JP4102042B2 - Metallurgical coke reforming process and highly reactive coke - Google Patents

Metallurgical coke reforming process and highly reactive coke Download PDF

Info

Publication number
JP4102042B2
JP4102042B2 JP2001283388A JP2001283388A JP4102042B2 JP 4102042 B2 JP4102042 B2 JP 4102042B2 JP 2001283388 A JP2001283388 A JP 2001283388A JP 2001283388 A JP2001283388 A JP 2001283388A JP 4102042 B2 JP4102042 B2 JP 4102042B2
Authority
JP
Japan
Prior art keywords
coke
fine powder
oxide fine
catalyst
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001283388A
Other languages
Japanese (ja)
Other versions
JP2003089808A (en
Inventor
誠章 内藤
建夫 鵜野
誠治 野村
久継 北口
清 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001283388A priority Critical patent/JP4102042B2/en
Publication of JP2003089808A publication Critical patent/JP2003089808A/en
Application granted granted Critical
Publication of JP4102042B2 publication Critical patent/JP4102042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉内に単体もしくは未還元鉱石とともに装入されるコークスをガス化反応性に優れたコークスへ改質する冶金用コークスの製造方法、及びこの改質法によって製造される冶金用高反応性コークスに関するものである。
【0002】
【従来の技術】
未還元の鉄鉱石から銑鉄を製造する方法としては、これまでに種々開発されてきたが、今日でも高炉法がその主流となっている。この高炉法では、炉頂から原料として鉄鉱石及びコークスを層状に装入し、この鉄鉱石を炉内で還元した後、金属状態に還元・溶融して溶銑を製造している。
【0003】
炉頂から装入された原料は、降下していく間に炉下部から炉頂へ向かって流れる高温ガスによって十分に予熱されるとともに、酸化鉄は一酸化炭素(CO)により60%以上の比率で間接還元される。高炉法では、このような間接還元率を確保するために、羽口前にレースウェイ空間を設け、ここで、ηCO(=CO/(CO+CO ))=0の還元ガスを製造するようにしている。また、向流高温ガスとなる燃焼ガスの温度を高めるために、送風温度は1000℃以上としている。
【0004】
近年、焼結鉱に10〜25mmφのコークスを混合装入し、高炉内の700〜1200℃領域での還元効率を向上させることにより燃料比の低減を図る技術が開発され、実炉で積極的に取り入れられている。この技術によれば、コークスのガス化反応性を高めることにより、高炉内での還元効率を向上させ、トータルとしての燃料比の低減化を図ることができる。
【0005】
【発明か解決しようとする課題】
従来より、冶金用コークスに要求される最も重要な性状は冷間、熱間強度である。かかる強度の高いコークスを得るには、適度に石炭化度が高く、400〜500℃の温度領域で流動性を示す原料炭が選択される。しかし、これらの原料炭は一旦液層状態を経ることからラメラの配列が促進され、固化後のコークス炭素質のガス化反応性には劣っている。
【0006】
一方、コークスのガス化反応性を支配する要因として、コークスの炭素質、コークスの比表面積及び触媒の3要因が考えられる。また、コークスのガス化反応性を制御する方策としては、原料石炭の選択と乾留法による方法や、生成したコークスを改質する方法がある。
【0007】
石炭を乾留しガス化反応性を制御する方法では、ガス化反応性を支配する要因のうち、炭素質構造及び比表面積の2要因は原料炭の性状でほぼ決定されるため、触媒による方法が採られている。例えば、室炉式コークス炉で製造されるコークスには最も重要とされる性質である冷間、熱間強度が要求されるが、強度の向上は必ずガス化反応性の低下を伴い、ガス化反応性を向上すれば強度は低下する。
【0008】
生成したコークスのガス化反応性を制御する方法には、高温の水蒸気処理による方法があるが、水蒸気処理を実施する装置が必要となる。また、実炉で使用する際は大量生産を行う必要があり、その製造コストを増大させる要因となり、工業的にみて困難である。
【0009】
本発明は、上記の課題に鑑みて創案されたものであり、その目的は、冷間、熱間強度が高く、かつガス化反応性に優れた改質コークスを安価に製造できるコークス改質法、及びこの改質法により製造される高反応性コークスを提供することにある。
【0010】
上記の目的を達成すべく、本発明のコークス改質法は、粒度が25mm以下の小塊コークスの表面に、湿式担持法により粒度が500μm以下の酸化物微粉末を加えるとともに、表面活性剤を添加した混濁液にコークスを浸漬して該コークス表面に前記酸化物微粉末をコークスに対して0.02〜20重量%の範囲で担持させ、乾燥後に余剰の前記酸化物微粉末を分離し、かつ前記酸化物微粉末が、CaO、MgO、Fe2O3 、Na2O、K2O、BeO、または、SrOの微粉末、または/およびこれらの少なくとも一種を含有する微粉鉱石及びダストから選択されることを特徴とする。
また、本発明の冶金用高反応性コークスは、上記改質法により製造されることを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の好適な実施の形態を説明するが、本発明は本実施形態に限るものではない。
本発明は、冷間、熱間強度の高いコークスの表面に、ガス反応性向上効果を有する酸化物微粉末を担持させることにより、コークスに改質を施し、高反応性コークスを得るものである。
【0015】
冷間、熱間強度の高いコークスとしては、例えば石炭化度が1.2%以上で、400〜500℃の温度領域で流動性を有するものから選択する。このコークスは、粒度25mmφ以下に整粒した小塊コークスを使用することが好ましい。小塊コークスの粒度を25mmφ以下に設定するのは、粒度が25mmφを超えると通常小塊コークスを焼結鉱と同時装入するが、小塊コークス粒度と焼結鉱粒度が異なると、鉱石層全体の空隙率の低下をまねき、しいては通気障害となるからである。
【0016】
冷間、熱間強度の高いコークスの表面に担持させるガス化反応性向上効果を有する酸化物微粉末としては、例えばCaO、MgO、Fe、NaO、KO、BeO、SrOの微粉末、または/およびこれらの少なくとも一種を含有する鉱石及びダストの微粉末が挙げられ、これらの中から適宜選択する。すなわち、小塊コークスの表面に担持させる酸化物微粉末は、一種であっても良いし、二種以上を適宜組み合わせても良い。特に、鉱石の微粉末を担持させる場合には、数種元素が酸化物として含有しているのが通常である。
【0017】
ガス化反応性に優れた酸化物微紛末は、500μmφ以下の粒度に整粒したものを使用することが好ましい。酸化物微紛末の粒度を500μmφ以下に設定するのは、粒度が500μmφを超えると酸化物微粉末のコークス気孔構造部への付着性が低下する。及びコークス細孔部への侵入が困難となり、反応性向上効果が低下するからである。
【0018】
また、ガス化反応性に優れた酸化物微粉末は、コークスに対して0.02〜20重量%の範囲で担持させることが好ましい。酸化物微粉末の担持量を0.02〜20重量%の範囲に設定するのは、担持量が0.02重量%未満であると、コークスの表面に担持させてもガス化反応性を高める効果が期待できず、20重量%を超えると酸化微粉末がコークス表面全体をおおい、反応ガスが反応位置に達することが出来なくなる弊害が懸念されるからである。
【0019】
ガス化反応性に優れた酸化物微粉末を担持させる方法としては、乾式担持法と湿式担持法とがあり、各担持法において、酸化物微粉末は触媒として用いられる。乾式担持法は、例えば乾燥状態でコークスと触媒を混合付着させた後、篩により余剰粉を除去する方法である。一方、湿式担持法は、例えば水と触媒の混濁液にコークスを浸漬しその表面に触媒を担持させた後、取り出して乾燥させ、篩で触媒担持コークスと余剰触媒とに分離させる方法である。本発明では特に湿式担持法を採用することが好ましく、各担持法における酸化物微粉末の付着状況については後述する。
【0020】
なお、冶金用コークスの反応性をCRI(コークス200gを1100℃、2時間炭酸ガスと反応させた際のガス化反応量)で表わすと約30以下であり、ガス化反応性に優れたコークスとは、通常、冶金用コークスのCRIより高い値を示すコークスをいう。
【0021】
【実施例】
以下、本発明の実施例を図、表に基づいて説明するが、本発明は本実施例に限るものではない。
表1は、本実施例で用いる試験用コークスの性状を示しており、20mmφの粒度に整粒された試験用コークスを粒度1.7〜3.0mmφに整粒した。
【表1】

Figure 0004102042
【0022】
このコークスの表面に担持させる酸化物微粉末、すなわち触媒として、試薬ヘマタイト(FeO試薬1級、〜44μmφ)と、実炉鉱石であるカラジャス、ハマスレイの微紛鉄鉱石(〜75μmφ、150〜250μmφ)とを用いた。
【0023】
コークス表面への触媒の付着状況を比較するため、乾式担持法と湿式担持法との双方について実験を試みた。乾式担持法は、乾燥状態でコークスと触媒とを混合し、コークスの表面に触媒を混合付着させた後、篩により余剰粉を除去する方法で行った。一方、湿式担持法は、水と触媒の混濁液、或いは各種水溶液と触媒の混濁液にコークスを浸漬してその表面に触媒を担持させた後、取り出して一晩約100℃で乾燥させ、篩にて触媒担持コークスと余剰触媒とに分離させる方法で行った。水溶液としては、エタノール5重量%溶液、洗剤添加溶液、及び蓚酸鉄2重量%溶液を使用した。
【0024】
各担持法における触媒担持コークスの付着状況を比較すべく目視観察を行ったところ、乾式担持法は湿式担持法よりも触媒付着量が少ないことが判った。湿式担持法ではコークスの表面が赤く着色しているのが確認され、酸化物微粉末の付着状況が良いことが認められた。
【0025】
また、カラジャス、ハマスレイの粉鉱石量の増加に伴って、付着量が増加することが判った。ただし、粉鉱石の付着状況にむらが生じ易い。さらに、試薬ヘマタイトの使用は付着量を増大させることが判った。ただし、水分のみでは付着状況にむらが生じ易く、混濁液中への洗剤、アルコール、及び蓚酸鉄等の表面活性剤の添加により付着むらが解消する。
【0026】
また図1から図3は、触媒担持コークスの反応性の調査結果を示すものであり、図1はカラジャス粉鉱石担持コークスのソルーションロス反応速度を示す説明図、図2はハマスレイ粉鉱石担持コークスのソルーションロス反応速度を示す説明図、図3は試薬ヘマタイト担持コークスのソルーションロス反応速度を示す説明図である。測定条件は、試料重量を100mgとし、N:150ml/min、50℃で1000℃まで昇温保定後、CO:150ml/minに切り替え初期反応速度を測定した。
【0027】
図示するように、粉鉱石担持はコークスの反応性を高める効果があることが判る。また、乾式担持法よりも湿式担持法の方がコークスの反応性を高めることが判った。カラジャス、ハマスレイの粉鉱石における粒度の影響については現時点では不明であるが、〜44μmφの試薬ヘマタイトの方が、粉鉱石担持に比べて反応性の効果が大きいことが判った。さらに、混濁液中に洗剤、アルコール、蓚酸鉄等の表面活性剤を添加する方が、付着量が増大し、反応性の効果が大きいことが判った。
【0028】
【発明の効果】
以上説明したように、本発明によれば、触媒として酸化物微粉末を小塊コークスの表面に担持させた触媒担持コークスの内部は冷間、熱間強度が高く、かつその表面に担持させた酸化物微粉末はガス化反応性に優れているので、高反応性コークスとして改質することができ、湿式担持法によりコークスの表面に酸化物微粉末を担持させるので、高反応性コークスを安価に製造することができる。
【図面の簡単な説明】
【図1】カラジャス粉鉱石担持コークスのソルーションロス反応速度を示す説明図である。
【図2】ハマスレイ粉鉱石担持コークスのソルーションロス反応速度を示す説明図である。
【図3】試薬ヘマタイト担持コークスのソルーションロス反応速度を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing metallurgical coke in which coke charged into a blast furnace alone or together with unreduced ore into coke having excellent gasification reactivity, and a metallurgical high plate manufactured by this reforming method. It relates to reactive coke.
[0002]
[Prior art]
Various methods for producing pig iron from unreduced iron ore have been developed so far, but the blast furnace method is still the mainstream today. In this blast furnace method, iron ore and coke are charged in layers from the top of the furnace, the iron ore is reduced in the furnace, and then reduced and melted into a metallic state to produce hot metal.
[0003]
The raw material charged from the top of the furnace is sufficiently preheated by the high temperature gas flowing from the bottom of the furnace to the top of the furnace while descending, and the iron oxide is in a ratio of 60% or more by carbon monoxide (CO). Indirect reduction. In the blast furnace method, in order to secure such an indirect reduction rate, a raceway space is provided in front of the tuyere, and a reducing gas with ηCO (= CO 2 / (CO + CO 2 )) = 0 is produced. ing. Moreover, in order to raise the temperature of the combustion gas used as countercurrent hot gas, the ventilation temperature shall be 1000 degreeC or more.
[0004]
In recent years, technology has been developed to reduce the fuel ratio by mixing 10-25 mmφ coke into sintered ore and improving the reduction efficiency in the 700-1200 ° C region of the blast furnace. It is adopted in. According to this technology, by increasing the gasification reactivity of coke, it is possible to improve the reduction efficiency in the blast furnace and to reduce the total fuel ratio.
[0005]
[Problems to be solved by the invention]
Conventionally, the most important properties required for metallurgical coke are cold and hot strength. In order to obtain such high-strength coke, coking coal having a moderately high degree of coalification and fluidity in the temperature range of 400 to 500 ° C. is selected. However, since these coking coals once pass through a liquid layer state, the arrangement of lamellae is promoted and the gasification reactivity of coke carbonaceous material after solidification is inferior.
[0006]
On the other hand, as factors that control the gasification reactivity of coke, there are three factors: carbon quality of coke, specific surface area of coke, and catalyst. In addition, as a measure for controlling the gasification reactivity of coke, there are a method of selecting raw coal and a dry distillation method, and a method of reforming the produced coke.
[0007]
In the method of controlling the gasification reactivity by dry distillation of coal, among the factors governing the gasification reactivity, the two factors of the carbonaceous structure and the specific surface area are almost determined by the properties of the raw coal. It is taken. For example, coke produced in a chamber-type coke oven requires cold and hot strength, which is the most important property, but improvement in strength always involves a decrease in gasification reactivity, and gasification If the reactivity is improved, the strength decreases.
[0008]
As a method for controlling the gasification reactivity of the produced coke, there is a method using high-temperature steam treatment, but an apparatus for performing steam treatment is required. Further, when used in an actual furnace, it is necessary to perform mass production, which increases the manufacturing cost and is difficult from an industrial viewpoint.
[0009]
The present invention was devised in view of the above-mentioned problems, and its purpose is to provide a coke reforming method capable of inexpensively producing a modified coke having high cold and hot strength and excellent gasification reactivity. And providing a highly reactive coke produced by this modification method.
[0010]
To achieve the above object, coke modification method of the present invention, the surface of the small lump coke follows granularity 25 m m, with the particle size exerts oxide fine powder under 500 microns m or less by a wet supporting method, the oxide powder to the coke surface coke is immersed in a suspension, in which the addition of surface active agent is carried in a range of 0.02 to 20 wt% with respect to coke, the oxide of the surplus after drying fine powder And the oxide fine powder is selected from fine powder ores and dust containing CaO, MgO, Fe2O3, Na2O, K2O, BeO, or SrO fine powder, and / or at least one of them. It is characterized by.
Further, metallurgical high reactivity coke of the present invention is characterized in that it is manufactured by the reforming method described above.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
The present invention provides a highly reactive coke by modifying the coke by supporting an oxide fine powder having an effect of improving gas reactivity on the surface of coke having a high cold and hot strength. .
[0015]
The coke having high cold and hot strength is selected from those having a coalification degree of 1.2% or more and fluidity in a temperature range of 400 to 500 ° C. As the coke, it is preferable to use a small coke having a particle size of 25 mmφ or less. The particle size of the small coke is set to 25 mmφ or less. When the particle size exceeds 25 mmφ, the small coke is usually charged simultaneously with the sintered ore, but if the small coke particle size and the sintered ore particle size are different, the ore layer This is because the porosity of the whole is lowered, and it becomes a ventilation trouble.
[0016]
Examples of the oxide fine powder having an effect of improving gasification reactivity supported on the surface of coke having high cold and hot strength include, for example, CaO, MgO, Fe 2 O 3 , Na 2 O, K 2 O, BeO, and SrO. Or / and fine powders of ores and dusts containing at least one of these, which are appropriately selected from these. That is, the oxide fine powder supported on the surface of the small coke may be a single type or a combination of two or more types. Particularly when ore fine powder is carried, it is usual that several elements are contained as oxides.
[0017]
It is preferable to use an oxide fine powder powder excellent in gasification reactivity that is sized to a particle size of 500 μmφ or less. The fine particle size of the oxide fine powder is set to 500 μmφ or less because when the particle size exceeds 500 μmφ, the adherence of the fine oxide powder to the coke pore structure is lowered. In addition, it is difficult to penetrate into the coke pores, and the reactivity improvement effect is reduced.
[0018]
Moreover, it is preferable to carry | support the oxide fine powder excellent in gasification reactivity in 0.02-20 weight% with respect to coke. The amount of oxide fine powder supported is set in the range of 0.02 to 20% by weight. If the amount supported is less than 0.02% by weight, the gasification reactivity can be improved even if it is supported on the surface of coke. This is because the effect cannot be expected, and if it exceeds 20% by weight, the oxidized fine powder covers the entire coke surface, and there is a concern that the reactive gas cannot reach the reaction position.
[0019]
As a method for supporting an oxide fine powder excellent in gasification reactivity, there are a dry support method and a wet support method. In each support method, the oxide fine powder is used as a catalyst. The dry support method is a method in which, for example, coke and catalyst are mixed and adhered in a dry state, and then excess powder is removed with a sieve. On the other hand, the wet support method is a method in which, for example, coke is immersed in a turbid liquid of water and catalyst and the catalyst is supported on the surface thereof, then taken out and dried, and separated into catalyst-supported coke and excess catalyst with a sieve. In the present invention, it is particularly preferable to employ a wet loading method, and the state of adhesion of oxide fine powder in each loading method will be described later.
[0020]
The reactivity of metallurgical coke is about 30 or less when expressed by CRI (200 g of coke reacted with carbon dioxide at 1100 ° C. for 2 hours). Usually refers to coke showing a higher value than the CRI of metallurgical coke.
[0021]
【Example】
Examples of the present invention will be described below with reference to the drawings and tables, but the present invention is not limited to these examples.
Table 1 shows the properties of the test coke used in this example, and the test coke adjusted to a particle size of 20 mmφ was sized to a particle size of 1.7 to 3.0 mmφ.
[Table 1]
Figure 0004102042
[0022]
Oxide fine powder to be supported on the surface of the coke, that is, as a catalyst, reagent hematite (Fe 2 O 3 reagent grade 1 ˜44 μmφ) and actual fine ore of Carajas and Hamasley (˜75 μmφ, 150) ˜250 μmφ).
[0023]
In order to compare the adhesion of the catalyst to the coke surface, an experiment was attempted for both the dry loading method and the wet loading method. The dry loading method was performed by mixing coke and catalyst in a dry state, mixing and adhering the catalyst to the surface of the coke, and then removing excess powder with a sieve. On the other hand, in the wet loading method, coke is immersed in a turbid solution of water and catalyst, or in a turbid solution of various aqueous solutions and catalyst, the catalyst is supported on the surface, and then taken out and dried at about 100 ° C. overnight. In this method, the catalyst-carrying coke and the excess catalyst were separated. As the aqueous solution, an ethanol 5 wt% solution, a detergent addition solution, and an iron oxalate 2 wt% solution were used.
[0024]
Visual observation was performed in order to compare the adhesion state of the catalyst-carrying coke in each loading method, and it was found that the dry loading method had a smaller amount of catalyst adhesion than the wet loading method. In the wet loading method, it was confirmed that the surface of the coke was colored red, and it was confirmed that the oxide fine powder was attached well.
[0025]
It was also found that the amount of adhesion increased with the increase in the amount of fine ore of Carajas and Hamasley. However, unevenness in the state of adhesion of the fine ore tends to occur. Furthermore, the use of reagent hematite has been found to increase the amount deposited. However, unevenness of adhesion tends to occur only with moisture, and unevenness of adhesion can be eliminated by adding detergents, alcohol, and surface active agents such as iron oxalate to the turbid liquid.
[0026]
FIGS. 1 to 3 show the investigation results of the reactivity of the catalyst-carrying coke, FIG. 1 is an explanatory diagram showing the solution loss reaction rate of the carajas powder ore-carrying coke, and FIG. 2 is the hamasley powder ore-carrying coke. FIG. 3 is an explanatory diagram showing the solution loss reaction rate, and FIG. 3 is an explanatory diagram showing the solution loss reaction rate of the reagent hematite-carrying coke. The measurement conditions were such that the sample weight was 100 mg, N 2 was 150 ml / min, the temperature was maintained at 1000 ° C. at 50 ° C., then the CO 2 was changed to 150 ml / min, and the initial reaction rate was measured.
[0027]
As shown in the figure, it can be seen that the loading of fine ore has the effect of increasing the reactivity of coke. It was also found that the wet loading method increases the coke reactivity than the dry loading method. The influence of the particle size on the powder ore of Calajas and Hamasley is unknown at present, but it has been found that the reagent hematite of ~ 44 μmφ has a greater reactive effect than the support of the powder ore. Furthermore, it has been found that the addition of a surface active agent such as detergent, alcohol or iron oxalate to the turbid liquid increases the adhesion amount and has a greater reactive effect.
[0028]
【The invention's effect】
As described above, according to the present invention, the inside of the catalyst-carrying coke in which fine oxide powder is carried on the surface of the small coke as a catalyst is cold and has high hot strength and is carried on the surface. Oxide fine powder is excellent in gasification reactivity, so it can be modified as highly reactive coke, and oxide fine powder is supported on the surface of coke by wet loading method, so high reactive coke is inexpensive Can be manufactured.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a solution loss reaction rate of coke containing a calajas powder ore.
FIG. 2 is an explanatory diagram showing a solution loss reaction rate of coke with a Hamasley powder ore.
FIG. 3 is an explanatory diagram showing a solution loss reaction rate of reagent hematite-carrying coke.

Claims (2)

粒度が25mm以下の小塊コークスの表面に、湿式担持法により粒度が500μm以下の酸化物微粉末を加えるとともに、表面活性剤を添加した混濁液にコークスを浸漬して該コークス表面に前記酸化物微粉末をコークスに対して0.02〜20重量%の範囲で担持させ、乾燥後に余剰の前記酸化物微粉末を分離し、かつ前記酸化物微粉末が、CaO、MgO、Fe、NaO、KO、BeO、または、SrOの微粉末、または/およびこれらの少なくとも一種を含有する微粉鉱石及びダストから選択されることを特徴とする冶金用コークス改質法。On the surface of the small lump coke under particle size 25 m m or more, with particle size exerts oxide fine powder under 500 microns m or less by a wet supporting method, the coke surface by immersing the coke suspension, in which the addition of surface active agent The oxide fine powder is supported in the range of 0.02 to 20% by weight with respect to coke, and after drying, the excess oxide fine powder is separated, and the oxide fine powder is CaO, MgO, Fe Coke modification method for metallurgy characterized by being selected from fine powder of 2 O 3 , Na 2 O, K 2 O, BeO or SrO, and / or fine powder ore containing at least one of them and dust . 請求項1に記載の改質法により製造されることを特徴とする冶金用高反応性コークス。A highly reactive coke for metallurgy produced by the reforming method according to claim 1.
JP2001283388A 2001-09-18 2001-09-18 Metallurgical coke reforming process and highly reactive coke Expired - Lifetime JP4102042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283388A JP4102042B2 (en) 2001-09-18 2001-09-18 Metallurgical coke reforming process and highly reactive coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283388A JP4102042B2 (en) 2001-09-18 2001-09-18 Metallurgical coke reforming process and highly reactive coke

Publications (2)

Publication Number Publication Date
JP2003089808A JP2003089808A (en) 2003-03-28
JP4102042B2 true JP4102042B2 (en) 2008-06-18

Family

ID=19106882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283388A Expired - Lifetime JP4102042B2 (en) 2001-09-18 2001-09-18 Metallurgical coke reforming process and highly reactive coke

Country Status (1)

Country Link
JP (1) JP4102042B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5188842B2 (en) * 2008-03-05 2013-04-24 関西熱化学株式会社 Coke processing system and coke processing method
JP2011162866A (en) * 2010-02-15 2011-08-25 Tohoku Univ Method for producing highly reactive carbonaceous material, highly reactive carbonaceous material, and method for using carbon-containing agglomerated ore
KR101220653B1 (en) * 2010-12-27 2013-01-10 주식회사 포스코 Method for Manufacturing Molten Iron in Blast Furnace
JP2013256595A (en) * 2012-06-13 2013-12-26 Jfe Steel Corp Method of producing high-reactive coke
KR101892229B1 (en) * 2016-12-20 2018-08-27 주식회사 포스코 Catalyst for activating cokes, cokes having catalyst for activating cokes, manufaturing method for catalyst for activating cokes and manufaturing method using cokes having catalyst for activating cokes
CN114525160B (en) * 2022-03-18 2023-08-01 宁波中科远东催化工程技术有限公司 Coke heat strong auxiliary material and preparation process thereof
CN115094172B (en) * 2022-06-24 2023-08-01 广东韶钢松山股份有限公司 Method for controlling alkali metal charging amount by coke alkali resistance

Also Published As

Publication number Publication date
JP2003089808A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
EP2100979B1 (en) Process for preparation of ore, equipment for preparation thereof, ironmaking process and ironmaking/steelmaking process
Watanabe et al. Enhancement of reactivity of carbon iron ore composite using redox reaction of iron oxide powder
JP4102042B2 (en) Metallurgical coke reforming process and highly reactive coke
AU2010274316A1 (en) Apparatus and method for producing reduced iron using alkali-containing iron production dust as the raw material
Iljana et al. Evaluating the reduction-softening behaviour of blast furnace burden with an advanced test
CA1057537A (en) Method of making iron powder
Zhao et al. High-temperature interactions between vanadium-titanium magnetite carbon composite hot briquettes and pellets under simulated blast furnace conditions
Chen et al. High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets
CN100436618C (en) Fusing agent used under high temperature fused state
CN110106299A (en) A kind of blast furnace smelting method of vanadium titano-magnetite
ELKASABGY Effect of alkalis on reduction behavior of acid iron ore pellets
ZHAO et al. Effect of additives on growth of ferronickel grains and metal–slag separation behavior
CA1170838A (en) Process for treating metallic starting materials for smelting plants, particularly iron sponge particles
JP3388014B2 (en) Coke reforming method
US4394167A (en) Method of carbothermically producing aluminum
US3892558A (en) Briquette for producing aluminum-silicon
Chen et al. Softening-melting Properties of High-chromium Vanadium–titanium Magnetite Pellets with Different Basicity
WO2023171486A1 (en) Coating material for use in direct-reduction iron production, and production method therefor
CN110208162A (en) A kind of method of quantitative analysis surface gasification reaction after high-temp glue Vacuum Package iron coke
JP7476871B2 (en) Metal manufacturing methods
JP3014549B2 (en) Blast furnace operation method
WO2024181054A1 (en) Feedstock for direct-reduction iron manufacturing, and manufacturing method therefor
EP4353840A1 (en) Agglomerated ore assessing method and agglomerated ore
CN116177928B (en) Coating material for inhibiting pellet adhesion in hydrogen-based shaft furnace, and preparation method and application thereof
JP2010095759A (en) Method of operating blast furnace while using ferro-coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4102042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350