JP4125038B2 - PtまたはPt合金含有担持触媒の調製のためのプロセス - Google Patents

PtまたはPt合金含有担持触媒の調製のためのプロセス Download PDF

Info

Publication number
JP4125038B2
JP4125038B2 JP2002131031A JP2002131031A JP4125038B2 JP 4125038 B2 JP4125038 B2 JP 4125038B2 JP 2002131031 A JP2002131031 A JP 2002131031A JP 2002131031 A JP2002131031 A JP 2002131031A JP 4125038 B2 JP4125038 B2 JP 4125038B2
Authority
JP
Japan
Prior art keywords
support material
catalyst
alloy
noble metal
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002131031A
Other languages
English (en)
Other versions
JP2003024798A (ja
Inventor
ルース カルステン
ビーベルバッハ ペーター
アントン シュタルツ カール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Publication of JP2003024798A publication Critical patent/JP2003024798A/ja
Application granted granted Critical
Publication of JP4125038B2 publication Critical patent/JP4125038B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
(発明の分野)
本発明は、貴金属含有担持触媒およびその調製のためのプロセスを提供し、この担持触媒は、Au、Ag、Pt、Pd、Rh、Ru、Ir、Osおよびそれらの混合物からなる群から選択される貴金属を含む。
【0002】
(発明の背景)
貴金属含有担持触媒は、多くの工業分野(適用の2、3の分野のみを言及すると、化学化合物の合成、内燃期間からの排出ガス中の有害物質の変換、および燃料電池の電気触媒)で使用される。
【0003】
貴金属について、できる限り高度な触媒活性を提供するために、貴金属は、1nmと15nmとの間の範囲の粒径を有する、できる限り高度な分散性で、粒子担持材料の表面に適用されなければならない。しかし、小さな粒径のみでは、高度な活性は保証されない。従って、白金粒子中でほとんど発生されない結晶構造はまた、減少した触媒活性に導く。
【0004】
類似の考察がまた、合金触媒の合金形成の質に当てはまる。規則正しい結晶構造を有する燃料電池の三元合金触媒は、酸素の電気化学的還元のための触媒活性を有し、この活性は、非合金化白金触媒の少なくとも2倍大きな活性である。この触媒は、含浸によって合金成分を担持材料上に沈着させることによって調製される。この合金を、窒素雰囲気下で1時間かけて900℃の熱処理によって形成した。
【0005】
担持触媒に使用される担持材料は、種々の材料を含む。一般に、適用の分野に依存して、担持材料の全ては、大きな比表面積(10m/gより大きな、いわゆるBET表面積(DIN66132に従って、窒素吸着によって測定される))を有する。燃料電池のために、電気導電性の炭素材料が、触媒活性成分の担持体として使用される。しかし、自動車排気触媒の場合において、酸化担持材料(例えば、活性な酸化アルミニウム(例えば、酸化γ−アルミニウム)、珪酸アルミニウム、ゼオライト、酸化チタン、酸化ジルコニウム、希土類酸化物、およびそれらの混合物または混合酸化物)が使用される。
【0006】
触媒活性成分の前駆体化合物は、これらの材料の表面上に沈着され、そして続く熱処理のよって最終の触媒活性形態に変換される。この最終の触媒中における触媒活性粒子の分布(分散)の粉末度、従って、触媒プロセス利用可能な触媒金属表面積は、これらの2つのプロセス(沈着および熱処理)のために使用されたプロセスおよび方法の型に決定的に依存する。
【0007】
種々のプロセスは、粉末化担持材料上の触媒活性成分の沈着に関して開示している。これは、例えば、過剰の含浸溶液注入を含む。この場合において、触媒活性成分の水性溶液は、この溶液の容積が担持材料の水吸収容量よりも実質的に大きい場合、粉末化担持材料に添加される。従って、厚手の糊のような粘度を有し、例えば、80℃〜150℃の高温のオーブン中で脱水された材料が、作製される。クロマトグラフィーの実施をこの材料の脱水中に行い、これにより、担持材料上の触媒活性成分の非均一な分布に導き得る。
【0008】
細孔容量含浸のために、一定の量の溶媒が、この溶媒に対して、担持材料の約70〜110%の吸収容量に対応する、触媒活性成分を溶解させるために使用される。この溶媒は、一般に水である。この溶媒は、例えば、タンクの周りで回転する担持材料上にスプレーすることによって、可能な限り均一に分配される。この担持材料上の全溶液の分配後、この担持材料は、水を含有するにも係わらず、さらに自由に流れる。クロマトグラフィーの実施が、細孔容量含浸を使用することでほぼ避けられ得る。この方法は、通常、上記の過剰の溶媒を使用することで含浸プロセスよりも良好な結果を提供する。
【0009】
いわゆる、溶液からの均質な沈着のためのプロセスに関して、この担持材料は、例えば、水中でまず懸濁される。次いで、触媒活性成分の前駆体化合物の水性溶液を、一定に攪拌した状態のキャピラリー注入を使用して添加される。キャピラリー注入は、キャピラリーを使用する、担持材料の懸濁液の表面下への、溶液の穏やかな添加として理解される。懸濁液の全体積にわたる、前駆体化合物の可能な限り高速でかつ均質な分配は、激しい攪拌および穏やかな添加によって保証されるべきと意図される。ここで、前駆体化合物のいくらかの吸収、従って、結晶種の形成は、担持材料の表面で生じる。この吸収の範囲は、担持材料と前駆体化合物との組合せに依存する。担持材料上での前駆体化合物の十分な吸収を保証しない材料の組み合わせを用いるか、または担持材料への触媒活性成分の化学的固定化が所望される場合、この前駆体化合物は、担持材料の懸濁液中への、塩基のキャピラリー注入によって、担持材料上に沈殿され得る。
【0010】
触媒材料の調製を完了するために、触媒活性成分でコーティングされた担持材料は、続く熱処理に供せられ、この熱処理により、触媒活性成分の前駆体を、触媒活性形態に変換し、そして必要に応じて合金の形成に導く。300℃より高く1000℃までの温度および0.5〜3時間の処理時間が、この熱処理に必要とされる。代表的に、バッチプロセスが、この熱処理のために使用され、このプロセスにおいて、触媒材料が塊にされ、そして貴金属粒子が、長い熱処理時間および発生する焼結効果に起因して粗砕となる。50nm以上の貴金属粒子は、この方法において生じ得る。合金を形成するために、900℃より高い温度および少なくとも0.5時間の処理温度が、通常、必要とされ、ここで、焼結に起因する過剰な粒子の成長の危険性が存在する。
【0011】
しかし、この触媒が、高度な触媒活性を保証するために、担持体上に可能な限り広い表面積(すなわち、大きな分散)を有することが、重要である。貴金属に関して、20nmより大きな平均粒径を有する触媒は、通常、それほど活性ではない。
【0012】
公知の処理プロセスを使用する、触媒でコーティングされた担持材料は、十分発達した結晶または合金構造と貴金属粒子の小さな平均粒子直径の相反する要求を同時に満たさない。
【0013】
粉末化物質の熱処理のための代替のプロセスにおいて、粉末化物質は、高温のフローリアクター中で処理される。このフローリアクター中での処理温度は、1000℃より高くてもよい。この処理時間は、0.01秒と2、3分との間で変化され得る。最後に、次いで、分散された貴金属は、例えば、酸化アルミニウム上に沈着され得る。
【0014】
うず巻バーナーまたは層流(laminar)バーナーを、本質的な熱供給源として使用することもまた、提案されている。従って、このプロセスは、酸化雰囲気下で実施され、そして燃料電池のために使用される材料として、炭素(グラファイト、カーボンブラック)から作製された担持材料上に触媒を調製するのに適さない。このカーボンブラック担持体は、酸化され、そしていくらかは、燃焼される。
【0015】
上記に基づいて、高度な結晶性または十分に発達した合金構造を有する貴金属含有担持触媒を調製するための方法の必要性が、当該分野において存在する。小さな粒径および高度な分散性を有する、貴金属含有担持触媒の必要性も存在する。
【0016】
(発明の要旨)
1.貴金属含有担持触媒であって、該担持触媒は、粉末化担持材料上に貴金属粒子の形態で沈着された、Au、Ag、Pt、Pd、Rh、Ru、Ir、Osおよびそれらの合金からなる群から選択される1以上の貴金属を含み、ここで、該貴金属粒子は、X線回折によって決定される、2より大きな相対結晶化度および約2nmと約10nmとの間の平均粒径を有する、
貴金属含有担持触媒。
【0017】
2.X線回折によって決定される、前記相対結晶化度が、5より大きい、項目1に記載に記載される担持触媒。
【0018】
3.項目1に記載される担持触媒であって、前記担持材料が、カーボンブラック、グラファイト、活性炭および繊維状の黒鉛ナノチューブからなる群から選択される、炭素含有材料である、担持触媒。
【0019】
4.項目1に記載される担持触媒であって、前記担持材料が、活性な酸化アルミニウム、珪酸アルミニウム、ゼオライト、酸化チタン、酸化ジルコニウム、希土類酸化物、およびそれらの混合物からなる群から選択される、酸化材料である、担持触媒。
【0020】
5.項目3に記載される担持触媒であって、前記貴金属は、Ti、Zr、V、Cr、Mn、Fe、Co、Ni、CuおよびZnからなる群から選択される少なくとも1つの卑金属と混ぜて合金にされる、担持触媒。
【0021】
6.項目3に記載される担持触媒であって、前記担持触媒は、担持材料およびPtの全重量に基づいて、5重量%と80重量%との間の濃度で、少なくとも40m/gの表面積を有するカーボンブラック上のPtを含む、担持触媒。
【0022】
7.項目3に記載される担持触媒であって、前記担持触媒は、担持材料およびPtの全重量に基づいて、5重量%と80重量%との間の濃度で、少なくとも40m/gの表面積を有するカーボンブラック上のPt/Ru合金を含み、ここで、Pt対Ruの原子比が、5:1と1:5との間である、担持触媒。
【0023】
8.低温燃料電池のためのアノードまたはカソード触媒として、項目1に記載される触媒を使用する方法。
【0024】
9.内燃機関からの排出ガスの処理のための触媒として、項目1に記載される触媒を使用する方法。
【0025】
10.項目1に記載される担持触媒を調製するためのプロセスであって、該プロセスは、以下:
細孔容量含浸を使用して、貴金属の前駆体でコーティングされた担持材料を提供する工程;
該担持材料を乾燥する工程;および
1分未満の期間、1000℃と1800℃との間の温度で、該乾燥した担持材料を熱処理する工程、
を包含し、ここで、結晶化および該合金が、発生される、プロセス。
【0026】
11.項目1に記載される担持触媒を調製するためのプロセスであって、該プロセスは、以下:
溶液から均質沈着を使用して、貴金属の前駆体でコーティングされた担持材料を提供する工程;
該担持材料を乾燥する工程;および
1分未満の期間、1000℃と1800℃との間の温度で、該乾燥した担持材料を熱処理する工程、
を包含し、ここで、結晶化および該合金が、発生される、プロセス。
【0027】
12.熱処理に必要な熱エネルギーが、放射によって前記担持材料に移動される、項目11に記載されるプロセス。
【0028】
13.項目11に記載されるプロセスであって、前記貴金属でコーティングされた前記担持材料は、加熱されたリアクターを通過する、約300℃と500℃との間の温度の不活性なキャリアガスストリーム中で連続的に分散され、そして該リアクターを出た後、迅速に冷却され、次いで該キャリアガスストリームから分離される、プロセス。
【0029】
14.項目13に記載されるプロセスであって、前記不活性ガスストリームおよび担持材料が、不活性ガスおよび冷却ガス、またはガスの混合物を前記キャリアガスストリームと混合することによって、500℃未満の温度まで冷却される、プロセス。
【0030】
15.項目1に記載される担持触媒を調製するためのプロセスであって、該プロセスは、以下:
該担持触媒の前駆体を提供する工程;および
1分未満の期間、1000℃と1800℃との間の温度で、該前駆体を熱処理する工程、
を包含し、該前駆体は、該担持材料の表面上に、1nmと10nmとの間の平均粒径を有する、1以上の触媒活性貴金属を有する、
プロセス。
【0031】
本発明は、粉末化担持材料上にAu、Ag、Pt、Pd、Rh、Ru、Ir、Osの一つ以上の貴金属またはこれらの金属の1以上の合金を含む貴金属含有担持触媒を、提供する。この担持触媒は、担持材料上に沈着された貴金属の粒子を含み、この貴金属は、2より大きく、好ましくは、5より大きく、そして2nmと10nmとの間の平均粒径の、X線回折により決定される相対結晶化度Cxを有する。
【0032】
本発明のよりよい理解のために、他のおよびさらなる利点および実施形態と共に、参照が、実施例と組合せた以下の記載、添付の特許請求の範囲に記載される範囲に対してなされる。
【0033】
(発明の詳細な説明)
本発明は、ここで、好ましい実施形態と共に記載される。これらの実施形態は、本発明の理解を助けるために示され、そしていずれの様式でも本発明を制限することは意図せず、制限するとみなされるべきではない。この開示を読むと当業者に明らかになり得る全ての代替、変更および等価物は、本発明の精神および範囲内に含まれる。
【0034】
本開示は、貴金属含有担持触媒を調製する説明書ではなく、当業者に公知の基礎的な概念は、詳細に記載されていない。
【0035】
本発明に従う触媒は、以下に記載される熱処理に起因して、非常に高い結晶性を有する。相対結晶化度C(これは、X線測定によって決定され得る)は、結晶性の定量的な決定のために本発明によって導入された。これは、以下の式(I)によって定義される:
【0036】
【数1】
Figure 0004125038
相対結晶化度は、粉末サンプル(Stoe Co.製の粉末回折計、銅Kα照射)のX線測定によって決定される。式(I)において、Iは、触媒サンプルからの比回折反射(カウントで測定)の強度を表す。例えば、白金の場合では、(hkl 111)反射が測定され、これは酸素の還元についての高い電気化学的活性の尺度とみなされ得る。Iは、この触媒サンプルと同じ組成物を用いるX線アモルファス標準のX線回折の強度であり、ここで、サンプルからのX線回折反射の強度は、このサンプルと同じ角度で決定される。炭素担持白金サンプルの場合では、このアモルファス標準は、2nm未満の白金の粒径を有する材料(これはもはやいずれのX線回折反射も示さない)である。
【0037】
触媒の意図された用途に依存して、異なる担持材料が使用され得る。燃料電池におけるアノード触媒またはカソード触媒として使用するために、通常、カーボンブラック、グラファイト、活性炭および繊維状のグラファイトナノチューブの群由来の炭素に基づく電気伝導性の担持材料が使用される。一方で、車の排気ガス触媒について、活性酸化アルミニウム、ケイ酸アルミニウム、ゼオライト、酸化チタン、酸化ジルコニウム、希土類酸化物、またはそれらの混合物もしくは混合酸化物の群由来の酸化材料が使用される。さらに、この触媒における貴金属はまた、Ti、Zr、V、Cr、Mn、Fe、Co、Ni、CuおよびZn族由来の少なくとも1つの卑金属と合金化され得る。これらの卑金属は助触媒として作用し、すなわち、これらは貴金属の触媒効果を改変する。
【0038】
本発明に従う触媒は、特に好ましくは、燃料電池におけるアノード触媒またはカソード触媒として使用するために適切である。例えば、これは、カソード触媒として、担持材料および白金の総重量に対して5重量%と80重量%との間の濃度のカーボンブラック担持白金を有する。一方で、アノード触媒として、担持材料および合金の総重量に対して5重量%と80重量%との間の濃度のカーボンブラック担持CO耐性Pt/Ru合金が使用され、ここで、Pt対Ruの原子比は、5:1と1:5との間である。これらの用途を意図される担持材料であるカーボンブラックは、少なくとも40m/gの表面積を有する。
【0039】
本発明に従う触媒の必須の特徴は、結晶化度および粒径についての要件が同時に満たされることである。燃料電池の触媒としておよび内燃機関の排気ガス処理のために使用される場合、本発明の触媒は優れた特性を示す。
【0040】
これらの要件は、以下の工程が調製の間に行われる場合に満たされ得る。第1に、形成される貴金属粒子が10nmより大きくならないような様式で、担持材料への貴金属の沈着を保証する必要がある。この条件は例えば、細孔容量の含浸または溶液による均一な沈着を使用して適合され得ることが見出された。溶液による均一な沈着の場合では、被覆された担持材料はこの溶液から分離され、乾燥され、そして必要に応じて穏やかなか焼に供され、このか焼は貴金属粒子の粒径の実質的な増加が起こらないような様式で行われる。結晶性および必要に応じて合金生成を増加するためにさらに熱処理に供されなければならない触媒の前駆体は、このようにして得られる。細孔容量含浸の場合では、含浸した材料は、さらなる乾燥工程およびか焼工程を行うことなく、さらなる熱処理のための前駆体として直接使用され得る。
【0041】
この触媒の前駆体の続く熱処理は、相対結晶化度および平均粒径に関する要件が満たされることを保証しなければならない。この触媒の前駆体が、1分未満の間、1000℃と1800℃との間の温度で簡単な熱処理に供される場合に、このことが可能であることが見出された。
【0042】
熱処理に必要な熱エネルギーは、好ましくは、照射によって担持材料に伝達されるべきである。この手順により、担持材料中の粒子の迅速な加熱が可能となる。照射加熱は、炭素含有担持材料(例えば、カーボンブラックまたは活性炭)の場合に特に好ましい。これらの材料は、入射熱放射をほとんど完全に吸収し、従って特に迅速に加熱する。
【0043】
担持材料の熱処理を行うために、これは第1に、300℃と500℃との間の温度まで加熱された不活性なキャリアガス中に連続的に分散される。キャリアガスを予め加熱することは、貴金属粒子のサイズの実質的な増加が起こらない温度に制限される必要がある。次いで、このガス流は反応管に通される。この管壁の温度は、外部加熱システムによって1000〜1800℃の所望の処理温度に維持される。キャリアガスの流量は、反応管を通る通過の持続時間が数秒から1分以下の範囲であるように選択される。この滞留時間は、担持材料の実際の加熱が、放射熱の伝達の結果によって、かつキャリアガスによる管壁からの熱伝導によって小さな程度までだけ起こるように短く保たれる。適切な滞留時間(これは以下で処理時間とも呼ばれる)は、1分までの量であり得、好ましくは、0.1秒と20秒との間で選択され、そして最も好ましくは、0.5秒と10秒との間で選択される。
【0044】
放射熱の供給による担持材料の粒子の加熱は、キャリアガスによる熱の伝達により可能な加熱よりも実質的により迅速に起こる。反応管を出た後、この担持材料およびキャリアガスは、過剰な結晶の成長を防止するために、約500℃未満の温度に迅速に冷却される。その後、このようにして調製された触媒材料は、キャリアガス流から分離され、そして後の使用のために回収される。
【0045】
触媒前駆体の処理温度までの非常に急激な加熱、続く非常に短い処理時間のみの後の冷却に起因して、良好な結晶性または合金構造が貴金属粒子内で生じ得るが、担持材料の表面上の拡散に起因する過剰な粒子成長が抑制されることが保証される。短い処理時間とは、従来のか焼に使用される温度より実質的に高い処理温度の使用が可能であることを意味する。この高い処理温度は、有利な様式で、貴金属粒子の結晶構造が生じる速度に作用する。
【0046】
図は、本発明に従う触媒を調製するために、触媒前駆体の熱処理のために可能な装置の主な設計を示す。触媒前駆体は出発材料(1)であり、そしてガス分散機(2)に連続的に供給される。粉末の出発物質を分散させるために、この分散機には、不活性分散ガス(3)(一般的に、窒素)が供給される。この分散機を出た後、出発物質で充填された分散ガスはいわゆるキャリアガス(6)(これはこの混合プロセスの前に、混合後の固体/気体分散物の温度が約350℃と500℃との間になる様な程度まで加熱ユニット(7)で加熱されている)と混合される。この温度において、この固体/気体分散物は、反応管(4)(これは、加熱デバイス(5)によって、1000℃と1800℃との間の所望の処理温度まで外側から加熱されている)に入る。加えられるキャリアガスの流量は、反応管の寸法を考慮に入れて、出発物質の所望の処理時間が反応管の内側で得られるような流量である。この反応管を出た後、このキャリアガス流および出発物質は、迅速に冷却したユニット(8)に入り、ここでこの処理された出発物質は、例えば、窒素(9)を吹き付けられることによって、約500℃未満の温度まで非常に迅速に冷却される。最後に、フィルターユニット(10)において、最終的な触媒材料が、キャリアガスから分離され、そして生成物(11)として排出される。
【0047】
反応管内の出発物質の短い滞留時間に起因して、気相を介する熱伝達に起因する熱のわずかな伝達しかない。さらに、出発物質は、反応管の壁からの放射熱によって非常に迅速に加熱されるに過ぎず、従って、再び非常に迅速に冷却され得る。空気の導入をさけるために、わずかに過剰な圧力が装置全体の内側で維持される。
【0048】
記載される短時間の熱処理の結果として、貴金属粒子の粒径は、ほんのわずかだけ拡大する。従来のロータリーキルンでの熱処理またはチャンバキルンでのバッチ式の熱処理に起因して、記載される装置を用いて達成されるような短い処理時間は、現実化され得ない。さらに、処理される物品が皿、バットまたは他の容器に導入される従来の熱処理と比較して、触媒材料の凝集および固化は実質的により小さい。これは、キャリアガスの連続的な流れに触媒を分散することによって達成される。
【0049】
本発明に従う触媒は、特定の熱処理プロセスに起因して、わずか15nm未満、好ましくは10nm未満の小さな平均粒径を有する。これらの金属の比表面積は、20〜200m/gの範囲内である。同時に、これらは高度な結晶性を有する。上記で定義される相対結晶化度Cを決定することにより示されるように、これは2の因子、より一般的には5の因子であり、従来の触媒の相対結晶化度より大きい。
【0050】
本発明に従う結晶の用途の好ましい領域は、燃料電池のアノード触媒またはカソード触媒としてのその使用である。PEM燃料電池(ポリマー電解質膜燃料電池)において、導電性担持材料(主に、カーボンブラックまたはグラファイト)上の白金および白金合金は、アノード触媒およびカソード触媒として使用される。貴金属の濃度は、触媒の総重量に対して10重量%と80重量%との間である。
【0051】
PEM燃料電池(ポリマー電解質膜燃料電池)のアノード側についてカーボンブラック担持白金/ルテニウム触媒が一般的に使用される。白金/ルテニウムの比は、Pt/Ru=5:1〜1:5(原子比)の範囲であり、ここで、水との電気化学的酸化還元反応(「スピルオーバー効果(spill over effect)」において、ルテニウムは白金触媒のCO毒作用を軽減する。一酸化炭素含有水素混合物は、改質油で作動する燃料電池の場合に使用される。
【0052】
PtRu電気触媒は、この領域に関する従来技術において長い間知られている。PtRu電気触媒の材料を調整するために、費用のかかるバッチプロセスが使用され、ここで触媒粒子のサイズは増加する。
【0053】
PEM燃料電池のカソード側について、好ましくは、20〜80重量%のPt装荷を有する純粋なPt触媒が使用される。しかし、白金と卑金属(BM)(例えば、クロム、タングステン、ニッケル、銅またはコバルト)との合金もまた使用される。ここで添加される量は一般的に、Pt/BM=5:1〜1:5(原子比)の範囲である。
【0054】
本発明に従うアノード触媒を用いる場合、PtRu/Cに基づいて、高い結晶性により、結晶表面における一酸化炭素の吸着は減少し、従って、毒性が減少する傾向にある。従って、この触媒は、一酸化炭素に対する高い耐性を有する。
【0055】
純粋な白金触媒が使用される燃料電池のカソード側において、酸素還元反応(ORR)のための触媒の活性は、白金結晶中の結晶子平面の数によって決定される。従って、Pt電気触媒の活性を増加するために、Ptの表面積を単に最大にするだけでは不十分である。むしろ、白金原子の総数に比例して、(100)、(110)および(111)白金表面原子の割合を最大にするために、大きなPt表面積と共に高い結晶性を達成することが必要である。この要件は、本発明に従う触媒によって理想的な様式で満たされる。従って、本発明の触媒は、低温燃料電池(PEMFC、DMFC、PAFC)における使用に特に適切である。
【0056】
本発明を一般的に記載してきたが、本発明は、以下の実施例を参照してより容易に理解され得る。以下の実施例は、例示の目的で提供され、特定されない限り本発明を限定することは意図されない。
【0057】
(実施例)
以下の実施例は、本発明を皿に説明することが企図される。
【0058】
(実施例1:PEM燃料電池用のアノード触媒)
2kgのカーボンブラック担持電気触媒(貴金属装荷 Vulcan XC 72上の26.4重量% 白金および13.6重量% ルテニウム、原子比 Pt:Ru=1:1、米国特許第6,007,934号に従って調製した)を、薬用天秤を使用してガス分配機に計り入れ、そして、分散ガスとして窒素を用いて微細に分散させる。次いで、この触媒を、350℃に予め加熱した窒素流中で、反応管に移す。
(プロセスパラメーター:)
キャリアガス: 窒素
キャリアガスの量: 8m/時間(窒素)
温度(キャリアガス): 350℃
処理温度: 1300℃
処理時間: 3秒(約)
測定した量: 110g/時間。
【0059】
この処理した触媒を、即時冷却ユニットで窒素を用いて冷却し、そしてフィルターユニットで回収する。プロセス制御システムを使用して、パラメーターを調節し、そしてこれらのパラメーターをモニタリングする。
【0060】
このように処理した触媒は、以下の特性を有する:
X線測定(反射 hkl 111、2θ、約40°)
粒径(XRD): 6.3nm
格子定数: 0.3852nm
強度(I,XRD): 2800カウント
強度(I,XRD): 400カウント
結晶化度C: 6。
【0061】
比較のための未処理の出発物質は以下のデータを有する:
粒径(XRD): 2.6nm
格子定数: 0.3919nm
強度(I,XRD): 800カウント
強度(I,XRD): 400カウント
結晶化度C: 1。
【0062】
高い結晶性、同時に小さな粒径に起因して、この処理した電気触媒は、実際に、水素/空気、および改質油/空気作動の両方において、アノード触媒としてPEM燃料電池における非常に良好な電気的特性を示す。
【0063】
(実施例1の比較:従来の熱処理を行ったPtRu/C)
100gのカーボンブラック担持電気触媒(貴金属装荷 Vulcan XC72上の26.4重量% 白金および13.6重量% ルテニウム、原子比 Pt:Ru=1:1、実施例1に匹敵)を、従来のバッチプロセスで、窒素下、850℃で60分間処理する。キルンでの熱処理の後、この材料を保護気体下で冷却する。
【0064】
(特性:)
粒径(XRD): 13.6nm
格子定数: 0.3844nm
強度(I,XRD): 1300カウント
強度(I,XRD): 400カウント
結晶化度C: 2.25。
【0065】
実施例1とは正反対に、この触媒は、13.6nmの大きな粒径に起因して、PEM燃料電池における低い性能を有する。
【0066】
(実施例2:PEM燃料電池用のPt/C担持触媒)
1kgのカーボンブラック担持電気触媒(貴金属装荷 Vulcan XC 72上40重量%)を、薬用天秤を使用してガス分配機に計り入れ、そして最後に、注入ガス流として窒素を用いて分散させた。次いで、この触媒を、350℃に予め加熱した窒素流中で、反応管に移した。
【0067】
(プロセスパラメーター:)
キャリアガス: 窒素
キャリアガスの量: 8m/時間(窒素)
温度(キャリアガス): 350℃
処理温度: 1200℃
処理時間: 3秒(約)
測定した量: 1000g/時間。
【0068】
この処理した触媒を、即時冷却ユニットで窒素を用いて冷却し、そしてフィルターユニットで回収する。プロセス制御システムを使用して、パラメーターを調節し、そしてこれらのパラメーターをモニタリングする。
【0069】
このように処理した触媒は、以下の特性を有する:
粒径(XRD): 6.5nm
格子定数: 0.3931nm
強度(I,XRD): 3000カウント
強度(I,XRD): 400カウント
結晶化度C: 6.5。
【0070】
比較のための未処理の出発物質は以下のデータを有する:
粒径(XRD): 3.9nm
格子定数: 0.3937nm
強度(I,XRD): 1600カウント
強度(I,XRD): 400カウント
結晶化度C: 3。
【0071】
高い結晶性、同時に小さな粒径に起因して、この処理した電気触媒は、実際に、水素/空気作動において、特にカソード触媒としてPEM燃料電池における非常に良好な電気的特性を示す。
【0072】
(実施例3:PEM燃料電池用のPtCr/C合金触媒)
1kgのカーボンブラック担持電気触媒(Vulcan XC 72上40重量%の白金含量、原子比 Pt:CR=3:1)を、薬用天秤を使用してガス分配機に計り入れ、そして、分散ガスとして窒素を用いて微細に分散させる。次いで、この触媒を、350℃に予め加熱した窒素流中で、反応管に移す。
【0073】
(プロセスパラメーター:)
キャリアガス: 窒素
キャリアガスの量: 8m/時間(窒素)
温度(キャリアガス): 350℃
処理温度: 1400℃
処理時間: 3秒(約)
測定した量: 1000g/時間。
【0074】
この処理した触媒を、即時冷却ユニットで窒素を用いて冷却し、そしてフィルターユニットで回収する。プロセス制御システムを使用して、パラメーターを調節し、そしてこれらのパラメーターをモニタリングする。
【0075】
このように処理した触媒は、以下の特性を有する:
X線測定(反射 hkl 111、2θ、約40°)
粒径(XRD): 7.5nm
格子定数: 0.385nm
強度(I,XRD): 3200カウント
強度(I,XRD): 400カウント
結晶化度C: 7。
【0076】
高い結晶化度、同時に小さな粒径に起因して、この処理した電気触媒は、実際に、水素/空気作動において、特にカソード触媒としてPEM燃料電池における非常に良好な電気的特性を示す。
【0077】
(実施例2の比較:従来の熱処理を行ったPtCr/C)
100gのカーボンブラック担持電気触媒(Vulcan XC 72上40重量%白金含量、原子比 Pt:Ru=3:1、実施例3に匹敵)を、従来のバッチプロセスで、形成ガス下、900℃で60分間処理する。キルンでの熱処理の後、この材料を保護気体下で冷却する。
【0078】
(特性:)
粒径(XRD): 16nm
格子定数: 0.386nm
強度(I,XRD): 2000カウント
強度(I,XRD): 400カウント
結晶化度C: 4。
【0079】
実施例4とは正反対に、この触媒は、16nmの大きな粒径に起因して、PEM燃料電池における低い性能を有する。
【0080】
(実施例4:気相触媒用のPt/酸化アルミニウム触媒)
約2kgの湿った粉末(これは、78重量%の酸化アルミニウム(γ−Al、BET表面積 140m/g)、20重量%の水および2重量%の硝酸白金からなる貴金属溶液を用いる担持体の細孔容量含浸(初期湿潤方法)によって調製した)を、薬用天秤を使用して、ガス分散機に計り入れ、分散ガスとして窒素流を用いて微細に分散させ、そして反応管に移す。
【0081】
(プロセスパラメーター:)
キャリアガス: 窒素
キャリアガスの量: 8m/時間(窒素)
温度(キャリアガス): 350℃
処理温度: 1100℃
処理時間: 3秒(約)
測定した量: 1000g/時間。
【0082】
反応管から出した後、この処理した触媒を迅速冷却ユニットで窒素を用いて冷却し、そしてフィルターユニットで収集する。このプロセス制御システムを使用して、パラメーターを調節し、そしてこれらのパラメーターをモニタリングする。
【0083】
このように処理した触媒は、以下の特性を有する:
組成: 酸化アルミニウム上2.5重量%Pt
粒径(XRD): 5nm
強度(I,XRD): 3400カウント
強度(I,XRD): 400カウント
結晶化度C: 7.5。
【0084】
一方、従来のプロセス(900°、滞留時間60分、窒素)で処理した触媒は、12nmの粒径、およびC=4の結晶化度を有する。
【0085】
実施例4の触媒を、例えば、内燃機関からの排気ガスの処理のための触媒として、または燃料電池系中の水素の精製のための、いわゆるPROX反応器におけるCOの選択的酸化のための触媒として、気相触媒において使用する。
【0086】
高い結晶性、同時に小さな粒径に起因して、特に、触媒の可使寿命/耐久性において非常に良好な結果が得られる。
【0087】
本発明は、その特定の実施形態と共に記載されてきたが、さらなる変更が可能であり、そして本願は、一般的に本発明の原理に従い、本発明が属する分野内の公知または慣用的な実施に含まれ、そして本明細書中以前に記載され、上記の添付の特許請求の範囲に記載される本質的な特徴に適用され得るような本願からの逸脱を含む、本発明の任意の変形、使用または適応を網羅することが意図される。
【0088】
本発明は、貴金属含有担持触媒を提供し、この担持触媒は、粉末化担持材料上の貴金属粒子の形態で、Au、Ag、Pt、Pd、Ru、Ir、Osの群から選択される貴金属またはそれらの貴金属の1つ以上の合金を含む。この担持材料上に沈着された粒子は、X線回折により測定される、2より大きな結晶化度を有し、そして2nmと10nmとの間の粒径を有する。この貴金属粒子の高い結晶化度および小さな粒径により、触媒の高い触媒活性がもたらされる。これは、燃料電池および内燃機関からの排気ガスの処理における使用のために特に適切である。
【0089】
本発明の好ましい実施形態は、例示および説明の目的で選択され、本発明の範囲をいずれの様式でも制限することは意図しない。本発明の特定の局面の好ましい実施形態は、添付の図面に示される。
【図面の簡単な説明】
【図1】図1は、本発明の触媒を調製するための触媒前駆体の熱処理のための装置を例示する。

Claims (10)

  1. 持触媒を調製するためのプロセスであって、該担持触媒は、粉末化担持材料上に貴金属粒子の形態で沈着された、PtまたはPt合金を含み、ここで、該貴金属粒子は、X線回折によって決定される、5より大きな相対結晶化度および2nmと10nmとの間の平均粒径を有し、該プロセスは、以下:
    細孔容量含浸を使用して、貴金属の前駆体でコーティングされた担持材料を提供する工程;
    該担持材料を乾燥する工程;および
    1分未満の期間、1000℃と1800℃との間の温度で、該乾燥した担持材料を熱処理する工程、
    を包含し、ここで、結晶化および該合金が、発生される、プロセスであって、
    該貴金属でコーティングされた該担持材料は、
    熱処理の前に、300℃と500℃との間の温度の不活性なキャリアガスストリーム中で連続的に分散され、
    該担持材料を熱処理するための加熱されたリアクターを通過して、そして該リアクターを出た後、迅速に冷却され、次いで該キャリアガスストリームから分離される、プロセス。
  2. 持触媒を調製するためのプロセスであって、該担持触媒は、粉末化担持材料上に貴金属粒子の形態で沈着された、PtまたはPt合金を含み、ここで、該貴金属粒子は、X線回折によって決定される、5より大きな相対結晶化度および2nmと10nmとの間の平均粒径を有し、該プロセスは、以下:
    溶液から均質沈着を使用して、貴金属の前駆体でコーティングされた担持材料を提供する工程;
    該担持材料を乾燥する工程;および
    1分未満の期間、1000℃と1800℃との間の温度で、該乾燥した担持材料を熱処理する工程、
    を包含し、ここで、結晶化および該合金が、発生される、プロセスであって、
    該貴金属でコーティングされた該担持材料は、
    熱処理の前に、300℃と500℃との間の温度の不活性なキャリアガスストリーム中で連続的に分散され、
    該担持材料を熱処理するための加熱されたリアクターを通過して、そして該リアクターを出た後、迅速に冷却され、次いで該キャリアガスストリームから分離される、プロセス。
  3. 熱処理に必要な熱エネルギーが、放射によって前記担持材料に移動される、請求項またはに記載されるプロセス。
  4. 請求項のいずれかに記載されるプロセスであって、
    前記不活性キャリアガスストリームおよび担持材料が、熱処理後に前記リアクターを出た後、
    不活性の冷却ガスまたは不活性ガスの混合物を、前記不活性キャリアガスストリームに加えることによって、
    500℃未満の温度まで冷却される、プロセス。
  5. 持触媒を調製するためのプロセスであって、該担持触媒は、粉末化担持材料上に貴金属粒子の形態で沈着された、PtまたはPt合金を含み、ここで、該貴金属粒子は、X線回折によって決定される、5より大きな相対結晶化度および2nmと10nmとの間の平均粒径を有し、該プロセスは、以下:
    該担持触媒の前駆体を該担持材料の表面上に提供する工程;および
    1分未満の期間、1000℃と1800℃との間の温度で、該前駆体を熱処理する工程、
    を包含し、該前駆体は、1nmと10nmとの間の平均粒径を有する、PtまたはPt合金を有する、プロセスであり
    ここで、まず、表面に触媒活性のあるPtまたはPt合金を含む担持材料が、300℃と500℃との間の温度の不活性キャリアガスストリーム中で連続的に分散され、該熱処理後に、触媒活性のあるPtまたはPt合金を含む担持材料が、迅速に冷却され、次いで該キャリアガスストリームから分離される、プロセス。
  6. 請求項1、2または5のいずれか1項に記載されるプロセスであって、前記担持材料が、カーボンブラック、グラファイト、活性炭および繊維状のグラファイトナノチューブからなる群から選択される、炭素含有材料である、プロセス
  7. 請求項1、2または5のいずれか1項に記載されるプロセスであって、前記担持材料が、活性な酸化アルミニウム、珪酸アルミニウム、ゼオライト、酸化チタン、酸化ジルコニウム、希土類酸化物、およびそれらの混合物からなる群から選択される、酸化材料である、プロセス
  8. 請求項1、2、5、6、または7のいずれか1項に記載されるプロセスであって、前記P合金が、Ti、Zr、V、Cr、Mn、Fe、Co、Ni、CuおよびZnからなる群から選択される少なくとも1つの卑金属と合金であるプロセス
  9. 請求項1、2、5、6、または8のいずれか1項に記載されるプロセスであって、前記担持触媒は、カーボンブラックである前記担持材料およびPtの全重量に基づいて、5重量%と80重量%との間の濃度で、少なくとも40m/gの表面積を有するカーボンブラック上のPtを含む、プロセス
  10. 請求項1、2、5、6、8、または9のいずれかに記載されるプロセスであって、前記担持触媒は、カーボンブラックである前記担持材料およびPt/Ru合金である前記Pt合金の全重量に基づいて、5重量%と80重量%との間の濃度で、少なくとも40m/gの表面積を有するカーボンブラック上に該Pt/Ru合金を含み、ここで、Pt対Ruの原子比が、5:1と1:5との間である、プロセス
JP2002131031A 2001-05-05 2002-05-02 PtまたはPt合金含有担持触媒の調製のためのプロセス Expired - Lifetime JP4125038B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01110891.7 2001-05-05
EP01110891A EP1254711A1 (de) 2001-05-05 2001-05-05 Edelmetallhaltiger Trägerkatalysator und Verfahren zu seiner Herstellung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007164424A Division JP4649447B2 (ja) 2001-05-05 2007-06-21 貴金属含有担持触媒およびその調製ためのプロセス

Publications (2)

Publication Number Publication Date
JP2003024798A JP2003024798A (ja) 2003-01-28
JP4125038B2 true JP4125038B2 (ja) 2008-07-23

Family

ID=8177330

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002131031A Expired - Lifetime JP4125038B2 (ja) 2001-05-05 2002-05-02 PtまたはPt合金含有担持触媒の調製のためのプロセス
JP2007164424A Expired - Lifetime JP4649447B2 (ja) 2001-05-05 2007-06-21 貴金属含有担持触媒およびその調製ためのプロセス

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007164424A Expired - Lifetime JP4649447B2 (ja) 2001-05-05 2007-06-21 貴金属含有担持触媒およびその調製ためのプロセス

Country Status (8)

Country Link
US (2) US6861387B2 (ja)
EP (1) EP1254711A1 (ja)
JP (2) JP4125038B2 (ja)
KR (1) KR20020084825A (ja)
AT (1) ATE299752T1 (ja)
BR (1) BR0201611A (ja)
CA (1) CA2384606A1 (ja)
DE (1) DE60205061T2 (ja)

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040058809A1 (en) * 2000-06-21 2004-03-25 Green Hydrotec, Corp. Method and substance for reactive catalytic combustion
US6800584B2 (en) * 2001-10-12 2004-10-05 Catalytic Materials Llc Gold catalysts supported on graphitic carbon nanostructures
US6686308B2 (en) * 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
JP2003308849A (ja) 2002-04-12 2003-10-31 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質形燃料電池の燃料極用触媒
JP2003331855A (ja) * 2002-05-16 2003-11-21 Tokyo Inst Of Technol 固体高分子形燃料電池用カソード電極触媒および固体高分子形燃料電池
US20040013935A1 (en) * 2002-07-19 2004-01-22 Siyu Ye Anode catalyst compositions for a voltage reversal tolerant fuel cell
US7101635B1 (en) * 2002-09-27 2006-09-05 The Regents Of The University Of California Methanol-tolerant cathode catalyst composite for direct methanol fuel cells
WO2004058395A2 (en) * 2002-12-20 2004-07-15 Honda Giken Kogyo Kabushiki Kaisha Platinum-ruthenium containing catalyst formulations for hydrogen generation
KR100506091B1 (ko) * 2003-02-19 2005-08-04 삼성에스디아이 주식회사 연료전지의 캐소드용 촉매
CZ298923B6 (cs) * 2003-05-15 2008-03-12 Vysoká škola chemicko-technologická v Praze Katalyzátor pro hydrogenaci 4-nitrosodifenylaminuvodíkem na 4-aminodifenylamin
JP4133654B2 (ja) * 2003-07-01 2008-08-13 本田技研工業株式会社 固体高分子形燃料電池
KR100544886B1 (ko) * 2003-08-06 2006-01-24 학교법인 대전기독학원 한남대학교 Hcms 탄소 캡슐 구조체에 의해 지지된 연료전지용 전극촉매 및 전극촉매의 제조 방법
WO2005024982A2 (en) * 2003-08-18 2005-03-17 Symyx Technologies, Inc. Platinum-copper fuel cell catalyst
JP4463522B2 (ja) * 2003-10-16 2010-05-19 日揮触媒化成株式会社 電極の触媒用微粒子および該電極触媒用微粒子分散液、該電極触媒用微粒子分散液の製造方法
KR100552697B1 (ko) 2003-11-13 2006-02-20 삼성에스디아이 주식회사 금속 산화물-탄소 복합체로 이루어진 촉매 담체 및 이를이용한연료전지
JP3912377B2 (ja) * 2003-12-25 2007-05-09 日産自動車株式会社 排ガス浄化用触媒粉末の製造方法
JP4547930B2 (ja) * 2004-02-17 2010-09-22 日産自動車株式会社 触媒、触媒の調製方法及び排ガス浄化用触媒
JP4547935B2 (ja) * 2004-02-24 2010-09-22 日産自動車株式会社 排ガス浄化用触媒、排ガス浄化触媒、及び触媒の製造方法
JP4513372B2 (ja) * 2004-03-23 2010-07-28 日産自動車株式会社 排ガス浄化用触媒及び排ガス浄化触媒
JP4513384B2 (ja) * 2004-03-31 2010-07-28 日産自動車株式会社 高耐熱性排ガス浄化用触媒及びその製造方法
KR100551035B1 (ko) 2004-04-27 2006-02-13 삼성에스디아이 주식회사 연료전지용 촉매 및 그 제조방법과 이를 포함하는연료전지 시스템
WO2006006046A2 (en) * 2004-07-08 2006-01-19 Nissan Motor Co., Ltd. Catalyst, exhaust gas purification catalyst, and method for manufacturing same
US7811965B2 (en) * 2004-08-18 2010-10-12 Symyx Solutions, Inc. Platinum-copper-nickel fuel cell catalyst
GB0419062D0 (en) * 2004-08-27 2004-09-29 Johnson Matthey Plc Platinum alloy catalyst
JP2006092957A (ja) * 2004-09-24 2006-04-06 Shinshu Univ 固体高分子形燃料電池用カソード触媒、該触媒を備えてなるカソード電極、該電極を有する固体高分子形燃料電池、ならびに該触媒の製造方法
JP2006127979A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 燃料電池用電極触媒及び燃料電池
US7713910B2 (en) * 2004-10-29 2010-05-11 Umicore Ag & Co Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
US7521392B1 (en) * 2004-11-19 2009-04-21 Nanostellar, Inc. Supported catalysts having platinum particles
US7718309B2 (en) * 2004-12-06 2010-05-18 Honda Motor Co., Ltd. Platinum and tungsten containing electrocatalysts
US7422994B2 (en) * 2005-01-05 2008-09-09 Symyx Technologies, Inc. Platinum-copper-tungsten fuel cell catalyst
US7208439B2 (en) * 2005-02-04 2007-04-24 The Research Foundation Of State University Of New York Gold-based alloy nanoparticles for use in fuel cell catalysts
JP4405934B2 (ja) * 2005-03-28 2010-01-27 Tanakaホールディングス株式会社 固体高分子形燃料電池の燃料極用触媒
DE102005023048B4 (de) * 2005-05-13 2011-06-22 Forschungszentrum Jülich GmbH, 52428 Verfahren zur Herstellung eines Kathoden-Elektrolyt-Verbundes und eine Hochtemperatur-Brennstoffzelle
US7767616B2 (en) * 2005-05-26 2010-08-03 Uchicago Argonne, Llc Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction
JP5217434B2 (ja) * 2005-06-23 2013-06-19 三菱化学株式会社 燃料電池、その触媒及びその電極
US7629291B2 (en) * 2005-06-24 2009-12-08 Ut-Battelle, Llc Surface-stabilized gold nanocatalysts
US20070003822A1 (en) * 2005-06-30 2007-01-04 Shyam Kocha Voltage cycling durable catalysts
KR100688902B1 (ko) * 2005-08-31 2007-03-02 한국화학연구원 이종 탄소 지지체를 이용한 금속 복합체 촉매, 이의 제조방법 및 이를 사용한 연료 전지
KR100647700B1 (ko) 2005-09-14 2006-11-23 삼성에스디아이 주식회사 담지 촉매 및 이를 이용한 연료전지
JP4835595B2 (ja) * 2005-11-04 2011-12-14 トヨタ自動車株式会社 触媒担体粒子、排ガス浄化触媒、及びそれらの製造方法
KR100728187B1 (ko) * 2005-11-07 2007-06-13 삼성에스디아이 주식회사 연료 전지용 촉매, 이의 제조방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
US20070128499A1 (en) * 2005-11-18 2007-06-07 Campbell Stephen A Catalyst for fuel cells
FR2894077A1 (fr) * 2005-11-30 2007-06-01 Centre Nat Rech Scient Procede de fabrication de pile a combustible en couches minces
WO2007065154A2 (en) * 2005-12-02 2007-06-07 Nanodynamics Inc. Method of manufacturing silver platelets
KR101255237B1 (ko) * 2006-02-07 2013-04-16 삼성에스디아이 주식회사 연료전지용 담지 촉매, 그 제조방법, 이를 포함하는연료전지용 전극 및 상기 전극을 포함하는 연료전지
KR101320388B1 (ko) * 2006-02-18 2013-10-22 삼성에스디아이 주식회사 탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는연료처리장치
JP5114856B2 (ja) * 2006-03-24 2013-01-09 凸版印刷株式会社 アノードの製造方法
US7829140B1 (en) 2006-03-29 2010-11-09 The Research Foundation Of The State University Of New York Method of forming iron oxide core metal shell nanoparticles
WO2007114525A1 (ja) 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha 燃料電池用電極触媒の製造方法
US8877674B2 (en) * 2006-04-26 2014-11-04 Battelle Memorial Institute Selective CO methanation catalysis
US7632962B2 (en) * 2006-04-26 2009-12-15 Eastman Chemical Company Hydrogenation process and catalysts
JP5015489B2 (ja) * 2006-04-27 2012-08-29 新日本製鐵株式会社 燃料電池用電極触媒及び燃料電池
KR100766976B1 (ko) 2006-04-28 2007-10-12 삼성에스디아이 주식회사 연료 전지용 캐소드 촉매, 이의 제조방법, 이를 포함하는연료 전지용 막-전극 어셈블리 및 연료전지 시스템
US7569511B2 (en) * 2006-05-05 2009-08-04 Basf Catalysts Llc Catalyst composition for alcohol steam reforming
KR100766978B1 (ko) * 2006-05-10 2007-10-12 삼성에스디아이 주식회사 연료 전지용 애노드 촉매, 이를 포함하는 연료 전지용막-전극 어셈블리, 및 이를 포함하는 연료 전지 시스템
US7842639B2 (en) * 2006-05-19 2010-11-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds
JP4706857B2 (ja) * 2006-05-30 2011-06-22 戸田工業株式会社 金属カルボニルを除去する触媒、水素を含む混合改質ガスを製造する方法、金属カルボニルを除去する方法、燃料電池システム
US7820583B2 (en) * 2006-08-24 2010-10-26 Millennium Inorganic Chemicals, Inc. Nanocomposite particle and process of preparing the same
US7608358B2 (en) * 2006-08-25 2009-10-27 Bdf Ip Holdings Ltd. Fuel cell anode structure for voltage reversal tolerance
WO2008024465A2 (en) * 2006-08-25 2008-02-28 Bdf Ip Holdings Ltd. Fuel cell anode structure for voltage reversal tolerance
US8288308B2 (en) * 2006-08-30 2012-10-16 Umicore Ag & Co. Kg Core/shell-type catalyst particles and methods for their preparation
CN101516550B (zh) * 2006-08-30 2012-12-19 尤米科尔股份公司及两合公司 核/壳型催化剂颗粒及它们的制备方法
CN100438972C (zh) * 2006-09-22 2008-12-03 中国海洋大学 一种纳米粉体的制备方法
KR100823505B1 (ko) * 2006-11-20 2008-04-21 삼성에스디아이 주식회사 연료 전지용 촉매, 이의 제조방법, 이를 포함하는 연료전지용 막-전극 어셈블리 및 연료전지 시스템
JP2008168278A (ja) * 2006-12-15 2008-07-24 Nissan Motor Co Ltd 排ガス浄化用触媒及びその製造方法
US8343627B2 (en) 2007-02-20 2013-01-01 Research Foundation Of State University Of New York Core-shell nanoparticles with multiple cores and a method for fabricating them
KR100877522B1 (ko) * 2007-05-15 2009-01-09 삼성전기주식회사 금속 나노입자의 제조장치 및 제조방법
KR100844752B1 (ko) * 2007-06-26 2008-07-07 현대자동차주식회사 고체 전해질 연료전지용 혼합 전극 촉매 소재의 제조방법
DE102007036495B4 (de) * 2007-08-01 2012-06-21 Eads Deutschland Gmbh Erzeugung von Wasserstoff aus schweren Kohlenwasserstoffen
JP4674921B2 (ja) * 2007-08-13 2011-04-20 旭化成ケミカルズ株式会社 カルボン酸エステル製造用触媒、その製造方法、並びにカルボン酸エステルの製造方法
US8129306B2 (en) * 2008-01-28 2012-03-06 Uchicago Argonne, Llc Non-platinum bimetallic polymer electrolyte fuel cell catalysts
JP5386978B2 (ja) * 2008-06-06 2014-01-15 東洋紡株式会社 金属微粒子を含有した熱処理配位高分子金属錯体を用いた燃料電池用触媒、膜電極接合体、燃料電池、及び酸化還元触媒
US8110021B2 (en) * 2008-07-28 2012-02-07 Honda Motor Co., Ltd. Synthesis of PtCo nanoparticles
US20100048380A1 (en) * 2008-08-21 2010-02-25 Board Of Trustees Of Michigan State University Novel catalyst for oxygen reduction reaction in fuel cells
US20110287174A1 (en) 2008-08-21 2011-11-24 Board Of Trustees Of Michigan State University Novel catalyst for oxygen reduction reaction in fuel cells
US8071504B2 (en) 2008-12-19 2011-12-06 Caterpillar Inc. Exhaust system having a gold-platinum group metal catalyst
US20100300984A1 (en) * 2009-05-27 2010-12-02 Kastner James R Nanostructured Carbon Supported Catalysts, Methods Of Making, And Methods Of Use
KR101107073B1 (ko) * 2009-06-05 2012-01-20 삼성에스디아이 주식회사 연료전지용 촉매 및 이를 포함하는 연료전지 시스템
JP5471252B2 (ja) * 2009-09-30 2014-04-16 国立大学法人北海道大学 合金化度と分散性を制御したPtRu/C触媒及びその製造方法
US8080495B2 (en) * 2010-04-01 2011-12-20 Cabot Corporation Diesel oxidation catalysts
CN102947989B (zh) * 2010-04-26 2015-12-16 3M创新有限公司 退火纳米结构化薄膜催化剂
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts
JP5524761B2 (ja) * 2010-08-06 2014-06-18 日立マクセル株式会社 燃料電池用PtRu系合金触媒、その製造方法、燃料電池用膜電極接合体および燃料電池
JP5794294B2 (ja) * 2011-03-04 2015-10-14 トヨタ自動車株式会社 金属粒子及びそれを含む排ガス浄化用触媒並びにそれらの製造方法
JP5796630B2 (ja) 2011-08-23 2015-10-21 トヨタ自動車株式会社 排ガス用浄化触媒およびその製造方法
EP2608298B1 (de) * 2011-12-22 2018-07-04 Umicore AG & Co. KG Elektrokatalysator für Brennstoffzellen sowie Verfahren zu seiner Herstellung
WO2013158272A1 (en) 2012-04-17 2013-10-24 Momentive Performance Materials Inc. High activity catalyst for hydrosilylation reactions and methods of making the same
EP2990104B1 (en) * 2013-04-25 2019-10-16 Nissan Motor Co., Ltd Catalyst, method for producing same, and electrode catalyst layer using said catalyst
WO2014175098A1 (ja) 2013-04-25 2014-10-30 日産自動車株式会社 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
KR101492102B1 (ko) 2013-05-02 2015-02-10 한국에너지기술연구원 연료전지용 합금 촉매 제조방법 및 이에 따라 제조된 연료전지용 합금 촉매
EP2878368B1 (en) * 2013-11-29 2019-05-22 Umicore Ag & Co. Kg Oxygen storage materials
EP2878359B1 (en) * 2013-11-29 2016-04-13 Umicore Ag & Co. Kg Use of mixed oxides as oxygen storage components
KR101572032B1 (ko) * 2014-04-30 2015-11-26 한국과학기술연구원 Ir-Au 합금을 포함하는 수소해리 촉매
US10367218B2 (en) 2014-10-29 2019-07-30 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
KR20180107143A (ko) 2016-01-13 2018-10-01 스토라 엔소 오와이제이 2,5-푸란디카르복실산 및 그의 중간체 및 유도체의 제조 방법
JP6994023B2 (ja) * 2017-04-18 2022-02-04 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
SG11201913469PA (en) 2017-07-12 2020-01-30 Stora Enso Oyj Purified 2,5-furandicarboxylic acid pathway products
TWI696493B (zh) * 2017-09-27 2020-06-21 日商田中貴金屬工業股份有限公司 固態高分子型燃料電池用觸媒及其製造方法
KR20200079861A (ko) * 2018-12-26 2020-07-06 현대자동차주식회사 연료 전지용 탄소 담지형 금속 촉매의 열처리 방법 및 이로부터 제조되는 탄소 담지형 금속 촉매
KR102499637B1 (ko) * 2021-05-26 2023-02-14 한국에너지기술연구원 귀금속 담지 촉매의 제조 방법 및 이로부터 제조된 귀금속 담지 촉매
CN114260017A (zh) * 2021-12-27 2022-04-01 山东亮剑环保新材料有限公司 一种催化燃烧VOCs的复合金属催化剂及其制备方法
CN115415537B (zh) * 2022-08-22 2023-10-13 哈尔滨工业大学(深圳) 一种采用高温热辐射的合金型纳米材料的制备方法及应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146504A (en) * 1974-09-26 1979-03-27 Graham Magnetics Inc. Porous powders and a method for their preparation
US4145314A (en) * 1977-06-17 1979-03-20 Exxon Research & Engineering Co. Preparation of highly dispersed supported group viii metal catalysts and the redispersion of sintered or agglomerated supported group viii metal catalysts by the addition of phosphorus
US4137373A (en) * 1977-11-23 1979-01-30 United Technologies Corporation Platinum catalyst and method for making
US5079107A (en) * 1984-06-07 1992-01-07 Giner, Inc. Cathode alloy electrocatalysts
JPS62269751A (ja) * 1986-05-16 1987-11-24 Nippon Engeruharudo Kk 白金−銅合金電極触媒およびそれを使用した酸電解質燃料電池用電極
US5149680A (en) * 1987-03-31 1992-09-22 The British Petroleum Company P.L.C. Platinum group metal alloy catalysts for hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
JPH0697614B2 (ja) * 1988-08-26 1994-11-30 エヌ・イーケムキャット株式会社 担持白金合金電極触媒
US5041195A (en) * 1988-11-17 1991-08-20 Physical Sciences Inc. Gold electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods of using them
US5133842A (en) * 1988-11-17 1992-07-28 Physical Sciences, Inc. Electrochemical cell having electrode comprising gold containing electrocatalyst
JPH0697615B2 (ja) * 1989-03-09 1994-11-30 エヌ・イーケムキャット株式会社 白金合金電極触媒
JPH0368452A (ja) * 1989-08-09 1991-03-25 Fuji Electric Co Ltd 白金合金触媒の製造方法
US5132193A (en) * 1990-08-08 1992-07-21 Physical Sciences, Inc. Generation of electricity with fuel cell using alcohol fuel
DE4426973C1 (de) * 1994-07-29 1996-03-28 Degussa Verfahren zur Herstellung eines als Brennstoffzellenelektrode einsetzbaren Plattinlegierungskatalysators
JP3441267B2 (ja) * 1995-10-11 2003-08-25 株式会社豊田中央研究所 触媒の製造方法
JP3555370B2 (ja) * 1996-01-26 2004-08-18 旭硝子株式会社 メタノール燃料電池
DE19611510A1 (de) * 1996-03-23 1997-09-25 Degussa Gasdiffusionselektrode für Membranbrennstoffzellen und Verfahren zu ihrer Herstellung
AU712698B2 (en) * 1996-07-01 1999-11-11 Dow Chemical Company, The Process for the direct oxidation of olefins to olefin oxides
DE19721437A1 (de) * 1997-05-21 1998-11-26 Degussa CO-toleranter Anodenkatalysator für PEM-Brennstoffzellen und Verfahren zu seiner Herstellung
DE19848032A1 (de) * 1998-10-17 2000-04-20 Degussa Pt/Rh/Fe-Legierungskatalysator für Brennstoffzellen und Verfahren zu dessen Herstellung
US6239065B1 (en) * 1998-12-22 2001-05-29 Hydro-Quebec Process for the preparation of a supported catalyst
EP1046423B8 (en) * 1999-04-23 2007-11-21 Umicore AG & Co. KG Layered noble metal-containing exhaust gas catalyst and its preparation

Also Published As

Publication number Publication date
US20050101481A1 (en) 2005-05-12
JP2003024798A (ja) 2003-01-28
DE60205061T2 (de) 2006-04-20
BR0201611A (pt) 2003-03-11
ATE299752T1 (de) 2005-08-15
KR20020084825A (ko) 2002-11-11
JP4649447B2 (ja) 2011-03-09
DE60205061D1 (de) 2005-08-25
US6861387B2 (en) 2005-03-01
JP2007289960A (ja) 2007-11-08
CA2384606A1 (en) 2002-11-05
US20030045425A1 (en) 2003-03-06
US7109145B2 (en) 2006-09-19
EP1254711A1 (de) 2002-11-06

Similar Documents

Publication Publication Date Title
JP4125038B2 (ja) PtまたはPt合金含有担持触媒の調製のためのプロセス
JP2556874B2 (ja) 担体上における金属の合金化方法
US8273504B2 (en) Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
JP2832336B2 (ja) 金超微粒子固定化物質及びその製造方法
TWI600468B (zh) 奈米金承載於氧化銅-二氧化鈰觸媒之製法及其在氫氣流中氧化一氧化碳之應用
US7381683B1 (en) Method of producing multi-component catalysts
EP1254712B1 (en) A noble metal-containing supported catalyst and a process for its preparation
JP5665743B2 (ja) 触媒の連続的な製造方法
CN115036522B (zh) 一种限域制备燃料电池用合金催化剂的方法
Li et al. A novel structural design of hybrid nanotube with CNTs and CeO2 supported Pt nanoparticles with improved performance for methanol electro-oxidation
Lu et al. Highly Active and Durable PdAg@ Pd Core–Shell Nanoparticles as Fuel‐Cell Electrocatalysts for the Oxygen Reduction Reaction
CN111465447A (zh) 制备负载型铂颗粒的方法
JP5531212B2 (ja) 低温酸化触媒とその製造方法およびその触媒を用いた酸化方法
US7687428B1 (en) Method of synthesizing and processing carbon-supported, gold and gold-based multimetallic nanoparticles for use as catalysts
WO2020065005A1 (en) Process for producing alloy nanoparticles
CN115770603A (zh) 一种氮掺杂碳包覆铜催化剂及其制备方法和应用
Drzymała et al. Ternary Pt/Re/SnO 2/C catalyst for EOR: Electrocatalytic activity and durability enhancement
CN110380069A (zh) 一种活性炭限域的贵金属催化剂及其制备方法以及应用
CN114345324A (zh) 生物质碳基金属单原子复合催化剂、制备方法及其应用
JP2020145154A (ja) 白金コアシェル触媒の製造方法及びそれを用いた燃料電池
JP6815590B2 (ja) 白金触媒、その製造方法及び当該白金触媒を用いた燃料電池
Zhou et al. Preparation and characterization of Au@ TiO 2 core–shell hollow nanoparticles with CO oxidation performance
JPH04141235A (ja) アノード極用電極触媒
CN110931808A (zh) 一种Pd-WO3/C质子交换膜燃料电池阳极电催化剂及其制备方法和应用
CN111470989A (zh) 一种氨基苯酚类化合物的合成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070316

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Ref document number: 4125038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term