JP4114521B2 - Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same - Google Patents

Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same Download PDF

Info

Publication number
JP4114521B2
JP4114521B2 JP2003091269A JP2003091269A JP4114521B2 JP 4114521 B2 JP4114521 B2 JP 4114521B2 JP 2003091269 A JP2003091269 A JP 2003091269A JP 2003091269 A JP2003091269 A JP 2003091269A JP 4114521 B2 JP4114521 B2 JP 4114521B2
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
temperature
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003091269A
Other languages
Japanese (ja)
Other versions
JP2004232078A (en
Inventor
哲也 妻鹿
英尚 川邉
敬 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003091269A priority Critical patent/JP4114521B2/en
Publication of JP2004232078A publication Critical patent/JP2004232078A/en
Application granted granted Critical
Publication of JP4114521B2 publication Critical patent/JP4114521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主にプレス成形される自動車部品などに用いて好適な引張強さTSが 980 MPa以上という超高強度で、延性および伸びフランジ性などの加工性に優れ、またさらには塗装後の耐食性にも優れる冷延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
種々の強化方法により、材料強度は、目標とする強度を達成することは可能であるが、高強度化に伴い加工性は低下する。特に従来の高強度鋼板では、組織的不均一や硬質相と軟質相の局所的な混在などのために、伸びフランジ性を評価する穴拡げ試験時に亀裂の起点となる箇所が多数存在することになり、これが伸びフランジ性の低下を招く、と言われている。しかも、このような加工性は、高強度鋼板になればなるほど大きく低下するのが一般的であった。
このため、従来の鋼板製造技術では、高強度化と延性、曲げ性および伸びフランジ性などの加工性の両立は極めて難しかった。
【0003】
伸びフランジ性の指標の一つである穴拡げ率(λ)に優れる高強度冷延鋼板については、従来から種々提案されている(例えば特許文献1、特許文献2参照)。
しかしながら、上記の特許文献1には、引張強さTSが 690 MPa以下の比較的低レベルの鋼板の高λ化についてしか開示がなく、本発明で目的とするような超高強度材において、高強度化と共に、伸びフランジ性および延性を両立させるという知見は一切なく、加えて強度−伸びバランス(引張強さTS×伸びEl)および強度−伸びフランジ性バランス(引張強さTS×穴拡げ率λ)も十分なレベルとは言い難かった。
また、特許文献2にも、高λ化についてしか開示がなく、その対象とする材料のTSレベルも 690 MPa止まりであり、本発明が対象とする超高強度材に比べ、かなり低いレベルの鋼材についてしか開示がない。また、TS×Elレベルは低く、TS−λバランスとの両立について示唆するところもない。
【0004】
さらに、微細なベイナイト組織を有するTS:980 MPa 級の冷延鋼板について提案されている(例えば特許文献3参照)。
しかしながら、この特許文献3は、ロール成形あるいは曲げ加工による加工を対象としているため、降伏比(YP)、TSおよび弾性限について言及しているだけで、軽加工用途の薄鋼板についての技術にすぎない。従って、複雑なプレス部品形状を得るために極めて重要なEl、λに関する記述は一切なく、これらの加工性と高強度化との両立については何ら言及されていない。また、その実施例を参照すると、TS:980 MPa 級レベルの実施例成分は低炭素鋼であり、その製造工程で 300℃以下まで急冷しているため、生成するベイナイト相は高転位密度であることから、一般に延性は悪いことが予想される。さらに、均一微細の効果は、YSと弾性限との開きが小さくなると言及されているに止まっており、超高強度鋼板について、プレス成形を想定したTS−Elバランス、TS−λバランスを確保する技術ではない。
【0005】
また、特許文献4には、ベイニティックフェライト組織を有する穴拡げ性および延性が優れた高強度溶融亜鉛めっき鋼板および高強度鋼板とそれらの製造方法が提案されている。
しかしながら、この技術は、熱延鋼板および熱延鋼板に溶融亜鉛めっきした溶融亜鉛めっき鋼板に係る技術であり、板厚の厚い製品にしか対応できない。例えば、この特許文献4で開示されている製品板厚は2.6 mmである。製品板厚が厚い場合、自動車用足周り部品などには適用できるものの、成形性をより必要とされる構造部品への適用は困難である。また、車体軽量化の観点からも、薄い板厚に容易に対応できる冷延鋼板に係る技術の開発が望まれていた。
【0006】
なお、引張強さ(TS)が 980 MPa以上の強度レベルでプレス成形によって必要とされる部品を製造するには、伸びや伸びフランジ性以外に曲げ特性も併せ持つことが要求されるが、特許文献4に開示の鋼板は、硬質なベイニティックフェライトを主体とし、また結晶粒径も20μm 以下と粗粒と微細粒が混在し得る不均一な組織を許容しているため、曲げ加工性が低いという問題があった。
【0007】
さらに、自動車部品などに適用される加工用冷延鋼板は、通常、電着塗装を施して使用されるが、塗装後の耐食性を向上させるために、鋼板表面に種々のめっきを施すことが必要とされる場合が多く、このためコストアップを招き、価格が高いという欠点があった。また、TSが 980 MPa以上の超高強度鋼板では、添加元素の増加により、不めっきの発生や付着量のバラツキなど、めっき品質の低下が問題となる場合があるため、安価で塗装後の耐食性に優れた鋼板が望まれている。
【0008】
このような観点から開発された技術として、例えば特許文献5に開示されているような、P,Cu,Cr,Mo,Niを多量に含有させて耐食性を向上させる技術が提案されている。
しかしながら、この方法では、これら元素を添加させることによるコスト増を招くだけでなく、穴拡げ性や伸びの低下が生じ、良好な成形性が得られ難いという問題があった。
【0009】
【特許文献1】
特開平9 −263838号公報(表4,表5)
【特許文献2】
特開平10−60593 号公報(表3,表6,表7)
【特許文献3】
特開2000−273576号公報(請求項1、表3)
【特許文献4】
特開2001−355043号公報(特許請求の範囲)
【特許文献5】
特開平5−140654号公報(特許請求の範囲)
【0010】
【発明が解決しようとする課題】
上述したとおり、強度と加工性は相反する傾向を示すのが一般的であり、現状では、良好な加工性と 980 MPa以上の引張強さを兼備した超高強度冷延鋼板は知られていない。
本発明は、上記の問題を有利に解決するもので、成形性に優れる超高強度冷延鋼板を、その有利な製造方法と共に提案することを目的とする。
また、本発明は、成形性に優れるだけでなく、塗装後の耐食性にも優れる超高強度冷延鋼板を、その有利な製造方法と共に提案することを目的とする。
【0011】
ここに、本発明における板厚:0.8 〜2.5 mm程度の冷延鋼板についての強度および加工性の目標値は次のとおりである。
・引張強さ(TS)≧ 980 MPa
・強度−伸びバランス(TS×El)≧ 17000 MPa・%
・強度−伸びフランジ性バランス(TS×λ)≧ 65000 MPa・%
【0012】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく、鋼成分、製造条件および金属組織などの面から鋭意実験を行い、かつ検討を重ねた。
その結果、成分組成を適正範囲に制御した上で、製造工程中とくに加熱温度および冷却停止温度を制御することによって、結晶粒径が制御された一定量のフェライト相と一定量のベイナイト相から構成される組織とし、かつフェライト相とベイナイト相の硬さを制御することにより初めて、優れた延性を有すると同時に局所的な変形能の差を解消してマクロ的に均一変形をさせることが可能となり、かくして非常に高い強度レベルの下で、従来にない優れた強度−伸びバランスと強度−伸びフランジ性バランスが得られ、ひいては優れたプレス成形性が得られることの知見を得た。
また、塗装後の耐食性の低下は、鋼板表面に存在するSiを含有する酸化物に起因して、塗装の前処理として行う化成処理性が劣化し、塗装との密着性が著しく低下することが原因であることも、併せて見出した。
本発明は、上記の知見に立脚するものである。
【0013】
すなわち、本発明の要旨構成は次のとおりである。
1.C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1) を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になり、引張強さ(TS)、伸び(El)および穴拡げ率(λ)がそれぞれ、次の関係式
TS≧ 980 MPa、
TS×El≧ 17000 MPa・%
TS×λ≧ 65000 MPa・%
を満足することを特徴とする成形性に優れる超高強度冷延鋼板。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
ここで、 [C], [Mn] はそれぞれ、C,Mnの含有量(mass%)
【0014】
2.C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1) を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になり、フェライト相の体積分率が10〜50 vol%、フェライト相の平均結晶粒径が 4.0μm 以下、ベイナイト相の体積分率が50〜80 vol%で、かつベイナイト相のビッカース硬さ(Hv(B))とフェライト相のビッカース硬さ(Hv(F))の比(Hv(B)/Hv(F))が 1.6以下の鋼組織を有することを特徴とする成形性に優れる超高強度冷延鋼板。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
ここで、 [C], [Mn] はそれぞれ、C,Mnの含有量(mass%)
【0015】
3.C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1), (2)を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になり、引張強さ(TS)、伸び(El)および穴拡げ率(λ)がそれぞれ、次の関係式
TS≧ 980 MPa、
TS×El≧ 17000 MPa・%
TS×λ≧ 65000 MPa・%
を満足し、さらに鋼板表面と鋼板内部のSi濃度の比が1.5 以下であることを特徴とする成形性に優れる超高強度冷延鋼板。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
[Ti] ≧ 3.43[N] + 1.5 [S] − 0.006 --- (2)
ここで、 [C], [Mn], [Ti], [N], [S] はそれぞれ、C,Mn,Ti,N,S
の含有量(mass%)
【0016】
4.C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1), (2)を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になり、フェライト相の体積分率が10〜50 vol%、フェライト相の平均結晶粒径が 4.0μm 以下、ベイナイト相の体積分率が50〜80 vol%で、かつベイナイト相のビッカース硬さ(Hv(B))とフェライト相のビッカース硬さ(Hv(F))の比(Hv(B)/Hv(F))が 1.6以下の鋼組織を有し、さらに鋼板表面と鋼板内部のSi濃度の比が1.5 以下であることを特徴とする成形性に優れる超高強度冷延鋼板。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
[Ti] ≧ 3.43[N] + 1.5 [S] − 0.006 --- (2)
ここで、 [C], [Mn], [Ti], [N], [S] はそれぞれ、C,Mn,Ti,N,Sの含有量(mass%)
【0017】
5.上記1〜4のいずれかにおいて、鋼板が、さらに
Cu:0.01〜0.50mass%、
Ni:0.01〜0.50mass%、
Mo:0.01〜0.50mass%および
Cr:0.01〜0.50mass%
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
【0018】
6.上記1〜5のいずれかにおいて、鋼板が、さらに
Nb:0.001 〜0.050 mass%
を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
【0019】
7.上記1〜6のいずれかにおいて、鋼板が、さらに
V:0.001 〜0.300 mass%および
Zr:0.001 〜0.300 mass%
のうちから選んだ少なくとも1種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
【0020】
8.上記1〜7のいずれかにおいて、鋼板が、さらに
B:0.0001〜0.0050mass%
を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
【0021】
9.上記1〜8のいずれかにおいて、鋼板が、さらに
Ca:0.0001〜0.0050mass%および
REM:0.0001〜0.0050mass%
のうちから選んだ少なくとも1種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
【0022】
10. C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1) を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、鋳造後、直ちにまたは一旦冷却後1050〜1300℃に加熱したのち、仕上げ圧延終了温度:850 〜950 ℃にて熱間圧延し、圧延終了後、 450〜650 ℃で巻取ったのち、冷間圧延し、ついで連続焼鈍を施すに際し、下記式(3) で示される温度域に加熱して焼鈍した後、下記式(4) で示される温度域まで冷却し、冷却終了後、鋼板温度を上昇させることなく(冷却停止温度〜冷却停止温度−100 ℃)の温度域で60秒以上保温することを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
1 ± 50 ℃(但し、T1 = 950− 150 [C]1/2+50[Si]−30[Mn]) ---(3)
2 ± 50 ℃(但し、T2 = 500−450[C] −30[Mn]) --- (4)
ここで、 [C], [Mn], [Si] はそれぞれ、C,Mn, Siの含有量(mass%)
【0023】
11. C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1), (2)を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、鋳造後、直ちにまたは一旦冷却後1050〜1300℃に加熱したのち、仕上げ圧延終了温度:850 〜950 ℃にて熱間圧延し、圧延終了後、 450〜650 ℃で巻取ったのち、冷間圧延し、ついで連続焼鈍を施すに際し、少なくとも焼鈍時の加熱中における雰囲気露点(DP)が−30℃以上の条件下で下記式(3) で示される温度域に加熱して焼鈍した後、下記式(4) で示される温度域まで冷却し、冷却終了後、鋼板温度を上昇させることなく(冷却停止温度〜冷却停止温度−100 ℃)の温度域で60秒以上保温することを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
[Ti] ≧ 3.43[N] + 1.5 [S] − 0.006 --- (2)
1 ± 50 ℃(但し、T1 = 950− 150 [C]1/2+50[Si]−30[Mn]) ---(3)
2 ± 50 ℃(但し、T2 = 500−450[C] −30[Mn]) --- (4)
ここで、 [C], [Mn], [Ti], [N], [S] はそれぞれ、C,Mn,Ti,N,Sの含有量(mass%)
【0024】
12. 上記10または11において、鋼スラブが、さらに
Cu:0.01〜0.50mass%、
Ni:0.01〜0.50mass%、
Mo:0.01〜0.50mass%および
Cr:0.01〜0.50mass%
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
【0025】
13. 上記10〜12のいずれかにおいて、鋼スラブが、さらに
Nb:0.001 〜0.050 mass%
を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
【0026】
14. 上記10〜13のいずれかにおいて、鋼スラブが、さらに
V:0.001 〜0.300 mass%および
Zr:0.001 〜0.300 mass%
のうちから選んだ少なくとも1種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
【0027】
15. 上記10〜14のいずれかにおいて、鋼スラブが、さらに
B:0.0001〜0.0050mass%
を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
【0028】
16. 上記10〜15のいずれかにおいて、鋼スラブが、さらに
Ca:0.0001〜0.0050mass%および
REM:0.0001〜0.0050mass%
のうちから選んだ少なくとも1種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
【0029】
【発明の実施の形態】
以下、本発明を具体的に説明する。
まず、本発明において、鋼の成分組成を上記の範囲に限定した理由について説明する。
C:0.12〜0.18mass%
Cは、低温変態相を利用して鋼を強化するための必須元素であって、980 MPa以上の引張強さを得るには少なくとも0.12mass%の含有が必要であるが、0.18mass%を超えて含有すると、溶接性が著しく劣化し、またオーステナイト中のC濃度が高くなりすぎてマルテンサイト変態点(Ms )が低下し、加熱、冷却、保温工程後も硬質な残留オーステナイト相が存在して伸びフランジ性が低下するので、C量は0.12〜0.18mass%の範囲に限定した。
【0030】
Si:0.2 〜0.8 mass%
Siは、強度向上に寄与する有用元素であるが、含有量が 0.2mass%に満たないとその添加効果に乏しく、一方 0.8mass%を超えて含有させると、フェライト変態が促進され、低温変態相による強化が不十分となる。またSiは、オーステナイト中ヘのC濃化を促進する効果が大きい元素であり、フェライト以外の相(第2相ともいう)そのものが硬化すること、最終的に得られる鋼板中に硬質な残留オーステナイト相が存在し易くなること等により伸びフランジ性を低下させる弊害がある。
さらに、Siを0.8 mass%を超えて含有させると、連続焼鈍中にSiが表面に顕著に濃化し、雰囲気中に存在する酸素と反応して、表面でSi系の酸化物を形成する結果、塗装の前処理として行う化成処理性が低下し、塗装との密着性が著しく低下する。そこで、Si量は 0.2〜0.8 mass%の範囲に限定した。より好ましくは、0.2 〜0.65mass%の範囲である。
【0031】
Mn:2.2 〜3.0 mass%
Mnは、フェライト変態を抑制し、ベイナイト組織を得るために重要な役割を担っている元素である。また、Ar3変態点を低下させる作用を通じて結晶粒の微細化に寄与し、強度−伸びバランスを高める作用を有する。引張強さ確保の観点から安定して低温変態相を得るには、 2.2mass%以上のMn量が必要であるが、3.0mass%を超えて含有すると軟質なフェライト相の生成が過度に抑制されTS−Elバランスが低下する。よって、Mn量は 2.2〜3.0 mass%の範囲に限定した。
【0032】
P:0.02mass%以下
Pは、固溶強化能が高く、強度向上を達成する上で有効な元素であるので、0.005 mass%以上含有させることが好ましいが、過度に含有させると、組織的な不均一化をもたらし、鋳造時の凝固偏析が顕著になり、内部割れや加工性の劣化を招くことになるので、P量は0.02mass%以下に制限した。より好ましくは 0.018mass%以下である。
【0033】
S:0.0030mass%以下
Sは、鋼中に非金属介在物として存在し、伸びフランジ成形時の応力集中源となるため、その含有量は極力低減することが望ましい。とはいえ、S量が0.0030mass%以下の範囲では、高強度であっても、伸びフランジ性にさほどの悪影響は及ぼさないので0.0030mass%を許容上限とした。より好ましくは0.0010mass%未満である。
【0034】
Al:0.05mass%以下
Alは、脱酸および炭化物形成元素の歩留りを向上させるために有効な元素であり、0.01mass%以上含有させることが好ましいが、0.05mass%を超えて含有させても効果が飽和するのみならず、加工性の劣化や表面性状の劣化を招くので、Al量は0.05mass%以下に限定した。
【0035】
N:0.0050mass%以下
Nは、AlN、固溶Nとして鋼中に存在し、多量に含有されるとフェライトの延性を低下させるため、その含有量は0.0050mass%以下に制限した。より好ましくは0.0030mass%以下である。
【0036】
Ti:0.001 〜0.030 mass%
Tiは、スラブ加熱段階でTiCとして存在して、昇温加熱中のオーステナイト粒成長を抑制するだけでなく、それ以降の熱間圧延工程での動的再結晶を誘起し、組織の微細均一化をもたらし、伸び、穴拡げ性を向上させるのに有効な元素であり、このためには少なくとも 0.001mass%の含有を必要とする。また、このTiを後述するNbと併用して含有させると、フェライト変態が起きない臨界冷却速度が小さくなり、焼入れ性が向上するという効果がもたらされる。一方、0.030 mass%を超えるTiを含有させると、硬質な炭化物などを形成し、伸びフランジ性を低下させるため、Ti量は 0.001〜0.030 mass%の範囲に限定した。より好ましくは 0.005〜0.015 mass%の範囲である。
【0037】
さらに、本発明では、C量とMn量について次式(1) の範囲を満足させることが重要である。
−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
ここで、 [C], [Mn] はそれぞれ、C,Mnの含有量(mass%)
というのは、CやMnは、強度に及ぼす影響が極めて大きいため、両者をバランス良く含有させることが必要だからである。ここに、Mn量が−100[C] + 15 より少ないと十分な強度の確保が難しく、またフェライト生成により伸び(El)は大きくなるものの、穴拡げ率(λ)が低下する。一方、−100[C] + 20 を超えて含有すると、フェライト生成が抑制され、伸び(El)が低下し、強度レベルが高くなりすぎる。
【0038】
またさらに、塗装後の耐食性を向上させるには、Ti量とN量、S量について次式(2) の範囲を満足させることが重要である。
[Ti] ≧ 3.43[N] + 1.5 [S] − 0.006 --- (2)
ここで、 [C], [Mn], [Ti], [N], [S] はそれぞれ、C,Mn,Ti,N,Sの含有量(mass%)
Tiは、Cのみならず、N,Sとも結合して、析出物を形成する。このうちTiCは、組織の均一性に有効なだけでなく、焼入れ性を向上させ、さらには化成処理性を向上させて、その後の塗装耐食性の改善にも有効に寄与する。またTiは、Sを析出物として固定することによって、塗装後の耐食性を向上させる働きもある。ここに、Ti量が( 3.43[N] + 1.5 [S] − 0.006)より少ないと、上記の効果とくに塗装後の耐食性改善効果を得ることが難しくなる。従って、Tiは、上掲式(2) を満足する範囲で含有させることが好ましい。
【0039】
以上、基本成分について説明したが、本発明では、その他にも以下に述べる元素を適宜含有させることができる。
Cu:0.01〜0.50mass%、Ni:0.01〜0.50mass%、Mo:0.01〜0.50mass%およびCr:0.01〜0.50mass%のうちから選んだ1種または2種以上
Cu,Ni,MoおよびCrはいずれも、伸びを大きく低下させることなしに強度を向上させるのに有効な元素であるが、0.01mass%未満ではその効果に乏しく、一方0.50mass%を超えて多量に含有させてもさらなる効果はなく、むしろ経済的に不利となるので、これらは単独添加または複合添加いずれの場合も0.01〜0.50mass%の範囲で含有させるものとした。なお、これらは単独添加または複合添加いずれの場合も0.01〜0.20mass%の範囲で含有させることがより好ましい。
【0040】
Nb:0.001 〜0.050 mass%
Nbは、NbCなどの析出物の存在形態や再結晶温度に影響を及ぼす元素である。特に本発明では、Nbは、組織の微細均一化に有効に作用する他、フェライト−パーライトの生成を抑制し、低温変態相であるベイナイト主体の組織とすることにより、高強度にもかかわらず高い伸び、穴拡げ率をもたらすという効果を有している。このような効果は、Nbを 0.001mass%以上含有させることで発現するが、0.050 mass%を超えて含有させると鋼中に硬質な析出物が多量に形成され、伸びフランジ性を低下させるので、Nb量は 0.001〜0.050 mass%の範囲に限定した。より好ましくは 0.005〜0.020 mass%の範囲である。
【0041】
V:0.001 〜0.300 mass%および/またはZr:0.001 〜0.300 mass%
VおよびZrはそれぞれ、炭化物の形成による結晶粒径の粗大化抑制効果を通じて鋼板の強度を上昇させるのに有効な元素であるが、含有量が 0.001mass%未満ではその効果に乏しく、一方 0.300mass%を超えて多量に含有させてもさらなる効果はなく、むしろ経済的に不利となる。よって、V,Zrはそれぞれ、 0.001〜0.300 mass%の範囲で含有させるものとした。なお、これらは単独でも複合して含有させても同様の挙動を示す。
【0042】
B:0.0001〜0.0050mass%
Bも、強度上昇に有効な元素である。Bを含有させることにより、フェライトが生成する臨界冷却速度が遅くなるので、冷延後の焼鈍工程における連続冷却中に軟質なフェライト相の生成を抑制して低温変態相を形成させることが容易となる。このような効果を得るためには、0.0001mass%以上含有させることが必要であるが、0.0050mass%を超えて含有させてもさらなる効果は得られないので、B量は0.0001〜0.0050mass%の範囲に限定した。
【0043】
Ca:0.0001〜0.0050mass%および/または REM:0.0001〜0.0050mass%
CaおよびREM はいずれも、硫化物などの析出物、例えばMnSなどを球状化して鋭角的な析出物を減少させ、応力集中を減少させることによって伸びフランジ性の低下を抑制する効果を有している。しかしながら、含有量がそれぞれ0.0001mass%未満では効果が小さく、一方0.0050mass%を超えて含有させても、その効果は飽和し、むしろコストの上昇を招く。そこで、Ca, REM はそれぞれ0.0001〜0.0050mass%の範囲で含有させるものとした。
【0044】
次に、鋼組織を前記の範囲に限定した理由について説明する。
フェライト相の体積分率:10〜50 vol%
フェライト相の体積分率が10 vol%より少ないと、軟質相の絶対量が少なすぎて延性の低下を招き、一方50 vol%を超えて存在すると、軟質相が多くなりすぎて、第2相の硬さにも依存するものの、引張強さTSの確保が困難となる。従って、フェライト相は体積分率で10〜50 vol%存在させるものとした。より好ましくは15〜35 vol%の範囲である。
【0045】
フェライト相の平均結晶粒径:4.0 μm 以下
フェライト相の平均結晶粒径を 4.0μm 以下と細かくすることにより、軟質であるフェライト相が10〜50 vol%の範囲で存在し、第2相すなわち硬質な低温変態相が比較的少ない場合でも高強度化が可能となり、またそれによって軟質相であるフェライト相を多く含むようになる結果、延性が向上する。さらに、結晶粒の微細化により鋼板組織の均一化が進むため、伸びフランジ性の改善も達成される。従って、フェライト相の平均結晶粒径は 4.0μm 以下とした。
【0046】
ベイナイト相の体積分率:50〜80 vol%
ベイナイト相の体積分率が80 vol%を超えると高強度化し、またベイナイト相単相組織に近付き均一な組織となるため伸びフランジ性は向上する傾向にあるが、逆に延性は低下する。一方、50 vol%より少ないと引張強さ(TS)の確保が困難となる。またTSを確保するには、ベイナイト相自身も強化する必要があり、必然的にフェライト相との硬度差が開くため、伸びフランジ性は低下する。従って、ベイナイト相は体積分率で50〜80 vol%の範囲に限定した。より好ましくは60〜75 vol%の範囲である。
さらに、これらフェライト相とベイナイト相の特性を有利に発揮させるためには、両者の合計を組織全体に対する体積分率で90 vol%以上とすることが好ましい。
【0047】
なお、上記したフェライト相およびベイナイト相以外にも、結晶粒界に沿って析出するセメンタイト、等温保持中にオーステナイトからベイナイトに変態する際に 100%変態せずに若干生成するマルテンサイトおよび残留オーステナイトなどが存在するが、フェライト相およびベイナイト相さえ、上記の範囲を満足していれば問題はなく、それぞれ数%程度存在しても構わない。
また、ここでいうベイナイト相とは、オーステナイトから所定の温度に冷却し、その後の温度保持過程において生成するフェライトと針状に析出した Fe3Cから構成される低温変態相であり、例えばオーステナイトから水冷のような急速冷却を受け、その後の再加熱工程において生成する同じくフェライトと Fe3Cから構成されてはいるが、棒状または楕円状の Fe3Cとフェライトとから構成される焼き戻しマルテンサイト相や Fe3Cの析出を含まないベイニティックフェライトとは明瞭に区別される。
【0048】
ベイナイト相の硬さ(Hv(B))/フェライト相の硬さ(Hv(F))≦ 1.6
Hv(B)/Hv(F)が 1.6より大きいと、均一な組織ではなく軟質相中に硬質な部分が局所的に存在することになり、歪み導入時に変形能が異なって不均一変形となるため成形性が低下する。すなわち、歪みの導入によりフェライトは変形するが、ベイナイトの変形量は少ないため、第2相の界面でボイドが容易に発生すること、また試験中に界面において亀裂の進展が容易に起こるためと考えられるが、穴拡げ率の低下を招く。従って、ベイナイト相の硬さとフェライト相の硬さの比Hv(B)/Hv(F)は 1.6以下とした。
【0049】
C:0.145 mass%, Si:0.65mass%, Mn:2.58mass%, P:0.017 mass%, S:0.0008mass%, Al:0.027 mass%, N:0.0025mass%およびTi:0.011 mass%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブ(T1 =848 ℃,T2 =357 ℃) を、スラブ加熱温度:1100〜1300℃、仕上げ圧延温度:850 〜1000℃、巻取り温度:400 〜650 ℃、冷延圧下率:50%、焼鈍温度:750 〜920℃、焼鈍後の冷却速度:10〜200 ℃/s、冷却停止温度:200 〜450 ℃、保温処理温度:200 〜450 ℃の条件で処理し、冷延鋼板とした。
かくして得られた冷延鋼板の強度(TS)、伸び(El)および穴拡げ率(λ)を測定し、強度−伸びバランス(TS×El)および強度−伸びフランジ性バランス(TS×λ)について求めた結果を、ベイナイト相の体積分率との関係で図1に示す。
なお、得られた冷延鋼板のフェライト相の体積分率は5〜70 vol%であった。
【0050】
同図に示したとおり、ベイナイト相の体積分率50〜80 vol%で、かつベイナイト相の硬度/フェライト相の硬度≦1.6 とすることによってはじめて、高いTS×ElおよびTS×λを併せて得ることができた。
上述したように、鋼組成を調整した上で鋼組織および硬度を調整することにより、はじめてTS≧ 980 MPa、TS×El≧ 17000 MPa・%、TS×λ≧ 65000
MPa・%を達成した冷延鋼板とすることができた。
【0051】
鋼板表面と鋼板内部のSi濃度の比:1.5 以下
本発明鋼のようにSiを含有する鋼では、熱間圧延中にSiが表面に濃化し、Si酸化物を形成し易い。このようなSi酸化物は、熱延後の酸洗過程では、完全に除去されずに残存することがある。また、冷延後の連続焼鈍中に、炉内の露点と温度によっては、Siが表面に濃化してSi酸化物が形成される。表面にSi酸化物が残存すると、表面のSi濃度は上昇する。これらのSi酸化物は、その後の鋼板の化成処理過程で、地鉄の溶解を阻害して、適正な化成結晶の生成に悪影響を及ぼし、さらに塗装後の耐食性を劣化させる原因となる。
本発明は、鋼板表面への極端なSiの濃化を抑制し、鋼板表面に、塗装後耐食性を劣化させるほどにはSi酸化物を残存させないようにすることによって、優れた塗装後耐食性を得るようにしたものである。鋼板表面へのSiの濃化の程度は、以下に述べる方法で、鋼板表面と鋼板内部とのSi濃度比を測定することによって評価することができ、この比を1.5 以下にすることによって、優れた塗装後耐食性を得ることができる。
【0052】
鋼板表面と鋼板内部のSi濃度は、焼鈍前および焼鈍後の鋼板について、それらの表面から0.5 mm研削し、研削後の表面各々について、蛍光X線分析により、それぞれ同一面積でのSi強度をカウントすることにより測定することができる。ここで、焼鈍前の鋼板について求めたSi濃度が、鋼板内部のSi濃度を表することになる。従って、鋼板表面と鋼板内部のSi濃度比は(焼鈍後の鋼板研削面のSi濃度)/(焼鈍前の鋼板研削面のSi濃度)により計算される。
【0053】
次に、本発明の製造方法において製造条件を前記の範囲に限定した理由について説明する。
なお、本発明では、前記した好適成分組成に調整した鋼スラブを、鋳造後、直ちにまたは一旦冷却後、後述するスラブ加熱温度に再加熱したのち、熱間圧延し、巻き取った後、冷間圧延し、ついで連続焼鈍を施す。
【0054】
再加熱時におけるスラブ加熱温度(SRT):1050〜1300℃
結晶粒の均一微細化のためには、スラブ加熱温度は1300℃以下のできるかぎり低温とすることが好ましい。というのは、スラブ加熱温度が低ければ低いほど加熱時の初期オーステナイト粒径が小さくなるため、最終的な製品粒径の微細化により、高い伸びフランジ性を得るのに有効であり、また細粒化効果により強度上昇を伴うため硬質な第2相分率の低減が可能となり、延性も向上するからである。とはいえ、スラブ加熱温度が1050℃を下回ると、仕上げ圧延温度の確保が困難となるので、スラブ加熱温度は1050℃以上とする必要がある。従って、スラブ加熱温度は1050〜1300℃の範囲に限定した。より好ましくは1100〜1200℃の範囲である。
【0055】
仕上げ圧延終了温度:850 〜950 ℃
熱間圧延時の仕上げ圧延終了温度が 850℃未満では、圧延時の変形抵抗が大きく、熱間圧延性が低下する。また組織の不均一化が起こり、フェライトと第2相が層状すなわちバンド状の組織となり、冷延焼鈍後も不均一な組織が残存して、伸びフランジ性および延性が共に低下する。一方、950 ℃より高温ではオーステナイトが粗大化し、均一微細な組織が得られなくなり、伸びフランジ性が低下する。よって、仕上げ圧延終了温度は 850〜950 ℃の範囲とした。
【0056】
巻取り温度:450 〜650 ℃
巻取り温度が 450℃を下回ると、硬質なマルテンサイト相が生成して伸びフランジ性が低下するだけでなく、冷間圧延時の圧延負荷が増大し、さらには幅方向での鋼板強度がバラツキ、熱延後の冷間圧延性が低下する。一方、650 ℃を上回るとTiCが粗大化し、均一な組織が得られなくなり、冷延焼鈍後の延性が不十分となる。また、フェライトとパーライト主体の層状組織となり、鋼板中にC濃度分布の高低が生じ、冷延、焼鈍後の組織も不均一となり、穴拡げ率(λ)、延性(El)ともに悪影響を与える。よって巻取り温度は 450〜650 ℃の範囲とした。
なお、巻取り後に行う冷間圧延は、通常どおりの条件で行えばよく、特にこの冷間圧延における圧下率は30〜70%程度とすることが好ましい。
【0057】
焼鈍温度:T1 ±50℃(但し、T1 = 950− 150 [C]1/2+50[Si]−30[Mn])
ここで、T1 は、A3 変態点の目安となる温度である。
さて、連続焼鈍時の焼鈍温度が、T1 −50℃より低いと、冷間圧延時の組織の影響を完全に除却することが困難なため、2相バンド状組織すなわち不均一な組織となって、穴拡げ率(λ)が低下する。一方、焼鈍温度がT1 +50℃より高くなると、昇温工程においてオーステナイト粒径が急激に粗大化し、炭化物も粗大局在化するようになるため、微細均一な組織が得られなくなって、λが低下する。また、フェライト変態が遅延し、延性も低下する。
従って、延性と穴拡げ率をバランスさせるためには、焼鈍温度はT1 ±50℃の範囲に制御する必要がある。
【0058】
図2は、伸び(El)および穴拡げ率(λ)、ひいては強度−伸びバランス(TS×El)および強度−伸びフランジ性バランス(TS×λ)に及ぼす焼鈍温度の影響を示したものである。
C:0.154 mass%, Si:0.55mass%, Mn:2.56mass%, P:0.017 mass%, S:0.0008mass%, Al:0.027 mass%, N:0.0022mass%およびTi:0.014 mass%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブ(T1 =842 ℃,T2 =354 ℃) を、スラブ加熱温度:1185℃、仕上げ圧延温度:883 ℃、巻取り温度:455 ℃、冷延圧下率:45%、焼鈍温度:T1 ±95℃、冷却速度:22℃/s、冷却停止温度:360 ℃、保温温度:350 ℃、保温時間:145 sの条件で処理し、冷延鋼板とした。
かくして得られた冷延鋼板の伸び(El)および穴拡げ率(λ)を測定し、強度−伸びバランス(TS×El)および強度−伸びフランジ性バランス(TS×λ)について求めた結果を、焼鈍温度との関係で図2に示す。
【0059】
同図から明らかなように、焼鈍温度をT1 ±50℃の範囲に制御することによって、所定の体積分率のフェライト相とベイナイト相が得られ、またこれらの相の硬度比も所定の範囲を満足し、高いTS×ElおよびTS×λが得られている。
【0060】
また、塗装後の耐食性を重視し、これを改善するためには、前述したとおり、鋼板表面へのSiの濃化を抑制し、Si濃度比を1.5 以下とすることが必要であるが、そのためには少なくとも焼鈍時の加熱中、すなわち焼鈍温度までの加熱中および焼鈍中における雰囲気露点(DP)を−30℃以上とすることが好ましい。
ここに、上記の雰囲気露点(DP)を−30℃以上とした理由は、Siは、Fe,Mnに比べて、酸化が進行する平衡酸素分圧が小さいため、−30℃よりも低い露点で焼鈍された場合には、鋼板表面にSiが濃化し易くなり、鋼板表面と鋼板内部のSi濃度比が 1.5を超えて、化成処理性が低下するからである。好ましい露点範囲は−30〜−15℃の範囲である。
【0061】
冷却停止温度:T2 ± 50 ℃(但し、T2 = 500−450[C] −30[Mn])
ここで、T2 は、Ms 点の目安となる温度である
焼鈍後の冷却において、冷却停止温度がT2 −50℃を下回ると、硬質なマルテンサイト相が生成し、ベイナイト相の生成が減少するため、あるいはベイナイト相が硬質化しすぎるためと考えられるが、引張強さが大きくなり、伸びおよび穴拡げ率が低下する。一方、冷却停止温度がT2 +50℃を上回ると、極めてC濃度の高い硬質な残留オーステナイト相が生成し、フェライト相との硬度差が大きくなり、穴拡げ率が低下する。また、ベイナイ卜相が高温で生成するため強度レベルが低下し、TS≧980 MPa の確保が困難となる。従って、冷却停止温度はT2± 50 ℃の範囲に制御するものとした。
ちなみに、焼鈍温度から冷却停止温度までの冷却速度は(焼鈍温度(冷却開始温度)−冷却停止時の温度)/冷却時間(℃/s)で定義される。冷却速度については遅すぎるとフェライトが多量に生成するため引張強さの確保が困難となり、一方あまりに速いと逆にフェライト生成が抑制されて延性の低下などの問題が生じる。従って、冷却速度は、水冷、ミスト冷却などの場合とは異なり、平均冷却速度で5〜80℃/s程度で構わない。好ましくは10〜50℃/sの範囲である。
【0062】
保温温度:冷却停止温度〜冷却停止温度−100 ℃
オーステナイトからベイナイトへの変態を十分に行うためには、(冷却停止温度〜冷却停止温度−100 ℃)の温度域に適当な時間滞留させることが重要である。ここに、(冷却停止温度−100 ℃)に満たない温度で保温すると、第2相の硬質化によって引張強さが大きくなり、伸びが低下する。また、フェライトとの硬度差が大きくなり、クラックの発生、進展が容易になり穴拡げ率が低下する。
この点、保温温度が冷却終了時点での鋼板温度以下であれば十分にフェライトとの硬度差の小さい低温変態相であるベイナイト相が生成するため、十分な穴拡げ率を得ることができる。また、マルテンサイトより硬質ではないベイナイト相とフェライト相の混合組織となり、延性との両立が可能となる。従って、保温温度は(冷却停止温度〜冷却停止温度−100 ℃)の範囲に限定し、冷却終了後、鋼板温度を上昇させることなく、上記の範囲で保温することとした。
【0063】
保温時間:60秒以上
上記した保温温度と同様に、オーステナイトからベイナイトへの変態を十分に行うために重要であり、60秒に満たないと硬質なマルンサイトが生成し穴拡げ率が低下するため、保温時間は60秒以上とする必要がある。また、240 秒を超えて保温しても、その効果は飽和し、生産効率が悪くなるだけであるので、保温時間は 240秒以下とすることが好ましい。なお、かかる保温処理は、連続焼鈍炉の過時効帯等で行うことができる。
【0064】
図3は、穴拡げ率(λ)および伸び(El)、ひいては強度−伸びバランス(TS×El)および強度−伸びフランジ性バランス(TS×λ)に及ぼす冷却停止温度の影響を示したものである。
C:0.149 mass%, Si:0.44mass%, Mn:2.55mass%, P:0.017 mass%, S:0.0007mass%, Al:0.035 mass%, N:0.0028mass%およびTi:0.015 mass%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブ(T1 =838 ℃,T2 =356 ℃) を、スラブ加熱温度:1170℃、仕上げ圧延温度:905 ℃、巻取り温度:520 ℃、冷延圧下率:50%、焼鈍温度:850 ℃、冷却速度:25℃/s、冷却停止温度:(T2 −70℃)〜(T2 +75℃)、保温温度:冷却停止温度−10℃、保温時間:200 秒の条件で処理し、冷延鋼板とした。
かくして得られた冷延鋼板の伸び(El)および穴拡げ率(λ)を測定し、強度−伸びバランス(TS×El)および強度−伸びフランジ性バランス(TS×λ)について求めた結果を、冷却停止温度との関係で図3に示す。
【0065】
同図から明らかなように、冷却停止温度をT2 ± 50 ℃の範囲に制御し、適正条件で保温処理を施すことにより、所定の体積分率のフェライト相とベイナイト相が得られ、またこれらの相の硬度比も適正で、高いTS×ElおよびTS×λが得られることが分かる。
【0066】
なお、上記の保温処理後は、放冷あるいは10〜60℃/min程度の冷却速度で 200℃程度まで冷却することが好ましい。また、その後の冷却については、水冷、ミスト冷却、放冷など、冷却方法や冷却速度に関する制限はない。
上述したとおり、本発明法は、焼鈍温度からの急速冷却や冷却終了後の鋼板再加熱などの工程は不要なため、高生産性かつ低燃料原単位であり、トータルのエネルギーコストの低いレベルでの工業生産が可能となる。
【0067】
【実施例】
表1に示す種々の成分組成になる鋼スラブを、表2に示す条件で処理して、板厚:1.0 〜1.8 mmの冷延鋼板を製造した。なお、冷間圧延の際の圧下率は40〜60%とした。また、保温処理後200 ℃までの冷却速度は30〜50℃/minとした。
かくして得られた冷延鋼板の鋼組織および各種機械的性質について調べた結果を表3に示す。
【0068】
なお、各特性の評価方法および組織の測定方法は次のとおりである。
・引張特性:圧延方向と直交する方向を長手方向(引張り方向)とするJIS Z 2201の5号試験片を用い、JIS Z 2241に準拠した引張り試験を行って評価した。・穴拡げ率λ:日本鉄鋼連盟規格JFSTl001に基づき実施した。すなわち、初期直径do =10mmの穴を打ち抜いたのち、60°の円錘ポンチを上昇させて穴を拡げた際に、亀裂が板厚を貫通したところでポンチの上昇を止め、亀裂貫通後の打抜き穴径dを測定し、穴拡げ率λ=〔(d−do )/do ) × 100(%)として算出した。
・曲げ特性:圧延方向を長手方向とする40mm幅×200 mm長さの試験片を用い、JIS Z 2248に準拠した押し曲げ法による密着曲げ試験を行って、評価した。
・フェライト相の結晶粒径
測定位置は板厚1/4 面近傍の3000倍の SEM像を基に画像解析にてフェライト相の面積およびフェライト相の個数を導出し、求積法にて算出した、n=3単純平均の値である。
・フェライト相体積分率およびベイナイト相体積分率:板厚1/4 面近傍の5000倍の SEM像を基に画像解析にて2階調化して面積率を求め、n=5 で単純平均した値である。この面積率をもって体積分率とした。
・ベイナイト相とフェライト相の硬さ:測定位置は板厚1/4 面近傍で、マイクロビッカース硬度計を用い、荷重:3gの試験値のn=3単純平均である。
・鋼板表面と鋼板内部のSi濃度比
冷延後で焼鈍前の鋼板および焼鈍後の鋼板について、これらを表面から0.5 mm研削した後、研削後の表面の各々について、蛍光X線分析により、それぞれ同一面積でSi強度をカウントし、これをSi濃度とした。ここで、焼鈍前の鋼板について求めたSi濃度すなわちSi強度カウントが、鋼板内部のSi濃度を表することになる。従って、Si濃度比は(焼鈍後の鋼板研削面のSi濃度(Si強度カウント))/(焼鈍前の鋼板研削面のSi濃度(Si強度カウント))により計算される。
・塗装後耐食性
150mm×75mmの試験片にリン酸塩処理し、厚さ:25μm になるように電着塗装し、カッターナイフで45mm、3本/試験片の切り込みを入れて、5%NaCl、55℃の塩温水中に 240時間浸漬した後、セロテープ(登録商標)を切り込み上に貼って、剥がした後の剥離幅を測定した。最大片側剥離幅が 2.5mm(全幅:5mm)以下の場合に合格(○)とした。なお、切り込み以外の部分で剥離した場合は不合格(×)とした。
【0069】
【表1】

Figure 0004114521
【0070】
【表2】
Figure 0004114521
【0071】
【表3】
Figure 0004114521
【0072】
表3に示したとおり、発明例はいずれも、引張強さ(TS)≧ 980 MPa、強度−伸びバランス(TS×El)≧ 17000 MPa・%、強度−伸びフランジ性バランス(TS×λ)≧ 65000 MPa・%という3つの目標値を全て満足しており、高強度と良好な加工性を兼備していることが分かる。
また、特に鋼板表面と鋼板内部のSi濃度比を 1.5以下に低減したものは、塗装後の耐食性にも優れていることが分かる。
【0073】
【発明の効果】
かくして、本発明によれば、TS≧980 MPa という超高強度で、かつTS×El≧ 17000 MPa・%、TS×λ≧ 65000 MPa・%という優れたプレス成形性を有し、またさらには塗装後の耐食性にも優れた冷延鋼板を、安定して得ることができる。
【図面の簡単な説明】
【図1】 冷延鋼板の強度−伸びバランス(TS×El)および強度−伸びフランジ性バランス(TS×λ)に及ぼすベイナイト相の体積分率およびベイナイト相とフェライト相の硬度比の影響を示した図である。
【図2】 冷延鋼板の強度−伸びバランス(TS×El)および強度−伸びフランジ性バランス(TS×λ)に及ぼす焼鈍温度の影響を示した図である。
【図3】 冷延鋼板の強度−伸びバランス(TS×El)および強度−伸びフランジ性バランス(TS×λ)に及ぼす冷却停止温度の影響を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is an ultra-high strength with a tensile strength TS of 980 MPa or more suitable for use mainly in automobile parts that are press-molded, and has excellent workability such as ductility and stretch flangeability. The present invention relates to a cold-rolled steel sheet having excellent corrosion resistance and a method for producing the same.
[0002]
[Prior art]
By various strengthening methods, the material strength can achieve the target strength, but the workability decreases as the strength increases. In particular, in conventional high-strength steel sheets, due to structural inhomogeneities and local mixing of the hard and soft phases, there are many locations that become the origin of cracks during the hole expansion test for evaluating stretch flangeability. Thus, it is said that this causes stretch flangeability. In addition, such workability generally decreases greatly as the strength of the steel plate increases.
For this reason, it has been extremely difficult to achieve both high strength and workability such as ductility, bendability and stretch flangeability with conventional steel sheet manufacturing techniques.
[0003]
Various types of high-strength cold-rolled steel sheets that are excellent in the hole expansion ratio (λ), which is one of the indices of stretch flangeability, have been proposed in the past (see, for example, Patent Document 1 and Patent Document 2).
However, the above-mentioned Patent Document 1 only discloses a relatively high level steel plate having a tensile strength TS of 690 MPa or less, and it is disclosed in an ultra-high strength material as intended in the present invention. There is no knowledge that both stretch flangeability and ductility can be achieved together with strengthening. In addition, strength-elongation balance (tensile strength TS x elongation El) and strength-stretch flangeability balance (tensile strength TS x hole expansion ratio λ). ) Was also difficult to say.
Also, Patent Document 2 discloses only about the increase in λ, and the TS level of the target material is only 690 MPa, which is a steel material of a considerably lower level than the ultra-high strength material targeted by the present invention. There is only disclosure about. Moreover, the TS × El level is low, and there is no suggestion of coexistence with the TS-λ balance.
[0004]
Furthermore, a TS: 980 MPa grade cold-rolled steel sheet having a fine bainite structure has been proposed (see, for example, Patent Document 3).
However, since this patent document 3 is intended for processing by roll forming or bending, it only mentions the yield ratio (YP), TS, and elastic limit, and is merely a technique for a thin steel plate for light processing applications. Absent. Accordingly, there is no description of El and λ which are extremely important for obtaining a complicated pressed part shape, and nothing is mentioned about compatibility between these workability and high strength. In addition, referring to the examples, the TS: 980 MPa class example components are low-carbon steels, which are rapidly cooled to 300 ° C. or less in the production process, so the bainite phase produced has a high dislocation density. Therefore, it is generally expected that the ductility is bad. Furthermore, the effect of uniform fineness is only mentioned that the difference between YS and the elastic limit is reduced, and the TS-El balance and TS-λ balance assuming press forming are ensured for ultra-high strength steel sheets. It's not technology.
[0005]
Patent Document 4 proposes a high-strength hot-dip galvanized steel sheet and a high-strength steel sheet having a bainitic ferrite structure and excellent hole expansibility and ductility, and methods for producing them.
However, this technique is a technique related to hot-rolled steel sheets and hot-dip galvanized steel sheets obtained by hot-dip galvanizing on hot-rolled steel sheets, and can only deal with products having a large thickness. For example, the product plate thickness disclosed in Patent Document 4 is 2.6 mm. When the product plate is thick, it can be applied to an automobile foot part and the like, but it is difficult to apply it to a structural part that requires more formability. Further, from the viewpoint of reducing the weight of the vehicle body, it has been desired to develop a technology related to a cold-rolled steel plate that can easily cope with a thin plate thickness.
[0006]
In addition, in order to manufacture parts required by press molding at a tensile strength (TS) strength level of 980 MPa or more, it is required to have bending characteristics in addition to elongation and stretch flangeability. Since the steel sheet disclosed in No. 4 is mainly composed of hard bainitic ferrite and has a crystal grain size of 20 μm or less, it allows a non-uniform structure in which coarse grains and fine grains can be mixed, so that bending workability is low. There was a problem.
[0007]
Furthermore, cold-rolled steel sheets for processing applied to automobile parts are usually used after electrodeposition coating, but it is necessary to apply various platings to the steel sheet surface in order to improve the corrosion resistance after painting. In many cases, the cost is increased and the price is high. In addition, for ultra-high strength steel sheets with a TS of 980 MPa or more, the increase in additive elements can cause problems such as the occurrence of non-plating and variations in the amount of adhesion, which can lead to problems such as low plating quality. The steel plate excellent in is desired.
[0008]
As a technology developed from such a viewpoint, for example, a technology for improving the corrosion resistance by containing a large amount of P, Cu, Cr, Mo, Ni as disclosed in Patent Document 5 has been proposed.
However, this method has a problem that not only the cost increases due to the addition of these elements, but also the hole expandability and the elongation are lowered, and it is difficult to obtain good moldability.
[0009]
[Patent Document 1]
JP-A-9-263838 (Tables 4 and 5)
[Patent Document 2]
Japanese Patent Laid-Open No. 10-60593 (Table 3, Table 6, Table 7)
[Patent Document 3]
JP 2000-273576 A (Claim 1, Table 3)
[Patent Document 4]
JP 2001-355043 A (Claims)
[Patent Document 5]
Japanese Patent Laid-Open No. 5-140654 (Claims)
[0010]
[Problems to be solved by the invention]
As described above, it is common for strength and workability to show contradictory trends, and at present there is no known ultra-high strength cold-rolled steel sheet that combines good workability and a tensile strength of 980 MPa or more. .
An object of the present invention is to solve the above-described problem advantageously, and an object of the present invention is to propose an ultra-high-strength cold-rolled steel sheet excellent in formability together with its advantageous manufacturing method.
Another object of the present invention is to propose an ultra-high-strength cold-rolled steel sheet that has not only excellent formability but also excellent corrosion resistance after coating, together with its advantageous manufacturing method.
[0011]
Here, the target values of the strength and workability of the cold-rolled steel sheet having a thickness of about 0.8 to 2.5 mm in the present invention are as follows.
・ Tensile strength (TS) ≥ 980 MPa
・ Strength-elongation balance (TS × El) ≧ 17000 MPa ・%
・ Strength-Stretch Flange Balance (TS × λ) ≧ 65000 MPa ・%
[0012]
[Means for Solving the Problems]
Now, in order to achieve the above-mentioned object, the inventors conducted intensive experiments from the viewpoints of steel components, production conditions, metal structures, and the like, and repeated studies.
As a result, it is composed of a certain amount of ferrite phase and a certain amount of bainite phase in which the crystal grain size is controlled by controlling the heating temperature and cooling stop temperature especially during the manufacturing process after controlling the component composition within an appropriate range. By controlling the hardness of the ferrite phase and the bainite phase, it becomes possible to achieve uniform deformation macroscopically while eliminating the difference in local deformability at the same time. Thus, under the very high strength level, an unprecedented excellent strength-elongation balance and strength-stretch flangeability balance were obtained, and as a result, it was found that excellent press formability was obtained.
In addition, the decrease in corrosion resistance after painting is due to the oxide containing Si present on the surface of the steel sheet. I also found that it was the cause.
The present invention is based on the above findings.
[0013]
That is, the gist configuration of the present invention is as follows.
1. C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In the range satisfying the following formula (1), the balance is the composition of Fe and inevitable impurities, and the tensile strength (TS), elongation (El), and hole expansion rate (λ) are respectively Relational expression
TS ≧ 980 MPa,
TS × El ≧ 17000 MPa ・%
TS × λ ≧ 65000 MPa ・%
An ultra-high-strength cold-rolled steel sheet with excellent formability characterized by satisfying
Record
−100 [C] + 15 ≦ [Mn] ≦ −100 [C] +20 --- (1)
Here, [C] and [Mn] are the contents of C and Mn (mass%), respectively.
[0014]
2. C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In the range satisfying the following formula (1), the balance is the composition of Fe and inevitable impurities, the volume fraction of the ferrite phase is 10-50 vol%, the average grain size of the ferrite phase is 4.0 μm In the following, the volume fraction of the bainite phase is 50 to 80 vol%, and the ratio of the Vickers hardness (Hv (B)) of the bainite phase to the Vickers hardness (Hv (F)) of the ferrite phase (Hv (B) / An ultra-high strength cold-rolled steel sheet having excellent formability, characterized by having a steel structure with Hv (F)) of 1.6 or less.
Record
−100 [C] + 15 ≦ [Mn] ≦ −100 [C] +20 --- (1)
Here, [C] and [Mn] are the contents of C and Mn (mass%), respectively.
[0015]
3. C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In the range satisfying the following formulas (1) and (2), the balance is the composition of Fe and inevitable impurities, and the tensile strength (TS), elongation (El) and hole expansion ratio (λ) are Each of the following relational expressions
TS ≧ 980 MPa,
TS × El ≧ 17000 MPa ・%
TS × λ ≧ 65000 MPa ・%
An ultra-high-strength cold-rolled steel sheet with excellent formability, characterized in that the ratio of the Si concentration between the steel sheet surface and the steel sheet inside is 1.5 or less.
Record
−100 [C] + 15 ≦ [Mn] ≦ −100 [C] +20 --- (1)
[Ti] ≧ 3.43 [N] + 1.5 [S] − 0.006 --- (2)
Here, [C], [Mn], [Ti], [N], and [S] are C, Mn, Ti, N, and S, respectively.
Content (mass%)
[0016]
4). C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In the range satisfying the following formulas (1) and (2), the balance is the composition of Fe and inevitable impurities, the volume fraction of the ferrite phase is 10 to 50 vol%, the average grain size of the ferrite phase The diameter is 4.0 μm or less, the volume fraction of the bainite phase is 50-80 vol%, and the ratio of the Vickers hardness (Hv (B)) of the bainite phase to the Vickers hardness (Hv (F)) of the ferrite phase (Hv (B) / Hv (F)) has a steel structure of 1.6 or less, and the ratio of the Si concentration between the steel sheet surface and the steel sheet is 1.5 or less. .
Record
−100 [C] + 15 ≦ [Mn] ≦ −100 [C] +20 --- (1)
[Ti] ≧ 3.43 [N] + 1.5 [S] − 0.006 --- (2)
Here, [C], [Mn], [Ti], [N], and [S] are the contents of C, Mn, Ti, N, and S, respectively (mass%)
[0017]
5. In any one of the above 1 to 4, the steel plate is further
Cu: 0.01-0.50mass%,
Ni: 0.01-0.50mass%,
Mo: 0.01-0.50mass% and
Cr: 0.01 ~ 0.50mass%
An ultra-high strength cold-rolled steel sheet excellent in formability, characterized by having a composition containing one or more selected from among the above.
[0018]
6). In any one of the above 1 to 5, the steel plate is further
Nb: 0.001 to 0.050 mass%
A super-high-strength cold-rolled steel sheet excellent in formability, characterized by having a composition containing
[0019]
7). In any one of the above 1 to 6, the steel plate is further
V: 0.001 to 0.300 mass% and
Zr: 0.001 to 0.300 mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by having a composition containing at least one selected from the above.
[0020]
8). In any one of 1 to 7 above, the steel plate is further
B: 0.0001 to 0.0050 mass%
A super-high-strength cold-rolled steel sheet excellent in formability, characterized by having a composition containing
[0021]
9. In any one of 1 to 8 above, the steel plate is further
Ca: 0.0001 to 0.0050 mass% and
REM: 0.0001 ~ 0.0050mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by having a composition containing at least one selected from the above.
[0022]
10. C: 0.12-0.18 mass%,
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In a range satisfying the following formula (1), the balance being Fe and the inevitable impurities composition of steel slab immediately after casting or once cooled to 1050-1300 ℃, after finishing rolling, finish rolling Temperature: Hot-rolled at 850-950 ° C, rolled up at 450-650 ° C after rolling, cold-rolled, and then subjected to continuous annealing, within the temperature range represented by the following formula (3) After heating and annealing, it is cooled to the temperature range indicated by the following formula (4), and after cooling is completed, the steel plate temperature is not increased (cooling stop temperature to cooling stop temperature−100 ° C.) for 60 seconds. A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by maintaining the temperature as described above.
Record
−100 [C] + 15 ≦ [Mn] ≦ −100 [C] +20 --- (1)
T 1 ± 50 ° C (however, T 1 = 950-150 [C] 1/2 +50 [Si] -30 [Mn]) --- (3)
T 2 ± 50 ° C (however, T 2 = 500−450 [C] −30 [Mn]) --- (4)
Here, [C], [Mn], and [Si] are the contents of C, Mn, and Si, respectively (mass%)
[0023]
11. C: 0.12-0.18 mass%,
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In a range satisfying the following formulas (1) and (2), and the remainder of the steel slab having a composition of Fe and inevitable impurities is heated to 1050-1300 ° C. immediately after casting or once after cooling. Finishing rolling finish temperature: Hot rolling at 850 to 950 ° C, winding at 450 to 650 ° C after rolling, cold rolling and then performing continuous annealing at least during heating during annealing After heating and annealing to a temperature range represented by the following formula (3) under an atmosphere dew point (DP) of −30 ° C. or higher, cooling to the temperature range represented by the following formula (4), A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the steel sheet is kept warm for 60 seconds or more in a temperature range (cooling stop temperature to cooling stop temperature −100 ° C.) without increasing the steel sheet temperature.
Record
−100 [C] + 15 ≦ [Mn] ≦ −100 [C] +20 --- (1)
[Ti] ≧ 3.43 [N] + 1.5 [S] − 0.006 --- (2)
T 1 ± 50 ° C (however, T 1 = 950-150 [C] 1/2 +50 [Si] -30 [Mn]) --- (3)
T 2 ± 50 ° C (however, T 2 = 500−450 [C] −30 [Mn]) --- (4)
Here, [C], [Mn], [Ti], [N], and [S] are the contents of C, Mn, Ti, N, and S, respectively (mass%)
[0024]
12. In the above 10 or 11, the steel slab is further
Cu: 0.01-0.50mass%,
Ni: 0.01-0.50mass%,
Mo: 0.01-0.50mass% and
Cr: 0.01 ~ 0.50mass%
The manufacturing method of the ultra-high-strength cold-rolled steel plate excellent in the formability characterized by becoming a composition containing 1 type, or 2 or more types selected from among these.
[0025]
13. In any one of 10 to 12, the steel slab is further
Nb: 0.001 to 0.050 mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by comprising a composition containing
[0026]
14. In any one of 10 to 13, the steel slab is further
V: 0.001 to 0.300 mass% and
Zr: 0.001 to 0.300 mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the composition contains at least one selected from the above.
[0027]
15. In any one of the above 10 to 14, the steel slab is further
B: 0.0001 to 0.0050 mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by comprising a composition containing
[0028]
16. In any of the above 10 to 15, the steel slab is further
Ca: 0.0001 to 0.0050 mass% and
REM: 0.0001 ~ 0.0050mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the composition contains at least one selected from the above.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
First, the reason why the component composition of steel is limited to the above range in the present invention will be described.
C: 0.12-0.18mass%
C is an essential element for strengthening steel using the low-temperature transformation phase, and it is necessary to contain at least 0.12 mass% to obtain a tensile strength of 980 MPa or more, but it exceeds 0.18 mass%. If it is contained, the weldability is remarkably deteriorated, the C concentration in the austenite becomes too high, the martensite transformation point (Ms) is lowered, and a hard retained austenite phase is present even after the heating, cooling, and heat retaining steps. Since stretch flangeability falls, C amount was limited to the range of 0.12-0.18 mass%.
[0030]
Si: 0.2 to 0.8 mass%
Si is a useful element that contributes to strength improvement. However, if the content is less than 0.2 mass%, the effect of addition is poor. On the other hand, if it exceeds 0.8 mass%, ferrite transformation is promoted and the low-temperature transformation phase. Strengthening due to is insufficient. Si is an element that has a large effect of promoting C concentration in austenite, and a phase other than ferrite (also referred to as a second phase) itself hardens, and a hard retained austenite in the steel sheet finally obtained. There is a detrimental effect on stretch flangeability due to the presence of a phase.
Furthermore, when Si is included in excess of 0.8 mass%, Si is concentrated on the surface significantly during continuous annealing, and reacts with oxygen present in the atmosphere to form a Si-based oxide on the surface. The chemical conversion treatment performed as a pretreatment for coating is reduced, and the adhesion to the coating is significantly reduced. Therefore, the Si content is limited to the range of 0.2 to 0.8 mass%. More preferably, it is the range of 0.2-0.65 mass%.
[0031]
Mn: 2.2 to 3.0 mass%
Mn is an element that plays an important role in suppressing ferrite transformation and obtaining a bainite structure. Ar Three It contributes to refinement of crystal grains through the action of lowering the transformation point, and has the action of increasing the strength-elongation balance. In order to obtain a stable low-temperature transformation phase from the viewpoint of securing tensile strength, an amount of Mn of 2.2 mass% or more is necessary, but if it exceeds 3.0 mass%, the formation of a soft ferrite phase is excessively suppressed. TS-E1 balance decreases. Therefore, the amount of Mn was limited to the range of 2.2 to 3.0 mass%.
[0032]
P: 0.02 mass% or less
P is an element that has a high solid solution strengthening ability and is effective in achieving an improvement in strength. Therefore, P is preferably contained in an amount of 0.005 mass% or more. However, if excessively contained, P causes structural heterogeneity, Solidification segregation during casting becomes prominent, leading to internal cracking and deterioration of workability. Therefore, the P content is limited to 0.02 mass% or less. More preferably, it is 0.018 mass% or less.
[0033]
S: 0.0030 mass% or less
Since S exists as non-metallic inclusions in steel and becomes a stress concentration source during stretch flange forming, it is desirable to reduce the content thereof as much as possible. However, in the range where the S amount is 0.0030 mass% or less, even if the strength is high, the stretch flangeability is not so badly affected, so 0.0030 mass% was set as the allowable upper limit. More preferably, it is less than 0.0010 mass%.
[0034]
Al: 0.05 mass% or less
Al is an element effective for improving the yield of deoxidation and carbide forming elements, and is preferably contained in an amount of 0.01 mass% or more, but not only when the content exceeds 0.05 mass%, the effect is saturated. In addition, the amount of Al is limited to 0.05 mass% or less because it causes deterioration of workability and surface properties.
[0035]
N: 0.0050 mass% or less
N is present in the steel as AlN and solute N, and if contained in a large amount, the ductility of ferrite is reduced, so its content is limited to 0.0050 mass% or less. More preferably, it is 0.0030 mass% or less.
[0036]
Ti: 0.001 to 0.030 mass%
Ti exists as TiC in the slab heating stage, and not only suppresses the growth of austenite grains during heating and heating, but also induces dynamic recrystallization in the subsequent hot rolling process, making the structure fine and uniform. This is an element effective for improving the elongation and hole expansibility, and for this purpose it needs to contain at least 0.001 mass%. Further, when Ti is used in combination with Nb described later, the critical cooling rate at which ferrite transformation does not occur is reduced, and the effect of improving hardenability is brought about. On the other hand, when Ti exceeding 0.030 mass% is contained, a hard carbide or the like is formed and stretch flangeability is deteriorated, so the Ti amount is limited to a range of 0.001 to 0.030 mass%. More preferably, it is 0.005 to 0.015 mass%.
[0037]
Furthermore, in the present invention, it is important to satisfy the range of the following formula (1) for the C content and the Mn content.
−100 [C] + 15 ≦ [Mn] ≦ −100 [C] +20 --- (1)
Here, [C] and [Mn] are the contents of C and Mn (mass%), respectively.
This is because C and Mn have an extremely large influence on the strength, so that it is necessary to contain them in a balanced manner. Here, if the amount of Mn is less than −100 [C] +15, it is difficult to ensure sufficient strength, and the elongation (El) increases due to the formation of ferrite, but the hole expansion rate (λ) decreases. On the other hand, if the content exceeds -100 [C] +20, the formation of ferrite is suppressed, the elongation (El) decreases, and the strength level becomes too high.
[0038]
Furthermore, in order to improve the corrosion resistance after painting, it is important to satisfy the range of the following formula (2) with respect to the Ti amount, N amount, and S amount.
[Ti] ≧ 3.43 [N] + 1.5 [S] − 0.006 --- (2)
Here, [C], [Mn], [Ti], [N], and [S] are the contents of C, Mn, Ti, N, and S, respectively (mass%)
Ti bonds not only with C but also with N and S to form precipitates. Of these, TiC is not only effective for the uniformity of the structure, but also improves the hardenability, further improves the chemical conversion treatment, and effectively contributes to the improvement of the subsequent coating corrosion resistance. Ti also works to improve corrosion resistance after coating by fixing S as a precipitate. Here, if the amount of Ti is less than (3.43 [N] + 1.5 [S]-0.006), it becomes difficult to obtain the above-mentioned effects, particularly the corrosion resistance improvement effect after coating. Accordingly, Ti is preferably contained in a range that satisfies the above formula (2).
[0039]
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
Cu: 0.01 to 0.50 mass%, Ni: 0.01 to 0.50 mass%, Mo: 0.01 to 0.50 mass%, and Cr: 0.01 to 0.50 mass%
Cu, Ni, Mo and Cr are all effective elements for improving the strength without greatly reducing the elongation, but less than 0.01 mass%, the effect is poor, while more than 0.50 mass%. Since there is no further effect even if it is contained in the composition, it is rather disadvantageous economically, so that these are contained in the range of 0.01 to 0.50 mass% in either case of single addition or combined addition. In addition, it is more preferable to contain these in the range of 0.01 to 0.20 mass% in either case of single addition or composite addition.
[0040]
Nb: 0.001 to 0.050 mass%
Nb is an element that affects the existence form of precipitates such as NbC and the recrystallization temperature. In particular, in the present invention, Nb effectively acts to make the structure fine and uniform, suppresses the formation of ferrite-pearlite, and has a high strength despite its high strength by forming a bainite-based structure that is a low-temperature transformation phase. It has the effect of elongating and providing a hole expansion rate. Such an effect is manifested by containing Nb in an amount of 0.001 mass% or more, but if it is contained in excess of 0.050 mass%, a large amount of hard precipitates are formed in the steel, and the stretch flangeability is reduced. The amount of Nb was limited to the range of 0.001 to 0.050 mass%. More preferably, it is 0.005 to 0.020 mass%.
[0041]
V: 0.001 to 0.300 mass% and / or Zr: 0.001 to 0.300 mass%
V and Zr are effective elements for increasing the strength of the steel sheet through the effect of suppressing the coarsening of the crystal grain size due to the formation of carbides. However, when the content is less than 0.001 mass%, the effect is poor, while 0.300 mass Even if it is contained in a large amount exceeding 5%, there is no further effect, rather it is economically disadvantageous. Therefore, V and Zr are each contained in the range of 0.001 to 0.300 mass%. In addition, even if these contain alone or in combination, they exhibit the same behavior.
[0042]
B: 0.0001 to 0.0050 mass%
B is also an element effective for increasing the strength. By containing B, the critical cooling rate at which ferrite is generated becomes slow, so that it is easy to form a low-temperature transformation phase by suppressing the formation of a soft ferrite phase during continuous cooling in the annealing process after cold rolling. Become. In order to acquire such an effect, it is necessary to contain 0.0001 mass% or more, but even if it contains more than 0.0050 mass%, a further effect is not acquired, Therefore B amount is 0.0001-0.0050 mass% Limited to range.
[0043]
Ca: 0.0001 to 0.0050 mass% and / or REM: 0.0001 to 0.0050 mass%
Both Ca and REM have the effect of suppressing the reduction in stretch flangeability by reducing the concentration of stress by reducing the stress concentration by spheroidizing precipitates such as sulfides, such as MnS. Yes. However, if the content is less than 0.0001 mass%, the effect is small. On the other hand, even if the content exceeds 0.0050 mass%, the effect is saturated and the cost is increased. Therefore, Ca and REM are contained in the range of 0.0001 to 0.0050 mass%, respectively.
[0044]
Next, the reason why the steel structure is limited to the above range will be described.
Volume fraction of ferrite phase: 10-50 vol%
If the volume fraction of the ferrite phase is less than 10 vol%, the absolute amount of the soft phase is too small and the ductility is reduced. On the other hand, if it exceeds 50 vol%, the soft phase becomes too much and the second phase Although it depends on the hardness, it is difficult to ensure the tensile strength TS. Accordingly, the ferrite phase is present in a volume fraction of 10 to 50 vol%. More preferably, it is the range of 15-35 vol%.
[0045]
Average grain size of ferrite phase: 4.0 μm or less
By making the average grain size of the ferrite phase as fine as 4.0 μm or less, a soft ferrite phase exists in the range of 10 to 50 vol%, and even when the second phase, that is, the hard low-temperature transformation phase is relatively small, it is high. Strengthening is possible, and as a result, a large amount of ferrite phase, which is a soft phase, is included, and as a result, ductility is improved. Furthermore, since the structure of the steel sheet is made uniform by refining the crystal grains, the stretch flangeability is also improved. Therefore, the average crystal grain size of the ferrite phase is set to 4.0 μm or less.
[0046]
Volume fraction of bainite phase: 50-80 vol%
When the volume fraction of the bainite phase exceeds 80 vol%, the strength is increased, and the bainite phase becomes close to the single-phase structure and becomes a uniform structure. Therefore, the stretch flangeability tends to be improved, but the ductility is decreased. On the other hand, if it is less than 50 vol%, it is difficult to ensure the tensile strength (TS). Moreover, in order to secure TS, it is necessary to strengthen the bainite phase itself, and the hardness difference from the ferrite phase is inevitably opened, so that the stretch flangeability is deteriorated. Therefore, the bainite phase was limited to a volume fraction of 50 to 80 vol%. More preferably, it is the range of 60-75 vol%.
Furthermore, in order to advantageously exhibit the properties of the ferrite phase and the bainite phase, it is preferable that the sum of both is 90 vol% or more in terms of the volume fraction with respect to the entire structure.
[0047]
In addition to the ferrite and bainite phases described above, cementite that precipitates along the grain boundaries, martensite and residual austenite that are slightly produced without transformation 100% when transformed from austenite to bainite during isothermal holding, etc. However, there is no problem as long as the ferrite phase and the bainite phase satisfy the above-mentioned range.
The bainite phase here refers to Fe that precipitates in the form of ferrite and needles that are formed by cooling from austenite to a predetermined temperature and then maintaining the temperature. Three A low-temperature transformation phase composed of C, for example, austenite that is rapidly cooled, such as water cooling, and is also produced in the subsequent reheating process, including ferrite and Fe. Three Although it is composed of C, it has a rod-like or elliptical Fe Three Tempered martensite phase composed of C and ferrite, Fe Three It is clearly distinguished from bainitic ferrite that does not contain C precipitation.
[0048]
Hardness of bainite phase (Hv (B)) / Hardness of ferrite phase (Hv (F)) ≦ 1.6
If Hv (B) / Hv (F) is greater than 1.6, a hard part is locally present in the soft phase instead of a uniform structure, and deformability is different at the time of strain introduction, resulting in nonuniform deformation. Therefore, moldability is reduced. That is, ferrite is deformed by the introduction of strain, but the deformation amount of bainite is small, so voids are easily generated at the interface of the second phase, and cracks are easily developed at the interface during the test. However, the hole expansion rate is reduced. Therefore, the ratio Hv (B) / Hv (F) between the hardness of the bainite phase and the hardness of the ferrite phase is set to 1.6 or less.
[0049]
C: 0.145 mass%, Si: 0.65 mass%, Mn: 2.58 mass%, P: 0.017 mass%, S: 0.0008 mass%, Al: 0.027 mass%, N: 0.0025 mass% and Ti: 0.011 mass% The balance is steel slab (T) with a composition of Fe and inevitable impurities. 1 = 848 ℃, T 2 = 357 ° C), slab heating temperature: 1100-1300 ° C, finish rolling temperature: 850-1000 ° C, winding temperature: 400-650 ° C, cold rolling reduction: 50%, annealing temperature: 750-920 ° C, annealing Subsequent cooling rate: 10 to 200 ° C./s, cooling stop temperature: 200 to 450 ° C., heat treatment temperature: 200 to 450 ° C.
The strength (TS), elongation (El) and hole expansion ratio (λ) of the cold-rolled steel sheet thus obtained were measured, and the strength-elongation balance (TS × El) and the strength-stretch flangeability balance (TS × λ). The obtained results are shown in FIG. 1 in relation to the volume fraction of the bainite phase.
In addition, the volume fraction of the ferrite phase of the obtained cold-rolled steel sheet was 5 to 70 vol%.
[0050]
As shown in the figure, high TS × El and TS × λ are obtained only when the volume fraction of the bainite phase is 50 to 80 vol% and the hardness of the bainite phase / the hardness of the ferrite phase ≦ 1.6. I was able to.
As described above, by adjusting the steel composition and hardness after adjusting the steel composition, TS ≧ 980 MPa, TS × E1 ≧ 17000 MPa ·%, TS × λ ≧ 65000 for the first time.
It was possible to obtain a cold-rolled steel sheet that achieved MPa ·%.
[0051]
Ratio of Si concentration between steel sheet surface and steel sheet: 1.5 or less
In steel containing Si like the present invention steel, Si is concentrated on the surface during hot rolling, and Si oxide is easily formed. Such Si oxide may remain without being completely removed in the pickling process after hot rolling. Further, during the continuous annealing after cold rolling, depending on the dew point and temperature in the furnace, Si is concentrated on the surface and Si oxide is formed. When Si oxide remains on the surface, the Si concentration on the surface increases. These Si oxides inhibit the dissolution of the base iron during the subsequent chemical conversion treatment of the steel sheet, adversely affect the formation of appropriate chemical conversion crystals, and further deteriorate the corrosion resistance after painting.
The present invention obtains excellent post-coating corrosion resistance by suppressing excessive Si concentration on the steel plate surface and preventing the Si oxide from remaining on the steel plate surface to such an extent that the post-coating corrosion resistance is degraded. It is what I did. The degree of concentration of Si on the steel sheet surface can be evaluated by measuring the Si concentration ratio between the steel sheet surface and the steel sheet interior by the method described below. Corrosion resistance after coating can be obtained.
[0052]
The Si concentration in the steel sheet surface and in the steel sheet was ground 0.5 mm from the surface of the steel sheet before and after annealing, and each surface after grinding was counted for Si intensity in the same area by fluorescent X-ray analysis. Can be measured. Here, Si concentration calculated | required about the steel plate before annealing represents Si concentration inside a steel plate. Accordingly, the Si concentration ratio between the steel plate surface and the steel plate is calculated by (Si concentration of steel plate grinding surface after annealing) / (Si concentration of steel plate grinding surface before annealing).
[0053]
Next, the reason why the manufacturing conditions are limited to the above range in the manufacturing method of the present invention will be described.
In the present invention, the steel slab adjusted to the above-mentioned preferred component composition is cast, immediately or once cooled, then reheated to a slab heating temperature described later, hot rolled, wound, Rolled and then subjected to continuous annealing.
[0054]
Slab heating temperature (SRT) during reheating: 1050-1300 ° C
For uniform refinement of crystal grains, the slab heating temperature is preferably as low as possible at 1300 ° C. or lower. This is because the lower the slab heating temperature, the smaller the initial austenite grain size during heating, which is effective in obtaining high stretch flangeability by refinement of the final product grain size. This is because, due to the effect of increasing the strength, it is possible to reduce the hard second phase fraction and improve the ductility. However, if the slab heating temperature is lower than 1050 ° C., it is difficult to ensure the finish rolling temperature, so the slab heating temperature needs to be 1050 ° C. or higher. Therefore, the slab heating temperature was limited to the range of 1050 to 1300 ° C. More preferably, it is the range of 1100-1200 degreeC.
[0055]
Finishing rolling finish temperature: 850-950 ° C
If the finish rolling finish temperature at the time of hot rolling is less than 850 ° C, the deformation resistance at the time of rolling is large and the hot rolling property is lowered. Further, the structure becomes non-uniform, and the ferrite and the second phase become a layered structure, that is, a band-shaped structure, and the non-uniform structure remains after cold rolling annealing, and both stretch flangeability and ductility are reduced. On the other hand, at a temperature higher than 950 ° C., austenite becomes coarse, a uniform fine structure cannot be obtained, and stretch flangeability deteriorates. Therefore, the finish rolling end temperature is set to a range of 850 to 950 ° C.
[0056]
Winding temperature: 450-650 ° C
When the coiling temperature is lower than 450 ° C, not only the hard martensite phase is generated and stretch flangeability deteriorates, but also the rolling load during cold rolling increases, and further the strength of the steel sheet in the width direction varies. The cold rolling property after hot rolling is reduced. On the other hand, when the temperature exceeds 650 ° C., TiC becomes coarse, a uniform structure cannot be obtained, and ductility after cold rolling annealing becomes insufficient. Moreover, it becomes a layered structure mainly composed of ferrite and pearlite, the level of C concentration distribution in the steel sheet is increased, the structure after cold rolling and annealing is not uniform, and both the hole expansion ratio (λ) and ductility (El) are adversely affected. Therefore, the coiling temperature was in the range of 450 to 650 ° C.
In addition, what is necessary is just to perform the cold rolling performed after coiling on the conditions as usual, and it is preferable to make the reduction rate in this cold rolling especially about 30 to 70%.
[0057]
Annealing temperature: T 1 ± 50 ° C (however, T 1 = 950-150 [C] 1/2 +50 [Si] -30 [Mn])
Where T 1 A Three This is a temperature that is a measure of the transformation point.
Now, the annealing temperature during continuous annealing is T 1 If it is lower than −50 ° C., it is difficult to completely eliminate the influence of the structure during cold rolling, so that a two-phase band structure, that is, a non-uniform structure is formed, and the hole expansion rate (λ) is lowered. On the other hand, the annealing temperature is T 1 When the temperature is higher than + 50 ° C., the austenite grain size is abruptly coarsened in the temperature raising step, and the carbides are also coarsely localized, so that a fine and uniform structure cannot be obtained and λ is lowered. Moreover, ferrite transformation is delayed and ductility is also reduced.
Therefore, in order to balance the ductility and the hole expansion rate, the annealing temperature is T 1 It is necessary to control within the range of ± 50 ℃.
[0058]
FIG. 2 shows the effect of annealing temperature on elongation (El) and hole expansion ratio (λ), and consequently on strength-elongation balance (TS × El) and strength-stretch flangeability balance (TS × λ). .
C: 0.154 mass%, Si: 0.55 mass%, Mn: 2.56 mass%, P: 0.017 mass%, S: 0.0008 mass%, Al: 0.027 mass%, N: 0.0022 mass% and Ti: 0.014 mass% The balance is steel slab (T) with a composition of Fe and inevitable impurities. 1 = 842 ℃, T 2 = 354 ° C), slab heating temperature: 1185 ° C, finish rolling temperature: 883 ° C, winding temperature: 455 ° C, cold rolling reduction: 45%, annealing temperature: T 1 The cold-rolled steel sheet was processed under the conditions of ± 95 ° C., cooling rate: 22 ° C./s, cooling stop temperature: 360 ° C., heat retention temperature: 350 ° C., heat retention time: 145 s.
The elongation (El) and the hole expansion ratio (λ) of the cold-rolled steel sheet thus obtained were measured, and the results obtained for the strength-elongation balance (TS × El) and the strength-stretch flangeability balance (TS × λ) FIG. 2 shows the relationship with the annealing temperature.
[0059]
As is apparent from the figure, the annealing temperature is T 1 By controlling in a range of ± 50 ° C., a ferrite phase and a bainite phase having a predetermined volume fraction can be obtained, and the hardness ratio of these phases also satisfies a predetermined range, and high TS × El and TS × λ are high. Has been obtained.
[0060]
In order to emphasize the corrosion resistance after coating and to improve it, as described above, it is necessary to suppress the concentration of Si on the steel sheet surface and make the Si concentration ratio 1.5 or less. It is preferable that the atmospheric dew point (DP) is at least −30 ° C. or higher during heating during annealing, that is, during heating up to the annealing temperature and during annealing.
Here, the reason why the above atmospheric dew point (DP) is set to −30 ° C. or more is that Si has a lower equilibrium oxygen partial pressure at which oxidation proceeds than Fe and Mn, and therefore has a dew point lower than −30 ° C. This is because when annealed, Si tends to be concentrated on the steel sheet surface, the Si concentration ratio between the steel sheet surface and the steel sheet exceeds 1.5, and the chemical conversion treatment performance decreases. A preferred dew point range is from -30 to -15 ° C.
[0061]
Cooling stop temperature: T 2 ± 50 ° C (however, T 2 = 500−450 [C] −30 [Mn])
Where T 2 Is a temperature that is a measure of the Ms point.
In cooling after annealing, the cooling stop temperature is T 2 If the temperature is below -50 ° C, a hard martensite phase is formed and the formation of bainite phase is reduced or the bainite phase is excessively hardened, but the tensile strength is increased, and the elongation and hole expansion rate are increased. Decreases. On the other hand, the cooling stop temperature is T 2 When the temperature exceeds + 50 ° C., a hard retained austenite phase having an extremely high C concentration is generated, the hardness difference from the ferrite phase increases, and the hole expansion rate decreases. In addition, the strength level is lowered because the bainai soot phase is formed at a high temperature, and it is difficult to ensure TS ≧ 980 MPa. Therefore, the cooling stop temperature is T 2 The temperature was controlled within the range of ± 50 ° C.
Incidentally, the cooling rate from the annealing temperature to the cooling stop temperature is defined by (annealing temperature (cooling start temperature) −temperature at the time of cooling stop) / cooling time (° C./s). If the cooling rate is too slow, a large amount of ferrite is produced, so that it is difficult to ensure the tensile strength. On the other hand, if it is too fast, the formation of ferrite is suppressed and problems such as a decrease in ductility occur. Therefore, unlike the case of water cooling, mist cooling, etc., the cooling rate may be about 5 to 80 ° C./s as an average cooling rate. Preferably it is the range of 10-50 degreeC / s.
[0062]
Insulation temperature: Cooling stop temperature to cooling stop temperature –100 ℃
In order to sufficiently perform the transformation from austenite to bainite, it is important to retain in a temperature range of (cooling stop temperature to cooling stop temperature−100 ° C.) for an appropriate time. If the temperature is kept below (cooling stop temperature−100 ° C.), the tensile strength increases due to the hardening of the second phase, and the elongation decreases. In addition, the hardness difference from ferrite is increased, cracks are easily generated and propagated, and the hole expansion rate is reduced.
In this respect, if the heat retention temperature is equal to or lower than the steel plate temperature at the end of cooling, a bainite phase, which is a low-temperature transformation phase having a sufficiently small hardness difference from ferrite, is generated, so that a sufficient hole expansion rate can be obtained. Moreover, it becomes a mixed structure of a bainite phase and a ferrite phase, which is not harder than martensite, and can be compatible with ductility. Therefore, the heat retention temperature is limited to the range of (cooling stop temperature to cooling stop temperature−100 ° C.), and after the cooling is finished, the temperature is kept within the above range without increasing the steel plate temperature.
[0063]
Insulation time: 60 seconds or more
Similar to the above-mentioned heat retention temperature, it is important for sufficient transformation from austenite to bainite, and if it is less than 60 seconds, hard martensite is generated and the hole expansion rate decreases, so the heat retention time is 60 seconds. It is necessary to do it above. In addition, even if the temperature is maintained for more than 240 seconds, the effect is saturated and the production efficiency only deteriorates. Therefore, the heat retention time is preferably 240 seconds or less. In addition, this heat retention treatment can be performed in an overaging zone or the like of a continuous annealing furnace.
[0064]
FIG. 3 shows the effect of the cooling stop temperature on the hole expansion ratio (λ) and elongation (El), and hence the strength-elongation balance (TS × El) and the strength-stretch flangeability balance (TS × λ). is there.
C: 0.149 mass%, Si: 0.44 mass%, Mn: 2.55 mass%, P: 0.017 mass%, S: 0.0007 mass%, Al: 0.035 mass%, N: 0.0028 mass% and Ti: 0.015 mass% The balance is steel slab (T) with a composition of Fe and inevitable impurities. 1 = 838 ° C, T 2 = 356 ° C), slab heating temperature: 1170 ° C, finish rolling temperature: 905 ° C, winding temperature: 520 ° C, cold rolling reduction: 50%, annealing temperature: 850 ° C, cooling rate: 25 ° C / s, cooling Stop temperature: (T 2 -70 ° C) to (T 2 + 75 ° C), heat retention temperature: cooling stop temperature -10 ° C, heat retention time: 200 seconds.
The elongation (El) and the hole expansion ratio (λ) of the cold-rolled steel sheet thus obtained were measured, and the results obtained for the strength-elongation balance (TS × El) and the strength-stretch flangeability balance (TS × λ) FIG. 3 shows the relationship with the cooling stop temperature.
[0065]
As is apparent from the figure, the cooling stop temperature is T 2 By controlling the temperature within a range of ± 50 ° C. and performing a heat treatment under appropriate conditions, a ferrite phase and a bainite phase having a predetermined volume fraction can be obtained, and the hardness ratio of these phases is also appropriate, and high TS × El and It can be seen that TS × λ is obtained.
[0066]
In addition, after said heat retention process, it is preferable to cool to about 200 degreeC by standing_to_cool or a cooling rate of about 10-60 degreeC / min. Moreover, about subsequent cooling, there is no restriction | limiting regarding a cooling method or a cooling rate, such as water cooling, mist cooling, and natural cooling.
As described above, the method of the present invention does not require a process such as rapid cooling from the annealing temperature or reheating of the steel sheet after the end of cooling, so it has high productivity and low fuel consumption, and at a low level of total energy cost. Industrial production is possible.
[0067]
【Example】
Steel slabs having various component compositions shown in Table 1 were processed under the conditions shown in Table 2 to produce cold-rolled steel sheets having a plate thickness of 1.0 to 1.8 mm. The rolling reduction during cold rolling was 40 to 60%. The cooling rate to 200 ° C. after the heat treatment was 30 to 50 ° C./min.
Table 3 shows the results of examining the steel structure and various mechanical properties of the cold-rolled steel sheet thus obtained.
[0068]
In addition, the evaluation method of each characteristic and the measurement method of a structure | tissue are as follows.
-Tensile properties: Evaluation was performed by performing a tensile test based on JIS Z 2241 using a JIS Z 2201 No. 5 test piece having a longitudinal direction (tensile direction) perpendicular to the rolling direction. -Hole expansion rate λ: Implemented based on the Japan Iron and Steel Federation Standard JFSTl001. That is, the initial diameter d o = After punching a 10mm hole, when the hole was widened by raising the 60 ° circular punch, the punch was stopped when the crack penetrated the plate thickness, and the punched hole diameter d after the crack was measured Hole expansion ratio λ = [(d−d o ) / D o ) × 100 (%).
-Bending characteristics: Using a test piece of 40 mm width x 200 mm length with the rolling direction as the longitudinal direction, an adhesion bending test by a push bending method based on JIS Z 2248 was performed and evaluated.
・ Grain size of ferrite phase
The measurement position was derived from the area of the ferrite phase and the number of ferrite phases by image analysis based on a 3000 times SEM image near the 1 / 4th of the plate thickness, and n = 3 simple average calculated by the quadrature method. Value.
-Ferrite phase volume fraction and bainite phase volume fraction: Based on a 5000 times SEM image in the vicinity of the 1 / 4th plane of the plate thickness, the area ratio was obtained by performing two gradations by image analysis, and a simple average was obtained at n = 5 Value. This area ratio was used as the volume fraction.
-Hardness of bainite phase and ferrite phase: The measurement position is in the vicinity of the 1/4 thickness plane, using a micro Vickers hardness tester, load: n = 3 simple average of 3 g test value.
・ Si concentration ratio between steel plate surface and steel plate interior
After cold rolling and pre-annealing steel plate and annealed steel plate, after grinding them 0.5 mm from the surface, each surface after grinding was counted for the same area by fluorescent X-ray analysis. Was the Si concentration. Here, the Si concentration obtained for the steel plate before annealing, that is, the Si strength count, represents the Si concentration inside the steel plate. Therefore, the Si concentration ratio is calculated by (Si concentration of steel plate grinding surface after annealing (Si strength count)) / (Si concentration of steel plate grinding surface before annealing (Si strength count)).
・ Corrosion resistance after painting
A 150mm x 75mm test piece is phosphated, electrodeposited to a thickness of 25μm, 45mm with a cutter knife, 3 pieces / notch of the test piece, 5% NaCl, 55 ° C salt After immersing in warm water for 240 hours, cellotape (registered trademark) was cut and pasted on top, and the peel width after peeling was measured. When the maximum one-side peel width was 2.5 mm (total width: 5 mm) or less, it was determined to be acceptable (◯). In addition, when it peeled in parts other than a notch, it was set as the disqualification (x).
[0069]
[Table 1]
Figure 0004114521
[0070]
[Table 2]
Figure 0004114521
[0071]
[Table 3]
Figure 0004114521
[0072]
As shown in Table 3, all of the inventive examples have tensile strength (TS) ≧ 980 MPa, strength-elongation balance (TS × El) ≧ 17000 MPa ·%, strength-stretch flangeability balance (TS × λ) ≧ All three target values of 65000 MPa ·% are satisfied, indicating that both high strength and good workability are achieved.
It can also be seen that those with a reduced Si concentration ratio between the steel sheet surface and inside the steel sheet to 1.5 or less are excellent in corrosion resistance after painting.
[0073]
【The invention's effect】
Thus, according to the present invention, the super high strength of TS ≧ 980 MPa, the excellent press formability of TS × El ≧ 17000 MPa ·%, TS × λ ≧ 65000 MPa ·%, and further coating A cold-rolled steel sheet having excellent later corrosion resistance can be obtained stably.
[Brief description of the drawings]
FIG. 1 shows the effects of volume fraction of bainite phase and hardness ratio of bainite phase and ferrite phase on strength-elongation balance (TS × E1) and strength-stretch flangeability balance (TS × λ) of cold-rolled steel sheets. It is a figure.
FIG. 2 is a diagram showing the influence of annealing temperature on the strength-elongation balance (TS × El) and the strength-stretch flangeability balance (TS × λ) of a cold-rolled steel sheet.
FIG. 3 is a graph showing the influence of the cooling stop temperature on the strength-elongation balance (TS × El) and the strength-stretch flangeability balance (TS × λ) of a cold-rolled steel sheet.

Claims (16)

C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1) を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になり、引張強さ(TS)、伸び(El)および穴拡げ率(λ)がそれぞれ、次の関係式
TS≧ 980 MPa、
TS×El≧ 17000 MPa・%
TS×λ≧ 65000 MPa・%
を満足することを特徴とする成形性に優れる超高強度冷延鋼板。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
ここで、 [C], [Mn] はそれぞれ、C,Mnの含有量(mass%)
C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In the range satisfying the following formula (1), the balance is the composition of Fe and inevitable impurities, and the tensile strength (TS), elongation (El), and hole expansion rate (λ) are respectively Relational formula TS ≧ 980 MPa,
TS × El ≧ 17000 MPa ・%
TS × λ ≧ 65000 MPa ・%
An ultra-high-strength cold-rolled steel sheet with excellent formability characterized by satisfying
-100 [C] + 15 ≤ [Mn] ≤ -100 [C] + 20 --- (1)
Here, [C] and [Mn] are the contents of C and Mn (mass%), respectively.
C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1) を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になり、フェライト相の体積分率が10〜50 vol%、フェライト相の平均結晶粒径が 4.0μm 以下、ベイナイト相の体積分率が50〜80 vol%で、かつベイナイト相のビッカース硬さ(Hv(B))とフェライト相のビッカース硬さ(Hv(F))の比(Hv(B)/Hv(F))が 1.6以下の鋼組織を有することを特徴とする成形性に優れる超高強度冷延鋼板。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
ここで、 [C], [Mn] はそれぞれ、C,Mnの含有量(mass%)
C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In the range satisfying the following formula (1), the balance is the composition of Fe and inevitable impurities, the volume fraction of the ferrite phase is 10-50 vol%, the average grain size of the ferrite phase is 4.0 μm In the following, the volume fraction of the bainite phase is 50 to 80 vol%, and the ratio of the Vickers hardness (Hv (B)) of the bainite phase to the Vickers hardness (Hv (F)) of the ferrite phase (Hv (B) / An ultra-high strength cold-rolled steel sheet having excellent formability, characterized by having a steel structure with Hv (F)) of 1.6 or less.
-100 [C] + 15 ≤ [Mn] ≤ -100 [C] + 20 --- (1)
Here, [C] and [Mn] are the contents of C and Mn (mass%), respectively.
C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1), (2)を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になり、引張強さ(TS)、伸び(El)および穴拡げ率(λ)がそれぞれ、次の関係式
TS≧ 980 MPa、
TS×El≧ 17000 MPa・%
TS×λ≧ 65000 MPa・%
を満足し、さらに鋼板表面と鋼板内部のSi濃度の比が1.5 以下であることを特徴とする成形性に優れる超高強度冷延鋼板。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
[Ti] ≧ 3.43[N] + 1.5 [S] − 0.006 --- (2)
ここで、 [C], [Mn], [Ti], [N], [S] はそれぞれ、C,Mn,Ti,N,Sの含有量(mass%)
C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In the range satisfying the following formulas (1) and (2), the balance is the composition of Fe and inevitable impurities, and the tensile strength (TS), elongation (El) and hole expansion ratio (λ) are The following relational expression TS ≧ 980 MPa,
TS × El ≧ 17000 MPa ・%
TS × λ ≧ 65000 MPa ・%
An ultra-high-strength cold-rolled steel sheet with excellent formability, characterized in that the ratio of the Si concentration between the steel sheet surface and the steel sheet inside is 1.5 or less.
-100 [C] + 15 ≤ [Mn] ≤ -100 [C] + 20 --- (1)
[Ti] ≧ 3.43 [N] + 1.5 [S] − 0.006 --- (2)
Here, [C], [Mn], [Ti], [N], and [S] are the contents of C, Mn, Ti, N, and S, respectively (mass%)
C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1), (2)を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になり、フェライト相の体積分率が10〜50 vol%、フェライト相の平均結晶粒径が 4.0μm 以下、ベイナイト相の体積分率が50〜80 vol%で、かつベイナイト相のビッカース硬さ(Hv(B))とフェライト相のビッカース硬さ(Hv(F))の比(Hv(B)/Hv(F))が 1.6以下の鋼組織を有し、さらに鋼板表面と鋼板内部のSi濃度の比が1.5 以下であることを特徴とする成形性に優れる超高強度冷延鋼板。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
[Ti] ≧ 3.43[N] + 1.5 [S] − 0.006 --- (2)
ここで、 [C], [Mn], [Ti], [N], [S] はそれぞれ、C,Mn,Ti,N,Sの含有量(mass%)
C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In the range satisfying the following formulas (1) and (2), the balance is the composition of Fe and inevitable impurities, the volume fraction of the ferrite phase is 10 to 50 vol%, the average grain size of the ferrite phase The diameter is 4.0 μm or less, the volume fraction of the bainite phase is 50-80 vol%, and the ratio of the Vickers hardness (Hv (B)) of the bainite phase to the Vickers hardness (Hv (F)) of the ferrite phase (Hv (B) / Hv (F)) has a steel structure of 1.6 or less, and the ratio of the Si concentration between the steel sheet surface and the steel sheet is 1.5 or less. .
-100 [C] + 15 ≤ [Mn] ≤ -100 [C] + 20 --- (1)
[Ti] ≧ 3.43 [N] + 1.5 [S] − 0.006 --- (2)
Here, [C], [Mn], [Ti], [N], and [S] are the contents of C, Mn, Ti, N, and S, respectively (mass%)
請求項1〜4のいずれかにおいて、鋼板が、さらに
Cu:0.01〜0.50mass%、
Ni:0.01〜0.50mass%、
Mo:0.01〜0.50mass%および
Cr:0.01〜0.50mass%
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
In any one of Claims 1-4, a steel plate is further
Cu: 0.01-0.50mass%,
Ni: 0.01-0.50mass%,
Mo: 0.01-0.50mass% and
Cr: 0.01 ~ 0.50mass%
An ultra-high strength cold-rolled steel sheet excellent in formability, characterized by having a composition containing one or more selected from among the above.
請求項1〜5のいずれかにおいて、鋼板が、さらに
Nb:0.001 〜0.050 mass%
を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
In any one of Claims 1-5, a steel plate is further
Nb: 0.001 to 0.050 mass%
A super-high-strength cold-rolled steel sheet excellent in formability, characterized by having a composition containing
請求項1〜6のいずれかにおいて、鋼板が、さらに
V:0.001 〜0.300 mass%および
Zr:0.001 〜0.300 mass%
のうちから選んだ少なくとも1種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
In any one of Claims 1-6, a steel plate is further V: 0.001-0.300 mass% and
Zr: 0.001 to 0.300 mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by having a composition containing at least one selected from the above.
請求項1〜7のいずれかにおいて、鋼板が、さらに
B:0.0001〜0.0050mass%
を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
In any one of Claims 1-7, a steel plate is further B: 0.0001-0.0050mass%.
A super-high-strength cold-rolled steel sheet excellent in formability, characterized by having a composition containing
請求項1〜8のいずれかにおいて、鋼板が、さらに
Ca:0.0001〜0.0050mass%および
REM:0.0001〜0.0050mass%
のうちから選んだ少なくとも1種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
In any one of Claims 1-8, a steel plate is further
Ca: 0.0001 to 0.0050 mass% and
REM: 0.0001 ~ 0.0050mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by having a composition containing at least one selected from the above.
C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1) を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、鋳造後、直ちにまたは一旦冷却後1050〜1300℃に加熱したのち、仕上げ圧延終了温度:850 〜950 ℃にて熱間圧延し、圧延終了後、 450〜650 ℃で巻取ったのち、冷間圧延し、ついで連続焼鈍を施すに際し、下記式(3) で示される温度域に加熱して焼鈍した後、下記式(4) で示される温度域まで冷却し、冷却終了後、鋼板温度を上昇させることなく(冷却停止温度〜冷却停止温度−100 ℃)の温度域で60秒以上保温することを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
1 ± 50 ℃(但し、T1 = 950− 150 [C]1/2+50[Si]−30[Mn]) ---(3)
2 ± 50 ℃(但し、T2 = 500−450[C] −30[Mn]) --- (4)
ここで、 [C], [Mn], [Si] はそれぞれ、C,Mn, Siの含有量(mass%)
C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In a range satisfying the following formula (1), the balance being Fe and the inevitable impurities composition of steel slab immediately after casting or once cooled to 1050-1300 ℃, after finishing rolling, finish rolling Temperature: Hot-rolled at 850-950 ° C, rolled up at 450-650 ° C after rolling, cold-rolled, and then subjected to continuous annealing, within the temperature range represented by the following formula (3) After heating and annealing, it is cooled to the temperature range indicated by the following formula (4), and after cooling is completed, the steel plate temperature is not increased (cooling stop temperature to cooling stop temperature−100 ° C.) for 60 seconds. A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by maintaining the temperature as described above.
-100 [C] + 15 ≤ [Mn] ≤ -100 [C] + 20 --- (1)
T 1 ± 50 ° C (However, T 1 = 950-150 [C] 1/2 +50 [Si] -30 [Mn]) --- (3)
T 2 ± 50 ° C (However, T 2 = 500−450 [C] −30 [Mn]) --- (4)
Here, [C], [Mn], and [Si] are the contents of C, Mn, and Si, respectively (mass%)
C:0.12〜0.18mass%、
Si:0.2 〜0.8 mass%、
Mn:2.2 〜3.0 mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
N:0.0050mass%以下および
Ti:0.001 〜0.030 mass%
を、下記式(1), (2)を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、鋳造後、直ちにまたは一旦冷却後1050〜1300℃に加熱したのち、仕上げ圧延終了温度:850 〜950 ℃にて熱間圧延し、圧延終了後、 450〜650 ℃で巻取ったのち、冷間圧延し、ついで連続焼鈍を施すに際し、少なくとも焼鈍時の加熱中における雰囲気露点(DP)が−30℃以上の条件下で下記式(3) で示される温度域に加熱して焼鈍した後、下記式(4) で示される温度域まで冷却し、冷却終了後、鋼板温度を上昇させることなく(冷却停止温度〜冷却停止温度−100 ℃)の温度域で60秒以上保温することを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。

−100[C] + 15 ≦ [Mn] ≦−100[C] + 20 --- (1)
[Ti] ≧ 3.43[N] + 1.5 [S] − 0.006 --- (2)
1 ± 50 ℃(但し、T1 = 950− 150 [C]1/2+50[Si]−30[Mn]) ---(3)
2 ± 50 ℃(但し、T2 = 500−450[C] −30[Mn]) --- (4)
ここで、 [C], [Mn], [Ti], [N], [S] はそれぞれ、C,Mn,Ti,N,Sの含有量(mass%)
C: 0.12-0.18 mass%
Si: 0.2 to 0.8 mass%
Mn: 2.2-3.0 mass%
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
N: 0.0050 mass% or less and
Ti: 0.001 to 0.030 mass%
In a range satisfying the following formulas (1) and (2), and the remainder of the steel slab having a composition of Fe and inevitable impurities is heated to 1050-1300 ° C. immediately after casting or once after cooling. Finishing rolling finish temperature: Hot rolling at 850 to 950 ° C, winding at 450 to 650 ° C after rolling, cold rolling and then performing continuous annealing at least during heating during annealing After heating and annealing to a temperature range represented by the following formula (3) under an atmosphere dew point (DP) of −30 ° C. or higher, cooling to the temperature range represented by the following formula (4), A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the steel sheet is kept warm for 60 seconds or more in a temperature range (cooling stop temperature to cooling stop temperature −100 ° C.) without increasing the steel sheet temperature.
-100 [C] + 15 ≤ [Mn] ≤ -100 [C] + 20 --- (1)
[Ti] ≧ 3.43 [N] + 1.5 [S] − 0.006 --- (2)
T 1 ± 50 ° C (However, T 1 = 950-150 [C] 1/2 +50 [Si] -30 [Mn]) --- (3)
T 2 ± 50 ° C (However, T 2 = 500−450 [C] −30 [Mn]) --- (4)
Here, [C], [Mn], [Ti], [N], and [S] are the contents of C, Mn, Ti, N, and S, respectively (mass%)
請求項10または11において、鋼スラブが、さらに
Cu:0.01〜0.50mass%、
Ni:0.01〜0.50mass%、
Mo:0.01〜0.50mass%および
Cr:0.01〜0.50mass%
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
The steel slab according to claim 10 or 11, further comprising:
Cu: 0.01-0.50mass%,
Ni: 0.01-0.50mass%,
Mo: 0.01-0.50mass% and
Cr: 0.01 ~ 0.50mass%
The manufacturing method of the ultra-high-strength cold-rolled steel plate excellent in the formability characterized by becoming a composition containing 1 type, or 2 or more types selected from among these.
請求項10〜12のいずれかにおいて、鋼スラブが、さらに
Nb:0.001 〜0.050 mass%
を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
The steel slab according to any one of claims 10 to 12,
Nb: 0.001 to 0.050 mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by comprising a composition containing
請求項10〜13のいずれかにおいて、鋼スラブが、さらに
V:0.001 〜0.300 mass%および
Zr:0.001 〜0.300 mass%
のうちから選んだ少なくとも1種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
The steel slab according to any one of claims 10 to 13, further comprising V: 0.001 to 0.300 mass% and
Zr: 0.001 to 0.300 mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the composition contains at least one selected from the above.
請求項10〜14のいずれかにおいて、鋼スラブが、さらに
B:0.0001〜0.0050mass%
を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
The steel slab according to any one of claims 10 to 14, further comprising B: 0.0001 to 0.0050 mass%.
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by comprising a composition containing
請求項10〜15のいずれかにおいて、鋼スラブが、さらに
Ca:0.0001〜0.0050mass%および
REM:0.0001〜0.0050mass%
のうちから選んだ少なくとも1種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
The steel slab according to any one of claims 10 to 15, further
Ca: 0.0001 to 0.0050 mass% and
REM: 0.0001 ~ 0.0050mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the composition contains at least one selected from the above.
JP2003091269A 2002-12-04 2003-03-28 Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same Expired - Lifetime JP4114521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091269A JP4114521B2 (en) 2002-12-04 2003-03-28 Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002352653 2002-12-04
JP2003091269A JP4114521B2 (en) 2002-12-04 2003-03-28 Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004232078A JP2004232078A (en) 2004-08-19
JP4114521B2 true JP4114521B2 (en) 2008-07-09

Family

ID=32964403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091269A Expired - Lifetime JP4114521B2 (en) 2002-12-04 2003-03-28 Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4114521B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168793B2 (en) * 2006-02-16 2013-03-27 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet with excellent corrosion resistance after painting
JP5637530B2 (en) * 2010-10-26 2014-12-10 Jfeスチール株式会社 Ultra-high strength cold-rolled steel sheet with a tensile strength of 780 MPa or more that has high ductility and excellent chemical conversion properties
WO2018134186A1 (en) * 2017-01-20 2018-07-26 thyssenkrupp Hohenlimburg GmbH Hot-rolled flat steel product consisting of a complex-phase steel having a predominantly bainitic microstructure and method for producing such a flat steel product
KR102459164B1 (en) * 2021-06-23 2022-10-25 울산과학기술원 Method of evaluation stretch flangeability for steel

Also Published As

Publication number Publication date
JP2004232078A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP6443592B1 (en) High strength steel sheet
JP5365216B2 (en) High-strength steel sheet and its manufacturing method
JP5719545B2 (en) High strength thin steel sheet with excellent elongation and press forming stability
KR101485236B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP5780171B2 (en) High-strength cold-rolled steel sheet with excellent bendability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and manufacturing method thereof
JP4998756B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
US20120175028A1 (en) High strength steel sheet and method for manufacturing the same
KR101585311B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent stability of mechanical properties, formability, and coating appearance
JP6304455B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
EP3009527A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
EP2623622B1 (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
WO2013051238A1 (en) High-strength steel sheet and method for manufacturing same
JP2012229466A (en) High-strength hot-dip galvanized steel sheet excellent in formability and shape fixability, and method of manufacturing the same
CN108779536B (en) Steel sheet, plated steel sheet, and method for producing same
JP4696870B2 (en) High strength steel plate and manufacturing method thereof
JP6795122B1 (en) High-strength galvanized steel sheet and its manufacturing method
JP2011168877A (en) High-strength hot-dip galvanized steel sheet with excellent material stability and processability and method for producing the same
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
JP2013139591A (en) High-strength hot-rolled steel sheet with excellent workability and method for producing the same
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP2002241897A (en) Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same
JP4325223B2 (en) Ultra-high-strength cold-rolled steel sheet having excellent bake hardenability and manufacturing method thereof
JP5031751B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dipped steel sheet and cold-rolled steel sheet with excellent bake hardenability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4114521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term