JP4110836B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4110836B2
JP4110836B2 JP2002154030A JP2002154030A JP4110836B2 JP 4110836 B2 JP4110836 B2 JP 4110836B2 JP 2002154030 A JP2002154030 A JP 2002154030A JP 2002154030 A JP2002154030 A JP 2002154030A JP 4110836 B2 JP4110836 B2 JP 4110836B2
Authority
JP
Japan
Prior art keywords
switching
compression
end temperature
control means
compression end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002154030A
Other languages
Japanese (ja)
Other versions
JP2003343313A (en
Inventor
徹 野田
和也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002154030A priority Critical patent/JP4110836B2/en
Publication of JP2003343313A publication Critical patent/JP2003343313A/en
Application granted granted Critical
Publication of JP4110836B2 publication Critical patent/JP4110836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/048Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮自己着火燃焼と火花点火燃焼とを切り換える内燃機関の制御に関する。
【0002】
【従来の技術】
火花点火式機関は、比出力が大きい利点があるが、低負荷時の吸気絞り損失により燃費が劣るため、空燃比を希薄化したリーン燃焼による燃費改善が一般化しつつある。
リーン燃焼としては、燃焼室内に均質な希薄混合気を形成する均質リーン燃焼と、燃焼室に直接燃料を噴射することで点火プラグ周辺に成層化した可燃空燃比の混合気塊を形成する成層リーン燃焼とがある。後者は、より全体の空燃比を希薄化できるため、低負荷時の燃費改善効果が大きいが、NOxやスモークなどの排出が増加する傾向がある。
【0003】
この問題を解決するため、圧縮自己着火燃焼と呼ばれるものがあり、均質な予混合気をピストン圧縮等で自己着火せしめることで希薄燃焼を実現し、低燃費と低エミッションとを両立するものとして注目されている。
上記圧縮自己着火燃焼を利用した従来の内燃機関の制御として、特開2000−220458号公報に開示されたものは、火花点火燃焼と圧縮自己着火燃焼を運転条件に応じて切り換え、例えば火花点火燃焼から圧縮自己着火燃焼へ切り換える場合、機関の点火時期を徐々に遅角することで、スムーズに火花点火燃焼から圧縮自己着火燃焼へと切り換えることを狙っている。
【0004】
【発明が解決しようとする課題】
しかしながら、実際には1つの機関で火花点火燃焼と圧縮自己着火燃焼を両立することは容易ではなく、例えば、火花点火燃焼に適合させた低圧縮比に設定して、圧縮自己着火燃焼させようとしても、圧縮端温度が低すぎて、失火してしまう。
【0005】
本発明は、このような従来の課題に着目してなされたもので、圧縮自己着火燃焼と火花点火燃焼とに適合した圧縮端温度に切り換え制御すると共に、切り換え過渡時の燃焼性も良好に維持してスムースな燃焼の切り換えが行われるようにした内燃機関の制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このため本発明は、上記のように火花点火燃焼と圧縮自己着火燃焼を機関の運転状況に応じて切り換える圧縮自己着火式内燃機関において、燃焼状態の切り換えに応じて圧縮端温度制御手段により圧縮端温度を切り換え制御しつつ、該切り換え途中で筒内に全ての膨張行程で燃料を噴射する構成とした。
【0007】
膨張行程中に噴射された燃料は、燃焼により既燃ガスの温度を高め、この高温のガスが次サイクルヘと残留することで次サイクルの混合気の温度が上昇し、次サイクルにおいて圧縮自己着火燃焼が実現可能となる。
したがって、火花点火燃焼から圧縮自己着火燃焼へと切り換える際には、圧縮端温度制御の切り換え開始直後から前記膨張行程燃料噴射による昇温を併用して圧縮端温度を高めることにより圧縮自己着火燃焼へ切り換えることが可能となり、その後膨張行程燃料噴射を行わない圧縮自己着火燃焼へ切り換えることでスムーズに切り換えを完了する。
【0008】
また、圧縮自己着火燃焼から火花点火燃焼へと切り換える際には、一旦膨張行程燃料噴射による昇温を併用した圧縮自己着火燃焼に切り換え、その最終サイクルで膨張行程燃料噴射を停止し、次サイクルの圧縮端温度を下げることによって火花点火燃焼へスムーズに切り換えることができる。
このように、燃焼の切り換えに応じて、基本的な圧縮端温度の切り換え制御と平行して膨張行程燃料噴射を行うことで、いずれの切り換え時にもノッキングや失火の発生を避けることができ、未燃燃料を排出しないという利点がある。また、切り換え時のみ膨張行程燃料噴射を行うだけなので、燃費も良好に維持できる。
【0009】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態について説明する。
図1は本発明に係る内燃機関の第1の実施形態の構成を示すシステム構成図である。図1において、内燃機関は、シリンダヘッド1、シリンダブロック2およびピストン3で画成される燃焼室4を有し、吸気弁5および排気弁6を介して吸気ポート7から新気を導入すると共に排気ポート8から排気を排出する。燃料噴射弁9は燃料を燃焼室内に直接噴射する。燃焼室内に形成された混合気は、点火プラグ10により点火・燃焼せしめられる。本内燃機関は、ECU(エンジンコントロールユニット)11によって統合的に制御される。
【0010】
ECU11にはアクセル開度センサ12や水温センサ13およびクランク角センサ14等からの信号が入力され、ECU11内部で必要な処理・演算を行い、燃料噴射弁9、点火プラグ10等を制御する。
本実施形態における内燃機関はさらに、機関の圧縮比を変化させる可変圧縮比機構を有している。この可変圧縮比機構としては、様々な形態のものが公知であるが、本実施例においては図1に示すように、クランクシャフト15に連接されたロアーリンク16に連接されたアッパーリンク17を介してピストン3は上下動せしめられる。ロアーリンク16の他端はコントロールロッド18に繋がっており、このコントロールロッド18をアクチュエータ19によって移動することにより、上死点におけるピストン位置を可変とし、圧縮比を制御する。前記アクチュエータ19は、前記ECU11により制御される。
【0011】
図2および図3に、上記リンク機構の動作を示す。図2はピストン3が上死点において、よりシリンダヘッド1に近く位置する場合、すなわち圧縮比が高い場合であり、図3は逆にピストン3が上死点において、図2よりシリンダヘッド1から離れて位置する場合、すなわち圧縮比が低い場合を示す。
図4は、本実施形態において、火花点火燃焼から圧縮自己着火燃焼へと切り換える際の各制御パラメータや機関の状態量を時間に対して示したものである。本実施形態は、圧縮比を高めることで圧縮端温度を高めて圧縮自己着火燃焼を実現するものであり、火花点火燃焼から圧縮自己着火燃焼へと切り換える際には、可変圧縮比機構により圧縮比を高めるよう制御される(VCR)。この切換中の遷移状態下では、圧縮比(に対応する圧縮端温度)は火花点火燃焼には高すぎ、圧縮自己着火燃焼には低すぎる。そこで、本実施形態では、この遷移期間中においては残留ガスの温度を高めることで、圧縮比が十分に高くなっていない状態でも圧縮自己着火燃焼を実現する。
【0012】
図4におけるEGR率は、特に排気管から吸気管へと還流されたガス(いわゆる外部EGRガス)の率を示すものではなく、次サイクルまで燃焼室内に残留した既燃ガスの率を示す。本実施形態においては、この残留ガス率は燃焼形態の変化に際しても大きくは変化しない。
T(EGR)は、この残留ガスの温度を示す。火花点火燃焼から圧縮自己着火燃焼への移行中においては、残留ガスの温度は、切換開始時すなわち圧縮比が低い状態では高く、切換が進むに連れてすなわち圧縮比が高まるに応じて低く制御される。すなわち、圧縮比が低いと圧縮端温度が低下するが、残留ガス温度を高めることにより圧縮開始時の混合気初期温度が高められるので圧縮端温度の低下を補うことができ、圧縮自己着火燃焼が可能となる。残留ガスの温度制御は、主たる燃料噴射(Qf1)に加えて、火花点火燃焼から圧縮自己着火燃焼への移行中における全ての膨張行程中に筒内に燃料噴射(Qf2)し、該燃料を燃焼せしめることで行われる。圧縮比が高まるに応じて、残留ガスの温度を高める必要は小さくなるため、Qf2は徐々に減じられ、圧縮比の切換が完了した時点ではゼロとなる。火花点火燃焼に対して圧縮自己着火燃焼ではより希薄な空燃比での燃焼が可能であるので、切換に際しては徐々に機関のスロットル弁を開いて吸入負圧を減じれば、圧縮自己着火燃焼時にさらに低燃費を得られる。この時、トータルでの空燃比はリーン化するが、移行中は膨張行程での燃料噴射(Qf2)があるため、空燃比は一時的にリッチ側へとずれる。
【0013】
逆に圧縮自己着火燃焼から火花点火燃焼へと切り換える際には、図4において逆に右から左へと時刻が推移すると考えればよい。ただし、この場合は、圧縮比の実際値が目標値に到達して膨張行程中の燃料噴射を終えた直後のサイクルでは、圧縮着火を行っている(直後のサイクルでは火花着火しない)。
図5は、燃焼形態切換時の燃料噴射および点火制御をタイムチャートに示したものである。図の上段は、火花点火燃焼(SI)から圧縮自己着火燃焼(CI)へと切り換える場合を示す。切り換え直前においては、吸気行程中に主たる燃料噴射を行い、通常通り火花点火燃焼を行う。切換中の最初のサイクルにおいては、吸気行程中に燃料噴射を行って火花点火燃焼せしめると共に、膨張行程中に燃料を筒内に噴射する。次サイクルにおいては、前サイクルで膨張行程中に噴射した燃料の燃焼により残留ガスの温度が高くなっているため、圧縮自己着火燃焼が可能となる。この時、火花点火は行わない。また、続くサイクルにおいても残留ガスの温度を高めて圧縮自己着火燃焼を行うために、このサイクルでも膨張行程に燃料噴射を行う。ただし、その量は圧縮比の上昇に応じて減少される。このようなサイクルを圧縮比の切り換えが完全に終了するまで継続し、切り換え完了時には膨張行程中の燃料噴射量がゼロとなることで、定常的な圧縮自己着火燃焼への切り換えが完了する。
【0014】
図5の下段は、圧縮自己着火燃焼から火花点火燃焼へと切り換える場合を示す。切り換え開始直前までは、高圧縮比の下で通常の圧縮自己着火燃焼が行われている。切り換え中においても圧縮自己着火燃焼を行うが、次サイクルの着火を促進するために、膨張行程中に燃料噴射を行い、残留ガスの温度を高める。膨張行程中の燃料噴射の量は圧縮比の低下に応じて徐々に増加させる。圧縮比の切り換えが完全に終了した時点で高温の残留ガスが存在するため、最後の圧縮自己着火燃焼を行う。このサイクルでは膨張行程の燃料噴射を停止し、次サイクルからは通常の火花点火を行うことで、定常的な火花点火燃焼への切り換えが完了する。
【0015】
図6、図7は、本実施形態における制御フローを示したものである。まず、ステップS1において、ECU11は、アクセル開度センサ12、水温センサ13およびクランク角センサ14からの情報に基づき、機関の回転速度や負荷といった運転状態を検出する。
次いで、ステップS2では、主たる燃料噴射量Qf1を、負荷(アクセル開度等)と機関回転速度に基づいて図7に示すようなマップを参照して設定する。機関の運転条件に応じて主たる燃料噴射の時期も制御する場合には、同時に燃料噴射時期マップを参照してもよい。
【0016】
ステップS3では、膨張行程中の燃料噴射量Qf2をゼロにクリアする。火花点火燃焼および圧縮自己着火燃焼のいずれの場合も、通常制御中は膨張行程における燃料噴射を行わないからである。
ステップS4では、点火時期をマップ参照により設定する。
ステップS5では、機関が燃焼形態の切り換えをすべき状態にあるかどうか判断を行う。切り換えしない場合、すなわち現在の燃焼形態を継続する場合は、ステップS6へと進み、現在の燃焼形態が火花点火燃焼か圧縮自己着火燃焼かに基づいて、圧縮自己着火燃焼の場合はステップS7にて点火設定をキャンセルする。以降、ステップS8〜S9において、それぞれ燃料噴射装置および点火装置に対して、吸気行程時の主たる燃料噴射および点火の指令を出す。
【0017】
但し、ステップS6での判断が圧縮自己着火燃焼であった場合には、点火設定がクリアされているため、ステップS9での点火は実際には行われない。
次いで、ステップS10では、膨張行程中の燃料噴射を指示するが上述したように燃焼状態を切り換えない場合は、Qf2=0であるため、実際の噴射は行われない。
【0018】
ステップS5において、火花点火燃焼から圧縮自己着火燃焼への移行が判断された場合は、まず、ステップS11にて、圧縮自己着火燃焼のための目標空燃比が設定される。
ステップS12において、現在の圧縮比と目標圧縮比の比較を行い、現在の圧縮比が目標圧縮比より低い場合には、ステップS13にて可変圧縮比機構のアクチュエータを駆動して、圧縮比の切換を開始する。
【0019】
次いで、ステップS14にて膨張行程中の燃料噴射量Qf2をマップ参照により決定し、昇温制御を行う。例えば、図5上段に示すように実圧縮比と目標圧縮比との差が大きいほどQf2が大きくなるように設定される。
ステップS15では、切換開始後の最初のサイクルであるかどかを判断する。図5に既に示したように、切換開始後最初のサイクルのみ火花点火燃焼行うためである。すなわち、最初のサイクルであればステップS4にて設定した点火設定をそのまま維持し、それ以降のサイクルであれば、点火設定をキャンセルすることで、ステップS9での火花点火を行わないようにする。
【0020】
このようにして、圧縮比が増大され、ステップS12で目標の圧縮比に達したと判定されたときは、ステップS17で昇温制御終了と判断し、ステップS16へ進んで点火設定をキャンセルした後、通常制御へと戻る。
一方、ステップS5において、圧縮自己着火燃焼から火花点火燃焼への移行が判断された場合はステップS18において、火花点火燃焼用の目標圧縮比を設定する。
【0021】
ステップS19においてこれを現在の圧縮比と比較し、目標値より大きければステップS20において可変圧縮比機構のアクチュエータを駆動して圧縮比の低下制御を開始する。
ステップS21では、膨張行程中の燃料噴射量Qf2を設定し、昇温制御を行う。例えば、図5下段に示すように実圧縮比と目標圧縮比との差が小さいほどQf2が大きくなるように設定される。切換期間中は圧縮自己着火燃焼が行われるため、ステップS22では、点火設定のキャンセルが行われる。
【0022】
このようにして、圧縮比が減少され、ステップS19で目標の圧縮比に達したと判定されたときは、ステップS23で昇温制御終了と判断し、ステップS22へ進んで点火設定をキャンセルした後、通常制御へと戻る。
上記の機構と制御により、本実施形態では、火花点火燃焼時にノッキングの発生や燃焼不安定を回避できるとともに、圧縮自己着火燃焼時には高い熱効率を得ることができる。また、両燃焼方式の切換に際しても、ノッキングや失火の発生を避け、スムーズに切り換えが可能となる。
【0023】
次に、第2の実施形態について説明する。第2の実施形態は、第1の実施形態と共通する部分が大きいので、相違する部分を中心に説明する。
図9は、第2の実施形態の構成を示すシステム構成図である。基本的に第1の実施形態に示す構成と類似している(共通部分は同一符合で示す)が、可変圧縮比機構を有せず、その代替として吸気系、排気系それぞれに可変動弁機構5b,6bを有している。この可変動弁機構は、少なくとも排気弁の閉時期と吸気弁の開時期を可変とするもので、例えばクランク軸に対するカムシャフトの位相を変化させる機構と、カムの作動角を変化させる機構の組み合わせにより実現出来る。これらのバルブタイミングは、ECU11により制御される。
【0024】
図10は本実施形態における各燃焼形態でのバルブタイミングの設定例を示したものである。火花点火燃焼時においては、いわゆる通常のバルブタイミングとし、残留ガスの量を少なく制御することでノッキングを抑制するとともに安定な火炎伝播燃焼を実現する。圧縮自己着火燃焼時においては、排気弁の閉時期を早めることで既燃ガスを筒内に閉じこめ、大量の残留ガスとして次サイクルヘと導入する。いわゆるマイナスオーバーラップを行う。このとき、排気弁の閉時期から上死点まで圧縮仕事が発生してしまうため、同時に吸気弁の開時期を遅らせることで上死点から吸気弁の開時期までの問にこの圧縮に要した仕事を回収することができる。
【0025】
図11は、本実施形態において、火花点火燃焼から圧縮自己着火燃焼へと切り換える際の各制御パラメータや機関の状態量を時間に対して示したものである。本実施例は、バルブタイミングを制御してマイナスオーバーラップ(O/L)量を大きくして残留ガスの量を増やすことにより、次サイクルの平均混合気温度を高めて圧縮端温度を高め、もって圧縮自己着火燃焼を実現するものであり、火花点火燃焼から圧縮自己着火燃焼へと切り換える際には、可変動弁機構により残留ガス率を高めるよう制御される。この切換中の遷移状態下では、残留ガス率は火花点火燃焼には高すぎ、圧縮自己着火燃焼には低すぎるものとなってしまう。そこで、本実施形態では、この遷移期間中においては残留ガスの温度を高めることで、残留ガスの量が十分に多くなっていない状態でも圧縮自己着火燃焼を実現する。
【0026】
本実施形態における制御詳細は、ほとんどが第1の実施形態と同一であるので、その説明の大部分を省略する。相違点は、第1の実施形態においては可変圧縮比機構により圧縮比を制御することに対して、可変バルブタイミング機構によりマイナスO/L量、すなわち残留ガス率を制御することである。制御フローも、圧縮比に関する部分をマイナスO/L量と置き換えるのみであるので、ここでは省略する。上記の機構と制御により、本実施形態でも第1の実施形態と同様に、火花点火燃焼と圧縮着火の切換に際しても、ノッキングや失火の発生を回避でき、スムーズに切り換えが可能となる。
【0027】
次に第3の実施の形態について説明する。第3の実施形態も、第1の実施形態と共通する部分が大きいので、相違する部分を中心に説明する。図12は本発明に係る第3の実施形態の構成を示すシステム構成図である。基本的に第1の実施形態に示す構成と類似である(共通部分は同一符合で示す)が、可変圧縮比機構を有せず、その代替として吸気管内にヒータ20を備える。ヒータはその駆動装置20bにて加熱を制御され、ヒータ駆動装置20bにはECU11が制御指令を行う。
【0028】
図13は、本実施形態において、火花点火燃焼から圧縮自己着火燃焼へと切り換える際の各制御パラメータや機関の状態量を時間に対して示したものである。本実施形態は、吸気管に設置したヒータにより吸気の温度を上昇せしめることで圧縮端温度を高め、もって圧縮自己着火燃焼を実現するものであり、火花点火燃焼から圧縮自己着火燃焼へと切り換える際には、ヒータに通電し吸気温度を高めるよう制御される。しかしながら、ヒータによる加熱には遅れがあるため、この切換中の遷移状態下では、吸気温度は火花点火燃焼には高すぎ、圧縮自己着火燃焼には低すぎるものとなってしまう。そこで、本実施形態では、この遷移期間中においては残留ガスの温度を高めることで、吸気の温度が十分に高くなっていない状態でも圧縮開始時の混合気温度ひいては圧縮端温度を高めて、圧縮自己着火燃焼を実現する。
【0029】
本実施形態における制御詳細も、ほとんどが第1の実施形態と同一であるので、その説明の大部一分を省略する。相違点は、第1の実施形態においては可変圧縮比機構により圧縮比を制御することに対して、ヒータにより吸気温度を制御することである。制御フローも、圧縮比に関する部分を吸気温度と置き換えればよく、ここでは省略する。上記の機構と制御により、本実施形態における内燃機関では、火花点火燃焼と圧縮着火の切換に際しても、ノッキングや失火の発生を避け、スムーズに切り換えが可能となる。また、本実施形態では吸気を加熱する装置としてヒータを用いているが、例えば熱交換器等により排気の熱を利用して吸気を加熱する装置としてもよい。この場合、ヒータにて消費される電力が節約できるため、機関の総合効率の向上に貢献する。
【0030】
上記実施形態によれば、運転状態に応じて圧縮自己着火燃焼と火花点火燃焼との2つの燃焼状態を選択的に切り換え可能な内燃機関の制御装置において、筒内に燃料を直接噴射可能であって膨張行程で燃料を噴射可能な燃料噴射弁(燃料噴射手段)と、前記燃焼状態に応じて圧縮端温度を制御する可変圧縮比機構、可変動弁機構ないし吸気温度制御用ヒータ(圧縮端温度制御手段)と、前記燃焼状態の切り換えに応じた前記圧縮端温度制御手段の制御による圧縮端温度の切り換え開始から切り換え終了までの間、膨張行程中に燃料を噴射するECU(切換時制御手段)と、を備えたことにより、
圧縮自己着火燃焼と火花点火燃焼との2つの燃焼状態で安定しているときは、前記圧縮端温度を制御するいずれかの機構により、各燃焼状態に適合した圧縮端温度に制御されて良好な燃焼状態が得られ、燃焼状態の切り換えに応じて前記圧縮端温度を切り換え中の間は、膨張行程中の燃料噴射制御を併用することにより、圧縮端温度を切り換え中の燃焼状態に応じて良好に維持でき、もって、スムーズに燃焼状態を切り換えることができる。
【0031】
また、前記圧縮端温度制御による圧縮端温度の変化度合いに応じて膨張行程中に噴射する燃料量を制御するように構成したことにより、切り換え中のいかなる時期においても適切に昇温された残留ガスによる圧縮着火促進効果が得られ、ノッキングや失火の発生を避けられると共に、未燃燃料の排出を避けられるという利点がある。
【0032】
また、前記第1の実施形態のように、機関の圧縮比を制御する可変圧縮比機構によって圧縮端温度を制御し、前記燃焼状態の切り換えに応じて前記圧縮端温度の目標値に対応する圧縮比の目標値が切り換わってから実際の圧縮比が切換後の目標値に到達するまでの間、膨張行程中に燃料を噴射する構成とすることにより、火花点火燃焼時においては圧縮比を低く制御することでノッキングを抑制して高い出力を得ることができ、圧縮自己着火燃焼時においては圧縮比を高く制御することで希薄混合気を着実に着火せしめると共に、高い熱効率が得られるという利点がある。
【0033】
また、前記第2の実施形態のように、筒内に流入する作動ガス量を制御することによって圧縮端温度を制御し、前記切換時制御手段は、前記燃焼状態の切り換えに応じて前記圧縮端温度の目標値に対応する作動ガス量の目標値が切り換わってから実際の作動ガス量が切換後の目標値に到達するまでの間、膨張行程中に燃料を噴射する構成とすることにより、火花点火燃焼時には残留ガス量を小さく制御することでノッキングを抑制して高い出力を得ることができ、圧縮自己着火燃焼時においては残留ガス量を大きく制御することで混合気の温度を高めて希薄混合気を着実に着火せしめることができる。
【0034】
また、前記作動ガス量の制御を、機関の吸気弁の開弁時期を遅らせるか、機関の排気弁の閉弁時期を早めるか少なくとも一方を行なうことで前記作動ガス量を増大させる可変動弁手段により構成したことにより、残留ガス量を圧縮自己着火燃焼に適した温度に調整することができる。
また、前記第3の実施形態のように、機関に流入する吸気の温度を上昇させることによって圧縮端温度を制御し、前記燃焼状態の切り換えに応じて前記圧縮端温度の目標値に対応する吸気温度の目標値が切り換わってから実際の吸気温度が切換後の目標値に到達するまでの間、膨張行程中に燃料を噴射する構成とすることにより、火花点火燃焼時においては吸気の温度を低く制御することでノッキングを抑制するとともに機関の体積効率を高めて高い出力を得ることができ、圧縮自己着火燃焼時においては吸気温度を高く制御することで混合気の温度を高めて希薄混合気を着実に着火せしめることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態におけるシステム構成図。
【図2】第1の実施形態における可変圧縮比機構の高圧縮比状態を説明する図。
【図3】第1の実施形態における可変圧縮比機構の高圧縮比状態を説明する図。
【図4】第1の実施形態における制御パラメータと状態量の変化を示す図。
【図5】第1の実施形態における燃料噴射と点火に関するタイムチャート。
【図6】第1の実施形態における制御フローを示した図。
【図7】同上制御フローの一部を示した図。
【図8】第1の実施形態における制御フローで用いる燃焼状態切り換え判定マップ。
【図9】第2の実施形態におけるシステム構成図。
【図10】第2の実施形態におけるバルブタイミングを説明する図。
【図11】第2の実施形態における制御パラメータと状態量の変化を示す図。
【図12】第3の実施形態におけるシステム構成図。
【図13】第3の実施形態における制御パラメータと状態量の変化を示す図。
【符号の説明】
4…燃焼室 5a…吸気弁の可変動弁機構 6b…排気弁の可変動弁機構
9…燃料噴射弁 10…点火プラグ 11…ECU(エンシンコントロールユニット) 12…アクセル開度センサ 13…水温センサ 14…クランク角センサ 16…ロアーリンク 17…アッパーリンク 18コントロールロッド 19…アクチュエータ 20…ヒータ 20b…ヒータ駆動装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to control of an internal combustion engine that switches between compression self-ignition combustion and spark ignition combustion.
[0002]
[Prior art]
The spark ignition type engine has an advantage of a large specific output. However, since the fuel consumption is inferior due to the intake throttle loss at low load, the improvement of the fuel consumption by lean combustion with a lean air-fuel ratio is becoming common.
As lean combustion, homogeneous lean combustion that forms a homogeneous lean mixture in the combustion chamber and stratified lean that forms a flammable air-fuel mixture mixture stratified around the spark plug by directly injecting fuel into the combustion chamber There is combustion. Since the latter can further dilute the entire air-fuel ratio, the effect of improving the fuel consumption at a low load is great, but the emission of NOx, smoke, etc. tends to increase.
[0003]
In order to solve this problem, there is what is called compression self-ignition combustion, which realizes lean combustion by self-igniting homogeneous premixed gas by piston compression etc., and is focused on achieving both low fuel consumption and low emission Has been.
As a control of a conventional internal combustion engine using the compression self-ignition combustion, Japanese Patent Laid-Open No. 2000-220458 switches between spark ignition combustion and compression self-ignition combustion according to operating conditions, for example, spark ignition combustion. When switching from the self-ignition combustion to the compression self-ignition combustion, the ignition timing of the engine is gradually retarded to smoothly switch from the spark ignition combustion to the compression self-ignition combustion.
[0004]
[Problems to be solved by the invention]
However, in practice, it is not easy to achieve both spark ignition combustion and compression self-ignition combustion in one engine. For example, a low compression ratio adapted to spark ignition combustion is set to attempt compression self-ignition combustion. However, the compression end temperature is too low and misfires.
[0005]
The present invention has been made paying attention to such a conventional problem, and performs switching control to a compression end temperature suitable for compression self-ignition combustion and spark ignition combustion, and also maintains good combustibility during switching transition. It is an object of the present invention to provide a control device for an internal combustion engine in which smooth combustion switching is performed.
[0006]
[Means for Solving the Problems]
Therefore, the present invention provides a compression self-ignition type internal combustion engine that switches between spark ignition combustion and compression self-ignition combustion according to the operating state of the engine as described above. While controlling the switching of the temperature, the fuel is injected into the cylinder during the entire expansion stroke in the middle of the switching.
[0007]
The fuel injected during the expansion stroke raises the temperature of the burnt gas by combustion, and the high-temperature gas remains in the next cycle, so that the temperature of the mixture in the next cycle rises. In the next cycle, compression self-ignition combustion Is feasible.
Therefore, when switching from spark ignition combustion to compression self-ignition combustion, immediately after the start of switching of the compression end temperature control, the temperature at the expansion stroke fuel injection is used together to increase the compression end temperature, thereby switching to compression self-ignition combustion. It is possible to switch, and then the switching is smoothly completed by switching to the compression self-ignition combustion in which the expansion stroke fuel injection is not performed.
[0008]
Also, when switching from compression self-ignition combustion to spark ignition combustion, switch to compression self-ignition combustion once combined with temperature rise by expansion stroke fuel injection, stop expansion stroke fuel injection in the final cycle, and It is possible to smoothly switch to spark ignition combustion by lowering the compression end temperature.
In this way, by performing expansion stroke fuel injection in parallel with basic compression end temperature switching control in accordance with switching of combustion, knocking and misfire can be avoided at any switching time. There is an advantage that fuel is not discharged. In addition, since the expansion stroke fuel injection is performed only at the time of switching, the fuel consumption can be maintained well.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram showing the configuration of the first embodiment of the internal combustion engine according to the present invention. In FIG. 1, the internal combustion engine has a combustion chamber 4 defined by a cylinder head 1, a cylinder block 2 and a piston 3, and introduces fresh air from an intake port 7 through an intake valve 5 and an exhaust valve 6. Exhaust gas is discharged from the exhaust port 8. The fuel injection valve 9 directly injects fuel into the combustion chamber. The air-fuel mixture formed in the combustion chamber is ignited and burned by the spark plug 10. The internal combustion engine is integrally controlled by an ECU (Engine Control Unit) 11.
[0010]
Signals from the accelerator opening sensor 12, the water temperature sensor 13, the crank angle sensor 14, and the like are input to the ECU 11, and necessary processes and calculations are performed inside the ECU 11 to control the fuel injection valve 9, the spark plug 10, and the like.
The internal combustion engine in the present embodiment further has a variable compression ratio mechanism that changes the compression ratio of the engine. Various types of variable compression ratio mechanisms are known, but in this embodiment, as shown in FIG. 1, an upper link 17 connected to a lower link 16 connected to a crankshaft 15 is used. Thus, the piston 3 is moved up and down. The other end of the lower link 16 is connected to a control rod 18. By moving the control rod 18 by an actuator 19, the piston position at the top dead center is made variable, and the compression ratio is controlled. The actuator 19 is controlled by the ECU 11.
[0011]
2 and 3 show the operation of the link mechanism. FIG. 2 shows the case where the piston 3 is located closer to the cylinder head 1 at the top dead center, that is, the case where the compression ratio is high. FIG. The case where it is located away, that is, the case where the compression ratio is low is shown.
FIG. 4 shows control parameters and engine state quantities with respect to time when switching from spark ignition combustion to compression self-ignition combustion in this embodiment. In this embodiment, the compression end temperature is increased by increasing the compression ratio to realize compression self-ignition combustion. When switching from spark ignition combustion to compression self-ignition combustion, the variable compression ratio mechanism is used to change the compression ratio. (VCR). Under this transition state during switching, the compression ratio (corresponding compression end temperature) is too high for spark ignition combustion and too low for compression self-ignition combustion. Therefore, in the present embodiment, by increasing the temperature of the residual gas during this transition period, compression self-ignition combustion is realized even when the compression ratio is not sufficiently high.
[0012]
The EGR rate in FIG. 4 does not indicate the rate of gas recirculated from the exhaust pipe to the intake pipe (so-called external EGR gas), but indicates the rate of burned gas remaining in the combustion chamber until the next cycle. In the present embodiment, the residual gas ratio does not change greatly even when the combustion mode changes.
T (EGR) indicates the temperature of this residual gas. During the transition from spark ignition combustion to compression self-ignition combustion, the temperature of the residual gas is high at the start of switching, that is, when the compression ratio is low, and is controlled to be low as switching proceeds, that is, as the compression ratio increases. The That is, when the compression ratio is low, the compression end temperature decreases, but by increasing the residual gas temperature, the initial mixture temperature at the start of compression can be increased, so that the decrease in the compression end temperature can be compensated for, and compression self-ignition combustion is performed. It becomes possible. In addition to the main fuel injection (Qf1), the residual gas temperature is controlled by injecting fuel into the cylinder (Qf2) during all expansion strokes during the transition from spark ignition combustion to compression self-ignition combustion, and combusting the fuel. It is done by damaging. As the compression ratio increases, the need to increase the temperature of the residual gas becomes smaller, so Qf2 is gradually reduced and becomes zero when the compression ratio switching is completed. Compressed self-ignition combustion can be performed at a leaner air-fuel ratio than spark ignition combustion.When switching, the throttle valve of the engine is gradually opened to reduce the intake negative pressure. Furthermore, low fuel consumption can be obtained. At this time, the total air-fuel ratio becomes lean, but during the transition, there is fuel injection (Qf2) in the expansion stroke, so the air-fuel ratio temporarily shifts to the rich side.
[0013]
Conversely, when switching from compression self-ignition combustion to spark ignition combustion, the time may be considered to change from right to left in FIG. However, in this case, the compression ignition is performed in the cycle immediately after the actual value of the compression ratio reaches the target value and the fuel injection during the expansion stroke is finished (the spark ignition is not performed in the immediately following cycle).
FIG. 5 is a time chart showing fuel injection and ignition control when switching combustion modes. The upper part of the figure shows the case of switching from spark ignition combustion (SI) to compression self-ignition combustion (CI). Immediately before the switching, main fuel injection is performed during the intake stroke, and spark ignition combustion is performed as usual. In the first cycle during switching, fuel is injected during the intake stroke to cause spark ignition combustion, and fuel is injected into the cylinder during the expansion stroke. In the next cycle, the temperature of the residual gas is high due to the combustion of the fuel injected during the expansion stroke in the previous cycle, so that compression self-ignition combustion is possible. At this time, spark ignition is not performed. Further, in the subsequent cycle, in order to perform the compression self-ignition combustion by increasing the temperature of the residual gas, the fuel injection is performed in the expansion stroke also in this cycle. However, the amount decreases as the compression ratio increases. Such a cycle is continued until the switching of the compression ratio is completed, and when the switching is completed, the fuel injection amount during the expansion stroke becomes zero, whereby the switching to the steady compression self-ignition combustion is completed.
[0014]
The lower part of FIG. 5 shows the case of switching from compression self-ignition combustion to spark ignition combustion. Until the start of switching, normal compression self-ignition combustion is performed under a high compression ratio. Although compression self-ignition combustion is performed even during switching, in order to promote ignition in the next cycle, fuel injection is performed during the expansion stroke to increase the temperature of the residual gas. The amount of fuel injection during the expansion stroke is gradually increased as the compression ratio decreases. Since the high-temperature residual gas exists at the time when the switching of the compression ratio is completed, the final compression self-ignition combustion is performed. In this cycle, fuel injection in the expansion stroke is stopped, and normal spark ignition is performed from the next cycle, thereby completing the switching to steady spark ignition combustion.
[0015]
6 and 7 show a control flow in the present embodiment. First, in step S1, the ECU 11 detects an operating state such as the engine speed and load based on information from the accelerator opening sensor 12, the water temperature sensor 13, and the crank angle sensor.
Next, in step S2, the main fuel injection amount Qf1 is set with reference to a map as shown in FIG. 7 based on the load (accelerator opening degree and the like) and the engine speed. When the main fuel injection timing is also controlled according to the engine operating conditions, the fuel injection timing map may be referred to at the same time.
[0016]
In step S3, the fuel injection amount Qf2 during the expansion stroke is cleared to zero. This is because, in both spark ignition combustion and compression self-ignition combustion, fuel injection is not performed in the expansion stroke during normal control.
In step S4, the ignition timing is set by referring to the map.
In step S5, it is determined whether or not the engine is in a state of switching the combustion mode. If not switched, that is, if the current combustion mode is to be continued, the process proceeds to step S6. Based on whether the current combustion mode is spark ignition combustion or compression self-ignition combustion, in the case of compression self-ignition combustion, in step S7 Cancel the ignition setting. Thereafter, in steps S8 to S9, main fuel injection and ignition commands during the intake stroke are issued to the fuel injection device and the ignition device, respectively.
[0017]
However, when the determination in step S6 is compression self-ignition combustion, since the ignition setting is cleared, the ignition in step S9 is not actually performed.
Next, in step S10, when the fuel injection during the expansion stroke is instructed but the combustion state is not switched as described above, since Qf2 = 0, the actual injection is not performed.
[0018]
If it is determined in step S5 that the spark ignition combustion is shifted to the compression self-ignition combustion, first, in step S11, a target air-fuel ratio for compression self-ignition combustion is set.
In step S12, the current compression ratio is compared with the target compression ratio. If the current compression ratio is lower than the target compression ratio, the actuator of the variable compression ratio mechanism is driven in step S13 to switch the compression ratio. To start.
[0019]
Next, in step S14, the fuel injection amount Qf2 during the expansion stroke is determined by referring to the map, and the temperature rise control is performed. For example, as shown in the upper part of FIG. 5, Qf2 is set to be larger as the difference between the actual compression ratio and the target compression ratio is larger.
In step S15, it is determined whether it is the first cycle after the start of switching. This is because, as already shown in FIG. 5, spark ignition combustion is performed only in the first cycle after the start of switching. That is, if it is the first cycle, the ignition setting set in step S4 is maintained as it is, and if it is a subsequent cycle, the ignition setting is canceled so that the spark ignition in step S9 is not performed.
[0020]
In this way, when the compression ratio is increased and it is determined in step S12 that the target compression ratio has been reached, it is determined in step S17 that the temperature increase control has ended, and the process proceeds to step S16 to cancel the ignition setting. Return to normal control.
On the other hand, if it is determined in step S5 that the shift from compression self-ignition combustion to spark ignition combustion is determined, a target compression ratio for spark ignition combustion is set in step S18.
[0021]
In step S19, this is compared with the current compression ratio. If it is larger than the target value, the actuator of the variable compression ratio mechanism is driven in step S20 to start compression ratio reduction control.
In step S21, the fuel injection amount Qf2 during the expansion stroke is set, and the temperature rise control is performed. For example, as shown in the lower part of FIG. 5, the smaller the difference between the actual compression ratio and the target compression ratio, the larger Qf2 is set. Since compression self-ignition combustion is performed during the switching period, the ignition setting is canceled in step S22.
[0022]
In this way, when it is determined that the compression ratio has been reduced and the target compression ratio has been reached in step S19, it is determined in step S23 that the temperature rise control has ended, and the process proceeds to step S22 to cancel the ignition setting. Return to normal control.
With the above mechanism and control, in the present embodiment, knocking and combustion instability can be avoided during spark ignition combustion, and high thermal efficiency can be obtained during compression self-ignition combustion. Also, when switching between the two combustion systems, knocking and misfire can be avoided and switching can be performed smoothly.
[0023]
Next, a second embodiment will be described. Since the second embodiment has a large portion in common with the first embodiment, the description will focus on the different portions.
FIG. 9 is a system configuration diagram showing the configuration of the second embodiment. Basically similar to the configuration shown in the first embodiment (the common parts are indicated by the same reference numerals), but does not have a variable compression ratio mechanism, and as an alternative, a variable valve mechanism for each of the intake system and the exhaust system. 5b, 6b. This variable valve mechanism is one that makes at least the closing timing of the exhaust valve and the opening timing of the intake valve variable. For example, a combination of a mechanism that changes the phase of the camshaft relative to the crankshaft and a mechanism that changes the cam operating angle Can be realized. These valve timings are controlled by the ECU 11.
[0024]
FIG. 10 shows an example of setting the valve timing in each combustion mode in the present embodiment. At the time of spark ignition combustion, so-called normal valve timing is used, and the amount of residual gas is controlled to be small so as to suppress knocking and realize stable flame propagation combustion. At the time of compression self-ignition combustion, burnt gas is confined in the cylinder by advancing the closing timing of the exhaust valve, and introduced into the next cycle as a large amount of residual gas. A so-called minus overlap is performed. At this time, compression work occurs from the closing timing of the exhaust valve to the top dead center, and at the same time, by delaying the opening timing of the intake valve, this compression required the question from the top dead center to the opening timing of the intake valve. Work can be recovered.
[0025]
FIG. 11 shows each control parameter and engine state quantity with respect to time when switching from spark ignition combustion to compression self-ignition combustion in the present embodiment. In this embodiment, the valve timing is controlled to increase the amount of residual gas by increasing the amount of minus overlap (O / L), thereby increasing the average mixture temperature in the next cycle and increasing the compression end temperature. The compression self-ignition combustion is realized. When switching from the spark ignition combustion to the compression self-ignition combustion, the residual valve rate is controlled by a variable valve mechanism. Under this transition state during switching, the residual gas rate is too high for spark ignition combustion and too low for compression self-ignition combustion. Therefore, in the present embodiment, during this transition period, the temperature of the residual gas is increased, thereby realizing the compression self-ignition combustion even in a state where the amount of the residual gas is not sufficiently increased.
[0026]
Since most of the control details in this embodiment are the same as those in the first embodiment, most of the description is omitted. The difference is that, in the first embodiment, the compression ratio is controlled by the variable compression ratio mechanism, while the minus O / L amount, that is, the residual gas ratio is controlled by the variable valve timing mechanism. The control flow is also omitted here because it only replaces the portion related to the compression ratio with the minus O / L amount. With the above mechanism and control, in this embodiment as well as in the first embodiment, when switching between spark ignition combustion and compression ignition, it is possible to avoid occurrence of knocking or misfire and to perform switching smoothly.
[0027]
Next, a third embodiment will be described. Since the third embodiment has a large portion in common with the first embodiment, the description will focus on the different portions. FIG. 12 is a system configuration diagram showing the configuration of the third embodiment according to the present invention. Although it is basically similar to the configuration shown in the first embodiment (common portions are indicated by the same reference numerals), it does not have a variable compression ratio mechanism, and includes a heater 20 in the intake pipe as an alternative. Heating of the heater is controlled by the driving device 20b, and the ECU 11 gives a control command to the heater driving device 20b.
[0028]
FIG. 13 shows the control parameters and engine state quantities when switching from spark ignition combustion to compression self-ignition combustion with respect to time in the present embodiment. In the present embodiment, the compression end temperature is increased by raising the temperature of the intake air by a heater installed in the intake pipe, thereby realizing compression self-ignition combustion. When switching from spark ignition combustion to compression self-ignition combustion Is controlled to increase the intake air temperature by energizing the heater. However, since there is a delay in heating by the heater, under this transition state during switching, the intake air temperature is too high for spark ignition combustion and too low for compression self-ignition combustion. Therefore, in this embodiment, the temperature of the residual gas is increased during this transition period, so that the mixture temperature at the start of compression and the compression end temperature are increased even when the temperature of the intake air is not sufficiently high. Achieve self-igniting combustion.
[0029]
Since most of the control details in this embodiment are the same as those in the first embodiment, the description thereof is omitted for the most part. The difference is that, in the first embodiment, the intake air temperature is controlled by a heater as opposed to controlling the compression ratio by a variable compression ratio mechanism. In the control flow, the portion relating to the compression ratio may be replaced with the intake air temperature, and is omitted here. With the mechanism and control described above, in the internal combustion engine in the present embodiment, when switching between spark ignition combustion and compression ignition, it is possible to avoid the occurrence of knocking or misfire and to perform switching smoothly. In the present embodiment, a heater is used as a device for heating the intake air. However, for example, a device for heating the intake air by using the heat of exhaust gas by a heat exchanger or the like may be used. In this case, the power consumed by the heater can be saved, which contributes to the improvement of the overall efficiency of the engine.
[0030]
According to the above embodiment, in the control device for an internal combustion engine that can selectively switch between the two combustion states of compression self-ignition combustion and spark ignition combustion according to the operating state, the fuel can be directly injected into the cylinder. A fuel injection valve (fuel injection means) capable of injecting fuel in the expansion stroke, a variable compression ratio mechanism for controlling the compression end temperature according to the combustion state, a variable valve mechanism or a heater for controlling the intake air temperature (compression end temperature) Control means) and an ECU (switching time control means) for injecting fuel during the expansion stroke from the start to the end of the switching of the compression end temperature by the control of the compression end temperature control means according to the switching of the combustion state By providing
When the two combustion states of compression self-ignition combustion and spark ignition combustion are stable, the compression end temperature suitable for each combustion state is controlled by any mechanism for controlling the compression end temperature. While the combustion state is obtained and the compression end temperature is being switched according to the switching of the combustion state, the fuel injection control during the expansion stroke is used together to maintain the compression end temperature well according to the combustion state being switched. Therefore, the combustion state can be switched smoothly.
[0031]
In addition, since the amount of fuel injected during the expansion stroke is controlled according to the degree of change in the compression end temperature by the compression end temperature control, the residual gas that has been appropriately heated at any time during switching This has the advantage that the compression ignition acceleration effect is obtained and that knocking and misfire can be avoided and the discharge of unburned fuel can be avoided.
[0032]
In addition, as in the first embodiment, the compression end temperature is controlled by a variable compression ratio mechanism that controls the compression ratio of the engine, and the compression corresponding to the target value of the compression end temperature according to the switching of the combustion state. Since the fuel is injected during the expansion stroke from when the target value of the ratio is switched until the actual compression ratio reaches the target value after switching, the compression ratio is reduced during spark ignition combustion. By controlling, knocking can be suppressed and high output can be obtained, and at the time of compression self-ignition combustion, by controlling the compression ratio high, the lean mixture can be ignited steadily and high thermal efficiency can be obtained. is there.
[0033]
Further, as in the second embodiment, the compression end temperature is controlled by controlling the amount of working gas flowing into the cylinder, and the switching time control means is configured to control the compression end temperature according to the switching of the combustion state. By switching the target value of the working gas amount corresponding to the target value of the temperature until the actual working gas amount reaches the target value after switching, the fuel is injected during the expansion stroke. By controlling the residual gas amount small during spark ignition combustion, knocking can be suppressed and high output can be obtained, and during compression self-ignition combustion, the residual gas amount can be controlled largely to increase the temperature of the air-fuel mixture. The air-fuel mixture can be ignited steadily.
[0034]
Further, the variable valve operating means for increasing the amount of the working gas by controlling the amount of the working gas by delaying the opening timing of the intake valve of the engine or by closing the closing timing of the exhaust valve of the engine. Thus, the residual gas amount can be adjusted to a temperature suitable for compression self-ignition combustion.
Further, as in the third embodiment, the compression end temperature is controlled by increasing the temperature of the intake air flowing into the engine, and the intake air corresponding to the target value of the compression end temperature according to the switching of the combustion state. By adopting a configuration in which fuel is injected during the expansion stroke from when the target temperature value is switched until the actual intake air temperature reaches the target value after switching, the temperature of the intake air is controlled during spark ignition combustion. Low control suppresses knocking and increases the volumetric efficiency of the engine to obtain a high output.At the time of compression self-ignition combustion, the intake air temperature is controlled to increase the temperature of the air-fuel mixture and the lean mixture Can be ignited steadily.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram according to a first embodiment of the present invention.
FIG. 2 is a view for explaining a high compression ratio state of the variable compression ratio mechanism in the first embodiment.
FIG. 3 is a view for explaining a high compression ratio state of the variable compression ratio mechanism in the first embodiment.
FIG. 4 is a diagram showing changes in control parameters and state quantities in the first embodiment.
FIG. 5 is a time chart regarding fuel injection and ignition in the first embodiment.
FIG. 6 is a diagram showing a control flow in the first embodiment.
FIG. 7 is a diagram showing a part of the control flow.
FIG. 8 is a combustion state switching determination map used in the control flow in the first embodiment.
FIG. 9 is a system configuration diagram according to the second embodiment.
FIG. 10 is a view for explaining valve timing in the second embodiment.
FIG. 11 is a diagram showing changes in control parameters and state quantities in the second embodiment.
FIG. 12 is a system configuration diagram according to a third embodiment.
FIG. 13 is a diagram showing changes in control parameters and state quantities in the third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 4 ... Combustion chamber 5a ... Variable valve mechanism of intake valve 6b ... Variable valve mechanism of exhaust valve 9 ... Fuel injection valve 10 ... Spark plug 11 ... ECU (encin control unit) 12 ... Accelerator opening sensor 13 ... Water temperature sensor 14 ... Crank angle sensor 16 ... Lower link 17 ... Upper link 18Control rod 19 ... Actuator 20 ... Heater 20b ... Heater drive device

Claims (6)

運転状態に応じて圧縮自己着火燃焼と火花点火燃焼との2つの燃焼状態を選択的に切り換え可能な内燃機関の制御装置において、
筒内に燃料を直接噴射可能であって膨張行程で燃料を噴射可能な燃料噴射手段と、
前記燃焼状態に応じて圧縮端温度を制御する圧縮端温度制御手段と、
前記燃焼状態の切り換えに応じた前記圧縮端温度制御手段の制御による圧縮端温度の切り換え開始から切り換え終了までの間、全ての膨張行程中に燃料を噴射する切換時制御手段と、
を備えることを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine capable of selectively switching between two combustion states of compression self-ignition combustion and spark ignition combustion according to an operating state,
Fuel injection means capable of directly injecting fuel into the cylinder and injecting fuel in an expansion stroke;
Compression end temperature control means for controlling the compression end temperature according to the combustion state;
Between the switching start of the compression end temperature to the switching completion by the control of the compression end temperature control means in accordance with switching of the combustion state, and the switching control means for injecting fuel into all of the expansion stroke,
A control device for an internal combustion engine, comprising:
前記切換時制御手段は、前記圧縮端温度制御手段による圧縮端温度の変化度合いに応じて膨張行程中に噴射する燃料量を制御することを特徴とする請求項1に記載の内燃機関の制御装置。  2. The control apparatus for an internal combustion engine according to claim 1, wherein the switching time control means controls the amount of fuel injected during the expansion stroke in accordance with the degree of change in the compression end temperature by the compression end temperature control means. . 前記圧縮端温度制御手段を、機関の圧縮比を制御することによって圧縮端温度を制御する圧縮比制御手段により構成し、
前記切換時制御手段は、前記燃焼状態の切り換えに応じて前記圧縮端温度の目標値に対応する圧縮比の目標値が切り換わってから実際の圧縮比が切換後の目標値に到達するまでの間、膨張行程中に燃料を噴射することを特徴とする請求項1または請求項2に記載の内燃機関の制御装置。
The compression end temperature control means is constituted by compression ratio control means for controlling the compression end temperature by controlling the compression ratio of the engine,
The switching-time control means is configured to change the actual compression ratio until the target value after the switching is reached after the target value of the compression ratio corresponding to the target value of the compression end temperature is switched according to the switching of the combustion state. 3. The control apparatus for an internal combustion engine according to claim 1, wherein fuel is injected during the expansion stroke.
前記圧縮端温度制御手段を、筒内に流入する作動ガス量を制御することによって圧縮端温度を制御する作動ガス量制御手段により構成し、
前記切換時制御手段は、前記燃焼状態の切り換えに応じて前記圧縮端温度の目標値に対応する作動ガス量の目標値が切り換わってから実際の作動ガス量が切換後の目標値に到達するまでの間、膨張行程中に燃料を噴射することを特徴とする請求項1または請求項2に記載の内燃機関の制御装置。
The compression end temperature control means is constituted by working gas amount control means for controlling the compression end temperature by controlling the amount of working gas flowing into the cylinder,
The switching-time control means reaches the target value after switching after the target value of the working gas amount corresponding to the target value of the compression end temperature is switched according to the switching of the combustion state. 3. The control apparatus for an internal combustion engine according to claim 1, wherein the fuel is injected during the expansion stroke.
前記作動ガス量制御手段を、機関の吸気弁の開弁時期を遅らせるか、機関の排気弁の閉弁時期を早めるか少なくとも一方を行なうことで前記作動ガス量を増大させる可変動弁手段により構成したことを特徴とする請求項4に記載の内燃機関の制御装置。  The working gas amount control means is constituted by variable valve operating means for increasing the working gas amount by delaying the opening timing of the intake valve of the engine or at least one of closing the closing timing of the exhaust valve of the engine. The control device for an internal combustion engine according to claim 4, wherein the control device is an internal combustion engine. 前記圧縮端温度制御手段を、機関に流入する吸気の温度を上昇させることによって圧縮端温度を制御する吸気温制御手段により構成し、
前記切換時制御手段は、前記燃焼状態の切り換えに応じて前記圧縮端温度の目標値に対応する吸気温度の目標値が切り換わってから実際の吸気温度が切換後の目標値に到達するまでの間、膨張行程中に燃料を噴射することを特徴とする請求項1または請求項2に記載の内燃機関の制御装置。
The compression end temperature control means is composed of intake air temperature control means for controlling the compression end temperature by increasing the temperature of the intake air flowing into the engine,
The switching time control means is a period from when the target value of the intake air temperature corresponding to the target value of the compression end temperature is switched according to switching of the combustion state until the actual intake air temperature reaches the target value after switching. 3. The control apparatus for an internal combustion engine according to claim 1, wherein fuel is injected during the expansion stroke.
JP2002154030A 2002-05-28 2002-05-28 Control device for internal combustion engine Expired - Fee Related JP4110836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154030A JP4110836B2 (en) 2002-05-28 2002-05-28 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154030A JP4110836B2 (en) 2002-05-28 2002-05-28 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003343313A JP2003343313A (en) 2003-12-03
JP4110836B2 true JP4110836B2 (en) 2008-07-02

Family

ID=29770920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154030A Expired - Fee Related JP4110836B2 (en) 2002-05-28 2002-05-28 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4110836B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146704A (en) * 2005-11-25 2007-06-14 Nissan Motor Co Ltd Indirect injection engine
JP4839893B2 (en) * 2006-03-06 2011-12-21 日産自動車株式会社 Double link variable compression ratio internal combustion engine
JP4833786B2 (en) * 2006-10-02 2011-12-07 東邦瓦斯株式会社 Control device and control method for premixed compression self-ignition engine
JP4687633B2 (en) 2006-11-14 2011-05-25 株式会社豊田自動織機 Premixed compression ignition engine
DE102008012612B4 (en) 2008-03-05 2014-09-11 Continental Automotive Gmbh Method for an emission-optimized change from one operating mode of an internal combustion engine to another
JP5359590B2 (en) * 2009-06-19 2013-12-04 日産自動車株式会社 Variable compression ratio internal combustion engine
JP5447408B2 (en) * 2011-02-24 2014-03-19 マツダ株式会社 Control device for spark ignition gasoline engine
US9429087B2 (en) 2012-09-07 2016-08-30 Mazda Motor Corporation Spark ignition engine
JP6225699B2 (en) * 2013-12-26 2017-11-08 マツダ株式会社 Control unit for direct injection engine
JP6320882B2 (en) * 2014-09-11 2018-05-09 日立オートモティブシステムズ株式会社 Variable combustion system for internal combustion engine
JP6476102B2 (en) * 2015-09-30 2019-02-27 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
SE543587C2 (en) * 2018-12-14 2021-04-06 Hedman Ericsson Patent Ab Method for producing a high exhaust temperature at engine part load in a diesel engine and apparatus for carrying out the method
US11698034B2 (en) * 2021-04-13 2023-07-11 GM Global Technology Operations LLC Method of transient control for robust enrichment operation in low temperature combustion engine

Also Published As

Publication number Publication date
JP2003343313A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
EP2264303B1 (en) Control method and device of engine and corresponding engine
US7769525B2 (en) Apparatus and method for controlling a homogeneous charge compression-ignited internal-combustion engine
JP4253426B2 (en) Compression self-ignition gasoline engine
JP4326044B2 (en) 4-cycle internal combustion engine
KR100761309B1 (en) Homogeneous charge compression ignition internal combustion engine
US8050846B2 (en) Apparatus and method for controlling engine
KR101016924B1 (en) Fuel injection control device and fuel injection method of internal combustion engine
JP4110836B2 (en) Control device for internal combustion engine
US20060201476A1 (en) Method for operating an internal combustion engine
JP5040772B2 (en) Engine intake valve control method and intake valve control apparatus
JP4124224B2 (en) Control device for four-cycle premixed compression self-ignition internal combustion engine
JP4803151B2 (en) Control unit for gasoline engine
US20050205058A1 (en) Internal combustion engine with compression ignition
CN114483351B (en) engine system
JP4180995B2 (en) Control device for compression ignition internal combustion engine
JP3879568B2 (en) In-cylinder injection spark ignition internal combustion engine
WO2020040014A1 (en) Internal combustion engine control device and internal combustion engine control method
JP5098985B2 (en) Control device for internal combustion engine
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JP5593827B2 (en) Control device for spark ignition engine
JP4232590B2 (en) Combustion control system for compression ignition internal combustion engine
JP4239584B2 (en) Ignition timing control device for in-cylinder direct injection spark ignition engine
JP2004011584A (en) Fuel injection control device
JP4801744B2 (en) Method and apparatus for operating an internal combustion engine
JP4583626B2 (en) Engine combustion control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees