JP4127957B2 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
JP4127957B2
JP4127957B2 JP2000389710A JP2000389710A JP4127957B2 JP 4127957 B2 JP4127957 B2 JP 4127957B2 JP 2000389710 A JP2000389710 A JP 2000389710A JP 2000389710 A JP2000389710 A JP 2000389710A JP 4127957 B2 JP4127957 B2 JP 4127957B2
Authority
JP
Japan
Prior art keywords
torque
current
primary
command
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000389710A
Other languages
Japanese (ja)
Other versions
JP2002199797A (en
Inventor
茂教 萩原
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2000389710A priority Critical patent/JP4127957B2/en
Publication of JP2002199797A publication Critical patent/JP2002199797A/en
Application granted granted Critical
Publication of JP4127957B2 publication Critical patent/JP4127957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電動機を高精度に制御する電動機の制御装置に関するものである。
【0002】
従来の技術の一例として、永久磁石型同期電動機のトルクを制御する電動機制御装置のブロック線図を図3に示し、この図に基づいて説明する。電力変換器4は、永久磁石型同期電動機1に電力を供給する。電流検出器3は永久磁石型同期電動機1の一次電流を検出し、一次電流に任意の座標変換係数を乗じて静止座標上での電流ベクトルに変換し、その電流ベクトル成分ia,ibを出力する。位置検出器2は、永久磁石型同期電動機1の回転子の永久磁石の方向を検知する。
【0003】
トルク制御器8は、トルク指令Trと電流ベクトル成分ia、ibと永久磁石の方向とを入力して永久磁石型同期電動機1の出力トルクがトルク指令Trに追従するような信号を電力変換器4に出力する。トルク制御器8は、d軸電流指令生成器7とq軸電流指令生成器6と電流制御器5とで構成される。d軸電流指令生成器7は、一次電流の永久磁石の方向と平行な電流成分であるd軸電流idの指令となるd軸電流指令idrを出力する。
【0004】
q軸電流指令生成器6は、一次電流の永久磁石の方向と垂直な電流成分であるq軸電流iqの指令となるq軸電流指令iqrを、トルク指令Trとd軸電流指令idrより
【0005】

Figure 0004127957
【0006】
の計算式で演算して出力する。ここで、φは永久磁石型同期電動機1の永久磁石の磁束量であり、Ldはd軸のインダクタンスであり、Lqはq軸のインダクタンスである。
【0007】
電流制御器5は、電流ベクトル成分ia、ibを永久磁石の方向に基づいて回転座標変換してid、iqを演算し、id、iqをそれぞれそれらの指令値のidr、iqrに追従させるような信号を出力する。以上の制御構成により、永久磁石型同期電動機1の出力トルクはトルク指令Trに制御されることができる。
【0008】
【発明が解決しようとする課題】
前述したように、永久磁石型同期電動機1の出力トルクがトルク指令Trに制御されるためには(1)式が正確に演算される必要がある。よって永久磁石型同期電動機1の永久磁石の磁束量φやd軸のインダクタンスLdやq軸のインダクタンスLqが実際の値と一致しておく必要がある。
しかし、φは永久磁石の温度によって変動したり、LdやLqは磁気飽和により電流の大きさによって変化するので、(1)式で用いるφやLdやLqを永久磁石型同期電動機1の実際値に一致させることは困難である。従って、永久磁石型同期電動機1の出力トルクはトルク指令Tr通りに制御できなくなる。
本発明は上述した点に鑑みて創案されたもので、その目的とするところは、永久磁石型同期電動機の制御装置にトルク制御器を補正する機能を設けることで上記問題点を解決し、運転中に変化する電動機の定数に依存することがない電動機の制御装置を提供するものである。
【0009】
【課題を解決するための手段】
つまり、その目的を達成するための手段は、請求項1において、トルク指令を入力して電動機の電流指令を生成する電流指令生成器と、
前記電流指令と前記電動機の一次電流とを入力して前記電流指令と前記一次電流とが一致するような信号を出力する電流制御器と_から構成されるトルク制御器で前記電動機の出力トルクを前記トルク指令に追従させる永久磁石型同期電動機の制御装置において、
前記電動機の一次電流を検出して静止座標系の一次電流ベクトルに変換して出力する電流検出器と、
前記電動機の一次電圧を検出または推定して静止座標系の一次電圧ベクトルに変換して出力する電圧検出器と、
前記一次電圧ベクトルと前記一次電流ベクトルとを入力し前記電動機の一次巻線抵抗Rを用いて前記電動機の一次鎖交磁束ベクトルを演算する磁束演算器と、
前記一次鎖交磁束ベクトルと前記一次電流ベクトルとから前記電動機の出力トルクを演算するトルク演算器と、
該トルク演算器の出力の演算トルクと前記トルク指令との差を比例積分増幅し、該比例積分増幅したものと前記トルク指令との和を補正後トルク指令として前記トルク指令の変わりにトルク制御器に出力するものとから構成されるトルク指令調整器とを具備することを特徴とする永久磁石型同期電動機の制御装置。
【0011】
従来の技術で説明した場合と同様に、永久磁石型同期電動機の出力トルクをトルク指令に追従させる電動機制御装置の一実施例について説明する。図1は、本発明の請求項1記載の一実施例を示すブロック線図であり、この図に基づいて説明するが、従来の技術と同一部分は説明を省略する。電圧検出器9は、永久磁石型同期電動機1の一次電圧を検出または推定し、その一次電圧に任意の座標変換係数を乗じて静止座標上での電圧ベクトルに変換し、その電圧ベクトル成分va、vbを出力する。磁束演算器10は、電流ベクトル成分ia、ibと電圧ベクトル成分va、vbとを入力して、永久磁石型同期電動機1の一次巻線抵抗Rを用いて永久磁石型同期電動機1の一次鎖交磁束ベクトルの成分φa、φbを次式により演算する。
【0012】
Figure 0004127957
【0013】
トルク演算器11は、一次鎖交磁束ベクトルの成分φa、φbと電流ベクトル成分ia、ibとを入力して、次式により永久磁石型同期電動機1の出力するトルクTcを演算する。
【0014】
Figure 0004127957
【0015】
(4)式で求められる演算トルクTcは、φやLdやLqを用いずに演算しているため、永久磁石型同期電動機1が実際に出力しているトルクと等しくなる。
トルク指令調整器12は、トルク指令Trとトルク演算器11の出力である演算トルクTcとを入力し、トルク指令Trと演算トルクTcとが等しくなるように補正した補正後トルク指令Tr’を出力する。補正後トルク指令Tr’をトルク制御器8に入力することで、永久磁石型同期電動機1の出力トルクはトルク指令Trに正確に追従することになる。
【0016】
トルク指令調整器12は、減算器13と比例積分増幅器14と加算器15とで構成されている。減算器13は、トルク指令Trと演算トルクTcとの差を出力する。減算器13の出力するトルク誤差が0となるように、トルク誤差を比例積分増幅器14に通し、加算器15で比例積分増幅器14の出力とトルク指令Trとの和を補正後トルク指令Tr’として出力する。
【0017】
図2は、本発明の請求項記載の一実施例を図1とは別構成で実現するブロック線図であり、この図に基づいて説明するが、従来の技術と図1で説明した同一部分は説明を省略する。電流指令調整器16は、トルク指令Trと演算トルクTcとq軸電流指令iqとを入力し、トルク指令Trと演算トルクTcとが等しくなるように補正した補正後q軸電流指令iqr’を出力する。補正後q軸電流指令iqr’を電流制御器5に入力することで、永久磁石型同期電動機1の出力トルクはトルク指令Trと正確に追従することになる。
【0018】
電流指令調整器16は、減算器17と比例積分調整器18と加算器19とで構成されている。減算器17は、トルク指令Trと演算トルクTcとの差を出力する。減算器17の出力するトルク誤差が0となるように、トルク誤差を比例積分増幅器18に通し、加算器19で比例積分増幅器18の出力とq軸電流指令iqrとの和を補正後q軸電流指令iqr’として出力する。
【0019】
【発明の効果】
以上説明したように本発明によれば、運転中に変化する電動機の定数に依存することなく電動機の出力トルクを正確にトルク指令通りに追従させることが出来ることから、電動機の速度やトルクの制御精度を向上させることができ、実用上、極めて有用性の高いものである。
【図面の簡単な説明】
【図1】本発明の請求項1記載の実施例を永久磁石型同期電動機に適用したブロック線図である。
【図2】本発明の請求項記載の実施例を永久磁石型同期電動機に適用したブロック線図である。
【図3】従来の技術の実施例を永久磁石型同期電動機のトルク制御構成で表したブロック線図である。
【符号の説明】
1 永久磁石型同期電動機
2 位置検出器
3 電流検出器
4 電力変換器
5 電流制御器
6 q軸電流指令生成器
7 d軸電流指令生成器
8 トルク制御器
9 電圧検出器
10 磁束演算器
11 トルク演算器
12 トルク指令調整器
13、17 減算器
14、18 比例積分増幅器
15、19 加算器
16 電流指令調整器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor control device that controls a motor with high accuracy.
[0002]
As an example of the prior art, a block diagram of an electric motor control device that controls the torque of a permanent magnet type synchronous motor is shown in FIG. 3 and will be described with reference to FIG. The power converter 4 supplies power to the permanent magnet type synchronous motor 1. The current detector 3 detects a primary current of the permanent magnet type synchronous motor 1, multiplies the primary current by an arbitrary coordinate conversion coefficient to convert it into a current vector on a stationary coordinate, and outputs the current vector components ia and ib. . The position detector 2 detects the direction of the permanent magnet of the rotor of the permanent magnet type synchronous motor 1.
[0003]
The torque controller 8 inputs the torque command Tr, the current vector components ia and ib, and the direction of the permanent magnet, and outputs a signal such that the output torque of the permanent magnet type synchronous motor 1 follows the torque command Tr. Output to. The torque controller 8 includes a d-axis current command generator 7, a q-axis current command generator 6, and a current controller 5. The d-axis current command generator 7 outputs a d-axis current command idr that serves as a command for the d-axis current id that is a current component parallel to the direction of the permanent magnet of the primary current.
[0004]
The q-axis current command generator 6 generates a q-axis current command iqr serving as a command for the q-axis current iq that is a current component perpendicular to the direction of the permanent magnet of the primary current from the torque command Tr and the d-axis current command idr. ]
Figure 0004127957
[0006]
Calculate and output with the following formula. Here, φ is the amount of magnetic flux of the permanent magnet of the permanent magnet type synchronous motor 1, Ld is the d-axis inductance, and Lq is the q-axis inductance.
[0007]
The current controller 5 performs rotation coordinate conversion on the current vector components ia and ib based on the direction of the permanent magnet, calculates id and iq, and causes id and iq to follow idr and iqr of their command values, respectively. Output a signal. With the above control configuration, the output torque of the permanent magnet type synchronous motor 1 can be controlled by the torque command Tr.
[0008]
[Problems to be solved by the invention]
As described above, in order for the output torque of the permanent magnet type synchronous motor 1 to be controlled by the torque command Tr, the expression (1) needs to be accurately calculated. Therefore, the magnetic flux amount φ, the d-axis inductance Ld, and the q-axis inductance Lq of the permanent magnet of the permanent magnet type synchronous motor 1 need to match with actual values.
However, since φ varies depending on the temperature of the permanent magnet, and Ld and Lq vary depending on the magnitude of current due to magnetic saturation, φ, Ld, and Lq used in equation (1) are actual values of the permanent magnet type synchronous motor 1. It is difficult to match. Accordingly, the output torque of the permanent magnet type synchronous motor 1 cannot be controlled according to the torque command Tr.
The present invention was devised in view of the above points, and the object of the present invention is to solve the above problems by providing a function for correcting the torque controller in the control device of the permanent magnet type synchronous motor, and to operate the system. It is an object of the present invention to provide a motor control device that does not depend on the constant of the motor that changes in the motor.
[0009]
[Means for Solving the Problems]
That is, the means for achieving the object is a current command generator according to claim 1 for generating a current command for an electric motor by inputting a torque command,
A torque controller composed of a current controller that inputs the current command and a primary current of the motor and outputs a signal that matches the current command and the primary current, and outputs an output torque of the motor. In the control device of the permanent magnet type synchronous motor that follows the torque command,
A current detector that detects a primary current of the electric motor, converts it into a primary current vector of a stationary coordinate system, and outputs it;
A voltage detector that detects or estimates a primary voltage of the electric motor, converts the voltage into a primary voltage vector of a stationary coordinate system, and outputs it;
A magnetic flux calculator that inputs the primary voltage vector and the primary current vector and calculates a primary flux linkage vector of the motor using a primary winding resistance R of the motor;
A torque calculator for calculating an output torque of the electric motor from the primary flux linkage vector and the primary current vector;
The difference between the calculated torque output from the torque calculator and the torque command is proportionally integral amplified, and the sum of the proportional integral amplified and the torque command is used as a corrected torque command instead of the torque command. A controller for a permanent magnet type synchronous motor, comprising: a torque command adjuster configured to output to
[0011]
As in the case described in the prior art, an embodiment of an electric motor control device that causes the output torque of a permanent magnet type synchronous motor to follow a torque command will be described. FIG. 1 is a block diagram showing an embodiment of the first aspect of the present invention, which will be described based on this figure, but the description of the same parts as those of the prior art will be omitted. The voltage detector 9 detects or estimates a primary voltage of the permanent magnet type synchronous motor 1 and multiplies the primary voltage by an arbitrary coordinate conversion coefficient to convert it into a voltage vector on a stationary coordinate, and the voltage vector component va, Outputs vb. The magnetic flux calculator 10 receives the current vector components ia and ib and the voltage vector components va and vb and uses the primary winding resistance R of the permanent magnet type synchronous motor 1 to perform the primary linkage of the permanent magnet type synchronous motor 1. The magnetic flux vector components φa and φb are calculated by the following equations.
[0012]
Figure 0004127957
[0013]
The torque calculator 11 inputs the primary flux linkage vector components φa and φb and the current vector components ia and ib, and calculates the torque Tc output from the permanent magnet type synchronous motor 1 according to the following equation.
[0014]
Figure 0004127957
[0015]
Since the calculated torque Tc calculated by the equation (4) is calculated without using φ, Ld, or Lq, it is equal to the torque actually output by the permanent magnet type synchronous motor 1.
The torque command adjuster 12 inputs the torque command Tr and the calculated torque Tc that is the output of the torque calculator 11, and outputs a corrected torque command Tr ′ corrected so that the torque command Tr and the calculated torque Tc are equal. To do. By inputting the corrected torque command Tr ′ to the torque controller 8, the output torque of the permanent magnet type synchronous motor 1 accurately follows the torque command Tr.
[0016]
The torque command adjuster 12 includes a subtractor 13, a proportional integration amplifier 14, and an adder 15. The subtractor 13 outputs the difference between the torque command Tr and the calculated torque Tc. The torque error is passed through the proportional-integral amplifier 14 so that the torque error output from the subtractor 13 becomes zero, and the sum of the output of the proportional-integral amplifier 14 and the torque command Tr is added as a corrected torque command Tr ′ by the adder 15. Output.
[0017]
Figure 2 is a block diagram for implementing an embodiment in a different configuration from that of FIG. 1 according to the first aspect of the present invention, the same will be described with reference to this figure, as described in the prior art and FIG. 1 Description of the portion is omitted. The current command adjuster 16 inputs the torque command Tr, the calculated torque Tc, and the q-axis current command iq, and outputs a corrected q-axis current command iqr ′ corrected so that the torque command Tr and the calculated torque Tc are equal. To do. By inputting the corrected q-axis current command iqr ′ to the current controller 5, the output torque of the permanent magnet type synchronous motor 1 accurately follows the torque command Tr.
[0018]
The current command adjuster 16 includes a subtracter 17, a proportional-integral adjuster 18, and an adder 19. The subtracter 17 outputs the difference between the torque command Tr and the calculated torque Tc. The torque error is passed through the proportional-integral amplifier 18 so that the torque error output from the subtractor 17 becomes zero, and the adder 19 corrects the sum of the output of the proportional-integral amplifier 18 and the q-axis current command iqr. Output as command iqr ′.
[0019]
【The invention's effect】
As described above, according to the present invention, since the output torque of the motor can be accurately followed according to the torque command without depending on the constant of the motor that changes during operation, the speed and torque of the motor can be controlled. The accuracy can be improved, and it is extremely useful in practice.
[Brief description of the drawings]
FIG. 1 is a block diagram in which a first embodiment of the present invention is applied to a permanent magnet type synchronous motor.
2 is a block diagram according to the embodiment of the permanent magnet type synchronous motor according to claim 1 of the present invention.
FIG. 3 is a block diagram showing an embodiment of the prior art in a torque control configuration of a permanent magnet type synchronous motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Permanent magnet type synchronous motor 2 Position detector 3 Current detector 4 Power converter 5 Current controller 6 q-axis current command generator 7 d-axis current command generator 8 Torque controller 9 Voltage detector 10 Magnetic flux calculator 11 Torque Calculator 12 Torque command adjuster 13, 17 Subtractor 14, 18 Proportional integral amplifier 15, 19 Adder 16 Current command adjuster

Claims (1)

トルク指令を入力して電動機の電流指令を生成する電流指令生成器と、
前記電流指令と前記電動機の一次電流とを入力して前記電流指令と前記一次電流とが一致するような信号を出力する電流制御器と_から構成されるトルク制御器で前記電動機の出力トルクを前記トルク指令に追従させる永久磁石型同期電動機の制御装置において、
前記電動機の一次電流を検出して静止座標系の一次電流ベクトルに変換して出力する電流検出器と、
前記電動機の一次電圧を検出または推定して静止座標系の一次電圧ベクトルに変換して出力する電圧検出器と、
前記一次電圧ベクトルと前記一次電流ベクトルとを入力し前記電動機の一次巻線抵抗Rを用いて前記電動機の一次鎖交磁束ベクトルを演算する磁束演算器と、
前記一次鎖交磁束ベクトルと前記一次電流ベクトルとから前記電動機の出力トルクを演算するトルク演算器と、
該トルク演算器の出力の演算トルクと前記トルク指令との差を比例積分増幅し、該比例積分増幅したものと前記トルク指令との和を補正後トルク指令として前記トルク指令の変わりにトルク制御器に出力するものとから構成されるトルク指令調整器とを具備することを特徴とする永久磁石型同期電動機の制御装置。
A current command generator for inputting a torque command to generate a current command for the motor;
A torque controller composed of a current controller that inputs the current command and a primary current of the motor and outputs a signal that matches the current command and the primary current, and outputs an output torque of the motor. In the control device of the permanent magnet type synchronous motor that follows the torque command,
A current detector that detects a primary current of the electric motor, converts it into a primary current vector of a stationary coordinate system, and outputs it;
A voltage detector that detects or estimates a primary voltage of the electric motor, converts the voltage into a primary voltage vector of a stationary coordinate system, and outputs it;
A magnetic flux calculator that inputs the primary voltage vector and the primary current vector and calculates a primary flux linkage vector of the motor using a primary winding resistance R of the motor;
A torque calculator for calculating an output torque of the electric motor from the primary flux linkage vector and the primary current vector;
The difference between the calculated torque output from the torque calculator and the torque command is proportionally integral amplified, and the sum of the proportional integral amplified and the torque command is used as a corrected torque command instead of the torque command. A controller for a permanent magnet type synchronous motor, comprising: a torque command adjuster configured to output to
JP2000389710A 2000-12-22 2000-12-22 Electric motor control device Expired - Lifetime JP4127957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000389710A JP4127957B2 (en) 2000-12-22 2000-12-22 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000389710A JP4127957B2 (en) 2000-12-22 2000-12-22 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2002199797A JP2002199797A (en) 2002-07-12
JP4127957B2 true JP4127957B2 (en) 2008-07-30

Family

ID=18856203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000389710A Expired - Lifetime JP4127957B2 (en) 2000-12-22 2000-12-22 Electric motor control device

Country Status (1)

Country Link
JP (1) JP4127957B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040007997A1 (en) * 2002-07-11 2004-01-15 Visteon Global Technologies, Inc. Vector control system for permanent magnet sychronous machines using parameter scheduling table
JP4604820B2 (en) * 2005-05-02 2011-01-05 トヨタ自動車株式会社 Control device for motor drive system
JP5050387B2 (en) * 2006-04-03 2012-10-17 日産自動車株式会社 Motor control device
JP2008029082A (en) * 2006-07-19 2008-02-07 Toyota Motor Corp Rotating electric machine control unit, method and program for controlling rotating electric machine
EP2343799A4 (en) * 2008-10-29 2017-12-27 Mitsubishi Electric Corporation Control device for permanent magnet synchronization electric motor

Also Published As

Publication number Publication date
JP2002199797A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
JP4531751B2 (en) Synchronous machine controller
JP5357232B2 (en) Synchronous machine controller
JP3944955B2 (en) Induction electromotive force estimation method, speed estimation method, axis deviation correction method, and induction motor control apparatus for induction motor
US8044618B2 (en) Control apparatus for AC motor
JP5190156B2 (en) AC rotating machine control device
JP6218976B2 (en) Synchronous machine control device and permanent magnet temperature estimation method for synchronous machine
JP2002186295A (en) Correcting method for estimated speed of induction motor and device thereof
JP3783695B2 (en) Motor control device
JP2009124811A (en) Control device of permanent magnet type synchronous motor
JP5276688B2 (en) Synchronous machine controller
JP4425091B2 (en) Motor position sensorless control circuit
JP4127957B2 (en) Electric motor control device
JP5614539B2 (en) Electric motor control device
JP5050387B2 (en) Motor control device
KR102288428B1 (en) Control Apparatus for Sensorless Motor of Inverter Type and Method Thereof
JP4811727B2 (en) Permanent magnet field synchronous motor controller
JP2004289927A (en) Motor controller
JP3692085B2 (en) Motor control method and apparatus
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
JP2000197398A (en) Controller for synchronous motor
JP2010200544A (en) Ac motor controller and control method
JP2010259255A (en) Controller of dc brushless motor
JP2008289316A (en) Control unit of embedded permanent-magnet synchronous machine
JP2009171781A (en) Controller for synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4127957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

EXPY Cancellation because of completion of term