計算した。表6に、水溶液の各平衡pHにおけるニッケルの平衡抽出率を示した。
【0052】
【表6】
Figure 0004130980
【0053】
表6から明らかなように、pHが1.4〜5.8の範囲において、β−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を含む有機溶媒相を用いることにより、平衡抽出率を向上させることができる。
【0054】
(比較例8)
表7に示すような割合で、DP8R及びD70を混合して、酸性有機リン化合物を含有する有機溶媒相をそれぞれ調製した。
これらの有機溶媒相10mlと、表1に示す組成の無電解ニッケルめっきモデル液8mlにpH調節剤2mlを添加してpHを調節した水溶液10mlとを容量50mlのスキーブ型分液ロートにそれぞれ入れ、25℃、振とう幅45mm、振とう速度240rpmの条件で一晩振とうをおこない、平衡化させ、平衡抽出率を計算した。表7に、水溶液の各平衡pHにおけるニッケルの平衡抽出率を示した。
【0055】
【表7】
Figure 0004130980
【0056】
表7から明らかなように、酸性有機リン化合物のみを含む有機溶媒相を用いても、ニッケルの平衡抽出率を向上させることはできないことが分かる。
【0057】
【発明の効果】
本発明の方法によれば、高効率、且つ低コストでニッケル含有水溶液からニッケルを回収することができるため、本方法は、工業化適性の非常に高いものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently extracting and recovering nickel from a nickel-containing aqueous solution.
[0002]
[Prior art]
Electroless nickel plating solution used for surface treatment of electronic parts, precision machine parts, etc. is composed of nickel sulfate (nickel supply source), sodium hypophosphite (reducing agent) and complexing agents such as lactic acid and citric acid. ing. When this plating solution is used for plating, sodium hypophosphite is oxidized to sodium phosphite, reducing power is reduced and nickel is consumed. Therefore, nickel sulfate, sodium hypophosphite and pH adjuster are used as needed. As used, sodium hydroxide is replenished in the plating solution. However, during repeated use of the plating solution, sulfate ions, sodium ions, phosphite ions, zinc and iron eluted from the surface of the object to be plated accumulate in the plating solution, and maintain the quality of the plating film. Therefore, the plating solution used to some extent is disposed of as a waste solution. However, from the viewpoint of environmental protection and resource protection in recent years, development of a method for reusing used plating solutions is expected.
[0003]
Therefore, as a method of reusing the used electroless nickel plating solution, for example, an electroless nickel replenisher is prepared from the electroless nickel plating waste solution using a nickel extractant such as 2-hydroxy-5-nonylacetophenone oxime. A method is disclosed (for example, see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-192846
[Problems to be solved by the invention]
However, when the above method is applied to an industrial scale continuous extraction device, a multistage extraction device, or the like, nickel cannot be efficiently recovered due to a low nickel extraction rate.
The present invention has been made to solve the above-described problems, and an object thereof is to provide a method for efficiently extracting and recovering nickel from a nickel-containing aqueous solution.
[0006]
[Means for Solving the Problems]
The present invention relates to nickel from a nickel-containing aqueous solution, wherein an organic solvent containing a β-hydroxyoxime-based extractant and an acidic organic phosphorus compound is brought into contact with a nickel-containing aqueous solution to extract nickel into the organic solvent phase. This is an extraction method.
[0007]
The present invention also provides a method for recovering nickel from a nickel-containing aqueous solution, wherein the extracted organic solvent phase containing nickel is brought into contact with an aqueous solution containing a mineral acid, and nickel is back-extracted into the aqueous phase. It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The nickel-containing aqueous solution to be treated according to the present invention includes, for example, a used electrolytic nickel plating solution, a used electroless nickel plating solution, a solution obtained by leaching a waste Ni-Cd battery, and a nickel-containing ore. These aqueous solutions contain about 1 g / L to about 100 g / L of Ni 2+ . The nickel recovery method of the present invention is highly effective when applied to a used electroless nickel plating solution.
[0009]
The composition of the used electroless nickel plating varies depending on the plating conditions and the like, but usually the Ni 2+ concentration is 2 to 6 g / L, the Na + concentration is 20 to 100 g / L, and the SO 4 2− concentration is 5 to 70 g / L. , H 2 PO 2 concentration is in the range of 10 to 20 g / L, HPO 3 2 concentration is in the range of 15 to 110 g / L, and complexing agent concentration is in the range of 30 to 50 g / L. An aqueous solution in the range of 7.0.
[0010]
The recovery of nickel according to the present invention is carried out by bringing an organic solvent containing a β-hydroxyoxime-based extractant and an acidic organic phosphorus compound into contact with a nickel-containing aqueous solution and extracting nickel from the nickel-containing aqueous solution into the organic solvent phase. be able to. The contact method is not particularly limited, but it is preferable to use an apparatus that continuously contacts a large amount of the nickel-containing aqueous solution, for example, a continuous extraction apparatus such as a multistage mixer settler or a vertically moving column. The pH of the nickel-containing aqueous solution when extracting nickel is preferably adjusted to pH 3.5 to pH 7 by adding a pH adjusting agent such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate or ammonium carbonate. It is preferable to adjust to 0.0. Within this range, the nickel extraction rate can be further improved. The extraction temperature is not particularly limited, and room temperature is sufficient, but is preferably 20 ° C to 35 ° C.
[0011]
Also, the nickel recovery method according to the present invention can be carried out by bringing the extracted nickel-containing organic solvent phase into contact with an aqueous solution containing a mineral acid, and back-extracting nickel into the aqueous phase. The concentration of the mineral acid used for the back extraction of nickel is preferably 0.1 mol / L or more, more preferably 0.2 mol / L or more.
[0012]
(Β-hydroxy oxime extractant)
Examples of the β-hydroxyoxime extractant used in the present invention include compounds having the following general formula (4).
[0013]
[Formula 4]
Figure 0004130980
(In the formula, R represents an alkyl group having 5 to 12 carbon atoms, and X represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.)
[0014]
Examples of the β-hydroxyoxime extractant represented by the general formula (4) include 2-hydroxy-5-nonylacetophenone oxime, 5-dodecylsalicylaldoxime, and 5-nonylsalicylaldoxime. Or in combination of two or more.
[0015]
The amount of the β-hydroxyoxime extractant contained in the organic solvent is preferably 5% by volume to 40% by volume and more preferably 10% by volume to 30% by volume with respect to the organic solvent. Within this range, nickel can be efficiently extracted from the nickel-containing aqueous solution into the organic solvent phase.
[0016]
(Acid organophosphorus compound)
The acidic organic phosphorus compound used in the present invention, I those soluble der in organic solvents, alkyl phosphates represented by the following general formula (1), alkyl phosphonic acids represented by the following general formula (2), The alkyl phosphinic acid represented by following General formula (3) is mentioned, These can be used individually or in combination of 2 or more types.
[0017]
[Chemical formula 5]
Figure 0004130980
(Wherein R represents a linear or branched alkyl group having 4 to 20 carbon atoms, which may be the same or different)
[0018]
[Chemical 6]
Figure 0004130980
(Wherein R represents a linear or branched alkyl group having 4 to 20 carbon atoms, which may be the same or different)
[0019]
[Chemical 7]
Figure 0004130980
(Wherein R represents a linear or branched alkyl group having 4 to 20 carbon atoms, which may be the same or different)
[0020]
Specific examples of the alkyl phosphoric acid represented by the general formula (1) include bis (2-ethylhexyl) phosphoric acid, and specific examples of the alkyl phosphonic acid represented by the general formula (2) include, for example, Examples include 2-ethylhexyl phosphate mono-2-ethylhexyl ester, and specific examples of the alkylphosphinic acid represented by the general formula (3) include bis (2,4,4-trimethylpentyl) phosphinic acid. .
[0021]
The amount of an acidic organic phosphorus compound contained in the organic solvent, to the β- hydroxy oxime extractant is 10 vol% to 50 vol%, it is good preferable is 10 vol% to 30 vol%. When the amount of the acidic organic phosphorus compound is too small, the extraction efficiency of nickel is not sufficient, and when it is too large, the extraction efficiency is not improved as much as it is added, and the cost is wasted.
[0022]
(Organic solvent)
The organic solvent used in the present invention is not particularly limited as long as it can dissolve the β-hydroxyoxime extractant and the acidic organic phosphorus compound and is immiscible with water. For example, kerosene, xylene, Examples thereof include aromatic hydrocarbons such as benzene, toluene, and cyclohexane, aliphatic hydrocarbons such as hexane, heptane, and normal paraffin, and naphthenic hydrocarbons such as 1-naphthenoic acid and 2-naphthenoic acid. A combination of more than one species can be used.
[0023]
(Mineral acid)
The mineral acid used in the present invention is not particularly limited as long as it easily forms a nickel salt, and examples thereof include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, and the like. Alternatively, two or more kinds can be used in combination. In particular, when the treatment target is a used electroless nickel plating solution, by using hypophosphorous acid as the mineral acid, the quality of the coating can be maintained even if the recovered nickel is reused in the electroless nickel solution. Can do.
[0024]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
(Example 1)
2-Hydroxy-5-nonylacetophenone oxime (LIX84I manufactured by Cognis, hereinafter abbreviated as LIX84I) 20% by volume as a β-hydroxyoxime-based extractant, bis (2-ethylhexyl) phosphate (large) as an acidic organic phosphorus compound Eight chemicals DP8R (hereinafter abbreviated as DP8R) 2 vol% and organic solvent Shellsol D70 (shell chemicals, paraffin 55 mass%, naphthene 45 mass%, hereinafter abbreviated as D70) 78 vol% Then, an organic solvent phase containing a β-hydroxyoxime-based extractant and an acidic organic phosphorus compound was prepared.
10 ml of this organic solvent phase and an aqueous solution obtained by adding 2 ml of a 2 mol / L sodium hydroxide aqueous solution to 8 ml of an electroless nickel plating model solution having the composition shown in Table 1 were placed in a 50 ml skive type separatory funnel at 25 ° C. Nickel was extracted by changing the shaking time under conditions of a shaking width of 45 mm and a shaking speed of 240 rpm. Table 2 shows the nickel extraction rate at each shaking time.
[0025]
[Table 1]
Figure 0004130980
[0026]
(Nickel extraction rate)
After the extraction, the aqueous phase and the organic solvent phase were separated, the nickel concentration in the aqueous phase was measured with an ICP emission spectroscopic analyzer (SPS4000 manufactured by Seiko Denshi), and the nickel extraction rate was calculated according to the following equation.
[0027]
[Expression 1]
Figure 0004130980
[0028]
(Example 2)
Nickel was extracted in the same manner as in Example 1 except that 2-ethylhexyl phosphate mono-2-ethylhexyl ester (PC88A manufactured by Daihachi Chemical Co., Ltd.) was used instead of DP8R. Table 2 shows the nickel extraction rate at each shaking time.
[0029]
(Example 3)
Nickel was extracted in the same manner as in Example 1 except that bis (2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272 manufactured by Cytec Co., Ltd.) was used instead of DP8R. Table 2 shows the nickel extraction rate at each shaking time.
[0030]
(Comparative Example 1)
The same as in Example 1 except that an organic solvent phase containing only a β-hydroxyoxime-based extractant was prepared by adding 20% by volume of LIX84I and 80% by volume of D70 without adding an acidic organic phosphorus compound. Then, nickel was extracted. Table 2 shows the nickel extraction rate at each shaking time.
[0031]
(Comparative Example 2)
Nickel was extracted in the same manner as in Example 1 except that a tertiary carboxylic acid represented by the following general formula (5) (VA10 manufactured by Shell Chemical Co., Ltd.) was used instead of the acidic organic phosphorus compound. Table 2 shows the nickel extraction rate at each shaking time.
[0032]
[Chemical 8]
Figure 0004130980
(In the formula, R 1 , R 2 and R 3 represent an alkyl group, and the total number of carbon atoms of R 1 to R 3 is 8.)
[0033]
(Comparative Example 3)
Nickel was extracted in the same manner as in Example 1 except that 5,8-diethyl-7-hydroxy-6-dodecane oxime (LIX63 manufactured by Cognis) was used instead of the acidic organic phosphorus compound. Table 2 shows the nickel extraction rate at each shaking time.
[0034]
As is apparent from Table 2, the extraction rate of nickel can be significantly improved by using an organic solvent phase containing a β-hydroxyoxime-based extractant and an acidic organic phosphorus compound. In particular, when bis (2-ethylhexyl) phosphoric acid is used as the acidic organic phosphorus compound, about 92% can be extracted 5 minutes after the start of shaking, which is extremely effective industrially.
[0035]
[Table 2]
Figure 0004130980
[0036]
Example 4
LIX84I, DP8R, and D70 were mixed at a ratio as shown in Table 3 to prepare organic solvent phases containing a β-hydroxyoxime-based extractant and an acidic organic phosphorus compound, respectively.
10 ml of these organic solvent phases and an aqueous solution obtained by adding 2 ml of a 2 mol / L sodium hydroxide aqueous solution to 8 ml of an electroless nickel plating solution having the composition shown in Table 1 were placed in a 50 ml skive type separatory funnel, respectively. Nickel was extracted under the conditions of a shaking width of 45 mm, a shaking speed of 240 rpm, and a shaking time of 2 minutes, and the nickel extraction rate was calculated in the same manner as in Example 1. Table 3 shows the nickel extraction rate.
[0037]
(Comparative Example 4)
Nickel was extracted in the same manner as in Comparative Example 1 except that the shaking time was 2 minutes. Table 3 shows the nickel extraction rate.
[0038]
[Table 3]
Figure 0004130980
[0039]
As is apparent from Table 3, the extraction rate can be adjusted by changing the ratio of the acidic organophosphorus compound to the β-hydroxyoxime extractant.
[0040]
(Example 5)
Nickel was extracted from the organic solvent phase used in Example 1, and 10 ml of the organic solvent phase with a Ni 2+ concentration of 8.6 g / L and 10 ml of 1 mol / L sulfuric acid aqueous solution were placed in a 50 ml skive type separatory funnel. The nickel was back-extracted by changing the shaking time under the conditions of 25 ° C., a shaking width of 45 mm, and a shaking speed of 240 rpm. Table 4 shows the nickel back-extraction rate at each shaking time.
[0041]
(Example 6)
Nickel was extracted from the organic solvent phase used in Example 2, and 10 ml of the organic solvent phase having a Ni 2+ concentration of 8.3 g / L and 10 ml of 1 mol / L sulfuric acid aqueous solution were placed in a 50 ml skive type separating funnel. The nickel was back-extracted by changing the shaking time under the conditions of 25 ° C., a shaking width of 45 mm, and a shaking speed of 240 rpm. Table 4 shows the nickel back-extraction rate at each shaking time.
[0042]
(Example 7)
Nickel was extracted from the organic solvent phase used in Example 3, and 10 ml of the organic solvent phase having a Ni 2+ concentration of 8.6 g / L and 10 ml of 1 mol / L sulfuric acid aqueous solution were placed in a 50 ml skive type separatory funnel. The nickel was back-extracted by changing the shaking time under the conditions of 25 ° C., a shaking width of 45 mm, and a shaking speed of 240 rpm. Table 4 shows the nickel back-extraction rate at each shaking time.
[0043]
(Comparative Example 5)
Nickel was extracted from the organic solvent phase used in Comparative Example 1, and 10 ml of the organic solvent phase with a Ni 2+ concentration of 8.3 g / L and 10 ml of 1 mol / L sulfuric acid aqueous solution were placed in a 50 ml skive type separatory funnel. The nickel was back-extracted by changing the shaking time under the conditions of 25 ° C., a shaking width of 45 mm, and a shaking speed of 240 rpm. Table 4 shows the nickel back-extraction rate at each shaking time.
[0044]
[Table 4]
Figure 0004130980
[0045]
As is apparent from Table 4, when an organic solvent phase containing only a β-hydroxyoxime-based extractant is used, it takes 70 minutes for the back extraction rate to reach 100%, whereas β-hydroxyoxime. When the organic solvent phase containing the system extractant and the acidic organic phosphorus compound is used, the time for the back extraction rate to reach 100% can be shortened to 40 minutes or less.
[0046]
(Example 8)
Nickel was extracted from the organic solvent phase used in Example 4, 10 ml of the organic solvent phase having a Ni 2+ concentration of 8.7 to 9.5 g / L, and 10 ml of 1 mol / L sulfuric acid aqueous solution, and a squib type having a capacity of 50 ml. Each was placed in a separatory funnel, and nickel was back-extracted under the conditions of 25 ° C., shaking width 45 mm, shaking speed 240 rpm, and shaking time 2 minutes. Table 5 shows the back extraction rate of nickel.
[0047]
(Comparative Example 6)
Nickel was extracted from the organic solvent phase used in Comparative Example 1, and 10 ml of the organic solvent phase with a Ni 2+ concentration of 8.5 g / L and 10 ml of 1 mol / L sulfuric acid aqueous solution were placed in a 50 ml skive type separatory funnel. The nickel was back-extracted under the conditions of 25 ° C., a shaking width of 45 mm, a shaking speed of 240 rpm, and a shaking time of 2 minutes. Table 5 shows the back extraction rate of nickel.
[0048]
[Table 5]
Figure 0004130980
[0049]
As is apparent from Table 5, the back extraction rate can be adjusted by changing the ratio of the acidic organophosphorus compound to the β-hydroxyoxime extractant.
[0050]
Example 9
LIX84I, DP8R and D70 were mixed at a ratio shown in Table 6 to prepare an organic solvent phase containing a β-hydroxyoxime-based extractant and an acidic organic phosphorus compound, respectively.
10 ml of these organic solvent phases and 10 ml of an aqueous solution adjusted to pH by adding 2 ml of pH adjusting agent to 8 ml of electroless nickel plating having the composition shown in Table 1 were put in a 50 ml skive type separating funnel, respectively. The mixture was shaken overnight under conditions of a shaking width of 45 mm and a shaking speed of 240 rpm, equilibrated, and the equilibrium extraction rate was calculated. Table 6 shows the equilibrium extraction rate of nickel at each equilibrium pH of the aqueous solution.
[0051]
(Comparative Example 7)
Without adding an acidic organic phosphorus compound, 20% by volume of 2-hydroxy-5-nonylacetophenone oxime (LIX84I manufactured by Cognis Co., Ltd.), which is a β-hydroxyoxime-based extractant, and Shellsol D70 (manufactured by Shell Chemical Co., Ltd.), an organic solvent. 80% by volume of paraffin (55% by mass, naphthene 45% by mass) was mixed to prepare an organic solvent phase containing a β-hydroxyoxime extractant.
10 ml of this organic solvent phase and 10 ml of an aqueous solution adjusted to pH by adding 2 ml of pH adjusting agent to 8 ml of electroless nickel plating having the composition shown in Table 1 were placed in a 50 ml skive type separating funnel, respectively, The mixture was shaken overnight under conditions of a shaking width of 45 mm and a shaking speed of 240 rpm, equilibrated, and the equilibrium extraction rate was calculated. Table 6 shows the equilibrium extraction rate of nickel at each equilibrium pH of the aqueous solution.
[0052]
[Table 6]
Figure 0004130980
[0053]
As is apparent from Table 6, in the range of pH 1.4 to 5.8, the equilibrium extraction rate is improved by using an organic solvent phase containing a β-hydroxyoxime extractant and an acidic organic phosphorus compound. Can do.
[0054]
(Comparative Example 8)
DP8R and D70 were mixed at a ratio as shown in Table 7 to prepare an organic solvent phase containing an acidic organic phosphorus compound.
10 ml of these organic solvent phases and 10 ml of an aqueous solution adjusted to pH by adding 2 ml of a pH adjusting agent to 8 ml of an electroless nickel plating model solution having the composition shown in Table 1 were placed in a 50 ml skive type separating funnel. The mixture was shaken overnight under the conditions of 25 ° C., a shaking width of 45 mm, and a shaking speed of 240 rpm, equilibrated, and the equilibrium extraction rate was calculated. Table 7 shows the equilibrium extraction rate of nickel at each equilibrium pH of the aqueous solution.
[0055]
[Table 7]
Figure 0004130980
[0056]
As is clear from Table 7, it can be seen that even if an organic solvent phase containing only an acidic organic phosphorus compound is used, the equilibrium extraction rate of nickel cannot be improved.
[0057]
【The invention's effect】
According to the method of the present invention, nickel can be recovered from the nickel-containing aqueous solution with high efficiency and at low cost, and therefore, this method is very suitable for industrialization.

Claims (2)

β−ヒドロキシオキシム系抽出剤及び酸性有機リン化合物を含有する有機溶媒を、ニッケル含有水溶液と接触させ、ニッケルを有機溶媒相中に抽出するニッケル含有水溶液からのニッケルの回収方法であって、
酸性有機リン化合物の含有量が、β−ヒドロキシオキシム系抽出剤に対して、10体積%〜50体積%であり、且つ酸性有機リン化合物が、下記一般式(1)
Figure 0004130980
(式中、Rは、炭素数4〜20の直鎖状又は分岐鎖状のアルキル基を表わし、同一でも異なっていてもよい)で表わされるアルキルリン酸、
下記一般式(2)
Figure 0004130980
(式中、Rは、炭素数4〜20の直鎖状又は分岐鎖状のアルキル基を表わし、同一でも異なっていてもよい)で表わされるアルキルホスホン酸、
下記一般式(3)
Figure 0004130980
(式中、Rは、炭素数4〜20の直鎖状又は分岐鎖状のアルキル基を表わし、同一でも異なっていてもよい)で表わされるアルキルホスフィン酸及びこれらの混合物からなる群から選択されることを特徴とするニッケル含有水溶液からのニッケル回収方法。
The organic solvent containing the β- hydroxy oxime extractant and acidic organophosphorus compounds, is contacted with the nickel-containing aqueous solution, a method of recovering nickel from Runi nickel-containing aqueous solution to extract the nickel into the organic solvent phase,
The content of the acidic organic phosphorus compound is 10% by volume to 50% by volume with respect to the β-hydroxyoxime-based extractant, and the acidic organic phosphorus compound has the following general formula (1):
Figure 0004130980
(Wherein R represents a linear or branched alkyl group having 4 to 20 carbon atoms, which may be the same or different),
The following general formula (2)
Figure 0004130980
(Wherein, R represents a linear or branched alkyl group having 4 to 20 carbon atoms, which may be the same or different),
The following general formula (3)
Figure 0004130980
Wherein R represents a linear or branched alkyl group having 4 to 20 carbon atoms, which may be the same or different, and is selected from the group consisting of mixtures thereof. A method for recovering nickel from a nickel-containing aqueous solution.
抽出されたニッケルを含有する有機溶媒相を、鉱酸を含有する水溶液と接触させ、ニッケルを水相中に逆抽出することを特徴とする請求項1に記載のニッケル含有水溶液からのニッケル回収方法。  The method for recovering nickel from a nickel-containing aqueous solution according to claim 1, wherein the extracted organic solvent phase containing nickel is brought into contact with an aqueous solution containing a mineral acid, and nickel is back-extracted into the aqueous phase. .
JP2003106769A 2003-04-10 2003-04-10 Method for recovering nickel from nickel-containing aqueous solution Expired - Lifetime JP4130980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106769A JP4130980B2 (en) 2003-04-10 2003-04-10 Method for recovering nickel from nickel-containing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106769A JP4130980B2 (en) 2003-04-10 2003-04-10 Method for recovering nickel from nickel-containing aqueous solution

Publications (2)

Publication Number Publication Date
JP2004307983A JP2004307983A (en) 2004-11-04
JP4130980B2 true JP4130980B2 (en) 2008-08-13

Family

ID=33468855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106769A Expired - Lifetime JP4130980B2 (en) 2003-04-10 2003-04-10 Method for recovering nickel from nickel-containing aqueous solution

Country Status (1)

Country Link
JP (1) JP4130980B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7837959B2 (en) 2004-09-24 2010-11-23 Commonwealth Scientific And Industrial Research Organisation Synergistic solvent extraction process
RU2388836C2 (en) * 2005-03-29 2010-05-10 Сайтек Текнолоджи Корп. Modification of selectivity of copper/iron in systems for extraction of copper with solvent on base of oxime
JP5124771B2 (en) * 2007-03-30 2013-01-23 国立大学法人群馬大学 Method for recovering Ni in electroless Ni plating waste liquid and method for gasifying low-grade coal
JP4809382B2 (en) * 2008-01-18 2011-11-09 Jx日鉱日石金属株式会社 Method for recovering Ni from electroless Ni plating waste liquid
CN102187000B (en) * 2008-10-14 2014-08-27 塞特克技术公司 Metal extractant reagents having increased resistance to degradation
JP5004106B2 (en) * 2009-03-30 2012-08-22 Jx日鉱日石金属株式会社 Method for separating and recovering nickel and lithium
JP5014394B2 (en) 2009-09-29 2012-08-29 Jx日鉱日石金属株式会社 Method for separating and recovering nickel and lithium
JP2012132078A (en) * 2010-12-24 2012-07-12 Univ Of Miyazaki Regeneration treatment method of electroless nickel plating solution
KR101169799B1 (en) * 2012-02-24 2012-07-31 (주)엔나노텍 The recycling method of the valuable metal in the organic waste containing the valuable metal
US20200140972A1 (en) * 2018-11-02 2020-05-07 Basf Corporation Methods for extracting elements from a solution
WO2023054621A1 (en) * 2021-09-29 2023-04-06 株式会社アサカ理研 Method for recovering valuable metal from waste lithium-ion battery
CN115057558A (en) * 2022-08-19 2022-09-16 北京高能时代环境技术股份有限公司 Method and system for recovering nickel and phosphorus from chemical nickel plating wastewater

Also Published As

Publication number Publication date
JP2004307983A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4130980B2 (en) Method for recovering nickel from nickel-containing aqueous solution
US9441285B2 (en) Bifunctional compounds useful as ligands of uranium (VI), methods of synthesising same and uses thereof
Łukomska et al. Liquid-liquid extraction of cobalt (II) and zinc (II) from aqueous solutions using novel ionic liquids as an extractants
JPH09176757A (en) Extraction of rare earth element
MX2008011640A (en) Method for the purification of triorganophosphites by treatment with a basic additive.
JPS6227529A (en) Method for selectively extracting metal from aqueous solution using dithiophosphinic acid
MX2007011836A (en) Modification of copper/iron selectivity in oxime-based copper solvent extraction systems.
JPWO2005083131A1 (en) Palladium extractant and method for separating and recovering palladium
JPH10287864A (en) Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery
JPH07503995A (en) Method for removing impurity elements from valuable metal solutions
Begum et al. Solvent extraction of copper, nickel and zinc by Cyanex
JPH0323229A (en) Recovery of metal by using monothiophosphinic acid
BR112017023820B1 (en) USE OF AT LEAST ONE COMPOUND, METHOD OF RECOVERY OF AT LEAST ONE RARE EARTH AND SPECIFIC FORMULA COMPOUNDS
Koshimoto et al. Synthesis of phosphonic acid extractants and selective extraction of In (III) and Ga (III) from acidic media containing Zn (II)
EP0573182B1 (en) Process for extracting metal values
US5557003A (en) Alkylphenoxy substituted bis (thio phosphoryl) amines
JP2005256170A (en) Electroless nickel plating method and plated product thereby
JPH0734300A (en) Removing method for impurity metallic ion in plating bath
Liu et al. Nickel (II) extraction from chloride solutions using N-2-ethylhexylpyridine-3-formamide: A new reagent toward clean hydrometallurgy and a proposed flowsheet for chloride leach liquors of nickel laterites
JP6693646B2 (en) Recovery method of nickel element
Ohto et al. Solvent extraction of precious metals with an organoaminophosphonate
JPH0377859B2 (en)
JPH09506349A (en) Chemical compound
JPS5943984B2 (en) Treatment method for nickel and cobalt-containing liquids containing zinc
WO2001056933A2 (en) Combined supported liquid membrane/strip dispersion processes and extractants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4130980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term