JP4123446B2 - Manufacturing method of solid-state imaging device - Google Patents

Manufacturing method of solid-state imaging device Download PDF

Info

Publication number
JP4123446B2
JP4123446B2 JP2005225212A JP2005225212A JP4123446B2 JP 4123446 B2 JP4123446 B2 JP 4123446B2 JP 2005225212 A JP2005225212 A JP 2005225212A JP 2005225212 A JP2005225212 A JP 2005225212A JP 4123446 B2 JP4123446 B2 JP 4123446B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
alignment mark
solid
layer
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005225212A
Other languages
Japanese (ja)
Other versions
JP2006019757A (en
Inventor
高志 阿部
信男 中村
圭司 馬渕
智之 梅田
博明 藤田
英一 船津
弘樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005225212A priority Critical patent/JP4123446B2/en
Publication of JP2006019757A publication Critical patent/JP2006019757A/en
Application granted granted Critical
Publication of JP4123446B2 publication Critical patent/JP4123446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、各種イメージセンサやカメラモジュールとして用いられる固体撮像素子の製造方法に関する。   The present invention relates to a method for manufacturing a solid-state imaging device used as various image sensors and camera modules.

近年、ビデオカメラや電子カメラが広く普及しており、これらのカメラには、CCD型や増幅型の固体撮像素子が使用されている。
このうち増幅型固体撮像素子(CMOSイメージセンサ)は、1つの半導体チップに複数の画素を2次元配列して構成される撮像画素部と、この撮像画素部の外側に配置される周辺回路部とを設けたものであり、撮像画素部の各画素内にFD部や転送、増幅等の各種MOSトランジスタを有し、各画素に入射した光をフォトダイオードによって光電変換して信号電荷を生成し、この信号電荷を転送トランジスタによってFD部に転送し、このFD部の電位変動を増幅トランジスタによって検出し、これを電気信号に変換、増幅することにより、各画素毎の信号を信号線より周辺回路部に出力するものである。
また、周辺回路部には、撮像画素部からの画素信号に所定の信号処理、例えばCDS(相関二重サンプリング)、利得制御、A/D変換等を施す信号処理回路、ならびに撮像画素部の各画素を駆動して画素信号の出力を制御する駆動制御回路、例えば垂直、水平の各スキャナやタイミングジェネレータ(TG)等が設けられている。
In recent years, video cameras and electronic cameras have become widespread, and CCD and amplification type solid-state imaging devices are used for these cameras.
Among these, an amplification type solid-state imaging device (CMOS image sensor) includes an imaging pixel unit configured by two-dimensionally arranging a plurality of pixels on one semiconductor chip, and a peripheral circuit unit disposed outside the imaging pixel unit. Each pixel of the imaging pixel unit has an FD unit and various MOS transistors for transfer, amplification, etc., and photoelectrically converts light incident on each pixel by a photodiode to generate a signal charge, This signal charge is transferred to the FD portion by the transfer transistor, the potential fluctuation of the FD portion is detected by the amplification transistor, and this is converted into an electric signal, and the signal for each pixel is transmitted from the signal line to the peripheral circuit portion. Is output.
The peripheral circuit section includes a signal processing circuit that performs predetermined signal processing, such as CDS (correlated double sampling), gain control, A / D conversion, and the like on the pixel signal from the imaging pixel section, and each of the imaging pixel section. Drive control circuits that drive the pixels and control the output of the pixel signals, such as vertical and horizontal scanners and timing generators (TG), are provided.

図11は、従来のCMOSイメージセンサにおける素子構造を示す断面図であり、撮像画素部の1つの画素10と周辺回路部に設けられる1つのMOSトランジスタ20の構造を示している。
撮像画素部の画素10は、N型シリコン基板1の上にP型ウエル領域11を設け、ここにフォトダイオード12およびFD部13が設けられている。また、N型シリコン基板1の上層絶縁層2には、フォトダイオード12からFD部13に信号電荷を転送するための転送ゲート用のポリシリコン転送電極14と、その上層にアルミ等の金属配線15、16が設けられ、さらにその上層にフォトダイオード12の受光用開口部を有する遮光膜17が設けられている。
また、上層絶縁層2の上には、シリコン窒化膜等によるパッシベーション膜3が設けられ、その上層にオンチップ色フィルタ18およびオンチップマイクロレンズ19が設けられている。
FIG. 11 is a cross-sectional view showing the element structure of a conventional CMOS image sensor, showing the structure of one pixel 10 in the imaging pixel portion and one MOS transistor 20 provided in the peripheral circuit portion.
The pixel 10 in the imaging pixel unit is provided with a P-type well region 11 on an N-type silicon substrate 1, and a photodiode 12 and an FD unit 13 are provided therein. The upper insulating layer 2 of the N-type silicon substrate 1 has a transfer gate polysilicon transfer electrode 14 for transferring a signal charge from the photodiode 12 to the FD portion 13, and a metal wiring 15 such as aluminum on the upper layer. 16 is further provided, and a light shielding film 17 having a light receiving opening of the photodiode 12 is provided thereon.
Further, a passivation film 3 made of a silicon nitride film or the like is provided on the upper insulating layer 2, and an on-chip color filter 18 and an on-chip microlens 19 are provided on the upper layer.

一方、周辺回路部のMOSトランジスタ20は、N型シリコン基板1の上にP型ウエル領域21を設け、ここにソース領域22およびドレイン領域23が設けられている。N型シリコン基板1の上層絶縁層2には、MOSトランジスタ20のポリシリコンゲート電極24が設けられ、その上層にアルミ等の金属配線25、26、27が設けられ、さらに上層のパッシベーション膜3にもアルミ等の金属配線28が設けられている。   On the other hand, the MOS transistor 20 in the peripheral circuit portion is provided with a P-type well region 21 on an N-type silicon substrate 1, and a source region 22 and a drain region 23 are provided therein. A polysilicon gate electrode 24 of the MOS transistor 20 is provided on the upper insulating layer 2 of the N-type silicon substrate 1, and metal wirings 25, 26, 27 such as aluminum are provided on the upper layer, and further on the passivation film 3 on the upper layer. Also, a metal wiring 28 such as aluminum is provided.

このような構成の固体撮像素子において、各画素は、フォトダイオード12の開口率(画素への入射光に対するフォトダイオード12への入射光の比)を上げるために、入射光をマイクロレンズ19によって、配線の間を通してフォトダイオード12に集光する。
しかし、この場合、マイクロレンズ19によって集光される光の一部が、配線15、16によって跳ねられてしまう。これが原因で、次のような問題点が生じる。
1)配線によって跳ねられた分、感度が落ちる。
2)配線によって跳ねられた光の一部が隣接する画素のフォトダイオードに入り、混色が起きる。
In the solid-state imaging device having such a configuration, each pixel has incident light transmitted by the micro lens 19 in order to increase the aperture ratio of the photodiode 12 (ratio of incident light to the photodiode 12 with respect to incident light to the pixel). The light is condensed on the photodiode 12 through the wiring.
However, in this case, part of the light collected by the microlens 19 is bounced by the wirings 15 and 16. This causes the following problems.
1) The sensitivity is reduced by the amount bounced by the wiring.
2) A part of the light bounced by the wiring enters the photodiode of the adjacent pixel, and color mixing occurs.

3)配線のレイアウトが限られるので、フォトダイオードの上部に配線が置けない、あるいは、太い配線が通せないなどといった制約によって特性を低下させる。
4)上記3)と同様の理由で微細化が困難である。
5)周辺部の画素は光が斜め入射になり跳ねられる割合が多いので、周辺ほど暗いシェーディングが起こる。
6)配線層がさらに増加した進んだCMOSプロセスでCMOSイメージセンサをつくろうとすると、マイクロレンズからフォトダイオードまでの距離が遠くなり、さらに上記のような困難性が増大する。
7)上記6)によって、進んだCMOSプロセスのライブラリが使えなくなり、ライブラリに登録されている回路のレイアウトし直しが入る、あるいは、配線層が制限されるので面積が増大するなどといった理由によって、コストアップとなる。また、1画素当たりの画素面積も大きくなる。
3) Since the wiring layout is limited, the characteristics are degraded due to restrictions such as the inability to place the wiring on top of the photodiode or the inability to pass thick wiring.
4) Miniaturization is difficult for the same reason as 3) above.
5) Since the peripheral pixels have a large proportion of light that is obliquely incident and bounced, darker shading occurs in the periphery.
6) If a CMOS image sensor is manufactured by an advanced CMOS process in which the number of wiring layers is further increased, the distance from the microlens to the photodiode is increased, and the above-described difficulty is further increased.
7) Due to the above 6), the advanced CMOS process library cannot be used, and the layout of the circuit registered in the library can be changed again, or the wiring layer is limited and the area is increased. It will be up. In addition, the pixel area per pixel also increases.

また、赤色などの長波長の光が、フォトダイオード12よりも深い位置のP型ウエル領域11中で光電変換されると、発生した電子がP型ウエル領域11の中を拡散し、別の位置のフォトダイオード12に入ってしまい、混色を起こしたり、黒を検出するために遮光してある画素に入ると、黒レベルを間違って検出してしまうという問題がある。
また、活性領域にシリサイドを使うプロセスがあるが、シリサイドは光の入射を妨害するため、フォトダイオード12上のシリサイドのみを除去するプロセスを追加する必要がある。
そのために工程が増え、また複雑なプロセスとなる。その工程起因のフォトダイオードの欠陥も生じる。
In addition, when light having a long wavelength such as red is photoelectrically converted in the P-type well region 11 at a position deeper than the photodiode 12, the generated electrons diffuse in the P-type well region 11 and are moved to another position. If the pixel 12 enters the pixel 12 to cause color mixture or enters a pixel that is shielded to detect black, the black level is erroneously detected.
In addition, there is a process of using silicide in the active region. However, since silicide interferes with the incidence of light, it is necessary to add a process for removing only the silicide on the photodiode 12.
This increases the number of processes and makes the process complicated. The defect of the photodiode resulting from the process also occurs.

また、上述のようにCMOSイメージセンサの周辺画素部には、これまでは別のチップで構成されていたカメラ信号処理回路やDSP等の機能が搭載される。
これらはプロセス世代が0.4μm→0.25μm→0.18μm→0.13μmと進化していくので、CMOSイメージセンサ自体も、これらの新しいプロセスに対応させなければ微細化の恩恵が受けられず、また、豊富なCMOS回路のライブラリやIPが利用できなくなる。
しかし、プロセス世代が進むほど配線構造が多層化し、たとえば0.4μmプロセスでは配線は3層であったが、0.13μmプロセスでは8層を用いている。また、配線の厚さも増加し、マイクロレンズからフォトダイオードの受光面までの距離が3倍〜5倍になる。
したがって、従来の配線層を通して光を受光面に通す方法では、効率よく光を画素の受光面に集光できなくなっており、上記1)〜7)の問題が顕著になっている。
In addition, as described above, the peripheral pixel portion of the CMOS image sensor is equipped with functions such as a camera signal processing circuit and a DSP that have been configured with different chips so far.
Since these process generations evolve from 0.4 μm → 0.25 μm → 0.18 μm → 0.13 μm, the CMOS image sensor itself cannot receive the benefits of miniaturization unless it is compatible with these new processes. In addition, an abundant CMOS circuit library and IP cannot be used.
However, as the process generation progresses, the wiring structure becomes multilayered. For example, in the 0.4 μm process, the wiring has three layers, but in the 0.13 μm process, eight layers are used. In addition, the thickness of the wiring also increases, and the distance from the microlens to the light receiving surface of the photodiode becomes 3 to 5 times.
Therefore, in the conventional method of passing light through the wiring layer through the light receiving surface, the light cannot be efficiently collected on the light receiving surface of the pixel, and the problems 1) to 7) are remarkable.

ところで、最近では、上述したCMOSイメージセンサとは別の固体撮像素子として、フォトダイオードの受光面を半導体チップの裏面に設けた、いわゆる裏面照射型固体撮像素子が提案されている。
これは、フレーム転送型CCD撮像素子として構成されたものであり、シリコン基板を薄膜化し、その表面側に転送電極等を設けるとともに、裏面にフォトダイオードの受光面を配置したものである。
そして、この受光面に受光した光をシリコン基板内のフォトダイオードで光電変換し、その信号電荷を基板表面側から伸びた空乏層で捕獲し、表面側の電位井戸(P+型ウエル領域)に蓄積し、転送、出力する。
Recently, a so-called back-illuminated solid-state imaging device in which a light receiving surface of a photodiode is provided on the back surface of a semiconductor chip has been proposed as a solid-state imaging device different from the above-described CMOS image sensor.
This is configured as a frame transfer type CCD image pickup device, in which a silicon substrate is thinned, a transfer electrode or the like is provided on the front surface side, and a light receiving surface of a photodiode is disposed on the back surface.
The light received on the light receiving surface is photoelectrically converted by a photodiode in the silicon substrate, and the signal charge is captured by a depletion layer extending from the substrate surface side, and accumulated in a potential well (P + type well region) on the surface side. And transfer and output.

図12は、このような裏面照射型の固体撮像素子におけるフォトダイオード部分の素子構造を示す断面図である。
この固体撮像素子は、薄型のP−型シリコン基板30上にエピタキシャル成長によるN型ウエル領域31を設け、その上に空乏層32を介してP+型ウエル領域33を設けてフォトダイオードを構成したものである。
また、P+型ウエル領域33の上には酸化膜34およびアルミ遮光膜35が設けられている。
この場合、P−型シリコン基板30側が裏面すなわち光の照射面となり、酸化膜34およびアルミ遮光膜35側が表面であり、例えば転送電極用の配線等が配置されている。
FIG. 12 is a cross-sectional view showing an element structure of a photodiode portion in such a back-illuminated solid-state imaging element.
This solid-state imaging device comprises a photodiode by providing an N-type well region 31 by epitaxial growth on a thin P-type silicon substrate 30 and providing a P + type well region 33 via a depletion layer 32 thereon. is there.
An oxide film 34 and an aluminum light shielding film 35 are provided on the P + type well region 33.
In this case, the P-type silicon substrate 30 side is the back surface, that is, the light irradiation surface, and the oxide film 34 and the aluminum light-shielding film 35 side are the front surfaces. For example, wiring for transfer electrodes and the like are arranged.

しかし、このような構造の撮像素子では、吸収率の高い、青色の感度が落ちるという問題がある。また、光が背面に入射して浅い位置で光電変換されることから、発生した信号電荷が拡散し、ある割合で周囲のフォトダイオードに入ってしまうという問題がある。
その一方で、CCD型撮像素子の場合、システムオンチップをしないので配線層の高さを高くする必要が無いこと、CCD独自のプロセスであるので遮光膜をフォトダイオードの周囲に落とし込むことができるといった理由から、オンチップレンズによる集光が容易であるため、上述のようなCMOSイメージセンサの場合の課題である1)〜7)の問題が生じない。
このような実情から、裏面照射型のCCD型撮像素子はほとんど実用されておらず、また、このような裏面照射型CCD撮像素子において色フィルタとマイクロレンズをオンチップ化したものについても、ほとんど存在しないものと思われる。
However, the imaging device having such a structure has a problem that the blue sensitivity with high absorptance is lowered. In addition, since light is incident on the back surface and photoelectrically converted at a shallow position, the generated signal charges are diffused and enter a surrounding photodiode at a certain rate.
On the other hand, in the case of a CCD type image pickup device, since there is no system-on-chip, there is no need to increase the height of the wiring layer, and since it is a process unique to CCD, the light shielding film can be dropped around the photodiode. For the reason, it is easy to collect light with an on-chip lens, and thus the problems 1) to 7), which are problems in the case of the CMOS image sensor as described above, do not occur.
Under these circumstances, back-illuminated CCD image sensors are rarely used, and there are almost no on-chip color filters and microlenses in such back-illuminated CCD image sensors. It seems not to.

これに対してCMOSイメージセンサの場合は、プロセスは標準CMOSプロセスにわずかの修正を加えたものを使用するので、上述した裏面照射型を採用することで、配線工程に影響されず、常に最新のプロセスを用いることができるという、CCD型撮像素子の場合には無い利点がある。
また、金属配線が何層も縦横に走ることは、CCD型撮像素子には無い点であるので、CCD型撮像素子の場合と異なり、上述した1)〜7)の問題が特にCMOSイメージセンサで顕著であり、この点からも上述した裏面照射型をCMOSイメージセンサに採用することは有利である。
On the other hand, in the case of a CMOS image sensor, the process uses a standard CMOS process with a slight modification. By adopting the backside illumination type described above, it is not affected by the wiring process and is always the latest. There is an advantage that the process can be used in the case of a CCD type imaging device.
In addition, the fact that the metal wiring runs vertically and horizontally is a point that the CCD type image sensor does not have. Therefore, unlike the case of the CCD type image sensor, the above problems 1) to 7) are particularly problematic in the CMOS image sensor. From this point of view as well, it is advantageous to adopt the above-described back-illuminated type for the CMOS image sensor.

しかしながら、通常のCMOSイメージセンサのウェーハ上に色フィルタ、オンチップマイクロレンズを形成する際に、ステッパの位置合わせはアルミ等の金属配線層を用いて行われるが、裏面照射型のCMOSイメージセンサを作製する場合には、ウェーハへの配線工程終了後にウェーハを裏返し、配線を設けた面と逆の面の研磨を行い、シリコン酸化膜(SiO2 )の成膜や、遮光膜の形成、パッシベーション膜の形成を行った後、裏面色フィルタおよび裏面マイクロレンズの形成といった工程を施すことになる。
このため、裏面照射型のCMOSイメージセンサの作製においては、従来のようにアルミ配線層の作製時に形成した位置合わせマークをそのまま用いることができないという課題が生じる。
However, when a color filter and an on-chip microlens are formed on a normal CMOS image sensor wafer, the stepper is positioned using a metal wiring layer such as aluminum. In the case of manufacturing, after completing the wiring process to the wafer, the wafer is turned over and the surface opposite to the surface on which the wiring is provided is polished to form a silicon oxide film (SiO2), a light shielding film, a passivation film After the formation, steps such as formation of a back surface color filter and a back surface microlens are performed.
For this reason, in the production of the backside illumination type CMOS image sensor, there arises a problem that the alignment mark formed at the time of producing the aluminum wiring layer cannot be used as it is.

そこで本発明の目的は、いわゆる裏面照射型の増幅型固体撮像素子(CMOSイメージセンサ)の作製時における各種の位置合わせを容易かつ適正に行うことができ、製造効率および素子精度を改善することが可能な固体撮像素子の製造方法を提供することにある。   Therefore, an object of the present invention is to easily and appropriately perform various alignments in manufacturing a so-called back-illuminated amplification type solid-state imaging device (CMOS image sensor), and to improve manufacturing efficiency and device accuracy. An object of the present invention is to provide a method for manufacturing a solid-state imaging device.

本発明は前記目的を達成するため、半導体基板に、それぞれ光電変換素子と電界効果トランジスタを含む複数の画素を2次元アレイ状に配列した撮像画素部と、前記撮像画素部を駆動する駆動回路および前記撮像画素部から出力される画素信号を信号処理する信号処理回路を含む周辺回路部とを設け、前記撮像画素部の電界効果トランジスタを駆動する配線層が前記半導体基板の第1面側に形成され、前記光電変換素子の受光面が前記半導体基板の第2面側に配置され、前記半導体基板の第2面側に色フィルタおよびマイクロレンズの少なくとも一方が形成された固体撮像素子の製造方法であって、前記半導体基板に第1面側から前記撮像画素部及び前記周辺回路部を形成する際に、前記半導体基板の第1面に、前記電界効果トランジスタ用の半導体金属化合物を形成した活性領域、または前記電界効果トランジスタ用のゲート電極を設けて、その一部を用いて第1の位置合わせマークを形成し、その後、前記半導体基板の第1面の第1の位置合わせマークの上層に配線層を形成し、その後、前記第1の位置合わせマークを前記半導体基板の第2面側から検出することにより前記半導体基板の第2面側に第2の位置合わせマークを形成し、その後、前記半導体基板の第2面に、前記第2の位置合わせマークを用いて位置合わせを行って前記色フィルタおよび前記マイクロレンズの少なくとも一方を形成することを特徴とする。 In order to achieve the above object, the present invention provides an imaging pixel unit in which a plurality of pixels each including a photoelectric conversion element and a field effect transistor are arranged in a two-dimensional array on a semiconductor substrate, a drive circuit for driving the imaging pixel unit, and And a peripheral circuit unit including a signal processing circuit that processes a pixel signal output from the imaging pixel unit, and a wiring layer for driving a field effect transistor of the imaging pixel unit is formed on the first surface side of the semiconductor substrate And a light receiving surface of the photoelectric conversion element is disposed on the second surface side of the semiconductor substrate, and at least one of a color filter and a microlens is formed on the second surface side of the semiconductor substrate. When the imaging pixel unit and the peripheral circuit unit are formed on the semiconductor substrate from the first surface side, the field effect transistor is formed on the first surface of the semiconductor substrate. An active region in which a semiconductor metal compound is formed or a gate electrode for the field effect transistor is provided, and a first alignment mark is formed using a part of the active region, and then a first surface of the first surface of the semiconductor substrate is formed. Forming a wiring layer on the upper layer of the alignment mark, and then detecting the first alignment mark from the second surface side of the semiconductor substrate to thereby form a second alignment on the second surface side of the semiconductor substrate. A mark is formed, and then alignment is performed on the second surface of the semiconductor substrate using the second alignment mark to form at least one of the color filter and the microlens.

以上説明したように本発明による固体撮像素子の製造方法では、半導体基板の照射面と反対側の配線面(第1面)に、電界効果トランジスタ用の半導体金属化合物を形成した活性領域、または電界効果トランジスタ用のゲート電極を用いて第1の位置合わせマークを形成し、この第1の位置合わせマークを半導体基板の第2面側から検出することにより半導体基板の第2面側に第2の位置合わせマークを形成し、この第2の位置合わせマークを用いて色フィルタやマイクロレンズの位置合わせを行うようにした。As described above, in the method for manufacturing a solid-state imaging device according to the present invention, an active region in which a semiconductor metal compound for a field effect transistor is formed on a wiring surface (first surface) opposite to an irradiation surface of a semiconductor substrate, or an electric field A first alignment mark is formed using the gate electrode for the effect transistor, and the first alignment mark is detected from the second surface side of the semiconductor substrate to thereby detect a second alignment mark on the second surface side of the semiconductor substrate. An alignment mark is formed, and color filters and microlenses are aligned using the second alignment mark.
したがって、従来のシリコン酸化膜等を用いたマークに比較して検出が容易な金属化合物や電極膜を用いた第1の位置合わせマークを半導体基板を透して検出して第2面側の第2の位置合わせマークを形成し、この第2の位置合わせマークを用いて色フィルタやマイクロレンズの位置合わせを行うことができ、位置合わせ作業を容易かつ適正に行うことができ、製造効率および素子精度を改善することができる。Therefore, the first alignment mark using the metal compound or the electrode film, which is easier to detect than the mark using the conventional silicon oxide film or the like, is detected through the semiconductor substrate and is detected on the second surface side. 2 alignment marks can be formed, and color filters and microlenses can be aligned using the second alignment marks, and the alignment operation can be performed easily and appropriately. Accuracy can be improved.

以下、本発明による固体撮像素子の製造方法の実施の形態例を説明する。
本実施の形態例は、新世代のプロセスに対応するための裏面照射型固体撮像素子の製造工程において、ステッパ合わせを行うために、例えばMOSトランジスタの作成工程で用いる活性領域またはゲート電極(ポリシリコン膜)を流用して配線面側に位置合わせマークを形成する。
Embodiments of a method for manufacturing a solid-state imaging device according to the present invention will be described below.
In this embodiment, an active region or a gate electrode (polysilicon) used in, for example, a MOS transistor manufacturing process in order to perform stepper alignment in a manufacturing process of a back-illuminated solid-state imaging device to cope with a new generation process. The alignment mark is formed on the wiring surface side using the film.

また、この位置合わせマークには、活性領域を用いたシリサイド膜を用いることもでき、このシリサイド膜をフォトダイオード上(照射面と反対面)に残すこともできる。
この後、このような位置合わせマークを赤色光または近赤外光によって裏面側から読み取り、ステッパの位置合わせを行う。
なお、配線面側の位置合わせマークに合わせて、裏面(照射面)側のシリコン酸化膜に位置合わせマークを作成し、これによって位置合わせを行うことも可能である。
これらにより、裏面照射型の増幅型固体撮像素子(CMOSイメージセンサ)を容易に作製でき、上述した集光等の問題が解決できる。
In addition, a silicide film using an active region can be used as the alignment mark, and the silicide film can be left on the photodiode (the surface opposite to the irradiation surface).
Thereafter, such an alignment mark is read from the back side with red light or near infrared light, and the stepper is aligned.
It is also possible to perform alignment by creating alignment marks on the silicon oxide film on the back surface (irradiation surface) side in accordance with the alignment marks on the wiring surface side.
As a result, a back-illuminated amplification type solid-state imaging device (CMOS image sensor) can be easily manufactured, and the above-described problems such as light collection can be solved.

まず、本実施の形態例におけるCMOSイメージセンサの概要について説明する。
図1は、本発明の実施の形態例によるCMOSイメージセンサの概要を模式的に示す平面図であり、図2は、図1に示すCMOSイメージセンサの画素の構成を示す等価回路図である。
本例によるCMOSイメージセンサは、半導体チップ110上に形成された撮像画素部112、V選択手段114、H選択手段116、タイミングジェネレータ(TG)118、S/H・CDS部120、AGC部122、A/D部124、デジタルアンプ部126等を含んでいる。
First, an outline of the CMOS image sensor in this embodiment will be described.
FIG. 1 is a plan view schematically showing an outline of a CMOS image sensor according to an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram showing a configuration of a pixel of the CMOS image sensor shown in FIG.
The CMOS image sensor according to this example includes an imaging pixel unit 112 formed on a semiconductor chip 110, a V selection unit 114, an H selection unit 116, a timing generator (TG) 118, an S / H / CDS unit 120, an AGC unit 122, An A / D unit 124, a digital amplifier unit 126, and the like are included.

撮像画素部112は、多数の画素が2次元マトリクス状に配列されており、各画素には、図2に示すように、受光量に応じた信号電荷を生成し蓄積する光電変換素子であるフォトダイオード(PD)200が設けられ、さらに、このフォトダイオード200が変換して蓄積した信号電荷をフローティングディフュージョン部(FD部)210に転送する転送トランジスタ220と、FD部210の電圧をリセットするリセットトランジスタ230と、FD部210の電圧に対応する出力信号を出力する増幅トランジスタ240と、この増幅トランジスタ240の出力信号を垂直信号線260に出力する選択(アドレス)トランジスタ250の4つのMOSトランジスタが設けられている。   The imaging pixel unit 112 has a large number of pixels arranged in a two-dimensional matrix, and each pixel is a photoelectric conversion element that generates and accumulates signal charges corresponding to the amount of received light as shown in FIG. A diode (PD) 200 is provided, and further, a transfer transistor 220 that transfers signal charges converted and accumulated by the photodiode 200 to a floating diffusion portion (FD portion) 210, and a reset transistor that resets the voltage of the FD portion 210 230, an amplification transistor 240 that outputs an output signal corresponding to the voltage of the FD section 210, and a selection (address) transistor 250 that outputs the output signal of the amplification transistor 240 to the vertical signal line 260 are provided. ing.

このような構成の画素では、フォトダイオード200で光電変換された信号電荷を転送トランジスタ220によってFD部210に転送する。FD部210は、増幅トランジスタ240のゲートにつながっており、増幅トランジスタ240は撮像画素部112の外部に設けられた定電流源270とソースフォロアを構成するので、アドレストランジスタ250をONすると、FD部210の電圧に応じた電圧が垂直信号線260に出力される。
また、リセットトランジスタ230は、FD部210の電圧を信号電荷によらない定電圧(図示の例では駆動電圧Vdd)にリセットする。
また、撮像画素部112には各MOSトランジスタを駆動制御するための各種駆動配線が水平方向に配線されており、撮像画素部112の各画素は、V選択手段114によって垂直方向に水平ライン(画素行)単位で順次選択され、タイミングジェネレータ118からの各種パルス信号によって各画素のMOSトランジスタが制御されることにより、各画素の信号が垂直信号線260を通して画素列毎にS/H・CDS部120に読み出される。
In the pixel having such a configuration, the signal charge photoelectrically converted by the photodiode 200 is transferred to the FD unit 210 by the transfer transistor 220. The FD unit 210 is connected to the gate of the amplification transistor 240. The amplification transistor 240 forms a source follower with a constant current source 270 provided outside the imaging pixel unit 112. Therefore, when the address transistor 250 is turned on, the FD unit A voltage corresponding to the voltage 210 is output to the vertical signal line 260.
The reset transistor 230 resets the voltage of the FD unit 210 to a constant voltage (drive voltage Vdd in the illustrated example) that does not depend on the signal charge.
In addition, various drive wirings for driving and controlling each MOS transistor are wired in the imaging pixel unit 112 in the horizontal direction, and each pixel in the imaging pixel unit 112 is horizontally lined (pixels) by the V selection unit 114. Each pixel is sequentially selected, and the MOS transistor of each pixel is controlled by various pulse signals from the timing generator 118, so that the signal of each pixel passes through the vertical signal line 260 for each S / H / CDS unit 120 for each pixel column. Is read out.

S/H・CDS部120は、撮像画素部112の画素列毎にS/H・CDS回路を設けたものであり、撮像画素部112の各画素列から読み出された画素信号に対し、CDS(相関二重サンプリング)等の信号処理を行うものである。また、H選択手段116は、S/H・CDS部120からの画素信号をAGC部122に出力する。
AGC部122は、H選択手段116によって選択されたS/H・CDS部120からの画素信号に対して所定のゲインコントロールを行い、その画素信号をA/D部124に出力する。
A/D部124は、AGC部122からの画素信号をアナログ信号からデジタル信号に変換してデジタルアンプ126に出力する。デジタルアンプ126は、A/D部124からのデジタル信号出力について必要な増幅やバッファリングを行い、図示しない外部端子より出力するものである。
また、タイミングジェネレータ118は、上述した撮像画素部112の各画素以外の各部にも各種のタイミング信号を供給している。
The S / H • CDS unit 120 is provided with an S / H • CDS circuit for each pixel column of the imaging pixel unit 112, and performs CDS on the pixel signal read from each pixel column of the imaging pixel unit 112. Signal processing such as (correlated double sampling) is performed. Further, the H selection unit 116 outputs the pixel signal from the S / H / CDS unit 120 to the AGC unit 122.
The AGC unit 122 performs predetermined gain control on the pixel signal from the S / H • CDS unit 120 selected by the H selection unit 116, and outputs the pixel signal to the A / D unit 124.
The A / D unit 124 converts the pixel signal from the AGC unit 122 from an analog signal to a digital signal and outputs the converted signal to the digital amplifier 126. The digital amplifier 126 performs necessary amplification and buffering for the digital signal output from the A / D unit 124 and outputs it from an external terminal (not shown).
The timing generator 118 also supplies various timing signals to each part other than each pixel of the imaging pixel part 112 described above.

図3および図4は、本実施の形態例によるCMOSイメージセンサの画素レイアウトの具体例を示す概略平面図である。
まず、図3はフォトダイオードや各トランジスタの活性領域(ゲート酸化膜を配置した領域)と、ゲート電極(ポリシリコン膜)と、それらへのコンタクトの配置を示している。
図示のように、各画素の活性領域300は、上述したフォトダイオード(PD)200とFD部210を含む方形領域310と、この方形領域310の1つのコーナーからL字状に延出された屈曲帯状領域320とで構成されている。
方形領域310のFD部210にはコンタクト311が設けられ、また、フォトダイオード(PD)200とFD部210の中間には、転送ゲート電極312が設けられ、この転送ゲート電極312の端部にコンタクト313が設けられている。
3 and 4 are schematic plan views showing specific examples of the pixel layout of the CMOS image sensor according to the present embodiment.
First, FIG. 3 shows the arrangement of active regions (regions in which a gate oxide film is disposed) of photodiodes and transistors, gate electrodes (polysilicon film), and contacts to them.
As shown in the figure, an active region 300 of each pixel includes a rectangular region 310 including the photodiode (PD) 200 and the FD portion 210 described above, and a bent portion extending in an L shape from one corner of the rectangular region 310. It is composed of a band-shaped region 320.
A contact 311 is provided in the FD portion 210 of the rectangular region 310, and a transfer gate electrode 312 is provided between the photodiode (PD) 200 and the FD portion 210, and a contact is made at the end of the transfer gate electrode 312. 313 is provided.

また、屈曲帯状領域320には、順番にリセットゲート電極321、増幅ゲート電極322、アドレスゲート電極323が設けられ、各ゲート電極321、322、323の端部には、それぞれコンタクト324、325、326が設けられている。FD部210のコンタクト311と増幅ゲート電極322のコンタクト325は画素内金属配線によって接続される。
また、リセットゲート電極321と増幅ゲート電極322との間には、リセット用のVddに接続されるコンタクト327が設けられ、屈曲帯状領域320の端部には垂直信号線260に接続されるコンタクト328が設けられている。
Further, in the bent band region 320, a reset gate electrode 321, an amplification gate electrode 322, and an address gate electrode 323 are provided in order, and contacts 324, 325, and 326 are provided at end portions of the gate electrodes 321, 322, and 323, respectively. Is provided. The contact 311 of the FD portion 210 and the contact 325 of the amplification gate electrode 322 are connected by an intra-pixel metal wiring.
Further, a contact 327 connected to the reset Vdd is provided between the reset gate electrode 321 and the amplification gate electrode 322, and a contact 328 connected to the vertical signal line 260 is provided at an end of the bent band region 320. Is provided.

また、図4は図3よりも上層の金属配線とそれらの間のコンタクトを活性領域とともに示している。本例において金属配線は3層あり、第1層は画素内配線330として用いており、第2層は縦(垂直)方向の配線340として用いており、第3層は横(水平)方向の配線350として用いている。
これらの金属配線330、340、350は、従来はフォトダイオード領域を避けるようにして配置されていたが、ここでは、フォトダイオードの上側(すなわち、照射面と反対側の面)にも配置されていることが大きく異なる。明らかに、配線がフォトダイオードを避ける従来の配線方法では、図示のようなサイズの画素はレイアウトできないものである。
FIG. 4 shows an upper layer metal wiring and a contact between them together with an active region. In this example, the metal wiring has three layers, the first layer is used as the intra-pixel wiring 330, the second layer is used as the vertical (vertical) wiring 340, and the third layer is in the horizontal (horizontal) direction. The wiring 350 is used.
These metal wirings 330, 340, and 350 are conventionally arranged so as to avoid the photodiode region, but here, they are also arranged on the upper side of the photodiode (that is, the surface opposite to the irradiation surface). It is very different. Obviously, in the conventional wiring method in which the wiring avoids the photodiode, the pixel having the size as shown in the figure cannot be laid out.

図5は、本実施の形態による裏面照射型CMOSイメージセンサにおける素子構造を示す断面図であり、撮像画素部の1つの画素400と周辺回路部に設けられる1つのMOSトランジスタ500の構造を示している。なお、図5では、図中上方が照射面(裏面)側、下方が配線面(表面)側となっている。
このCMOSイメージセンサは、基板支持材(ガラス樹脂等)600上に設けられたシリコン酸化膜層610の内部に上述した3層の金属配線330、340、350を設けたものであり、このシリコン酸化膜層610の上に設けられたシリコン層(N型シリコン基板)620に上述した画素400とMOSトランジスタ500が設けられている。
なお、図5は概略的な構成を示しており、ここでは素子構造の概略を説明し、詳細は図6を用いて後述する。
FIG. 5 is a cross-sectional view showing an element structure in the backside illuminated CMOS image sensor according to the present embodiment, and shows the structure of one pixel 400 in the imaging pixel portion and one MOS transistor 500 provided in the peripheral circuit portion. Yes. In FIG. 5, the upper side in the drawing is the irradiation surface (back surface) side, and the lower side is the wiring surface (front surface) side.
In this CMOS image sensor, the above-described three layers of metal wirings 330, 340, and 350 are provided inside a silicon oxide film layer 610 provided on a substrate support material (glass resin or the like) 600. The pixel 400 and the MOS transistor 500 described above are provided on a silicon layer (N-type silicon substrate) 620 provided on the film layer 610.
FIG. 5 shows a schematic configuration. Here, an outline of the element structure will be described, and details will be described later with reference to FIG.

画素400は、シリコン層620を貫通する状態で形成されたP型ウエル領域410A、410Bの中間部にシリコン層620を貫通する状態でフォトダイオード420を設けたものである。
そして、一方のP型ウエル領域410Aには、上述したFD部210が設けられ、フォトダイオード420とFD部210との中間に位置するシリコン酸化膜層610の内部には、上述した転送ゲート電極312が設けられている。
また、MOSトランジスタ500は、N型シリコン層620のシリコン酸化膜層610側の領域にP型ウエル領域510を設け、このP型ウエル領域510にソース/ドレイン(S/D)520A、520Bを設けるとともに、シリコン酸化膜層610側にゲート電極(ポリシリコン膜)530を設けたものである。
In the pixel 400, a photodiode 420 is provided in a state of penetrating the silicon layer 620 in an intermediate portion of the P-type well regions 410A and 410B formed in a state of penetrating the silicon layer 620.
One P-type well region 410A is provided with the above-described FD portion 210, and the transfer gate electrode 312 described above is disposed inside the silicon oxide film layer 610 located between the photodiode 420 and the FD portion 210. Is provided.
In the MOS transistor 500, a P-type well region 510 is provided in a region of the N-type silicon layer 620 on the silicon oxide film 610 side, and source / drain (S / D) 520A and 520B are provided in the P-type well region 510. In addition, a gate electrode (polysilicon film) 530 is provided on the silicon oxide film layer 610 side.

また、N型シリコン層620の上にはP+型領域630が設けられ、その上層にシリコン酸化膜(SiO2 )640が設けられている。また、さらにシリコン酸化膜640の上層には、アルミ等の遮光膜650が設けられ、この遮光膜650には、フォトダイオード420の受光領域に対応する開口部650Aが形成されている。
なお、図では省略するが、黒レベル検出用の画素は、図5に示す画素400と同様の素子構造に形成されているが、その受光領域には遮光膜650の開口部650Aが形成されておらず、受光のない状態の信号電荷を黒レベル基準信号として出力するようになっている。
A P + type region 630 is provided on the N-type silicon layer 620, and a silicon oxide film (SiO2) 640 is provided thereon. Further, a light shielding film 650 made of aluminum or the like is provided above the silicon oxide film 640, and an opening 650A corresponding to the light receiving region of the photodiode 420 is formed in the light shielding film 650.
Although not shown in the drawing, the black level detection pixel has the same element structure as that of the pixel 400 shown in FIG. 5, but an opening 650A of the light shielding film 650 is formed in the light receiving region. The signal charge without light reception is output as a black level reference signal.

また、このような遮光膜650の上層には、パッシベーション層としてのシリコン窒化膜(SiN)660が設けられ、さらにその上層には、撮像画素部に対応する領域に色フィルタ670およびマイクロレンズ680がオンチップ構造で配置されている。
なお、このようなCMOSイメージセンサを構成するウェーハは、シリコン層620の部分が例えば10μm程度の膜厚になるようにCMP(化学機械研磨)によって研磨している。
光の周波数特性上、望ましい膜厚の範囲としては、可視光に対して5μm〜15μm、赤外光に対して15μm〜50μm、紫外域に対して3μm〜7μmである。
また、遮光膜650は、配線と異なり、光学的な要素だけを考慮してレイアウトできる。そして、マイクロレンズ680からフォトダイオード420までにある金属層は、この遮光膜650だけであること、ならびに、この遮光膜650のフォトダイオード420からの高さがシリコン酸化膜640の厚さ、例えば0.5μm程度と低いことから、上述した従来例と異なり、金属配線での蹴られによる集光の制限を無くすことができる。
Further, a silicon nitride film (SiN) 660 as a passivation layer is provided above the light shielding film 650, and further, a color filter 670 and a microlens 680 are provided in an area corresponding to the imaging pixel portion above the light shielding film 650. Arranged in an on-chip structure.
The wafer constituting such a CMOS image sensor is polished by CMP (chemical mechanical polishing) so that the silicon layer 620 has a thickness of, for example, about 10 μm.
In terms of the frequency characteristics of light, desirable film thickness ranges are 5 μm to 15 μm for visible light, 15 μm to 50 μm for infrared light, and 3 μm to 7 μm for the ultraviolet region.
Further, unlike the wiring, the light shielding film 650 can be laid out in consideration of only optical elements. The metal layer from the microlens 680 to the photodiode 420 is only the light shielding film 650, and the height of the light shielding film 650 from the photodiode 420 is the thickness of the silicon oxide film 640, for example, 0. Since it is as low as about 5 μm, unlike the above-described conventional example, it is possible to eliminate the limitation of light collection due to kicking by the metal wiring.

図6は、上述したN型シリコン層620内のウエル構造をやや詳細に示す断面図である。なお、図6に示す素子構造は、図5とは反対に図中上方が配線面(表面)側、下方が照射面(裏面)側となっている。また、図5と共通する要素については同一符号を付して説明は省略する。
周辺回路部のMOSトランジスタ500については、図5と同様の内容を示しているが、図示のようにN型シリコン層(シリコン基板)620には、低濃度のN−型を用いている。
一方、撮像画素部の画素400については、図5の内容に追加して転送トランジスタ以外のMOSトランジスタ430(すなわち、本例では増幅トランジスタ、リセットトランジスタ、またはアドレストランジスタ)を示している。
FIG. 6 is a cross-sectional view showing the well structure in the N-type silicon layer 620 described above in some detail. 6, the element structure shown in FIG. 6 is on the wiring surface (front surface) side and the lower side is the irradiation surface (back surface) side, contrary to FIG. In addition, elements that are the same as those in FIG.
The MOS transistor 500 in the peripheral circuit portion shows the same contents as in FIG. 5, but a low concentration N-type is used for the N-type silicon layer (silicon substrate) 620 as shown.
On the other hand, for the pixel 400 in the imaging pixel portion, a MOS transistor 430 other than the transfer transistor (that is, an amplification transistor, a reset transistor, or an address transistor in this example) is shown in addition to the contents of FIG.

上述のように画素400は、シリコン層620を貫通する状態で深いP型ウエル領域410A、410Bが設けられ、その中間部にシリコン層620を貫通する状態でフォトダイオード420が設けられている。
フォトダイオード420は、照射面側の浅いP+型層420A(P+型領域630の一部)と、その内部のN−型層420B(シリコン層620の一部)と、配線面側の深いP−型ウエル領域420Cから構成されており、配線面側のP−ウエル領域420CにFD部210および転送トランジスタ220が形成されている。
また、N−型層420Bが光電変換領域であり、面積が小さく濃度が薄いために、完全空乏化している。
As described above, the pixel 400 includes the deep P-type well regions 410A and 410B penetrating the silicon layer 620 and the photodiode 420 penetrating the silicon layer 620 in the middle thereof.
The photodiode 420 includes a shallow P + type layer 420A (a part of the P + type region 630) on the irradiation surface side, an N− type layer 420B (a part of the silicon layer 620) therein, and a deep P− on the wiring surface side. The FD portion 210 and the transfer transistor 220 are formed in the P-well region 420C on the wiring surface side.
Further, the N− type layer 420B is a photoelectric conversion region, and is completely depleted because the area is small and the concentration is low.

そして、このN−型層420BとP−型ウエル領域420Cの境界部の一部には、信号電荷を蓄積するN+型領域440が形成されている。また、このN+型領域440に隣接して配線面側には、埋め込みフォトダイオードとするためのP+型領域450が設けられている。
信号電荷は、転送トランジスタ220の作動によってFD部210のN+型領域に転送される。また、転送トランジスタ220がオフの状態では、フォトダイオード420側とFD部210側のN+型領域は、中間のP−型ウエル領域420Cによって電気的に分離されている。
また、転送トランジスタ220以外のMOSトランジスタ430は、深いP型ウエル領域410Aに通常通り形成されており、P型ウエル領域410A内にN+型のソース/ドレイン領域431、432を形成し、その上層にゲート電極433を形成したものである。
An N + type region 440 for accumulating signal charges is formed at a part of the boundary between the N− type layer 420B and the P− type well region 420C. Further, a P + type region 450 for forming a buried photodiode is provided adjacent to the N + type region 440 on the wiring surface side.
The signal charge is transferred to the N + type region of the FD unit 210 by the operation of the transfer transistor 220. When the transfer transistor 220 is off, the N + type regions on the photodiode 420 side and the FD portion 210 side are electrically separated by an intermediate P− type well region 420C.
The MOS transistors 430 other than the transfer transistor 220 are normally formed in the deep P-type well region 410A. N + type source / drain regions 431 and 432 are formed in the P-type well region 410A, and the upper layers thereof are formed. A gate electrode 433 is formed.

次に、以上のような構成のCMOSイメージセンサの製造方法について説明する。
図7〜図10は、本例におけるCMOSイメージセンサの製造プロセスを示す断面図である。
(1)素子分離、ウエル形成
まず、薄膜化する前のシリコン基板(シリコン層630)に素子分離領域や各種ウエル領域を形成する。ここで、上述のように画素部分には深いP型ウエル領域、周辺回路部分には浅いP型ウエル領域とN型ウエル領域を形成する。
Next, a method for manufacturing a CMOS image sensor having the above configuration will be described.
7 to 10 are cross-sectional views showing the manufacturing process of the CMOS image sensor in this example.
(1) Element isolation and well formation First, an element isolation region and various well regions are formed on a silicon substrate (silicon layer 630) before thinning. Here, as described above, a deep P-type well region is formed in the pixel portion, and a shallow P-type well region and an N-type well region are formed in the peripheral circuit portion.

(2)各種トランジスタ、配線、PAD形成
図7(A)(B)に示すように、従来のCMOSイメージセンサのプロセスと同様の工程を用いて、各種MOSトランジスタやアルミ配線、電極PAD等を形成するが、本例では、MOSトランジスタのゲートまたは活性領域を用いてステッパの位置合わせ用のマークを形成する。
なお、本願に先行する提案として、後工程で裏面のステッパ合わせを行うため、この段階でウェーハにトレンチ(溝)を形成し、そこにタングステンまたはアルミニウム等を埋め込んでマークを作る方法が提案されていた。この方法では、基板の深いところ、裏面から近いところに合わせマークを作ることができるが、その部分から金属原子などの不純物が基板に入りやすい。その場合、ある確率で画素に欠陥が生じ、その固体撮像素子で写した画像に白い点が現れてしまうという課題があった。
(2) Various transistors, wiring, and PAD formation As shown in FIGS. 7A and 7B, various MOS transistors, aluminum wiring, electrode PAD, and the like are formed using the same processes as those of the conventional CMOS image sensor. In this example, however, a stepper alignment mark is formed using the gate or active region of the MOS transistor.
As a proposal preceding this application, a method for forming a mark by forming a trench in the wafer at this stage and embedding tungsten, aluminum, or the like in this stage is proposed in order to perform backside stepper alignment in a later process. It was. In this method, a mark can be formed at a deep position of the substrate and a position close to the back surface, but impurities such as metal atoms easily enter the substrate from the portion. In that case, there is a problem that a pixel is defective with a certain probability, and a white dot appears in an image captured by the solid-state imaging device.

そこで、本実施の形態においては、MOSトランジスタ用に形成するゲート電極(ポリシリコン)または活性領域を流用して、位置合わせ用のマーク700を作成する。特に活性領域では、コバルトシリサイドなどのシリサイド(金属とシリコンの化合物)で形成するとなお良い。
また、この場合、フォトダイオード上(照射面と反対面)にシリサイド膜を残すことができる。このようにすれば、シリサイド膜を除去する工程を省略でき、工程を簡素化することができる。また、その除去工程に起因する欠陥(撮影画像上、白い点が現れる)を無くすことができる。
また、裏面から入射した光がフォトダイオードを透過して配線で反射され、別のフォトダイオードで光電変換されてしまうことを防止できる。
Therefore, in this embodiment, the alignment mark 700 is created by diverting the gate electrode (polysilicon) or active region formed for the MOS transistor. In particular, in the active region, it is more preferable to form a silicide (a compound of metal and silicon) such as cobalt silicide.
In this case, the silicide film can be left on the photodiode (the surface opposite to the irradiation surface). In this way, the process of removing the silicide film can be omitted, and the process can be simplified. Further, defects (white dots appear on the photographed image) resulting from the removal process can be eliminated.
Further, it is possible to prevent light incident from the back surface from being transmitted through the photodiode and reflected by the wiring and being photoelectrically converted by another photodiode.

(3)基板支持材貼り付け
図7(C)に示すように、ガラス材を配線面に流し込み、基板支持材(詳しくは一層目の基板支持材)600Aを作成する。なお、この際、PAD722の形成位置上にはレジスト710をパターニングしている。
(4)PAD、コンタクト形成
コンタクトは、図8(D)に示すように、レジスト710を除去して基板支持材600Aに穴711を開け、表面処理を行うことにより、接続用のバンプを露出させる。そして、図8(E)に示すように、コンタクト用の金属を穴711および基板支持材600Aの表面に導入し、コンタクト720を形成するとともに、図8(F)に示すように、基板支持材600Aの表面の金属膜をパターニングして電極PAD721を形成する。
この後、図9(G)に示すように、配線側の平坦化のため二層目の基板支持材600Bを一層目の基板支持材600Aの上に流し込み、研磨する。
(3) Attaching Substrate Support Material As shown in FIG. 7C, a glass material is poured into the wiring surface to create a substrate support material (specifically, a first-layer substrate support material) 600A. At this time, a resist 710 is patterned on the position where the PAD 722 is formed.
(4) PAD, contact formation As shown in FIG. 8D, the contact is exposed by removing the resist 710, opening a hole 711 in the substrate support material 600A, and performing a surface treatment. . Then, as shown in FIG. 8E, a contact metal is introduced into the holes 711 and the surface of the substrate support member 600A to form the contact 720, and as shown in FIG. 8F, the substrate support member is formed. An electrode PAD721 is formed by patterning the metal film on the surface of 600A.
Thereafter, as shown in FIG. 9G, the second-layer substrate support member 600B is poured onto the first-layer substrate support member 600A for polishing on the wiring side and polished.

(5)裏面研磨
この後、ウェーハを裏返し、裏面をシリコン層630の膜厚が10μm程度になるまでCMPによって研磨する。
(6)裏面シリコン酸化膜形成
例えばCVD(chemical vapor deposition )によって、薄いシリコン酸化膜(SiO2 )640A(シリコン酸化膜640の一部)を例えば10nm程度の膜厚で形成する。
ここで、図9(G)に示すように、配線層側に形成したゲート層またはシリサイドを付加した活性領域により形成した位置合わせマーク700に合わせて、裏面シリコン酸化膜640に位置合わせマーク730を形成する。これは、シリコン酸化膜640Aをシリコン層630まで少し削るようにエッチングすることによって形成する。
なお、この裏面側の位置合わせマーク730の形成は、後述するように必ずしも必須ではないものである。
(5) Back surface polishing Thereafter, the wafer is turned over and the back surface is polished by CMP until the thickness of the silicon layer 630 becomes about 10 μm.
(6) Formation of backside silicon oxide film A thin silicon oxide film (SiO2) 640A (a part of the silicon oxide film 640) is formed to a thickness of, for example, about 10 nm by, for example, CVD (chemical vapor deposition).
Here, as shown in FIG. 9G, the alignment mark 730 is formed on the backside silicon oxide film 640 in alignment with the alignment mark 700 formed by the gate layer formed on the wiring layer side or the active region added with silicide. Form. This is formed by etching the silicon oxide film 640A so that the silicon layer 630 is slightly removed.
Note that the formation of the alignment mark 730 on the back side is not necessarily essential as will be described later.

(7)裏面p+インプラ
次に、シリコン酸化膜640を通して、シリコン酸化膜の界面が正孔で埋まるだけのボロンをイオン注入によって添加する。
なお、上述した本願に先行する提案では、ステッパの位置合わせは、上述のようにウェーハ表面に予め形成したトレンチによる位置合わせマークを使って行ったが、本例では、次のいずれかの方法で位置合わせを行うことできる。
(A)上記(2)で形成したゲート層または活性領域の位置合わせマーク700を用いる。
(B)上記(6)でシリコン酸化膜に形成した位置合わせマーク730を用いる。
したがって、(A)の方法を用いる場合には、(B)の位置合わせマーク730の形成を省略できる。
なお、(A)の方法で配線面(表面)側の位置合わせマーク700を検出するのには、波長0.61μm〜1.5μmの赤色光または近赤外線を用いると、検出効率を向上できる。
(8)裏面シリコン酸化膜形成
次に、CVDによって、残りのシリコン酸化膜640Bを例えば500nmの膜厚で形成する。
(7) Back surface p + implantation Next, boron is added by ion implantation through the silicon oxide film 640 so that the interface of the silicon oxide film is filled with holes.
In the above-mentioned proposal preceding the present application, the stepper is aligned using the alignment mark formed by the trench formed in advance on the wafer surface as described above. In this example, any of the following methods is used. Alignment can be performed.
(A) The gate layer or active region alignment mark 700 formed in (2) above is used.
(B) The alignment mark 730 formed on the silicon oxide film in (6) above is used.
Therefore, when the method (A) is used, the formation of the alignment mark 730 in (B) can be omitted.
In order to detect the alignment mark 700 on the wiring surface (front surface) side by the method (A), the detection efficiency can be improved by using red light or near infrared light having a wavelength of 0.61 μm to 1.5 μm.
(8) Formation of backside silicon oxide film Next, the remaining silicon oxide film 640B is formed to a thickness of, for example, 500 nm by CVD.

(9)裏面遮光膜形成
次に、アルミまたはタングステン等により、遮光膜650を従来と同様のCMOSプロセスで形成する。
このときの位置合わせは、上記(7)で説明した(A)または(B)の方法で行う。ここで、後工程で作成する色フィルタ、マイクロレンズに対する位置合わせマーク(図示せず)を作成する。
(10)パッシベーション膜形成
これはプラズマSiN膜をCVDによって形成する(図9(H))。
(11)色フィルタ、マイクロレンズ(OCL)形成(図10(I))
(9) Back-side light-shielding film formation Next, the light-shielding film 650 is formed of aluminum or tungsten by a CMOS process similar to the conventional one.
The alignment at this time is performed by the method (A) or (B) described in (7) above. Here, an alignment mark (not shown) for a color filter and a microlens to be created in a later process is created.
(10) Passivation film formation In this process, a plasma SiN film is formed by CVD (FIG. 9H).
(11) Color filter and microlens (OCL) formation (FIG. 10I)

以上の(9)〜(11)は、従来と同様の方法で行う。
ただし、ステッパ位置合わせは、(9)で形成したマークを用いて行う。また、遮光膜を用いない場合は、(7)で説明した(A)または(B)の方法を用いて行う。
(12)PAD面露出
次に、図10(J)に示すように、上述した電極PAD721上の二層目の基板支持材600Bをエッチングで取り除き、電極PAD721を露出させる。この際に、例えばマイクロレンズの位置合わせや、素子チップの平坦化のため二層目の基板支持材600Bを研磨して所望の厚さに調整する。また、電極PAD721部分が受光面の反対側にあるので、実装は直接基板に取りつけることも可能である。
The above (9) to (11) are performed by a method similar to the conventional method.
However, the stepper alignment is performed using the mark formed in (9). Further, when the light shielding film is not used, the method (A) or (B) described in (7) is used.
(12) PAD surface exposure Next, as shown in FIG. 10J, the second-layer substrate support member 600B on the electrode PAD721 described above is removed by etching to expose the electrode PAD721. At this time, for example, the second-layer substrate support member 600B is polished and adjusted to a desired thickness in order to align the microlenses and flatten the element chip. Further, since the electrode PAD721 portion is on the opposite side of the light receiving surface, the mounting can be directly attached to the substrate.

以上のように、本例によるCMOSイメージセンサの製造方法では、シリコン基板の配線層側にゲート層または活性領域によって位置合わせマークを形成し、裏面の遮光膜または色フィルタまたはオンチップレンズの位置合わせに用いる、または配線層側のゲート層、シリサイドを有する活性領域を基準に裏面に位置合わせマークを形成し、裏面の遮光膜または色フィルタまたはオンチップレンズの位置合わせに用いるようにした。
したがって、特別の工程で裏面用の位置合わせマークを作る必要がないので、工程が簡単になり、また、その部分から金属原子などの不純物が基板に入り、欠陥を生じることを防止できる。
As described above, in the manufacturing method of the CMOS image sensor according to the present example, the alignment mark is formed by the gate layer or the active region on the wiring layer side of the silicon substrate, and the alignment of the light shielding film on the back surface or the color filter or the on-chip lens is performed. The alignment mark is formed on the back surface with reference to the gate layer on the wiring layer side and the active region having silicide, and is used for the alignment of the light shielding film, color filter or on-chip lens on the back surface.
Therefore, since it is not necessary to make a backside alignment mark in a special process, the process is simplified, and impurities such as metal atoms can enter the substrate from that portion and prevent defects.

また、特に活性領域をコバルトサリサイド等のシリサイドで形成することで、裏面からのマークの検出が容易になる。また、裏面から配線側の合わせマークを確認する際に、波長0.61〜1.5μmの赤色光または近赤外線を用いることにより、マークの確認が容易になる。
また、フォトダイオード上の活性領域のシリサイドを除去しないことで、工程を減少、簡素化し、除去工程に伴う欠陥を少なくすることもでき、さらに、裏面から入射した光がフォトダイオードを透過して配線で反射され、別のフォトダイオードで光電変換されてしまうことを防止できる。
このような手法により、欠陥の少ない、特性の良い裏面照射型CMOSイメージセンサを少ない工程で作成することができる。
In particular, when the active region is formed of silicide such as cobalt salicide, it is easy to detect the mark from the back surface. Further, when confirming the alignment mark on the wiring side from the back surface, the confirmation of the mark is facilitated by using red light or near infrared light having a wavelength of 0.61 to 1.5 μm.
Also, by not removing the silicide in the active region on the photodiode, the process can be reduced and simplified, and defects associated with the removal process can be reduced. Further, the light incident from the back surface is transmitted through the photodiode and wired. , And photoelectric conversion by another photodiode can be prevented.
With such a method, a back-illuminated CMOS image sensor with few defects and good characteristics can be formed with a small number of steps.

また、本実施の形態例で作成される裏面照射型のCMOSイメージセンサには、基本的効果として以下のような利点がある。
まず、フォトダイオードが裏面から可視光を受光できるようにすることで従来のように受光面を考慮した配線の必要がなくなる。したがって、画素の配線の自由度が高くなり、画素の微細化を図ることができる。
また、フォトダイオードが裏面まで届いているので、吸収率の高い青色の感度が高くなり、また、フォトダイオードよりも深部で光電変換されることが無いので、それが原因の混色や黒レベルの誤検出がなくなる。
また、遮光膜、色フィルタ、オンチップレンズを受光面から低い位置に作成することができるので、感度の低下、混色、周辺減光の問題を解決することができる。
また、CMOSイメージセンサを、配線層の多い、進んだCMOSプロセスで作成することができる。
さらに、電極PADが受光面と反対側に配置されるので、受光面を上に向けた状態で、直接基板に実装することができる。
Further, the back-illuminated CMOS image sensor produced in this embodiment has the following advantages as basic effects.
First, by allowing the photodiode to receive visible light from the back surface, there is no need for wiring in consideration of the light receiving surface as in the prior art. Accordingly, the degree of freedom of pixel wiring is increased, and the pixel can be miniaturized.
In addition, since the photodiode reaches the back surface, the sensitivity of blue with high absorption rate is high, and since there is no photoelectric conversion deeper than the photodiode, it causes color mixing and black level errors. There is no detection.
In addition, since the light shielding film, the color filter, and the on-chip lens can be formed at a low position from the light receiving surface, the problems of sensitivity reduction, color mixing, and peripheral light reduction can be solved.
In addition, a CMOS image sensor can be formed by an advanced CMOS process with many wiring layers.
Furthermore, since the electrode PAD is disposed on the opposite side to the light receiving surface, it can be directly mounted on the substrate with the light receiving surface facing upward.

以上、本発明の具体的な実施例を説明したが、これは本発明の一例であって、本発明は種々の変更が可能である。
例えば、上述した製造工程で示した膜厚等の具体的数値や材質等は本発明を限定するものではないものとする。また、製造する固体撮像素子の構造としては、上記の例に限定されず、例えば画素の構成は、4つのMOSトランジスタによるものの他に、3つのMOSトランジスタによるものや、5つのMOSトランジスタによるものであってもよい。また、画素を駆動する配線構造等も上記の例に限定されないことはもちろんである。
As mentioned above, although the specific Example of this invention was described, this is an example of this invention, and this invention can be variously changed.
For example, specific numerical values such as film thickness and materials shown in the manufacturing process described above are not intended to limit the present invention. Further, the structure of the solid-state imaging device to be manufactured is not limited to the above example. For example, the configuration of the pixel is not only four MOS transistors but also three MOS transistors or five MOS transistors. There may be. Needless to say, the wiring structure for driving the pixels is not limited to the above example.

本発明の実施の形態例による裏面照射型CMOSイメージセンサの概要を模式的に示す平面図である。It is a top view which shows typically the outline | summary of the backside illumination type CMOS image sensor by the example of embodiment of this invention. 図1に示す裏面照射型CMOSイメージセンサの画素の構成を示す等価回路図である。FIG. 2 is an equivalent circuit diagram illustrating a configuration of a pixel of the backside illumination type CMOS image sensor illustrated in FIG. 1. 図1に示す裏面照射型CMOSイメージセンサの画素レイアウトの具体例を示す概略平面図である。It is a schematic plan view which shows the specific example of the pixel layout of the backside illumination type CMOS image sensor shown in FIG. 図1に示す裏面照射型CMOSイメージセンサの画素レイアウトの具体例を示す概略平面図である。It is a schematic plan view which shows the specific example of the pixel layout of the backside illumination type CMOS image sensor shown in FIG. 図1に示す裏面照射型CMOSイメージセンサにおける素子構造を示す断面図である。It is sectional drawing which shows the element structure in the backside illumination type CMOS image sensor shown in FIG. 図1に示す裏面照射型CMOSイメージセンサにおける素子構造をやや詳細に示す断面図である。It is sectional drawing which shows the element structure in the backside illumination type CMOS image sensor shown in FIG. 1 in some detail. 図1に示す裏面照射型CMOSイメージセンサの製造プロセスを示す断面図である。It is sectional drawing which shows the manufacturing process of the backside illumination type CMOS image sensor shown in FIG. 図1に示す裏面照射型CMOSイメージセンサの製造プロセスを示す断面図である。It is sectional drawing which shows the manufacturing process of the backside illumination type CMOS image sensor shown in FIG. 図1に示す裏面照射型CMOSイメージセンサの製造プロセスを示す断面図である。It is sectional drawing which shows the manufacturing process of the backside illumination type CMOS image sensor shown in FIG. 図1に示す裏面照射型CMOSイメージセンサの製造プロセスを示す断面図である。It is sectional drawing which shows the manufacturing process of the backside illumination type CMOS image sensor shown in FIG. 従来のCMOSイメージセンサにおける素子構造を示す断面図である。It is sectional drawing which shows the element structure in the conventional CMOS image sensor. 図11に示す裏面照射型の固体撮像素子におけるフォトダイオード部分の素子構造を示す断面図である。It is sectional drawing which shows the element structure of the photodiode part in the back surface irradiation type solid-state image sensor shown in FIG.

符号の説明Explanation of symbols

110……半導体チップ、112……撮像画素部、114……V選択手段、116……H選択手段、118……タイミングジェネレータ、120……S/H・CDS部、122……AGC部、124……A/D部、126……デジタルアンプ部、200、420……フォトダイオード、210……FD部、220……転送トランジスタ、230……リセットトランジスタ、240……増幅トランジスタ、250……選択(アドレス)トランジスタ、260……垂直信号線、400……画素、330、340、350……金属配線、410A、410B、510……P型ウエル領域、500……MOSトランジスタ、530……ゲート電極、600……基板支持材(ガラス樹脂等)、610……シリコン酸化膜層、620……シリコン層(N型シリコン基板)、630……P+型領域、640……シリコン酸化膜、650……遮光膜、650A……開口部、660……パッシベーション層(SiN)、670……色フィルタ、680……マイクロレンズ、700、730……位置合わせマーク。
DESCRIPTION OF SYMBOLS 110 ... Semiconductor chip, 112 ... Imaging pixel part, 114 ... V selection means, 116 ... H selection means, 118 ... Timing generator, 120 ... S / H * CDS part, 122 ... AGC part, 124 ... A / D section, 126 ... Digital amplifier section, 200, 420 ... Photodiode, 210 ... FD section, 220 ... Transfer transistor, 230 ... Reset transistor, 240 ... Amplification transistor, 250 ... Selection (Address) transistor, 260... Vertical signal line, 400... Pixel, 330, 340, 350... Metal wiring, 410 A, 410 B, 510. , 600... Substrate support material (glass resin, etc.) 610... Silicon oxide film layer 620... Silicon layer (N type) Recon substrate), 630... P + type region, 640... Silicon oxide film, 650... Shielding film, 650 A. , 700, 730... Alignment mark.

Claims (7)

半導体基板に、それぞれ光電変換素子と電界効果トランジスタを含む複数の画素を2次元アレイ状に配列した撮像画素部と、前記撮像画素部を駆動する駆動回路および前記撮像画素部から出力される画素信号を信号処理する信号処理回路を含む周辺回路部とを設け、前記撮像画素部の電界効果トランジスタを駆動する配線層が前記半導体基板の第1面側に形成され、前記光電変換素子の受光面が前記半導体基板の第2面側に配置され、前記半導体基板の第2面側に色フィルタおよびマイクロレンズの少なくとも一方が形成された固体撮像素子の製造方法であって、
前記半導体基板に第1面側から前記撮像画素部及び前記周辺回路部を形成する際に、前記半導体基板の第1面に、前記電界効果トランジスタ用の半導体金属化合物を形成した活性領域、または前記電界効果トランジスタ用のゲート電極を設けて、その一部を用いて第1の位置合わせマークを形成し、
その後、前記半導体基板の第1面の第1の位置合わせマークの上層に配線層を形成し、
その後、前記第1の位置合わせマークを前記半導体基板の第2面側から検出することにより前記半導体基板の第2面側に第2の位置合わせマークを形成し、
その後、前記半導体基板の第2面に、前記第2の位置合わせマークを用いて位置合わせを行って前記色フィルタおよび前記マイクロレンズの少なくとも一方を形成する、
ことを特徴とする固体撮像素子の製造方法。
An imaging pixel unit in which a plurality of pixels each including a photoelectric conversion element and a field effect transistor are arranged in a two-dimensional array on a semiconductor substrate, a driving circuit for driving the imaging pixel unit, and a pixel signal output from the imaging pixel unit A peripheral circuit portion including a signal processing circuit for signal processing, a wiring layer for driving a field effect transistor of the imaging pixel portion is formed on the first surface side of the semiconductor substrate, and a light receiving surface of the photoelectric conversion element is A method of manufacturing a solid-state imaging device, which is disposed on the second surface side of the semiconductor substrate and at least one of a color filter and a microlens is formed on the second surface side of the semiconductor substrate,
When forming the imaging pixel unit and the peripheral circuit unit from the first surface side on the semiconductor substrate, an active region in which the semiconductor metal compound for the field effect transistor is formed on the first surface of the semiconductor substrate, or Providing a gate electrode for a field effect transistor, and forming a first alignment mark using a part of the gate electrode;
Thereafter, a wiring layer is formed above the first alignment mark on the first surface of the semiconductor substrate,
Thereafter, the second alignment mark is formed on the second surface side of the semiconductor substrate by detecting the first alignment mark from the second surface side of the semiconductor substrate,
Thereafter, the second surface of the semiconductor substrate is aligned using the second alignment mark to form at least one of the color filter and the microlens.
A method for manufacturing a solid-state imaging device.
前記半導体基板はシリコン基板であり、前記半導体金属化合物はコバルトとシリコンの化合物によるシリサイド膜であることを特徴とする請求項1記載の固体撮像素子の製造方法。2. The method of manufacturing a solid-state imaging device according to claim 1, wherein the semiconductor substrate is a silicon substrate, and the semiconductor metal compound is a silicide film made of a compound of cobalt and silicon. 前記半導体基板はシリコン基板であり、前記ゲート電極はポリシリコン膜であることを特徴とする請求項1記載の固体撮像素子の製造方法。2. The method of manufacturing a solid-state imaging device according to claim 1, wherein the semiconductor substrate is a silicon substrate, and the gate electrode is a polysilicon film. 前記半導体基板の第2面側から所定波長の検出光を照射することにより、前記第1の位置合わせマークを検出することを特徴とする請求項1記載の固体撮像素子の製造方法。2. The method of manufacturing a solid-state imaging device according to claim 1, wherein the first alignment mark is detected by irradiating detection light having a predetermined wavelength from the second surface side of the semiconductor substrate. 前記検出光は、赤色光または近赤外光であることを特徴とする請求項4記載の固体撮像素子の製造方法。The method of manufacturing a solid-state imaging device according to claim 4, wherein the detection light is red light or near infrared light. 前記半導体基板の第1面側である上層部に前記撮像画素部と前記周辺回路部の各素子を形成し、前記第1の位置合わせマークを形成する第1の工程と、Forming a first alignment mark by forming each element of the imaging pixel unit and the peripheral circuit unit in an upper layer part on the first surface side of the semiconductor substrate;
前記半導体基板の上面に絶縁膜および配線膜を含む前記撮像画素部と前記周辺回路部の配線層を形成する第2の工程と、A second step of forming a wiring layer of the imaging pixel unit and the peripheral circuit unit including an insulating film and a wiring film on an upper surface of the semiconductor substrate;
前記配線層の上面に基板支持材を設ける第3の工程と、A third step of providing a substrate support on the upper surface of the wiring layer;
前記半導体基板の下層部を除去して上層膜を残すことにより薄膜半導体層を形成する第4の工程と、A fourth step of forming a thin film semiconductor layer by removing a lower layer portion of the semiconductor substrate and leaving an upper film;
前記薄膜半導体層の下面に透明絶縁膜を形成し、前記第2の位置合わせマークを形成する第5の工程と、A fifth step of forming a transparent insulating film on the lower surface of the thin film semiconductor layer and forming the second alignment mark;
前記透明絶縁膜の下面に前記色フィルタおよび前記マイクロレンズの少なくとも一方を形成する第6の工程と、A sixth step of forming at least one of the color filter and the microlens on the lower surface of the transparent insulating film;
を有することを特徴とする請求項1記載の固体撮像素子の製造方法。The method for manufacturing a solid-state imaging device according to claim 1, wherein:
前記第2の位置合わせマークは、前記第5の工程で前記薄膜半導体層の下面に透明絶縁膜を形成し、この透明絶縁膜を部分的に除去することにより、前記薄膜半導体層の下面に前記第2の位置合わせマークを形成することを特徴とする請求項6記載の固体撮像素子の製造方法。The second alignment mark is formed on the lower surface of the thin film semiconductor layer by forming a transparent insulating film on the lower surface of the thin film semiconductor layer in the fifth step and partially removing the transparent insulating film. The method for manufacturing a solid-state imaging device according to claim 6, wherein a second alignment mark is formed.
JP2005225212A 2005-08-03 2005-08-03 Manufacturing method of solid-state imaging device Expired - Lifetime JP4123446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225212A JP4123446B2 (en) 2005-08-03 2005-08-03 Manufacturing method of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225212A JP4123446B2 (en) 2005-08-03 2005-08-03 Manufacturing method of solid-state imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002076081A Division JP3722367B2 (en) 2002-03-19 2002-03-19 Manufacturing method of solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2006019757A JP2006019757A (en) 2006-01-19
JP4123446B2 true JP4123446B2 (en) 2008-07-23

Family

ID=35793648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225212A Expired - Lifetime JP4123446B2 (en) 2005-08-03 2005-08-03 Manufacturing method of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4123446B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006581B2 (en) 2006-06-01 2012-08-22 ルネサスエレクトロニクス株式会社 Solid-state imaging device
KR100791336B1 (en) 2006-08-10 2008-01-07 삼성전자주식회사 Method for fabricating image sensor
JP4586082B2 (en) * 2008-04-04 2010-11-24 富士フイルム株式会社 Back-illuminated image sensor and manufacturing method thereof
US8017426B2 (en) * 2008-07-09 2011-09-13 Omnivision Technologies, Inc. Color filter array alignment mark formation in backside illuminated image sensors
JP5182143B2 (en) 2009-02-19 2013-04-10 ソニー株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2006019757A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP3722367B2 (en) Manufacturing method of solid-state imaging device
US9455293B2 (en) X-Y address type solid state image pickup device and method of producing the same
JP4285432B2 (en) Solid-state imaging device and manufacturing method thereof
JP4123446B2 (en) Manufacturing method of solid-state imaging device
JP4987749B2 (en) Manufacturing method of solid-state imaging device
JP4124190B2 (en) XY address type solid-state imaging device
JP5534081B2 (en) Manufacturing method of solid-state imaging device
JP4987748B2 (en) XY address type solid-state imaging device
JP5252100B2 (en) Solid-state image sensor
JP2012099843A (en) Solid state image sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R151 Written notification of patent or utility model registration

Ref document number: 4123446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term