JP4121424B2 - 2 Dual-polarized antenna - Google Patents

2 Dual-polarized antenna Download PDF

Info

Publication number
JP4121424B2
JP4121424B2 JP2003181607A JP2003181607A JP4121424B2 JP 4121424 B2 JP4121424 B2 JP 4121424B2 JP 2003181607 A JP2003181607 A JP 2003181607A JP 2003181607 A JP2003181607 A JP 2003181607A JP 4121424 B2 JP4121424 B2 JP 4121424B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
antenna
band
frequency
polarized wave
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2003181607A
Other languages
Japanese (ja)
Other versions
JP2005020301A (en )
Inventor
徹 坂本
Original Assignee
マスプロ電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は,主にマイクロ波帯の衛星通信や無線通信に用いられる2偏波共用アンテナに関し,詳しくはそのアンテナ構造に関する。 The present invention mainly relates to 2 Dual Polarized antenna used for satellite communication and radio communication in a microwave band and, more particularly, to its antenna structure.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
従来の円偏波と直線偏波の2偏波共用アンテナとして,円偏波用アンテナのパッチと直線偏波用アンテナのエレメントとを共通の接地導体に対して同じ厚さの誘電体上に並べて配置したマイクロストリップアンテナや,それぞれの偏波を受信する2つのマイクロストリップアンテナを並べて構成されたものがあった。 As 2 Dual-polarized antenna of a conventional circularly polarized wave and linearly polarized wave, side by side in the same thickness of the dielectric on the patch and the linear polarized wave antenna for circularly polarized wave antenna element to a common ground conductor arranged and microstrip antenna, there is one configured by arranging two microstrip antennas for receiving respective polarization. (例えば特許文献1(図1),(図6)参照) (For example, Patent Document 1 (FIG. 1), (Fig. 6) reference)
【0003】 [0003]
【特許文献】 [Patent Document]
特開平5−291816号公報【0004】 JP-A-5-291816 [0004]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
自動車などの移動体8で,衛星23から送信される放送の電波を受信する場合において,衛星23から送信された電波がビル28やトンネルなどにより遮られる地域ではその電波を受信できなくなる。 In the moving body 8, such as an automobile, in a case of receiving a radio wave of a broadcast transmitted from a satellite 23, radio waves transmitted from the satellite 23 can not receive the radio waves in the area being shielded by buildings 28 and tunnel. この対策として,衛星23からの電波を地上無線設備24で受信して地上無線設備24から再送信したり,衛星23からの電波を地上無線設備24で受信して周波数変換等の処理後,再送信するギャップフィラーのシステムが開発されている。 As a countermeasure, or retransmitted from a ground radio equipment 24 receives radio waves from a satellite 23 in terrestrial radio equipment 24, after the processing such as frequency conversion by receiving radio waves with terrestrial radio equipment 24 from the satellite 23, re the system of transmission to the gap filler have been developed.
【0005】 [0005]
次にこのシステムの一例について述べる。 Next we described an example of this system. 衛星23は2.6GHz帯の円偏波の電波と,12GHz帯の直線偏波の電波の2種類の電波を送信している。 Satellite 23 is transmitting a radio wave of a circularly polarized wave of 2.6GHz band, two kinds of radio wave linearly polarized waves of 12GHz band.
地上無線設備24では,衛星から送信された2.6GHz帯の円偏波の電波を受信して増幅をした後,2.6GHz帯の垂直偏波で再送信したり,衛星23から送信された12GHz帯の直線偏波の電波を受信して増幅,周波数変換その他の信号処理をした後,2.6GHz帯の垂直偏波で再送信する。 In terrestrial radio equipment 24, after amplification by receiving circularly polarized waves of transmitted 2.6GHz band from a satellite, or retransmitted in vertically polarized 2.6GHz band, transmitted from the satellite 23 amplified receive linearly polarized waves of 12GHz band, after frequency conversion other signal processing, retransmits at vertical polarization of 2.6GHz band.
このようなシステムでは,移動体8は衛星23から直接送信される2.6GHz帯の電波と地上無線設備24から再送信される2.6GHz帯の垂直偏波の電波の両方を受信できるアンテナが必要となる。 In such a system, the moving body 8 antenna capable of receiving both radio waves of vertically polarized wave of 2.6GHz band is retransmitted from the radio wave and the ground radio equipment 24 of the 2.6GHz band transmitted directly from satellites 23 is required.
しかし前記従来例のアンテナでは,直線偏波用のアンテナの放射エレメントの電界方向が接地導体に平行であるため垂直偏波の信号の受信が不能となる方向があった。 However in the conventional example of the antenna, the electric field direction of the radiating elements of the antenna for linearly polarized waves there is a direction in which reception is disabled for vertically polarized signals for parallel to the ground conductor. また,円偏波用,垂直偏波用それぞれのアンテナを別々に設けると,アンテナの占める面積が増え,小型化ができないという問題もあった。 Also, circularly polarized, providing a respective antenna for vertically polarized waves separately, increasing the area occupied by the antenna, there is a problem that can not be miniaturized.
【0006】 [0006]
本発明は,こうした問題点に鑑みなされたものであり,その目的は,上空の高い位置にある衛星から送信される円偏波の電波と,衛星に比べて低い位置に複数設置される地上無線設備から送信される垂直偏波の電波を効率良く受信することができる2偏波共用アンテナを提供することにある。 The present invention has been made in view of the above problems, its object is ground are more established and circularly polarized radio waves transmitted from the satellites in high over position, to a position lower than the satellite radio to provide a 2-polarization shared antenna can efficiently receive radio waves vertical polarization sent equipment or al.
【0007】 [0007]
【課題を解決するための手段】 In order to solve the problems]
上記目的を達成するためになされた本発明は,第1の円偏波用のアンテナと第2の直線偏波用のアンテナとを備えた2偏波共用アンテナにおいて, The present invention has been made in order to achieve the above object, in 2 Dual Polarized antenna with a first circular antenna for polarized waves and a second antenna for linearly polarized waves,
前記第1の円偏波用のアンテナは,パッチと接地導体が第2の直線偏波用のアンテナの給電線の外部導体で接続されたマイクロストリップアンテナで構成され, The first circular antenna for polarized waves, the patch and the ground conductor consists of a microstrip antenna connected with the outer conductor of the second antenna feed line for the linearly polarized waves,
前記第2の直線偏波用のアンテナは,前記第1の円偏波用のアンテナの接地導体に対して略垂直に立設され,2つ以上の異なる周波数帯で動作する放射エレメントで構成され, It said second antenna for linearly polarized waves is erected substantially perpendicularly to the ground conductor of the first circular antenna for polarized waves, which consists of a radiating element operating in two or more different frequency bands ,
しかも,該放射エレメントが動作する一つの周波数帯は,前記第1の円偏波用のアンテナの周波数帯と同一であることを特徴とする。 Moreover, one frequency band to operate the radiation element is characterized in that the first circle is identical to the frequency band of the antenna for polarized waves.
【0012】 [0012]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
以下に,本発明を具体化した実施形態の1例を,図面を基に詳細に説明する。 Hereinafter, one example of an embodiment embodying the present invention will be described in detail based on the drawings.
図1は本発明の前提となる参考例の 2偏波共用アンテナ1の斜視図を示し,図2はその断面図である。 Figure 1 shows a 2 perspective view of a dual-polarized antenna 1 of Reference Example as a premise of the present invention, FIG. 2 is a sectional view thereof.
本参考例の 2偏波共用アンテナ1 は,接地導体4,誘電体15,パッチ2から成る第1の円偏波用のマイクロストリップアンテナ101と,前記パッチ2と接地導体4が,第2の直線偏波用のアンテナ102の給電線19の外部導体5で接続されている第2の直線偏波用のアンテナ102とで構成される。 2 Dual-polarized antenna 1 of this reference example, a ground conductor 4, the dielectric 15, the first micro-strip antenna 101 for circularly polarized waves comprising a patch 2, the patch 2 and the ground conductor 4, the second constituted by the antenna 102 of the second linear for polarized waves are connected by the outer conductor 5 of the feed line 19 of the antenna 102 for linear polarization.
【0013】 [0013]
第1の円偏波用のマイクロストリップアンテナ101においては,前記パッチ2における高周波信号の電圧分布は前記パッチ2の中央付近が最も小さくこの部分は電圧分布の節になっている。 In microstrip antenna 101 of the first circle for polarization, the voltage distribution of the high-frequency signal in the patch 2 is the smallest this portion near the center of the patch 2 is in the section of the voltage distribution. このため,前記パッチ2の中央付近は接地導体に短絡させても前記第1のマイクロストリップアンテナ101の特性には影響を与えない。 Thus, near the center of the patch 2 do not affect the characteristics of the first micro-strip antenna 101 be short-circuited to the ground conductor. この性質を利用して,本発明では前記パッチ2の中央付近と接地導体を第2の直線偏波用のアンテナ102の給電線19の外部導体5で接続している。 By utilizing this property, in the present invention are connected with the outer conductor 5 of the feed line 19 of the antenna 102 for the second linearly polarized wave near the center and the ground conductor of the patch 2.
直線偏波用のアンテナ102の給電線19の中心導体7には前記第2の直線偏波用アンテナ102の放射エレメント3が接続されている。 Radiating element 3 of the second linearly polarized wave antenna 102 is connected to the central conductor 7 of the feed line 19 of the antenna 102 for linear polarization. このような構造により,前記第2の直線偏波用アンテナ102は前記パッチ2を接地導体の一部として利用している。 This structure, the second linearly polarized wave antenna 102 utilizes the patch 2 as a part of the ground conductor.
【0014】 [0014]
第1の円偏波用アンテナ101について述べる。 Described for the first circularly polarized antenna 101. 衛星23から送信された2.6GHz帯の円偏波の電波は,接地導体4,誘電体15,パッチ2で構成される第1の円偏波用アンテナ101で受信され,給電線18で移動体8に備えられた車載機(図示されていない)に接続される。 Circularly polarized radio waves transmitted 2.6GHz band from a satellite 23, ground conductor 4, the dielectric 15, is received by the first circular polarization antenna 101 composed of patch 2, move in the feed line 18 It is connected to a provided in the body 8 vehicle device (not shown).
第1の円偏波用アンテナ101は円偏波を受信できるように,略円形のパッチ2の外周には電流分布の位相を調整するための縮退素子を形成する2つの切り欠き部14が設けられている。 As the first circular polarization antenna 101 can receive circularly polarized waves, two notches 14 forming the degenerate elements for adjusting the phase of the current distribution provided in the outer periphery of the substantially circular patch 2 It is. また,第1のアンテナ101の給電点9は,パッチ2の中央から離れたところに設けられている。 Also, the feeding point 9 of the first antenna 101 is provided away from the center of the patch 2. なお,パッチ2の直径は受信周波数の略1/2波長である。 The diameter of the patch 2 is approximately 1/2 wavelength of the receiving frequency. また,接地導体4は,パッチ2の直径より大きい直径の略円形である。 The ground conductor 4 is substantially circular diameter larger than the patch 2 in diameter. このような構成の円偏波受信用アンテナ101はパッチ2の面と垂直な方向に略円形の指向性11を持つので,図3(a)に示すように自動車などの移動体8の屋根などに取付けて,上方にある衛星23からの電波を効率良く受信する。 Such a configuration of the circularly polarized wave receiving antenna 101 has a generally circular directivity 11 in a direction perpendicular to the plane of the patch 2, such as a roof of the moving body 8, such as an automobile, as shown in FIG. 3 (a) attached to, receive efficiently a radio wave from a satellite 23 located above.
【0015】 [0015]
次に第2の直線偏波用アンテナ102について述べる。 Next described second linearly polarized wave antenna 102.
ビル28の屋上などに設置されて,受信アンテナ25,の信号処理装置26,再送信アンテナ27で構成される地上無線設備24は,衛星23から送信された2.6GHz帯の円偏波の電波を受信して地上無線設備の信号処理装置26で増幅し,同じ周波数の電波を垂直偏波で再送信する。 Is installed in the roof of the building 28, the receiving antenna 25, the signal processing unit 26 of the ground radio equipment 24 consists of re-transmitting antenna 27, a radio wave of a circularly polarized wave of 2.6GHz band transmitted from a satellite 23 It receives and amplifies the signal processing unit 26 of the ground radio equipment retransmits the radio wave of the same frequency with vertical polarization. また,地上無線設備24は,衛星から送信された12GHz帯の直線偏波の電波を受信して2.6GHz帯の信号に変換したものを垂直偏波で再送信する場合もある。 Also, terrestrial radio equipment 24 may also resend those into a signal of 2.6GHz band and receive linearly polarized waves of 12GHz band transmitted from a satellite with vertical polarization.
【0016】 [0016]
第2の直線偏波用アンテナ102はこのように地上無線設備24から再送信された垂直偏波の電波を受信するためのものである。 Second linearly polarized wave antenna 102 is for receiving a radio wave retransmitted vertically polarized waves from a ground radio equipment 24 in this way.
第2の直線偏波用のアンテナ102の給電線19の外部導体5は,第1の円偏波用アンテナ101のパッチ2と接地導体4を接地導体の中央部分で接続されていて,第2の直線偏波用のアンテナ102の給電線19の中心導体には略1/4波長の長さの線状の放射エレメント3が第1の円偏波用アンテナ101のパッチ2と略垂直な位置関係で接続されている。 The outer conductor 5 of the second feed line 19 of the antenna 102 for linearly polarized waves, the patch 2 and the ground conductor 4 of the first circularly polarized antenna 101 are connected by a central portion of the ground conductor, the second substantially vertical position about a quarter linear radiating element 3 of the length of the wavelength to the patch 2 of the first circularly polarized antenna 101 to the center conductor of the feed line 19 of the antenna 102 for linear polarization of It is connected in the relationship.
第2の直線偏波用アンテナ102で受信した信号は,給電線19により移動体8に備えられた車載機(図示されていない)に伝送される。 Signal received by the second linearly polarized wave antenna 102 is transmitted to a provided vehicle unit to the mobile 8 (not shown) by the feed line 19.
このように,第2の直線偏波用アンテナは,図3(c)の破線で示すように水平面の指向性は無指向性で,図3(b)の破線で示すように垂直面の指向性は低い打上角を有するため,衛星23に比べて低い位置に複数配置された地上無線設備24から再送信される垂直偏波の電波を効率よく受信できる。 Thus, the second linear polarized wave antenna, directivity of the horizontal plane as indicated by the broken line in FIG. 3 (c) in the non-directional, oriented vertical plane as indicated by a broken line shown in FIG. 3 (b) sex because it has a low launch angle, the radio wave of vertically polarized waves to be re-transmitted from terrestrial radio equipment 24 having a plurality arranged in a position lower than the satellite 23 can be efficiently received.
【0017】 [0017]
なお,図1に示すように第1の円偏波用アンテナ101の放射エレメントであるパッチ2と第2の直線偏波用アンテナ102の放射エレメント3がそれぞれ独立して構成されているため,円偏波のみの受信,直線偏波のみの受信,円偏波と直線偏波を同時に受信する場合のいずれの場合でもそれぞれのアンテナの性能が損なわれることは無い。 Since the radiating element 3 of the first patch 2 circle is a radiating element polarized wave antenna 101 of the second linearly polarized wave antenna 102, as shown in FIG. 1 is configured independently, circles receiving polarization only, never receive only linear polarization, the performance of the respective antennas in any case when receiving a circularly polarized wave and linearly polarized wave at the same time is impaired. そのため,移動体8の受信状況に応じて円偏波,直線偏波を選択して受信するダイバシティー方式に使用することも可能である。 Therefore, it is also possible to use the diversity over system for selecting and receiving circularly polarized wave, the linearly polarized wave in accordance with the reception status of the moving body 8.
なお,第1の円偏波用アンテナ101のパッチ2の寸法,及び第2の直線偏波用アンテナ102の放射エレメント3の寸法は,受信する周波数にそれぞれ任意に設計できるので,第1の円偏波用アンテナ101で受信する周波数帯域と第2の直線偏波用アンテナ102で受信する周波数帯域は同一でも良いし,異なっていても良い。 The size of the patch 2 of the first circularly polarized antenna 101, and the dimensions of the radiating element 3 of the second linearly polarized wave antenna 102, since each reception frequency can be arbitrarily designed, first circle frequency band to receive in a frequency band and a second linear polarized wave antenna 102 which receives the polarized-wave antenna 101 may be the same or may be different.
【0018】 [0018]
第1の円偏波用アンテナ101で受信する周波数帯域と第2の直線偏波用アンテナ102で受信する周波数帯域が同一の例として,2.6GHz帯の周波数帯域による前記ギャップフィラーのシステムが上げられる。 Examples frequency band identical to the reception frequency band and a second linear polarized wave antenna 102 which receives the first circularly polarized antenna 101, raising the system of the gap filler by the frequency band of 2.6GHz band It is.
次に,第1の円偏波用アンテナ101で受信する周波数帯域と第2の直線偏波用アンテナ102で受信する周波数帯域が異なる一例を示す。 Next, an example where different frequency bands to be received in the frequency band and the second linearly polarized wave antenna 102 which receives the first circularly polarized antenna 101. 第1の円偏波用アンテナ101で受信する周波数帯域を1.5GHz帯に設計し,第2の直線偏波用アンテナ102で受信する周波数帯域を1.2GHz帯に設計することにより,衛星による測位システム(GPS)の衛星から送信される電波の受信用と,地上で交信されるアマチュア無線用の両用アンテナとして使用できる。 By designing the frequency band received by the first circular polarization antenna 101 designed 1.5GHz band, the frequency band to be received by the second linear polarized wave antenna 102 to the 1.2GHz band, by satellite and for receiving the radio wave transmitted from a satellite positioning system (GPS), can be used as a dual antenna for amateur radio is communicating with the ground.
【0019】 [0019]
一方,図4(a)は,本発明が適用された実施形態の2偏波共用アンテナ1を表す。 On the other hand, FIG. 4 (a) represents a 2 Dual Polarized Antenna 1 embodiment to which the present invention is applied.
本実施形態の2偏波共用アンテナ1は,第2の直線偏波用のアンテナ102を2周波共用のアンテナにしたものである。 2 Dual-polarized antenna 1 of this embodiment is obtained by the second antenna 102 for linearly polarized waves in the two-frequency antenna.
この第2の直線偏波用のアンテナ102は,放射エレメントの途中に設けられたトラップコイル20により,第1の周波数f1では,図4(a)のように第1の放射エレメント16のみで共振する。 The second antenna 102 for linearly polarized waves, the trap coil 20 provided in the middle of the radiating elements, the first frequency f1, only the first radiation element 16 as shown in FIGS. 4 (a) It resonates. 破線は第1の周波数の高周波電流の分布21を示す The dashed line shows the distribution 21 of the first frequency of the high frequency current.
また,第1の周波数f1より周波数の低い第2の周波数f2では,図4(b)のように第1の放射エレメント16とトラップコイル20と第2の放射エレメント17により共振する。 In the first lower frequency than the frequency f1 of the second frequency f2, it resonates with the first radiating element 16 and the trap coil 20 and the second radiation element 17 as in Figure 4 (b). 破線は第2の周波数の高周波電流の分布22を示す。 The dashed line shows the distribution 22 of the high-frequency current of the second frequency.
このように,第2の直線偏波用のアンテナ102は異なる複数の周波数帯域で使用できる。 Thus, the second antenna 102 for linearly polarized waves can be used in multiple different frequency bands. 例えば,前記第1の周波数f1を2.6GHz帯とし,前記第2の周波数f2を1.5GHz帯に設計すれば,前記ギャップフィラーシステムとデジタルMCA陸上移動通信システムの両方に使用できる。 For example, the first frequency f1 and 2.6GHz band, the second frequency f2 be designed to 1.5GHz band can be used for both the gap filler system and digital MCA land mobile communication system.
上記の説明は2つの周波数帯で使用する例を述べたが,同様に放射エレメントの途中にトラップコイルを設けることにより,更に周波数帯の数を増やすことも可能である。 The above description has dealt with the cases used in two frequency bands, but by providing the trap coil in the middle of similarly radiating element, it is possible to further increase the number of frequency bands. また,トラップコイルの代わりに同様の働きをする他の素子(例えばコイルとコンデンサの並列回路など)を用いても良い。 Further, (such as a parallel circuit, e.g. a coil and a capacitor) other elements of the same function in place of the trap coil may be used.
図1,図2,図4(a),図4(b)では第1の円偏波用アンテナ101において,マイクロストリップアンテナの誘電体を空気とした例で示したが,誘電率が2から4程度の誘電体を有するプリント基板を用いても良い。 1 and 2, FIG. 4 (a), the FIG. 4 (b) in the first circular polarization antenna 101, the dielectric of the microstrip antenna has been shown an example in which the air from the dielectric constant of 2 it may be used a printed circuit board having a 4 degree of the dielectric. この場合は,誘電体の誘電率と厚さによって決まる電気長でパッチ2の寸法が設計される。 In this case, the size of the patch 2 is designed with an electric length determined by the dielectric constant and thickness of the dielectric.
また,図1では第1の円偏波用アンテナ101は,略円形のパッチで構成された例を示したが,パッチ2の形状は略円形に限らず,矩形や他の形状でも良い。 The first circularly polarized antenna 101 in FIG. 1, an example configured with a substantially circular patch, the shape of the patch 2 is substantially not limited to a circular shape, may be rectangular or other shapes. 尚,これまでの説明では第2の直線偏波用のアンテナ102をモノポールアンテナを例に述べたが,多段のコリニアアンテナなどの他のアンテナでも良い。 Incidentally, so far in the description of has been described as an example a monopole antenna an antenna 102 for the second linearly polarized wave may be other antenna such multistage collinear antenna.
また,防水及び機械的な保護のため,本発明に係る2偏波共用アンテナ1を電波を透過する材料で覆って使用しても良い。 Further, since the waterproof and mechanical protection, it may be used to cover the 2 Dual Polarized antenna 1 according to the present invention a material which transmits a radio wave.
【0020】 [0020]
尚,本発明は上記実施の形態に限定されるものではなく,本発明の趣旨を逸脱しない範囲で各部の寸法並びに構成を適宜に変更して実施することも可能である。 The present invention is not limited to the above embodiment, it is also possible to implement by changing various parts of the dimensions and configuration appropriate without departing from the scope of the present invention.
【0021】 [0021]
【発明の効果】 【Effect of the invention】
以上詳述したように, 本発明の2偏波共用アンテナによれば第1の円偏波用アンテナのパッチ2を第2の直線偏用アンテナの接地導体の一部として使用しているため,アンテナの面積は,円偏波用アンテナと直線偏用アンテナの2つのアンテナをそれぞれ単独に設置する場合に比べて約半分で済み,アンテナの小型化が可能となる。 As described above in detail, according to the two dual-polarized antenna of the present invention, using a patch 2 of the first circular antenna for polarized waves as part of the second linear polarized for antenna grounding conductors and for that, the area of the antenna is seen already at about half as compared with the case of installing the two antennas of circular polarization antenna and a linearly polarized antenna alone respectively, it is possible to downsize the antenna.
【0022】 [0022]
また,第2の直線偏波用アンテナは接地導体に対して略垂直な方向に放射エレメントを備えているので,垂直面の指向性において打上角が低くなり,地上無線設備から再送信された電波を効率良く受信することができる。 The second antenna for linearly polarized waves than has a radiation elementary bets in a direction substantially perpendicular against the ground conductors, launch angle becomes low in directivity of the vertical plane, or terrestrial radio equipment it can receive efficiently Luo retransmitted radio.
【0023】 [0023]
また, 第1の円偏波用アンテナのパッチと第2の直線偏波用アンテナの放射エレメントはそれぞれ独立しているので,それぞれの偏波のアンテナの性能を損なうことが無く,2つのアンテナの周波数帯を同一の帯域にでも,異なる帯域にでも,任意に設定できる。 In addition, the radiation element in the patch and antenna for the second linearly polarized wave of the first circle antenna for polarized waves are independent, without compromising the performance of the respective polarization of the antenna the frequency bands of the two antennas, even in the same band, even in the different bands can be set arbitrarily.
【0025】 [0025]
そして,特に本発明では,第2の直線偏波用アンテナは 2つ以上の異なる周波数帯で動作し,そのうちの一つの周波数帯域は第1の円偏波用アンテナの周波数帯と同一にしているので,例えば,衛星から送信された円偏波の電波と,衛星からの電波を受信して垂直偏波で再送信するギャップフィラーシステムからの電波と,デジタルMCA陸上移動通信システム等の他の地上無線設備から送信された直線偏波の電波を,それぞれ受信する共用アンテナとして使用できる。 Then, especially in the present invention, the second antenna for linearly polarized waves is operated in two or more different frequency bands, one frequency band of which is the same as the frequency band of the antenna for the first circular polarization since it is, for example, a circularly polarized radio wave transmitted from a satellite, a radio wave from the gap filler system to retransmit at vertical polarization by receiving radio waves from satellites, other such digital MCA land mobile communication system linearly polarized waves transmitted from the ground radio equipment to be used as a shared antenna for receiving respectively.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明の前提となる参考例の 2偏波共用アンテナの構成を表す斜視図である。 1 is a perspective view showing the two dual-polarized antenna configuration assumption become a reference example of the present invention.
【図2】 参考例の 2偏波共用アンテナの断面図である。 2 is a cross-sectional view of a two dual-polarized antenna of Reference Example.
【図3】 参考例の 2偏波共用アンテナの指向性を表す説明図であり, (a) は第1の円偏波用アンテナの垂直面の指向性を示し, (b) は第2の直線偏波用アンテナの垂直面の指向性を示し, (c)は直線偏波用アンテナの水平面の指向性を示す。 [Figure 3] is a schematic diagram of the 2-directional polarization shared antenna in Reference Example, (a) shows the shows the directivity of the vertical plane of the first circular polarization antenna, (b) second shows the directivity of the vertical plane of the linearly polarized wave antenna, (c) shows the horizontal plane directivity for linearly polarized antenna.
【図4】 本発明が適用された実施形態の 2偏波共用アンテナの構成を表す斜視図であり, (a)は第1の周波数の高周波電流の分布を示し, (b)は第2の周波数の高周波電流の分布を示す。 Figure 4 is a perspective view showing a second polarized wave shared antenna configuration of the embodiment the present invention is applied, (a) shows the shows the distribution of the high frequency current of a first frequency, (b) second It shows the distribution of high-frequency current having a frequency of.
【図5】ギャップフィラーのシステム例を示す。 5 shows an example system of the gap filler.
【符号の説明】 DESCRIPTION OF SYMBOLS
1…2偏波共用アンテナ,2…パッチ,3…直線偏波用アンテナの放射エレメント,4…接地導体,5…直線偏波用アンテナの給電線の外部導体,6…円偏波用アンテナの給電線の内部導体,7…直線偏波用アンテナの給電線の内部導体,8…移動体,9…円偏波用アンテナの給電点,10…直線偏波用アンテナの打上角,11…円偏波用アンテナの垂直面の指向性,12…直線偏波用アンテナの垂直面の指向性,13…直線偏波用アンテナの水平面の指向性,14…切り欠き部,15…誘電体,16…第1の放射エレメント,17…第2の放射エレメント,18…第1の円偏波用アンテナの給電線,19…第2の直線偏波用アンテナの給電線,20…トラップコイル,21…第1の周波数の高周波電流の分布,22…第2の周波数の高周波 1 ... 2 dual-polarized antenna, 2 ... patch, 3 ... radiating element of the linearly polarized wave antenna, 4 ... ground conductor, 5 ... outer conductor of the feed line of the linearly polarized antenna, the antenna 6 ... circular polarization inner conductors of the feed line, 7 ... inner conductor of the feed line of the linear polarized wave antenna, 8 ... mobile, 9 ... feeding point of the circular polarized wave antenna, 10 ... launch angle of the linearly polarized wave antenna, 11 ... circular directivity of the vertical plane of the polarized wave antenna, 12 ... directivity of the vertical plane of the linearly polarized antenna, 13 ... horizontal plane directivity of the linear polarized wave antenna, 14 ... notch part, 15 ... dielectric 16 ... first radiating element, 17 ... second radiating element, 18 ... first circular polarization antenna feed line, 19 ... second linearly polarized wave antenna feed line, 20 ... trap coil, 21 ... distribution of the first frequency of the high frequency current, 22 ... high frequency of the second frequency 流の分布,23…衛星,24…地上無線設備,25…地上無線設備の受信アンテナ,26…地上無線設備の信号処理装置,27…地上無線設備の再送信アンテナ,28…ビル,101…第1の円偏波用アンテナ,102…第2の直線偏波用アンテナ。 Distribution of the flow, 23 ... satellite, 24 ... terrestrial radio equipment, 25 ... terrestrial radio facilities of the receiving antenna, 26 ... terrestrial radio equipment signal processing unit, 27 ... ground radio equipment retransmission antenna, 28 ... Building, 101 ... first 1 circularly polarized wave antenna, 102 ... second linearly polarized antenna.

Claims (1)

  1. 第1の円偏波用のアンテナと第2の直線偏波用のアンテナとを備えた 2偏波共用アンテナにおいて, In 2 Dual-polarized antenna with a first circular antenna for polarized waves and a second antenna for linearly polarized waves,
    前記第1の円偏波用のアンテナは,パッチと接地導体が第2の直線偏波用のアンテナの給電線の外部導体で接続されたマイクロストリップアンテナで構成され, The first circular antenna for polarized waves, the patch and the ground conductor consists of a microstrip antenna connected with the outer conductor of the second antenna feed line for the linearly polarized waves,
    前記第2の直線偏波用のアンテナは,前記第1の円偏波用のアンテナの接地導体に対して略垂直に立設され,2つ以上の異なる周波数帯で動作する放射エレメントで構成され, It said second antenna for linearly polarized waves is erected substantially perpendicularly to the ground conductor of the first circular antenna for polarized waves, which consists of a radiating element operating in two or more different frequency bands ,
    しかも,該放射エレメントが動作する一つの周波数帯は,前記第1の円偏波用のアンテナの周波数帯と同一であることを特徴とする2偏波共用アンテナ。 Moreover, one frequency band to which the radiation element is operated, the first 2 Dual Polarized antenna, characterized in that the circle is identical to the frequency band of the antenna for polarized waves.
JP2003181607A 2003-06-25 2003-06-25 2 Dual-polarized antenna Active JP4121424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181607A JP4121424B2 (en) 2003-06-25 2003-06-25 2 Dual-polarized antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181607A JP4121424B2 (en) 2003-06-25 2003-06-25 2 Dual-polarized antenna

Publications (2)

Publication Number Publication Date
JP2005020301A true JP2005020301A (en) 2005-01-20
JP4121424B2 true JP4121424B2 (en) 2008-07-23

Family

ID=34182268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181607A Active JP4121424B2 (en) 2003-06-25 2003-06-25 2 Dual-polarized antenna

Country Status (1)

Country Link
JP (1) JP4121424B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
WO2011099014A2 (en) 2010-02-15 2011-08-18 Arothron Ltd. Underwater energy storage system and power station powered therewith
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710861A1 (en) * 2005-04-07 2006-10-11 Sony Ericsson Mobile Communications AB Antenna Arrangement
JP2007235762A (en) * 2006-03-02 2007-09-13 Fujitsu Ltd Antenna for multi-input/multi-output communication
JP4944719B2 (en) * 2007-09-19 2012-06-06 小島プレス工業株式会社 The vehicle antenna device
US20110287731A1 (en) * 2009-02-02 2011-11-24 Kazutoshi Hase Antenna and reception apparatus provided with antenna
JP2015139210A (en) * 2014-01-24 2015-07-30 株式会社フジクラ Integrated antenna device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
WO2011099014A2 (en) 2010-02-15 2011-08-18 Arothron Ltd. Underwater energy storage system and power station powered therewith
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems

Also Published As

Publication number Publication date Type
JP2005020301A (en) 2005-01-20 application

Similar Documents

Publication Publication Date Title
US5880695A (en) Antenna system for wireless comunication systems
US6229487B1 (en) Inverted-F antennas having non-linear conductive elements and wireless communicators incorporating the same
US5945950A (en) Stacked microstrip antenna for wireless communication
US6650301B1 (en) Single piece twin folded dipole antenna
US6593891B2 (en) Antenna apparatus having cross-shaped slot
US6147647A (en) Circularly polarized dielectric resonator antenna
US20040032378A1 (en) Broadband starfish antenna and array thereof
US7830327B2 (en) Low cost antenna design for wireless communications
US5594455A (en) Bidirectional printed antenna
US4814777A (en) Dual-polarization, omni-directional antenna system
US6906669B2 (en) Multifunction antenna
US20050243005A1 (en) Low profile hybrid phased array antenna system configuration and element
US6285336B1 (en) Folded dipole antenna
US6839039B2 (en) Antenna apparatus for transmitting and receiving radio waves to and from a satellite
US6646618B2 (en) Low-profile slot antenna for vehicular communications and methods of making and designing same
US5818391A (en) Microstrip array antenna
US6317099B1 (en) Folded dipole antenna
US20050110699A1 (en) Dual polarized three-sector base station antenna with variable beam tilt
US6342867B1 (en) Nested turnstile antenna
US6759990B2 (en) Compact antenna with circular polarization
US6864856B2 (en) Low profile, dual polarized/pattern antenna
US6697019B1 (en) Low-profile dual-antenna system
JP2008098993A (en) Antenna
US6046700A (en) Antenna arrangement
JPH11150415A (en) Multiple frequency antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250