JP4114022B2 - Power transmission shaft - Google Patents

Power transmission shaft Download PDF

Info

Publication number
JP4114022B2
JP4114022B2 JP10724798A JP10724798A JP4114022B2 JP 4114022 B2 JP4114022 B2 JP 4114022B2 JP 10724798 A JP10724798 A JP 10724798A JP 10724798 A JP10724798 A JP 10724798A JP 4114022 B2 JP4114022 B2 JP 4114022B2
Authority
JP
Japan
Prior art keywords
pipe
reinforcing beam
power transmission
intermediate shaft
transmission shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10724798A
Other languages
Japanese (ja)
Other versions
JPH11303845A (en
Inventor
康 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP10724798A priority Critical patent/JP4114022B2/en
Publication of JPH11303845A publication Critical patent/JPH11303845A/en
Application granted granted Critical
Publication of JP4114022B2 publication Critical patent/JP4114022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、中間軸部の両端に自在継手を備えた動力伝達軸に関する。
【0002】
【従来の技術】
自動車のプロペラシャフト等として用いられる動力伝達軸は、中間軸部の両端にクロスベアリング等を含む自在継手を有している。また、中間軸部としては、通常、軽量化等を目的として、プロペラチューブ等と称されるパイプが使用されている。
【0003】
【発明が解決しようとする課題】
以上のような動力伝達軸においては、高速で回転している状態では、伝達軸自体のアンバランス荷重や機械振動等によって、中間軸部には両端支持の梁と同様の撓みを生じる。軸の1秒間当たりの回転数が中間軸部の曲げの固有振動数と一致する付近では、共振により中間軸部の曲げ歪が極端に大きくなり、最悪の場合には折損に到る場合もある。このような危険回転数を高くするためには、中間軸部の剛性を高くしたり、あるいは重量の軽減によって軸の固有振動数を高くする必要がある。通常は、パイプ材からなる中間軸部を、その板厚を変更せずに外径を大きくする手法が採られるが、この手法では、スペース等の制約が生じるとともに、重量の相当大きな増加が避けられないという問題がある。
【0004】
本発明の目的は、中間軸部の外径を大きくすることなく、かつ、さほど重量を増加させることなく、危険回転数を高くすることのできる構造を持つ動力伝達軸を提供することにある。
【0005】
【課題を解決するための手段】
上記の目的を達成するため、本発明の動力伝達軸は、パイプからなる中間軸部の両端に自在継手が設けられてなる動力伝達軸において、中間軸部のパイプの内部に、当該中間軸部の軸心を中心として複数のフィンが放射状に配されて相互に一体化されてなる補強用梁が組み込まれていることによって特徴づけられる。ここで、本発明においては、補強用梁の材質は特に限定されることはなく、例えば鋼板や樹脂成形品等を使用することができる。
【0006】
ここで、本発明においては、上記補強用梁は一体成形された合成樹脂製であり、上記パイプとともに長手方向に伸びていること構成(請求項2)を採用することができる。
【0007】
また、本発明においては、上記両端所定部分の直径が上記両端所定部分以外の直径よりも大きい構成(請求項3)を採用することができる。
【0008】
また、本発明においては、補強用梁のフィンの数は任意であるが、少なくとも3枚以上とすることが望ましい。
本発明は、中間軸部のパイプ内に補強用梁を組み込むことにより、軸の固有振動時における中間軸部の曲げ剛性を向上させようとするものである。すなわち、中間軸部のパイプが固有振動により撓むとき、その内部に組み込まれた補強用梁を構成するいずれか一つまたは複数のフィン先端との接触によって、パイプの撓み量はある限度以下に抑制される。
【0009】
具体的には、例えば芯間距離L(図2参照)=1500mmの動力伝達軸で、中間軸部のパイプが外径110mm、内径100mm、長さ1200mm程度である場合、そのパイプには共振時において振動全幅で10mm程度のたわみ振動が発生する。パイプの内部に補強用梁を組み込んでおけば、パイプの内周面と補強用梁のフィン先端部との隙間に応じた量だけパイプが撓んだときにこれら両者が接触する。パイプ内周面と補強用梁のフィン先端部との隙間を上記したパイプの撓み振動振幅10mm程度との関連において適当量以下、例えば1mm程度以下、に設定するとともに、補強用梁自体の曲げ剛性をある程度以上に設定しておけば、中間軸部の曲げ剛性は実質的に向上し、動力伝達軸の危険回転数を高くすることができる。そして、本発明における補強用梁は、中間軸部のパイプ内に組み込まれるが故にスペース上の制約が生じることがなく、また、複数のフィンを軸心から放射状に突出させた形状であるため、中間軸部の重量もさほど増大することもない。
【0010】
【発明の実施の形態】
図1は本発明の実施の形態の分解斜視図で、パイプ11の両端部を除く部分を省略して示す図であり、図2はそのクロスベアリング23および32より先端部分を省略した状態で示す断面図である。中間軸部1の両端には、それぞれ公知の自在継手2,3が設けられている。一方の自在継手2は、中間軸部1を構成するパイプ11の一端に溶接されたスプラインシャフト21、そのスプラインシャフト21が挿入されるスリーブヨーク22、そのスリーブヨーク22に対してクロスベアリング23を介して連結される円筒穴ヨーク24を主たる構成要素としている。また、他方の自在継手3は、中間軸部1のパイプ11に溶接されたウエルドヨーク31、そのウエルドヨーク31にクロスベアリング32を介して連結される円筒穴ヨーク33を主たる構成要素としている。
【0011】
中間軸部1のパイプ11内には補強用梁12が組み込まれている。この例において補強用梁12は合成樹脂の一体成形品であり、図3にその軸直交断面図を示すように、その軸心を中心として6枚のフィンFが互いに等角度で放射状に配さた構造を有している。補強用梁12とパイプ11との係合関係は、パイプ11の内径面に対して補強用梁12が圧入されることによって互いに固定された状態となっている。より具体的には、補強用梁12はその両端部所定長さの部分における直径(フィン12の高さ)が他領域に比して大となった圧入部12a,12bを有しており、この両端の圧入部12a,12bにおいてのみパイプ11に対して圧入され、それ以外の部分ではパイプ11の内周面との間に若干の隙間が形成されて、組み込み作業の容易化が図られている。
【0012】
また、補強用梁12の長さはパイプ11の長さよりも短く、補強用梁12の両端は、パイプ11とスプラインシャフト21、および、パイプ11とウエルドヨーク31との溶接部Wに対して所定距離だけ離れて位置している。これは、パイプ11内に補強用梁12を圧入した後、パイプ11の両端にスプラインシャフト21およびウエルドヨーク31を溶接する際、その溶接熱の影響が樹脂製の補強用梁12に及ぶことを防止するためである。
【0013】
以上の本発明の実施の形態によれば、軸の回転数がパイプ11の共振回転数の近傍となって、パイプ11が大きく撓もうとしても、パイプ11の内周面が補強用梁12のフィンFに接触するため、その撓み量はパイプ11の中央部分における補強用梁12との間の隙間に応じた量に規制され、中間軸部1の全体としての曲げ剛性は高くなって、軸の危険回転数が実質的に高くなる。
【0014】
ここで、この種の動力伝達軸におけるパイプ11は、通常、引き抜き鋼管等を特に機械加工することなく使用するため、その内径寸法は一様でないことが予想されるが、前記したように、危険回転数における軸の撓み量は数mm以上にも達するため、補強用梁12がその両端部においてパイプ11に対して確実に圧入されてさえいれば、それ以外の部分でパイプ11と補強用梁12との間の隙間がある程度大きくとも、上記の効果を奏することができる。なお、以上の実施の形態においては、補強用梁12として樹脂の一体成形品を用いたが、本発明はこれに限定されることなく、例えば鋼板を溶接等によって一体化したもの等をも使用し得ることは勿論である。この場合、補強用梁12の両端と、パイプ11の両端の溶接部Wとの間の距離は特に設ける必要はない。また、補強用梁12のフィンFの枚数は6に限られることなく、必要な曲げ剛性が得られるならば3枚以上任意の枚数とすることができる。
【0015】
【発明の効果】
以上のように、本発明によれば、両端に自在継手を備えた動力伝達軸の中間軸部を構成するパイプの内部に、複数のフィンを放射状に配して一体化した補強用梁を組み込んでいるので、中間軸部の直径を大きくすることなく、かつ、さほど重量を増大させることなく、中間軸部の曲げ剛性を高くして、危険回転数を高くすることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の分解斜視図で、パイプの中央部分を省略して示す図である。
【図2】 本発明の実施の形態であって、パイプの両端部のクロスベアリングより先端部分を省略した断面図である。
【図3】 同じく本発明の実施の形態の補強用梁の軸直交断面図である。
【符号の説明】
1 中間軸部
11 パイプ
12 補強用梁
2,3 自在継手
21 スプラインシャフト
22 スリーブヨーク
23,32 クロスベアリング
24,33 円筒穴ヨーク
31 ウエルドヨーク
F フィン
W 溶接部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power transmission shaft provided with universal joints at both ends of an intermediate shaft portion.
[0002]
[Prior art]
A power transmission shaft used as a propeller shaft of an automobile has a universal joint including a cross bearing at both ends of an intermediate shaft portion. Further, as the intermediate shaft portion, a pipe called a propeller tube or the like is usually used for the purpose of weight reduction or the like.
[0003]
[Problems to be solved by the invention]
When the power transmission shaft as described above is rotating at a high speed, the intermediate shaft portion bends in the same manner as a beam supported at both ends due to an unbalanced load or mechanical vibration of the transmission shaft itself. In the vicinity where the number of rotations per second of the shaft matches the natural frequency of bending of the intermediate shaft portion, the bending strain of the intermediate shaft portion becomes extremely large due to resonance, and in the worst case, breakage may occur. . In order to increase such a dangerous rotational speed, it is necessary to increase the rigidity of the intermediate shaft portion or increase the natural frequency of the shaft by reducing the weight. Normally, a method of increasing the outer diameter of the intermediate shaft portion made of a pipe material without changing the plate thickness is adopted, but this method causes a space limitation and avoids a considerable increase in weight. There is a problem that can not be.
[0004]
An object of the present invention is to provide a power transmission shaft having a structure capable of increasing the dangerous rotational speed without increasing the outer diameter of the intermediate shaft portion and without increasing the weight so much.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the power transmission shaft of the present invention is a power transmission shaft in which universal joints are provided at both ends of an intermediate shaft portion made of a pipe, and the intermediate shaft portion is disposed inside the pipe of the intermediate shaft portion. It is characterized by incorporating a reinforcing beam in which a plurality of fins are arranged radially and are integrated with each other around the axis. Here, in the present invention, the material of the reinforcing beam is not particularly limited, and for example, a steel plate or a resin molded product can be used.
[0006]
Here, in the present invention, it is possible to adopt a configuration in which the reinforcing beam is made of an integrally formed synthetic resin and extends in the longitudinal direction together with the pipe (claim 2).
[0007]
In the present invention, a configuration in which the diameter of the predetermined portion at both ends is larger than the diameter of the predetermined portion at both ends (Claim 3) can be adopted.
[0008]
Further, in the present invention, the number of fins of the reinforcing beam is arbitrary, but it is desirable that at least three or more.
The present invention seeks to improve the bending rigidity of the intermediate shaft portion during natural vibration of the shaft by incorporating a reinforcing beam into the pipe of the intermediate shaft portion. That is, when the pipe of the intermediate shaft portion is bent due to natural vibration, the amount of bending of the pipe falls below a certain limit due to contact with any one or a plurality of fin tips constituting the reinforcing beam incorporated therein. It is suppressed.
[0009]
Specifically, for example, when a power transmission shaft with a center-to-core distance L (see FIG. 2) = 1500 mm and the intermediate shaft has an outer diameter of 110 mm, an inner diameter of 100 mm, and a length of about 1200 mm, the pipe is in resonance. In this case, a flexural vibration of about 10 mm occurs in the entire vibration width. If a reinforcing beam is incorporated in the pipe, both of them come into contact when the pipe is bent by an amount corresponding to the gap between the inner peripheral surface of the pipe and the fin tip of the reinforcing beam. The gap between the pipe inner peripheral surface and the fin tip of the reinforcing beam is set to an appropriate amount or less, for example, about 1 mm or less in relation to the above-described bending vibration amplitude of the pipe of about 10 mm, and the bending rigidity of the reinforcing beam itself. Is set to a certain level or more, the bending rigidity of the intermediate shaft portion is substantially improved, and the dangerous rotational speed of the power transmission shaft can be increased. And since the reinforcing beam in the present invention is incorporated in the pipe of the intermediate shaft portion, there is no space limitation, and since it has a shape in which a plurality of fins protrude radially from the axis, The weight of the intermediate shaft portion does not increase so much.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an exploded perspective view of an embodiment of the present invention, in which a portion excluding both ends of the pipe 11 is omitted, and FIG. 2 is shown in a state in which a tip portion is omitted from the cross bearings 23 and 32. It is sectional drawing. Known universal joints 2 and 3 are respectively provided at both ends of the intermediate shaft portion 1. One universal joint 2 includes a spline shaft 21 welded to one end of a pipe 11 constituting the intermediate shaft portion 1, a sleeve yoke 22 into which the spline shaft 21 is inserted, and a cross yoke 23 to the sleeve yoke 22. The cylindrical hole yoke 24 connected together is a main component. The other universal joint 3 is mainly composed of a weld yoke 31 welded to the pipe 11 of the intermediate shaft portion 1 and a cylindrical hole yoke 33 connected to the weld yoke 31 via a cross bearing 32.
[0011]
A reinforcing beam 12 is incorporated in the pipe 11 of the intermediate shaft portion 1. In this example, the reinforcing beam 12 is an integrally molded product of synthetic resin, and as shown in the cross-sectional view perpendicular to the axis in FIG. 3, the six fins F are arranged radially at equal angles around the axis. Have a structure. The engagement relationship between the reinforcing beam 12 and the pipe 11 is a state in which the reinforcing beam 12 is fixed to each other by being press-fitted into the inner diameter surface of the pipe 11. More specifically, the reinforcing beam 12 has press-fit portions 12a and 12b whose diameters (heights of the fins 12) at both end portions of a predetermined length are larger than those in other regions. Only the press-fitted portions 12a and 12b at both ends are press-fitted into the pipe 11, and in other portions, a slight gap is formed between the inner peripheral surface of the pipe 11 and the assembling work is facilitated. Yes.
[0012]
The length of the reinforcing beam 12 is shorter than the length of the pipe 11, and both ends of the reinforcing beam 12 are predetermined with respect to the welded portion W between the pipe 11 and the spline shaft 21 and the pipe 11 and the weld yoke 31. It is located a distance away. This is because when the reinforcing beam 12 is press-fitted into the pipe 11 and the spline shaft 21 and the weld yoke 31 are welded to both ends of the pipe 11, the influence of the welding heat reaches the resin reinforcing beam 12. This is to prevent it.
[0013]
According to the above-described embodiment of the present invention, even if the rotational speed of the shaft is in the vicinity of the resonant rotational speed of the pipe 11 and the pipe 11 tends to be greatly bent, the inner peripheral surface of the pipe 11 is the reinforcing beam 12. Since the fin F is in contact with the fin F, its bending amount is regulated to an amount corresponding to the gap between the reinforcing beam 12 and the central portion of the pipe 11, and the bending rigidity of the intermediate shaft portion 1 as a whole increases. The critical rotational speed of is substantially increased.
[0014]
Here, since the pipe 11 in this type of power transmission shaft is normally used without particularly machining a drawn steel pipe or the like, it is expected that the inner diameter dimension is not uniform. Since the amount of shaft deflection at the rotational speed reaches several millimeters or more, as long as the reinforcing beam 12 is securely press-fitted into the pipe 11 at both ends thereof, the pipe 11 and the reinforcing beam at other portions. Even if the gap between the two is large to some extent, the above effect can be obtained. In the above embodiment, an integrally molded resin product is used as the reinforcing beam 12. However, the present invention is not limited to this, and for example, a steel plate integrated by welding or the like is also used. Of course you can. In this case, it is not necessary to provide a distance between both ends of the reinforcing beam 12 and the welded portions W at both ends of the pipe 11. Further, the number of fins F of the reinforcing beam 12 is not limited to six, and can be any number of three or more as long as necessary bending rigidity can be obtained.
[0015]
【The invention's effect】
As described above, according to the present invention, a reinforcing beam in which a plurality of fins are radially arranged and integrated is incorporated into a pipe constituting an intermediate shaft portion of a power transmission shaft having universal joints at both ends. Therefore, the critical shaft speed can be increased by increasing the bending rigidity of the intermediate shaft portion without increasing the diameter of the intermediate shaft portion and without significantly increasing the weight.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of an embodiment of the present invention, in which a central portion of a pipe is omitted.
FIG. 2 is a cross-sectional view of the embodiment of the present invention in which a tip portion is omitted from cross bearings at both ends of a pipe.
FIG. 3 is an axial cross-sectional view of a reinforcing beam according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Intermediate shaft part 11 Pipe 12 Reinforcing beam 2, 3 Universal joint 21 Spline shaft 22 Sleeve yoke 23, 32 Cross bearing 24, 33 Cylindrical hole yoke 31 Weld yoke F Fin W Welded part

Claims (3)

パイプからなる中間軸部の両端に自在継手を備えた動力伝達軸において、上記中間軸部のパイプの内部に、当該中間軸部の軸心を中心として複数のフィンが放射状に配されて相互に一体化されてなる補強用梁が組み込まれ、この補強用梁は、その両端部所定部分が上記パイプ内周面に圧入されているとともに、その両端所定部分以外の部分と上記パイプの内周面との間には隙間が形成されていることを特徴とする動力伝達軸。In a power transmission shaft provided with universal joints at both ends of an intermediate shaft portion made of a pipe, a plurality of fins are radially arranged around the axis of the intermediate shaft portion inside the pipe of the intermediate shaft portion. An integrated reinforcing beam is incorporated, and both ends of the reinforcing beam are press-fitted into the inner peripheral surface of the pipe, and portions other than the predetermined portions at both ends and the inner peripheral surface of the pipe A power transmission shaft characterized in that a gap is formed between them . 上記補強用梁は一体成形された合成樹脂製であり、上記パイプとともに長手方向に伸びていることを特徴とする請求項1に記載の動力伝達軸。The power transmission shaft according to claim 1, wherein the reinforcing beam is made of an integrally molded synthetic resin and extends in the longitudinal direction together with the pipe. 上記両端部所定部分の直径が上記両端部所定部分以外の直径よりも大きいことを特徴とする請求項1または2に記載の動力伝達軸。3. The power transmission shaft according to claim 1, wherein a diameter of the predetermined portion on both ends is larger than a diameter other than the predetermined portion on both ends.
JP10724798A 1998-04-17 1998-04-17 Power transmission shaft Expired - Fee Related JP4114022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10724798A JP4114022B2 (en) 1998-04-17 1998-04-17 Power transmission shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10724798A JP4114022B2 (en) 1998-04-17 1998-04-17 Power transmission shaft

Publications (2)

Publication Number Publication Date
JPH11303845A JPH11303845A (en) 1999-11-02
JP4114022B2 true JP4114022B2 (en) 2008-07-09

Family

ID=14454221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10724798A Expired - Fee Related JP4114022B2 (en) 1998-04-17 1998-04-17 Power transmission shaft

Country Status (1)

Country Link
JP (1) JP4114022B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244915B2 (en) * 2007-11-12 2013-07-24 ジーケーエヌ・ドライブライン・ノースアメリカ・インコーポレーテッド Drive shaft with array tuned absorber
CN101982662B (en) * 2010-11-12 2012-09-26 山东中泰新能源集团有限公司 Hollow rotating shaft with spiral rib plate with counter moment
JP2012112467A (en) * 2010-11-25 2012-06-14 Ud Trucks Corp Propeller shaft
US8887398B1 (en) * 2013-04-29 2014-11-18 Tesla Motors, Inc. Extruded member with altered radial fins

Also Published As

Publication number Publication date
JPH11303845A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US5719457A (en) Squirrel-cage rotor for an asynchronous machine
EP1326043B1 (en) Flexible tube
US6702076B2 (en) Shaft vibration damping system
JP5019697B2 (en) Mechanical housing
US8136646B2 (en) Cylindrical dynamic damper
US5354237A (en) Driveshaft including damping sleeve for bending and torsional frequency improvement
JP4114022B2 (en) Power transmission shaft
JPH06213228A (en) Mechanical tubular element such as transmission shaft of motor vehicle
JP4522708B2 (en) Elastomer joint
KR102020348B1 (en) Damper of hollow drive shaft
JP2002061665A (en) Power transmission shaft for vehicle
JP4280650B2 (en) Cross joint
JP7044469B2 (en) Anti-vibration device
JP2002136043A (en) Motor antirattler for electric power steering device
KR101682172B1 (en) Shaft coupling
KR20000008531U (en) Universal joint
JP6917932B2 (en) Power transmission shaft
JPH0953686A (en) Dynamic damper for propeller shaft
JPH0231623Y2 (en)
JP2021055740A (en) Drive shaft for vehicle
KR20010020305A (en) Bracket consisting of tube
JP3849612B2 (en) Elastic joint
JP2003206949A (en) Elastic joint
KR200279000Y1 (en) Joint structure of composite transmission shaft
JP4266418B2 (en) Welding bolt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees