JP4096534B2 - Bridge using external cable - Google Patents

Bridge using external cable Download PDF

Info

Publication number
JP4096534B2
JP4096534B2 JP2001275258A JP2001275258A JP4096534B2 JP 4096534 B2 JP4096534 B2 JP 4096534B2 JP 2001275258 A JP2001275258 A JP 2001275258A JP 2001275258 A JP2001275258 A JP 2001275258A JP 4096534 B2 JP4096534 B2 JP 4096534B2
Authority
JP
Japan
Prior art keywords
deflection
reinforcing plate
bridge
deflecting
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001275258A
Other languages
Japanese (ja)
Other versions
JP2003082614A (en
Inventor
公生 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2001275258A priority Critical patent/JP4096534B2/en
Publication of JP2003082614A publication Critical patent/JP2003082614A/en
Application granted granted Critical
Publication of JP4096534B2 publication Critical patent/JP4096534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、外ケーブルを用いた橋梁およびこの橋梁の偏向部に使用される偏向装置に関するものである。
【0002】
【従来の技術】
図7に示すのは、外ケーブルを用いた橋梁の1例であり、内・外ケーブル方式を併用した場所打ち工法によるPC箱桁橋の場合である。外ケーブル方式は、恒久的な防錆処理を施した緊張材としての外ケーブル2を主桁1のコンクリート部材の外側に配置し、定着部あるいは偏向部を介して主桁1に永続的なプレストレスを与える方式である。
【0003】
図7の例では、箱桁内空部における支点横桁4,4間に2つの偏向部3を設け、この偏向部3等で外ケーブル2を方向変換させ、主桁1に上下方向の偏向力を与えている。なお、支点横桁4は、偏向部や定着部として用いられる。内ケーブル6は、上床版1aと下床版1cに配設されている。
【0004】
このような外ケーブル方式のPC橋梁は、 1 ケーブルをコンクリートの外に配置するため、コンクリート部材厚、特にウェブ1bの厚さを小さくでき、自重の低減が可能となる、 2 コンクリート部材内へのシースの取付け作業が不要となると同時に、コンクリート断面内に緊張材が少なくなることからコンクリート打設が容易となり、施工性の向上および工期の短縮が可能となる、 3 内ケーブルに比べて、大容量の緊張材の使用が可能となる、 4 内ケーブルに比べて、外ケーブルは維持管理や補修が容易である、 5 内ケーブルに比べて、外ケーブルは高い張力レベルを維持できる、などの利点がある。
【0005】
偏向部3は、外ケーブル2が通過する偏向管5を有し、外ケーブルの配置形状を保持し、偏向力を主桁に伝達する部分であり、あらゆる作用に対して偏向管5の変形や分離などがないように、主桁コンクリートと一体化しなければならない。その形状は、コンクリート製の隔壁形式やリブ形式、あるいは、コンクリートブロックや鋼材による突起形式が用いられる。また、偏向部3および偏向部付近の部材は、外ケーブル2から作用する力に対して十分安全であるように補強しなければならない。
【0006】
図8は、コンクリート製の隔壁形式の偏向部3の例であり、リブ3aの下部における左右両側にそれぞれ鋼管からなる偏向管5が複数並列して埋設されている。従来においては、これら偏向管5の周囲に外ケーブルの偏向力(プレストレス分力P)に抵抗する補強鉄筋50を配置して補強している。即ち、プレストレス分力Pに対して一部をリブ3aとウェブ1bのせん断応力度で負担し、偏向管下側に発生する上下方向の局部引張力T1に対して下床版1cから立ち上がる鉄筋50aで補強し、偏向管上側に発生する水平方向の割裂引張力T2に対して水平に貫通する鉄筋50bで補強している。
【0007】
【発明が解決しようとする課題】
しかし、前述のような従来の鉄筋による偏向部補強構造の場合、次に示すような課題がある。
【0008】
(1) 偏向管5は、外ケーブルの配置位置に据え付けられる必要があるが、複数の偏向管5を所定の位置に精度良く据え付けることは困難である。
【0009】
(2) 外ケーブルの偏向力に対しては、多量の鉄筋50を配置する必要があり、その組立て作業が非常に煩雑なものとなる。
【0010】
(3) 多量の鉄筋50が配置された偏向部3へのコンクリートの打込みが困難であり、打設不良を招く可能性が高い。
【0011】
本発明は、このような課題を解消すべくなされたもので、その目的は、偏向部を有する外ケーブル方式の橋梁において、偏向部施工時の偏向管の据付けを精度良く容易に行うことができ、また、偏向部への配置鉄筋量を減少させることができ、組立作業が容易になると共に、コンクリートの打込みを容易に確実に行うことができる外ケーブルを用いたPC橋梁を提供することにある。
【0012】
【課題を解決するための手段】
本発明の請求項1は、主桁の部材の断面外側に橋軸方向に沿って緊張材を配置し、緊張材の定着部と偏向部を介して主桁にプレストレスを与える外ケーブル方式の橋梁において、前記偏向部に埋設され緊張材が挿通される偏向管が偏向管の軸方向と交差する補強板に取付けられ、この補強板は橋軸方向に間隔をおいて複数枚配設され、各補強板の偏向管が貫通して取付けられる本体部分が偏向部に埋設され、各補強板の端部が主桁のコンクリート部材内に埋設されていることを特徴とする外ケーブルを用いた橋梁である。
【0013】
この請求項1において、外ケーブル方式は、緊張材が主桁の部材断面の外側に上下方向に偏向して配置される方式であり、内ケーブルと外ケーブルの併用方式、全外ケーブル方式を含み、さらに、外ケーブルが桁高の範囲外まで偏心する大偏心外ケーブル方式(エクストラドーズド橋)も含む。また、本発明は、コンクリート橋あるいはコンクリートと鋼板の混合橋や複合橋などに適用される。
【0014】
請求項1の外ケーブル方式の橋梁の偏向部には、緊張材が挿通される偏向管が偏向管の軸方向と交差する補強板に取付けられ、この補強板は偏向管の軸方向に間隔をおいて複数枚配設され、各補強板に偏向管が貫通して取付けられ、ユニット化されている偏向装置を用いることができる。
【0015】
請求項1において、偏向部は、コンクリート製の隔壁形式やリブ形式あるいは突起形式などであり、この偏向部の下部あるいは上部に、緊張材(PC鋼線、PC鋼より線、PC鋼棒、繊維強化プラスチックなど)すなわち外ケーブルの偏向管(鋼管など)を貫通させて取付けた補強板(鋼板など)を配置し、本体が偏向部に埋設され、かつ、端部が主桁のコンクリート部材中に埋設されるようにする。この補強板は、橋軸に直交するように鉛直に配置し、かつ、橋軸方向に所定の間隔をおいて複数枚配置し、偏向管を貫通させて溶接等で固定して偏向管ユニットとする。
【0016】
本発明の請求項2は、補強板には、補強板と、偏向部および主桁のコンクリートとの一 体化を図るずれ止めが設けられていることを特徴とする請求項1に記載の橋梁である。
【0017】
ずれ止めは、補強板に穿設した多数のジベル孔、補強板の表面に溶接等で突設した多数のスタッドジベル、あるいは補強板の表面に波加工などで形成した凹凸などであり、補強板と、偏向部および主桁のコンクリートとの一体化を図る。
【0018】
以上のような構成において、主桁の製作時に、偏向管と補強板を偏向部に配置し、偏向管を偏向部のコンクリート中に埋設し、補強板を偏向部と主桁のコンクリート中に埋設する。偏向部に偏向管が配設されると同時に、偏向部の外ケーブルが通過する部分とその周辺の主桁部分が補強板により補強される。
【0019】
外ケーブルを偏向管に挿通させ、定着部に定着することで、主桁にプレストレスが導入される。外ケーブルの方向変換により偏向部に作用するプレストレス分力Pに対して一部を隔壁やリブとウェブのせん断応力度で負担し、偏向管下側に発生する上下方向の局部引張力T1に対して、一体化した偏向管と補強板および補強板のずれ止めにより抵抗し、偏向管上側に発生する水平方向の割裂引張力T2に対して補強板が抵抗する(図1 (d) 参照) 。
【0020】
外ケーブルの偏向管は、工場等で予め精度良く補強板に取付けておくことができるので、偏向部施工時の偏向管の据付けを精度良く容易に行うことができる。また、偏向管と補強板を一体化し、補強板にずれ止めを付与することで、偏向部の補強鉄筋の代替えとして補強板を利用することが可能となり、偏向部への配置鉄筋量を減少させることができ、組立作業が容易になる。さらに、配置される鉄筋量が減少するため、コンクリートの打込みを容易に確実に行うことができ、密実なコンクリートを施工できる。
【0021】
【発明の実施の形態】
以下、本発明を図示する実施の形態に基づいて説明する。この実施形態は、内・外ケーブル方式を併用した場所打ち工法によるPC箱桁橋に本発明を適用した例である。図1〜図3は本発明の第1実施形態を示したものである。図4〜図6は本発明の第2実施形態を示したものである。
【0022】
図1に示すように、PC箱桁橋の主桁1は、上床版1aと左右一対のウェブ1bと下床版1cから構成され、外ケーブル2が桁高の範囲内(箱桁内空部)に配置される外ケーブル方式である。主桁1の支点横桁(図示せず)間に配置される偏向部3はコンクリート製のリブ形式であり、このリブ3aの下部における左右両側にそれぞれ、鋼管からなる偏向管5と、孔あき鋼板からなる補強板10を配設する。
【0023】
補強板10は、橋軸に対して直交するように鉛直に配置され、橋軸方向に間隔をおいて複数枚配設される。また、この補強板10は、本体がリブ3aの下部に埋設され、かつ、側端部と下端部がそれぞれ下床版1cとウェブ1bに埋設されるように、配置される。また、リブ3aは、図1 (a) に示すように、下部が橋軸方向に板厚が厚い梁部が形成されており、この梁部の橋軸方向の両側に高さの低い補強板10を配設し、中央部に梁部よりも上方に突出する高さの高い補強板10を2枚配設している。
【0024】
図2、図3に示すように、主桁の片側に配置される外ケーブルの数に対応した数の偏向管5が複数枚の補強板10を貫通して取付けられている。これら偏向管5と補強板10は、工場等で溶接等により精度良く組立てておき、偏向管ユニットとする。なお、偏向管5は、湾曲管である。
【0025】
また、補強板10には、多数のジベル孔10aが穿設されており、このジベル孔10aがずれ止めとして働き、リブ3a、ウェブ1b、下床版1cのコンクリートと一体化する。なお、ウェブ1bと下床版1cに埋設される部分のジベル孔10aは、下床版1cとウェブ1bに配筋される鉄筋の挿通孔としても利用することができる。
【0026】
次に、図4〜図6の第2実施形態では、スタッドジベル12が突設された鋼板からなる補強板11を用いている。その他の構成は、図1〜図3の第1実施形態と同様である。
【0027】
スタッドジベル12は、補強板11の両面に抵抗溶接等で固定され、この補強板11と偏向管5を工場等で溶接等により精度良く組立てておき、偏向管ユニットとする。
【0028】
なお、補強板のずれ止め手段は、以上のような図示例に限らず、補強板の表面に波加工などで形成した凹凸などでもよい。
【0029】
以上のような構成において、主桁1は場所打ち工法(押出し工法、張出し架設工法、支保工施工など)で製作され、この主桁1の製作時に、偏向管5と補強板10または11を偏向部3に配置し、偏向管5をリブ3aのコンクリート中に埋設し、補強板10または11をリブ3a、ウェブ1b、下床版1cのコンクリート中に埋設する。リブ3aに複数の偏向管5が配設されると同時に、リブ3aの外ケーブルが通過する部分とその周辺のウェブ1b、下床版1cが補強板10または11により補強される。
【0030】
外ケーブル2を偏向管5に挿通させ、支点橋桁等の定着部に定着することで、主桁1にプレストレスが導入される。外ケーブル2の方向変換により偏向部3に作用するプレストレス分力Pに対して一部をリブ3aとウェブ1bのせん断応力度で負担し、偏向管下側に発生する上下方向の局部引張力T1に対して、一体化した複数の偏向管5と補強板10,11および補強板10,11のジベル孔10aやスタッドジベル12等により抵抗し、偏向管上側に発生する水平方向の割裂引張力T2に対して補強板10,11が抵抗する。
【0031】
なお、以上は、場所打ち工法によるPC箱桁橋について説明したが、これに限らず、プレキャストセグメント工法によるPC橋梁、箱桁以外の形式にも、混合橋や複合橋などにも、本発明を適用することができる。また、内ケーブルと外ケーブルの併用方式に限らず、全外ケーブル方式、さらに、外ケーブルが桁高の範囲外まで偏心する大偏心外ケーブル方式(エクストラドーズド橋)などにも、適用することができる。また、偏向部3は、リブ形式に限らず、コンクリート製の隔壁形式や突起形式でもよい。
【0032】
【発明の効果】
(1) 偏向部を有する外ケーブル方式の橋梁において、外ケーブルの偏向管を補強板に取付け、この補強板を偏向部および主桁のコンクリート部材内に埋設する構造であるため、外ケーブルの偏向管を工場等で予め精度良く補強板に取付けておくことができ、偏向部施工時の偏向管の据付けを精度良く容易に行うことができる。
【0033】
(2) 偏向管と補強板を一体化し、補強板にずれ止めを付与することで、偏向部の補強鉄筋の代替えとして補強板を利用することが可能となり、偏向部への配置鉄筋量を減少させることができ、組立作業が容易になる。
【0034】
(3) 配置される鉄筋量が減少するため、コンクリートの打込みを容易に確実に行うことができ、密実なコンクリートを施工できる。
【0035】
(4) 以上により、確実に補強された健全な偏向部を有する外ケーブル式のPC橋梁を経済的に構築することが可能となる。
【図面の簡単な説明】
【図1】本発明の偏向部構造の第1実施形態を示す、(a) は側面図、(b) は平面図、(c) ,(d) は断面図である。
【図2】図1に用いられる偏向管と補強板のユニットを示す斜視図である。
【図3】図1に用いられる偏向管と補強板のユニットを示す斜視図である。
【図4】本発明の偏向部構造の第2実施形態を示す、(a) は側面図、(b) は平面図、(c) ,(d) は断面図である。
【図5】図2に用いられる偏向管と補強板のユニットを示す斜視図である。
【図6】図2に用いられる偏向管と補強板のユニットを示す斜視図である。
【図7】外ケーブル方式のPC橋梁を示す斜視図である。
【図8】従来の偏向部構造を示す、(a) は側面図、(b) は平面図、(c) ,(d) は断面図である。
【符号の説明】
1……主桁
1a…上床版
1b…ウェブ
1c…下床版
2……外ケーブル(緊張材)
3……偏向部
3a…リブ
4……支点横桁
5……偏向管
6……内ケーブル
10……補強板
10a…ジベル孔
11……補強板
12……スタッドジ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bridge using an external cable and a deflecting device used for a deflecting portion of the bridge.
[0002]
[Prior art]
FIG. 7 shows an example of a bridge using an external cable, which is a case of a PC box girder bridge by a cast-in-place method using an internal / external cable system. In the outer cable system, an outer cable 2 as a tension member subjected to permanent rust prevention treatment is disposed outside the concrete member of the main girder 1 and is permanently attached to the main girder 1 through a fixing part or a deflection part. It is a method to give stress.
[0003]
In the example of FIG. 7, two deflection portions 3 are provided between the fulcrum cross beams 4 and 4 in the inner space of the box girder, and the direction of the outer cable 2 is changed by the deflection portion 3 and the like to deflect the main girder 1 in the vertical direction. Giving power. Note that the fulcrum cross beam 4 is used as a deflection unit or a fixing unit. The inner cable 6 is disposed on the upper floor slab 1a and the lower floor slab 1c.
[0004]
Such an external cable type PC bridge has the following features: ( 1 ) Since the cable is placed outside the concrete, the thickness of the concrete member, especially the web 1b, can be reduced, and the weight can be reduced. ( 2 ) Concrete The installation work of the sheath in the member becomes unnecessary, and at the same time, there is less tension material in the cross section of the concrete, so it is easier to place the concrete, and the workability can be improved and the construction period can be shortened. ( 3 ) Internal cable It is possible to use a large-capacity tendon material compared to ( 4 ) Outer cables are easier to maintain and repair than inner cables, ( 5 ) Outer cables are higher than inner cables There are advantages such as being able to maintain the tension level.
[0005]
The deflection unit 3 has a deflection tube 5 through which the outer cable 2 passes, and is a portion that maintains the arrangement shape of the outer cable and transmits the deflection force to the main beam. It must be integrated with the main girder concrete so that there is no separation. The shape may be a concrete partition type or rib type, or a concrete block or steel projection type. Further, the deflection unit 3 and the members in the vicinity of the deflection unit must be reinforced so as to be sufficiently safe against the force acting from the outer cable 2.
[0006]
FIG. 8 shows an example of a concrete partition type deflecting section 3 in which a plurality of deflecting pipes 5 made of steel pipes are embedded in parallel on the left and right sides of the lower part of the rib 3a. Conventionally, a reinforcing reinforcing bar 50 that resists the deflection force (prestress component force P) of the outer cable is disposed around the deflection pipes 5 for reinforcement. That is, a part against the prestressing force component P bear a shear stress of the rib 3a and the web 1b, rises from the bottom slab 1c against local tensile force T 1 of the vertical direction generated in the deflection Kanka side reinforced with rebar 50a, it is reinforced with rebar 50b penetrating horizontally with respect to the horizontal direction of the split裂引tension T 2 that occurs in the upper deflection tube.
[0007]
[Problems to be solved by the invention]
However, in the case of the deflection part reinforcement structure by the conventional rebar as mentioned above, there are the following problems.
[0008]
(1) The deflection tube 5 needs to be installed at the position where the outer cable is disposed, but it is difficult to accurately install the plurality of deflection tubes 5 at predetermined positions.
[0009]
(2) With respect to the deflection force of the outer cable, it is necessary to arrange a large amount of reinforcing bars 50, and the assembling work becomes very complicated.
[0010]
(3) It is difficult to place concrete into the deflecting portion 3 in which a large amount of reinforcing bars 50 are arranged, and there is a high possibility of causing poor placement.
[0011]
The present invention has been made to solve such problems, and the purpose of the present invention is to enable accurate and easy installation of the deflection pipe during construction of the deflection section in an external cable type bridge having the deflection section. Another object of the present invention is to provide a PC bridge using an external cable that can reduce the amount of reinforcing bars arranged in the deflecting portion, facilitates assembly work, and can easily and reliably place concrete. .
[0012]
[Means for Solving the Problems]
Claim 1 of the present invention is an external cable system in which a tension member is arranged along the bridge axis direction outside the cross section of the member of the main girder, and prestress is applied to the main girder through the fixing portion and the deflection portion of the tension member. In the bridge, a deflection pipe embedded in the deflection portion and through which the tension material is inserted is attached to a reinforcing plate that intersects the axial direction of the deflection pipe, and a plurality of the reinforcing plates are arranged at intervals in the bridge axis direction, A bridge using an external cable, characterized in that the main body part through which the deflection pipe of each reinforcing plate is attached is embedded in the deflecting portion, and the end of each reinforcing plate is embedded in the concrete member of the main girder It is.
[0013]
In this claim 1, the outer cable method is a method in which the tension material is arranged by being deflected in the vertical direction outside the member cross section of the main girder, and includes the combined method of the inner cable and the outer cable, and the all outer cable method. Furthermore, a large eccentric outer cable system (extra-dosed bridge) in which the outer cable is eccentric beyond the range of the girder height is also included. Further, the present invention is applied to a concrete bridge, a mixed bridge of concrete and steel plate, a composite bridge, or the like.
[0014]
In the deflection portion of the outer cable type bridge according to claim 1, a deflection pipe through which the tension material is inserted is attached to a reinforcing plate that intersects the axial direction of the deflection pipe, and the reinforcing plate is spaced in the axial direction of the deflection pipe. It is possible to use a deflecting device that is arranged in a plurality of units and has a deflecting tube penetratingly attached to each reinforcing plate and unitized .
[0015]
In Claim 1 , the deflection part is a concrete partition type, rib type, or projection type, and a tension material (PC steel wire, PC steel strand, PC steel bar, fiber) is formed below or above the deflection part. Reinforcement plastic (such as reinforced plastic), that is, a reinforcing plate (steel plate, etc.) attached through the outer pipe deflection pipe (steel pipe, etc.) is placed, the body is embedded in the deflection section, and the end is in the concrete member of the main girder To be buried. This reinforcing plate is arranged vertically so as to be orthogonal to the bridge axis, and a plurality of reinforcing plates are arranged at a predetermined interval in the bridge axis direction, penetrated by the deflection pipe, fixed by welding or the like, and the deflection pipe unit. To do.
[0016]
Claim 2 of the present invention, the reinforcing plate, bridges of claim 1, characterized in that the reinforcing plate is displaced stop to achieve an body of the concrete of the deflecting unit and the main girder is provided It is.
[0017]
The stopper is a number of dowel holes drilled in the reinforcing plate, a number of stud gibbles protruding by welding or the like on the surface of the reinforcing plate, or irregularities formed by wave machining on the surface of the reinforcing plate. And integration of the deflection part and the concrete of the main girder.
[0018]
In the configuration as described above, when the main girder is manufactured, the deflection tube and the reinforcing plate are arranged in the deflecting portion, the deflecting tube is embedded in the concrete of the deflecting portion, and the reinforcing plate is embedded in the concrete of the deflecting portion and the main girder. To do. At the same time as the deflection pipe is disposed in the deflecting portion, the portion through which the outer cable of the deflecting portion passes and the main girder portion around the portion are reinforced by the reinforcing plate.
[0019]
Prestress is introduced into the main girder by inserting the outer cable through the deflection tube and fixing it to the fixing unit. A part of the prestress component force P acting on the deflecting portion by changing the direction of the outer cable is borne by the shear stress of the partition walls, ribs and web, and the local tensile force T 1 in the vertical direction generated below the deflecting tube. On the other hand, it resists by the displacement of the integrated deflection tube and the reinforcing plate and the reinforcing plate, and the reinforcing plate resists the horizontal split tensile force T 2 generated on the upper side of the deflecting tube (FIG. 1 (d)). See).
[0020]
Since the deflection tube of the outer cable can be attached to the reinforcing plate with high accuracy in advance at a factory or the like, installation of the deflection tube during construction of the deflection unit can be easily performed with high accuracy. In addition, by integrating the deflection pipe and the reinforcing plate and adding a stopper to the reinforcing plate, it is possible to use the reinforcing plate as a substitute for the reinforcing reinforcing bar of the deflecting portion, thereby reducing the amount of reinforcing bars disposed on the deflecting portion. And assembly work is facilitated. Furthermore, since the amount of reinforcing bars to be arranged is reduced, it is possible to easily and surely place concrete, and it is possible to construct dense concrete.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiment. This embodiment is an example in which the present invention is applied to a PC box girder bridge by a cast-in-place method using both internal and external cable systems. 1 to 3 show a first embodiment of the present invention. 4 to 6 show a second embodiment of the present invention.
[0022]
As shown in FIG. 1, a main girder 1 of a PC box girder bridge is composed of an upper floor slab 1a, a pair of left and right webs 1b, and a lower floor slab 1c. ) Is an external cable system. The deflection part 3 disposed between the fulcrum cross beams (not shown) of the main girder 1 is a concrete rib type, and a deflection pipe 5 made of a steel pipe and a hole are respectively provided on the left and right sides of the lower part of the rib 3a. A reinforcing plate 10 made of a steel plate is disposed.
[0023]
The reinforcing plates 10 are arranged vertically so as to be orthogonal to the bridge axis, and a plurality of reinforcing plates 10 are arranged at intervals in the bridge axis direction. Further, the reinforcing plate 10 is disposed such that the main body is embedded in the lower portion of the rib 3a, and the side end portion and the lower end portion are embedded in the lower floor slab 1c and the web 1b, respectively. As shown in FIG. 1 (a), the rib 3a is formed with a beam portion whose lower portion is thick in the bridge axis direction, and a reinforcing plate having a low height on both sides of the beam portion in the bridge axis direction. 10 and two high-strength reinforcing plates 10 projecting upward from the beam portion are disposed in the central portion.
[0024]
As shown in FIGS. 2 and 3, a number of deflection pipes 5 corresponding to the number of outer cables arranged on one side of the main beam are attached through a plurality of reinforcing plates 10. The deflection tube 5 and the reinforcing plate 10 are assembled with high precision by welding or the like at a factory or the like to form a deflection tube unit. The deflection tube 5 is a curved tube.
[0025]
Further, the reinforcing plate 10 is provided with a large number of dowel holes 10a, and the dowel holes 10a function as a stopper and are integrated with the concrete of the rib 3a, the web 1b, and the lower floor slab 1c. Note that the portion of the gibber hole 10a embedded in the web 1b and the lower floor slab 1c can also be used as an insertion hole for reinforcing bars arranged in the lower floor slab 1c and the web 1b.
[0026]
Next, in 2nd Embodiment of FIGS. 4-6, the reinforcement board 11 which consists of a steel plate with which the stud dowel 12 protruded is used. Other configurations are the same as those of the first embodiment shown in FIGS.
[0027]
The stud dowel 12 is fixed to both surfaces of the reinforcing plate 11 by resistance welding or the like, and the reinforcing plate 11 and the deflection tube 5 are assembled with high accuracy by welding or the like at a factory or the like to form a deflection tube unit.
[0028]
The means for preventing the displacement of the reinforcing plate is not limited to the illustrated example as described above, and may be irregularities formed on the surface of the reinforcing plate by wave processing or the like.
[0029]
In the configuration as described above, the main girder 1 is manufactured by a cast-in-place method (extrusion method, overhanging method, support construction, etc.), and when the main girder 1 is manufactured, the deflection pipe 5 and the reinforcing plate 10 or 11 are deflected. It arrange | positions in the part 3, the deflection | deviation pipe | tube 5 is embed | buried in the concrete of the rib 3a, and the reinforcement board 10 or 11 is embed | buried in the concrete of the rib 3a, the web 1b, and the lower floor slab 1c. At the same time as the plurality of deflecting tubes 5 are disposed on the rib 3a, the portion of the rib 3a through which the outer cable passes, the surrounding web 1b, and the lower floor slab 1c are reinforced by the reinforcing plate 10 or 11.
[0030]
Prestress is introduced into the main girder 1 by inserting the outer cable 2 through the deflection tube 5 and fixing it to a fixing part such as a fulcrum bridge girder. Part of the prestress component force P acting on the deflecting portion 3 by changing the direction of the outer cable 2 is borne by the shear stress of the rib 3a and the web 1b, and the local tensile force in the vertical direction generated below the deflecting tube. A horizontal split tension generated on the upper side of the deflection tube by resisting T 1 by a plurality of integrated deflection tubes 5, the reinforcing plates 10 and 11, the diverging holes 10 a of the reinforcing plates 10 and 11, the stud diver 12, and the like. reinforcing plates 10 and 11 to resist against a force T 2.
[0031]
In the above, the PC box girder bridge by the cast-in-place method has been described. However, the present invention is not limited to this. Can be applied. Also, not only the combined method of the inner cable and the outer cable, but also the all-outer cable method, and also the large eccentric outer cable method (extra-dosed bridge) where the outer cable is eccentric to the outside of the range of the girder height. Can do. Moreover, the deflection | deviation part 3 may be not only a rib format but a concrete partition format or a projection format.
[0032]
【The invention's effect】
(1) In an external cable type bridge with a deflection part, the outer cable deflection pipe is attached to a reinforcing plate, and this reinforcement plate is embedded in the concrete part of the deflection part and the main girder. The tube can be attached to the reinforcing plate with high accuracy in advance at a factory or the like, and the deflection tube can be installed with high accuracy and accuracy when the deflection unit is constructed.
[0033]
(2) By integrating the deflection pipe and the reinforcing plate and adding a stopper to the reinforcing plate, it is possible to use the reinforcing plate as an alternative to the reinforcing bar of the deflecting part, reducing the amount of reinforcing bars placed on the deflecting part. This makes it easy to assemble.
[0034]
(3) Since the amount of reinforcing bars to be arranged is reduced, concrete can be driven easily and reliably, and dense concrete can be constructed.
[0035]
(4) As described above, it is possible to economically construct an external cable type PC bridge having a sound deflection portion reinforced reliably.
[Brief description of the drawings]
1A and 1B show a first embodiment of a deflector structure according to the present invention, in which FIG. 1A is a side view, FIG. 1B is a plan view, and FIG. 1C and FIG.
FIG. 2 is a perspective view showing a deflection pipe and reinforcing plate unit used in FIG. 1;
FIG. 3 is a perspective view showing a deflection pipe and reinforcing plate unit used in FIG. 1;
4A and 4B show a second embodiment of the deflecting portion structure of the present invention, in which FIG. 4A is a side view, FIG. 4B is a plan view, and FIG. 4C and FIG.
FIG. 5 is a perspective view showing a deflection pipe and reinforcing plate unit used in FIG. 2;
6 is a perspective view showing a deflection pipe and reinforcing plate unit used in FIG. 2. FIG.
FIG. 7 is a perspective view showing an external cable type PC bridge.
8A and 8B show a conventional deflector structure, in which FIG. 8A is a side view, FIG. 8B is a plan view, and FIG. 8C and FIG.
[Explanation of symbols]
1 ... Main girder 1a ... Upper floor slab 1b ... Web 1c ... Lower floor slab 2 ... Outer cable (tension material)
3 ...... deflecting portion 3a ... rib 4 ...... fulcrum cross beam 5 ...... deflection tube 6 ...... the cable 10 ...... reinforcing plate 10a ... dowel hole 11 ...... reinforcing plate 12 ...... Sutaddoji Bell

Claims (2)

主桁の部材の断面外側に橋軸方向に沿って緊張材を配置し、緊張材の定着部と偏向部を介して主桁にプレストレスを与える外ケーブル方式の橋梁において、前記偏向部に埋設され緊張材が挿通される偏向管が偏向管の軸方向と交差する補強板に取付けられ、この補強板は橋軸方向に間隔をおいて複数枚配設され、各補強板の偏向管が貫通して取付けられる本体部分が偏向部に埋設され、各補強板の端部が主桁のコンクリート部材内に埋設されていることを特徴とする外ケーブルを用いた橋梁。  An external cable type bridge that prestresses the main girder via a tension member fixing part and a deflecting part, and is embedded in the deflecting part. The deflecting tube through which the tension material is inserted is attached to a reinforcing plate that intersects the axial direction of the deflecting tube, and a plurality of reinforcing plates are arranged at intervals in the bridge axial direction, and the deflecting tubes of each reinforcing plate penetrate A bridge using an outer cable, characterized in that a main body portion to be attached is embedded in a deflection portion, and an end portion of each reinforcing plate is embedded in a concrete member of a main girder. 補強板には、補強板と、偏向部および主桁のコンクリートとの一体化を図るずれ止めが設けられていることを特徴とする請求項1に記載の橋梁The bridge according to claim 1 , wherein the reinforcing plate is provided with a stopper for integrating the reinforcing plate with the deflection portion and the concrete of the main girder .
JP2001275258A 2001-09-11 2001-09-11 Bridge using external cable Expired - Fee Related JP4096534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275258A JP4096534B2 (en) 2001-09-11 2001-09-11 Bridge using external cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001275258A JP4096534B2 (en) 2001-09-11 2001-09-11 Bridge using external cable

Publications (2)

Publication Number Publication Date
JP2003082614A JP2003082614A (en) 2003-03-19
JP4096534B2 true JP4096534B2 (en) 2008-06-04

Family

ID=19100152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275258A Expired - Fee Related JP4096534B2 (en) 2001-09-11 2001-09-11 Bridge using external cable

Country Status (1)

Country Link
JP (1) JP4096534B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610739B1 (en) 2004-02-12 2006-08-29 인하대학교 산학협력단 PS concrete girder fixing end reinforcement method using steel box
JP4663563B2 (en) * 2006-03-22 2011-04-06 独立行政法人鉄道建設・運輸施設整備支援機構 Saddle structure for bridge
CN100447341C (en) * 2006-10-16 2008-12-31 江阴法尔胜住电新材料有限公司 Skew-inhaul-cable deviation-rectifying device
JP5157433B2 (en) * 2007-12-28 2013-03-06 鹿島建設株式会社 Composite hollow structure of bridge column head or girder end
CN106948257A (en) * 2017-05-05 2017-07-14 绵阳市川交公路规划勘察设计有限公司 A kind of method for preventing pre-stressed bridge beam lower end crackle

Also Published As

Publication number Publication date
JP2003082614A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
KR100754789B1 (en) Prestressed composition girder and method of constructing continuous girder used by the composition unit girder
US20110146190A1 (en) Half precast slab and method for structuring half precast slab
EP3290610A1 (en) Constructive system and method of erecting such a constructive system
JP2000144905A (en) Mixed structural beam
KR100318565B1 (en) Reinforcing Method Of PC Beam Bridge With Box Structure And PC Beam Bridge Having Box Reinforced Structure
JP4096534B2 (en) Bridge using external cable
JP2002004474A (en) Beam structure
JP2004218429A (en) Bridge structure
JP4492422B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
KR102398605B1 (en) Construction method of seismic retrofit system using pc panel
KR200402468Y1 (en) Compound FRP reinforced panel
KR101752285B1 (en) Hybrid beam with wide PSC lower flange and enlarged section upper flange and structure frame using the same
JP2008240429A (en) Pc floor panel box girder bridge
JPH11293626A (en) Bridge structure
JP3549753B2 (en) Girder structure of steel-concrete composite truss structure
KR20210076836A (en) Girder structure and construction method for continuity of supporting portion of girder using the same
KR20160063300A (en) Precast concrete haunch blocks and it's bridge upper structure construction methods
KR200279224Y1 (en) Multi-span continuous Preflex Composite Beam Type Bridge
JP2009091743A (en) Continuous i-beam bridge and structure near its intermediate supporting point
JPH108422A (en) Reinforcement structure of bridge pier
JP2000345719A (en) Reinforcing method of through opening in existing bearing wall
KR102479370B1 (en) Hybrid Composite Girder and Bridge Construction Method Using Thereof
KR101087586B1 (en) Steel concrete composite beam and manufacturing method of the same
JP2002138415A (en) Cross girder member for girder member in pc bridge and girder member
KR200420640Y1 (en) Continuous prestressed concrete structure without baseplate concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees