JP4089314B2 - Spectrometer using 0th-order diffracted light of diffraction means - Google Patents

Spectrometer using 0th-order diffracted light of diffraction means Download PDF

Info

Publication number
JP4089314B2
JP4089314B2 JP2002195414A JP2002195414A JP4089314B2 JP 4089314 B2 JP4089314 B2 JP 4089314B2 JP 2002195414 A JP2002195414 A JP 2002195414A JP 2002195414 A JP2002195414 A JP 2002195414A JP 4089314 B2 JP4089314 B2 JP 4089314B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
light
order diffracted
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002195414A
Other languages
Japanese (ja)
Other versions
JP2004037282A (en
JP2004037282A5 (en
Inventor
正之 山田
克敏 鶴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2002195414A priority Critical patent/JP4089314B2/en
Publication of JP2004037282A publication Critical patent/JP2004037282A/en
Publication of JP2004037282A5 publication Critical patent/JP2004037282A5/ja
Application granted granted Critical
Publication of JP4089314B2 publication Critical patent/JP4089314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、これまでの分光測定において不要とされていた回折手段からの0次回折光を利用した分光測定器に関する。
【0002】
【従来の技術】
図1に示すように、分光色彩計や分光輝度計等の分光測定器には、光源102からの被測定光を分光する分光素子110として、一般に、反射型回折格子110が用いられている。反射型回折格子110に対して被測定光が入射されると、回折格子110の反射面で正反射する0次回折光(正反射光)と、分光測定に使用される高次回折光(例えば1次回折光)とが出射される。回折格子110で回折された高次回折光は、集光レンズ112で集光されたあと、各波長に対応したライン型受光センサ116の所定位置で受光される。
【0003】
ところで、0次回折光(正反射光)は反射型回折格子110の反射面でそのまま反射した光であるので、0次回折光(正反射光)には、被測定光の全ての波長成分が含まれている。全ての波長成分を含む0次回折光は、分光測定には邪魔であり且つ不必要であるので、図1に示すように、分光測定器に設けられた光トラップ120で取り除かれていた。
【0004】
このように、従来の分光測定器では、0次回折光は、分光測定において不要なものと考えられていたが、本願発明者らは、この0次回折光を分光測定に有効に活用できないかを考えた結果、本願発明に想到するに至ったのである。
【0005】
【発明が解決しようとする課題】
したがって、本発明の解決すべき技術的課題は、分光測定において不要なものとして考えられていた0次回折光を有効活用する分光測定器を提供することである。
【0006】
【課題を解決するための手段および作用・効果】
上記技術的課題を解決するために、本発明は、被測定光を分光する回折手段と、前記回折手段からの0次回折光を受光する第一光電変換素子と、前記回折手段からの高次回折光を受光する第二光電変換素子と、前記第一光電変換素子で光電変換された0次回折光の受光出力に基づいて、第二光電変換素子での受光を制御する制御手段とを備える分光測定器を提供するものである。
【0007】
一般に、被測定光が回折手段に入射されると、被測定光は回折手段で回折される。すなわち、回折手段に対して単色光の被測定光が入射される場合、回折の原理に従って、0次回折光、1次回折光、2次回折光、・・・、高次回折光の像が、所定の角度位置に形成される。被測定光が単色光でない場合も、各波長に対して同様のことが成立し、各次数の回折像位置に、各波長に対応した回折像がつくられる。
【0008】
したがって、上記構成によれば、第一光電変換素子上には、0次回折光に対応した0次回折像が形成され、第二光電変換素子上には、0次回折光以外の回折光すなわち1次回折光、2次回折光等に対応した高次回折像が形成される。
【0009】
第一光電変換素子上で形成された0次回折像は、各波長に対応して回折される回折像ではなくて、各波長を含む正反射像である。0次回折光の受光出力は、0次回折光以外の回折光すなわち1次回折光、2次回折光等の高次回折光の受光出力に対して、ある一定の相関関係を有している。したがって、第一光電変換素子での0次回折光の受光出力に基づいて、第二光電変換素子での積分条件の推定が可能となるので、制御手段で第二光電変換素子での受光を適切に制御することができる。
【0010】
0次回折光を第一光電変換素子上に効率良く集光させるために、0次回折光を第一光電変換素子に集光させる集光レンズが、回折手段と第一光電変換素子との間に設けられている。
【0011】
第二光電変換素子の飽和現象を防止したり適切な受光量を得たりするために、制御手段は、第二光電変換素子の積分時間を制御する。
【0012】
被測定光の光量の大小によって、第二光電変換素子で積分される積分量が増減するために、制御手段は、第二光電変換素子の出力ゲインを制御する。
【0013】
また、本発明に係る分光測定器は、第一光電変換素子で光電変換された0次回折光の受光出力に基づいて、被測定光の経時的変化を計測することができる。すなわち、分光測定器は、本来の分光測定機能に加えて、被測定光の短時間での経時的な変化を計測できるという機能も備えている。
【0014】
【発明の実施の形態】
以下に、本発明の第一実施形態に係る分光測定器について、図2及び4を参照しながら説明する。
【0015】
図2に示すように、分光測定器は、光源2からの被測定光Lを光ファイバー6に集光する対物レンズ4と、測定領域をその側端面で限定する光ファイバー6と、光ファイバー6から出射された被測定光Lを平行光にする照明レンズ8と、被測定光Lを回折して0次回折光L(正反射光)及び1次回折光L(高次回折光)に分離する反射型回折格子10と、各回折光L,Lをそれぞれ集光する集光レンズ12,14と、0次回折光Lを受光するスポット型受光センサ18と、1次回折光Lを受光するライン型受光センサ16とを備えている。
【0016】
図4に示すように、分光測定器は、さらに、ライン型受光センサ16やスポット型受光センサ18で光電変換されたアナログ電気信号をそれぞれ増幅するアンプ22,23と、アンプ22,23で増幅されたアナログ電気信号をそれぞれデジタル信号に変換するA/Dコンバータ24,25と、ライン型受光センサ16の積分動作の開始・終了の制御やアンプ22のゲインの制御やデジタル信号の読み出し制御等の各種制御を行うCPU30とを備えている。
【0017】
上記分光測定器を用いた分光計測方法について、図2、4、5、6及び7を参照しながら説明する。
【0018】
光源2から発せられた被測定光Lは、対物レンズ4で光ファイバー6の側端面に集光されたあと、光ファイバー6を通って、照明レンズ8で平行にされる。平行光の被測定光Lが反射型回折格子10に照射されると、被測定光Lは、所定の角度で、0次回折光L、1次回折光L、2次回折光、3次回折光等に回折される。
【0019】
正反射光としての0次回折光Lは、集光レンズ14によって、スポット型受光センサ18の上に集光される。スポット型受光センサ18で受光された光は、光電変換されたあと、アナログ電気信号がアンプ23で増幅される。0次回折光Lに関するアナログ電気信号は、A/Dコンバータ25でデジタル信号に変換されたあと、CPU30で読み出される。
【0020】
一方、高次回折光としての1次回折光Lも、集光レンズ12によって、ライン型受光センサ16の上に集光される。多数の光電変換素子が一直線状に配置されたライン型受光センサ16では、1次回折光Lの各波長(λ,・・λ,・・λ)に対応する位置に、各波長の回折像が形成される。ライン型受光センサ16の上で受光された光は、光電変換されたあと、アナログ電気信号がアンプ24で増幅される。1次回折光Lの各波長に関する各アナログ電気信号は、A/Dコンバータ24でデジタル信号に変換されたあと、デジタル信号がCPU30によって順次読み出される。
【0021】
次に、スポット型受光センサ18及びライン型受光センサ16における積分動作の制御方法について、図5,6及び7を参照しながら具体的に説明する。
【0022】
一般に、0次回折光Lの強度が1次回折光Lの強度と一対一に対応しているので、図5に示すように、0次回折光用のスポット型受光センサ18の出力レベル(A/D値)は、1次回折光用のライン型受光センサ16の出力レベル(A/D値)と一対一に対応している。
【0023】
プレ測定によって、ライン型受光センサ16及びスポット型受光センサ18について、おおよその測定時間すなわち積分時間(tL1,tS1)が決定される(ステップ#110,#210)。スポット型受光センサ18は短時間でデータの読み出しが可能であるので、1回目の0次回折光Lの積分時間tS1は、1回目の1次回折光Lの積分時間t より同等以下であること、すなわちtL1≧tS1でよい。ライン型受光センサ16及びスポット型受光センサ18において、被測定光Lに関する1回目の1次回折光L及び0次回折光Lの積分動作が同時に開始される(ステップ#120,#220)。0次回折光Lの積分動作はtS1経過後に終了し(ステップ#230)、1次回折光Lの積分動作はtL1経過後に終了する(ステップ#130)。
【0024】
上記積分動作の終了後に、1次回折光L及び0次回折光Lに関する各測定値は、デジタル信号に変換される。その後、0次回折光Lに関する出力レベルのA/D値(C1)は、CPU30で読み出された上で、不図示のメモリーに一時的に蓄えられる(ステップ#240)。
【0025】
次に、2回目の測定が行われる。2回目の積分動作では、0次回折光Lの積分結果を1次回折光Lの積分動作に利用し、且つスポット型受光センサ18は短時間でのデータの読み出すことができるので、2回目の0次回折光Lの積分時間tS2が、1回目の0次回折光Lの積分時間tS1より短く、すなわちtS2≪tS1に設定される(ステップ#242)。
【0026】
ライン型受光センサ16及びスポット型受光センサ18において、2回目の1次回折光L及び0次回折光Lの積分動作が同時に開始される(ステップ#150,#250)。
【0027】
0次回折光Lの積分動作がtS2経過後に終了して(ステップ#252)、デジタル信号に変換されたあと、0次回折光Lに関する出力レベルのA/D値(C2)は、CPU30で読み出される(ステップ#254)。このとき、ライン型受光センサ16での1次回折光Lの積分動作は継続している。
【0028】
2回目の0次回折光Lに関する出力レベルのA/D値(C2)から、1回目の積分時間tS1に相当する出力レベルの推定A/D値(C2')が算出される(ステップ#256)。その後、ライン型受光センサ16の出力レベルのA/D値(C2)が適正となる積分時間 L2 が推定される(ステップ#258)。2回目の1次回折光Lの積分動作はtL2経過後に終了する(ステップ#160)。
得ることができる。
【0029】
積分動作の終了後に、2回目の1次回折光Lの各波長に関する各アナログ電気信号は、A/Dコンバータ24でデジタル信号に変換された(ステップ#170)あと、デジタル信号がCPU30で順次読み出される。
【0030】
本発明に係る分光測定器は、例えば、蛍光灯等のように被測定光が周期的に変動する光(すなわちフリッカー光)を所望のタイミングで計測する場合にも適用可能である。フリッカー光の計測について、図8及び9を参照しながら説明する。
【0031】
図8に示すように、蛍光灯の光は、所定の周期で点滅を繰り返している。蛍光灯の光を被測定光として計測するとき、0次回折光Lの測定タイミングは、蛍光灯の点滅周期より短周期に設定される。
【0032】
スポット型受光センサ18において、被測定光の0次回折光Lの積分動作が開始される(ステップ#320)。0次回折光Lの積分動作は短時間で終了し(ステップ#330)、0次回折光Lに関する測定値は、デジタル信号に変換されたあと、0次回折光Lに関する出力レベルのA/D値(C)が算出される(ステップ#340)。A/D値(C)は、CPU30で読み出された上で、所定の閾値以上であるか否かが判断される(ステップ#342)。A/D値(C)が所定の閾値より小さければ、再び、0次回折光Lの積分動作が行われる。
【0033】
A/D値(C)が所定の閾値以上であるならば、被測定光の1次回折光Lの積分動作が開始される(ステップ#350)。1次回折光Lの積分動作は、所定時間経過後に終了する(ステップ#360)。1次回折光Lの各波長に関する各アナログ電気信号は、A/Dコンバータ24でデジタル信号に変換された(ステップ#370)あと、デジタル信号がCPU30で順次読み出される。
【0034】
このような一連の計測を繰り返すことによって、所望のタイミングで、蛍光灯の発光状態やその安定性を知ることができる。
【0035】
上記構成の分光測定器は、本来の分光測定機能に加えて、被測定光の短時間での経時的な変化を計測するという機能も備えている。
【0036】
例えば、液晶応用製品では、液晶分子の捩れ状態を変化させることによって、光源からの光を透過又は遮断させている。液晶デバイスが高速の光シャッターとしても使用されており、液晶デバイスの高速応答性を知りたいという要望がある。本発明に係る分光測定器を液晶デバイス計測に適用することについて、図10及び11を参照しながら説明する。
【0037】
液晶デバイスが光源からの光を遮断状態から透過状態にする際、被測定光の強さは、図10の上図に示すように変化する。このとき、微視的には、液晶分子の捩れ状態が変化している。液晶デバイスから発せられる光が被測定光として計測されるとき、0次回折光Lの測定タイミングは、図10の中図に示すように、液晶デバイスの遮断/透過の切換周期より短周期に設定される。
【0038】
図11に示すように、スポット型受光センサ18において、被測定光の0次回折光Lの積分動作が開始される(ステップ#420)。0次回折光Lの積分動作が短時間で終了し(ステップ#430)、0次回折光Lに関する測定値は、デジタル信号に変換されたあと、0次回折光Lに関する出力レベルのA/D値(C)が算出される(ステップ#440)。一つのA/D値(C)は、CPU30で読み出された上で、グラフ上にプロットされる(ステップ#450)。
【0039】
このような一連の計測を繰り返すことによって、図10の下図に示すように、多くのA/D値(C)がグラフ上にプロットされ、液晶分子の捩れの時系列変化や液晶デバイスの応答速度等を知ることができる。
【0040】
次に、本発明の第二実施形態に係る分光測定器について、図3を参照しながら説明する。
【0041】
図3に示した分光測定器では、図2で示したものと比較して、集光レンズ14の有無及びスポット型受光センサ18の配置が異なっているが、その他の構成が図2で示したものと同じであるので、両者の相違点に着目して説明する。
【0042】
すなわち、スポット型受光センサ18がライン型受光センサ16の近傍に配置されているとともに、ライン型受光センサ16に使用される集光レンズ12がスポット型受光センサ18に使用される集光レンズ14を兼用している。すなわち、回折格子10で回折された0次回折光L及び1次回折光Lは、近接した位置にある。このことを実現するために、図2で示したものより、溝本数の少ない回折格子10が使用される。上記構成によって、部品点数の削減や小型・省スペース化が達成される。
【0043】
本発明に係る分光測定器は、回折格子10を測定光路中に含む各種分光測定器、例えば、分光輝度計や分光測色計や分光色彩計等に適用される。また、回折格子10の一例として、平面又は凹面の基板上に格子溝を配置して反射回折光を利用する反射型回折格子について説明したが、格子面を透過する透過回折光を利用する透過型回折格子も使用することができる。
【図面の簡単な説明】
【図1】 従来例に係る分光測定器を示す説明図である。
【図2】 本発明の第一実施形態に係る分光測定器を示す説明図である。
【図3】 本発明の第二実施形態に係る分光測定器を示す説明図である。
【図4】 本発明の分光測定器で使用されるセンサ制御回路のブロック図である。
【図5】 本発明の分光測定器において、0次回折光用センサ出力と高次回折光用センサ出力との関係を説明する図である。
【図6】 各受光センサでの積分動作のタイミングチャートである。
【図7】 図6に関する、各受光センサでの積分動作のフローチャートである。
【図8】 周期的変動光に対する、各受光センサでの積分動作のタイミングチャートである。
【図9】 図8に関する、各受光センサでの積分動作のフローチャートである。
【図10】 本発明の分光測定器の他の使用形態を説明する図である。
【図11】 図10に関する、スポット型受光センサでの積分動作のフローチャートである。
【符号の説明】
2 光源
4 対物レンズ
6 光ファイバー
8 照明レンズ
10 回折格子
12,14 集光レンズ
16 ライン型受光センサ
18 スポット型受光センサ
22,23 アンプ
24,25 A/Dコンバータ
30 CPU
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spectrophotometer using zero-order diffracted light from a diffracting means that has been made unnecessary in conventional spectroscopic measurements.
[0002]
[Prior art]
As shown in FIG. 1, a reflection diffraction grating 110 is generally used as a spectroscopic element 110 that separates light to be measured from a light source 102 in a spectroscopic measuring instrument such as a spectrocolorimeter or a spectral luminance meter. When the light to be measured is incident on the reflection type diffraction grating 110, the 0th order diffracted light (regular reflection light) that is specularly reflected by the reflection surface of the diffraction grating 110 and the higher order diffracted light (for example, the first order) used for spectroscopic measurement. Light) is emitted. The high-order diffracted light diffracted by the diffraction grating 110 is collected by the condenser lens 112 and then received at a predetermined position of the line-type light receiving sensor 116 corresponding to each wavelength.
[0003]
By the way, since the 0th-order diffracted light (regularly reflected light) is light reflected directly from the reflection surface of the reflective diffraction grating 110, the 0th-order diffracted light (regularly reflected light) includes all the wavelength components of the light to be measured. ing. Since the 0th-order diffracted light including all wavelength components is bothersome and unnecessary for spectroscopic measurement, it was removed by an optical trap 120 provided in the spectroscopic instrument as shown in FIG.
[0004]
As described above, in the conventional spectrometer, the 0th-order diffracted light was considered unnecessary in the spectroscopic measurement. However, the inventors of the present application considered whether the 0th-order diffracted light could be effectively used for the spectroscopic measurement. As a result, the present invention has been conceived.
[0005]
[Problems to be solved by the invention]
Therefore, a technical problem to be solved by the present invention is to provide a spectroscopic measuring instrument that effectively utilizes zero-order diffracted light that has been considered unnecessary in spectroscopic measurement.
[0006]
[Means for solving the problems and actions / effects]
In order to solve the above technical problem, the present invention provides a diffractive means for spectroscopically measuring light to be measured, a first photoelectric conversion element for receiving zero-order diffracted light from the diffracting means, and a high-order diffracted light from the diffracting means. A second photoelectric conversion element that receives light, and a control unit that controls light reception by the second photoelectric conversion element based on a light reception output of zero-order diffracted light photoelectrically converted by the first photoelectric conversion element Is to provide.
[0007]
In general, when the light to be measured is incident on the diffraction means, the light to be measured is diffracted by the diffraction means. That is, when monochromatic light to be measured is incident on the diffractive means, the image of the 0th order diffracted light, the 1st order diffracted light, the 2nd order diffracted light,... Formed in position. Even when the light to be measured is not monochromatic light, the same is true for each wavelength, and a diffraction image corresponding to each wavelength is created at each position of the diffraction image.
[0008]
Therefore, according to the above configuration, a 0th-order diffraction image corresponding to the 0th-order diffracted light is formed on the first photoelectric conversion element, and diffracted light other than the 0th-order diffracted light, that is, the first-order diffracted light is formed on the second photoelectric conversion element. A high-order diffraction image corresponding to the folded light, the second-order diffracted light, or the like is formed.
[0009]
The 0th-order diffraction image formed on the first photoelectric conversion element is not a diffraction image diffracted corresponding to each wavelength but a regular reflection image including each wavelength. The light-receiving output of the 0th-order diffracted light has a certain correlation with the light-receiving output of diffracted light other than the 0th-order diffracted light, that is, the first-order diffracted light and the second-order diffracted light. Therefore, the integration condition in the second photoelectric conversion element can be estimated based on the light reception output of the 0th-order diffracted light in the first photoelectric conversion element, so that the control unit appropriately receives light in the second photoelectric conversion element. Can be controlled.
[0010]
In order to efficiently collect the 0th-order diffracted light on the first photoelectric conversion element, a condensing lens that collects the 0th-order diffracted light on the first photoelectric conversion element is provided between the diffracting means and the first photoelectric conversion element. It has been.
[0011]
In order to prevent the saturation phenomenon of the second photoelectric conversion element or to obtain an appropriate amount of received light, the control means controls the integration time of the second photoelectric conversion element.
[0012]
The control means controls the output gain of the second photoelectric conversion element because the integration amount integrated by the second photoelectric conversion element increases or decreases depending on the amount of the light to be measured.
[0013]
In addition, the spectrometric instrument according to the present invention can measure a change over time of the light to be measured based on the light reception output of the 0th-order diffracted light photoelectrically converted by the first photoelectric conversion element. That is, in addition to the original spectroscopic measurement function, the spectrophotometer also has a function of measuring a change with time of light to be measured in a short time.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a spectrometer according to the first embodiment of the present invention will be described with reference to FIGS.
[0015]
As shown in FIG. 2, the spectrophotometer is emitted from the optical fiber 6, the objective lens 4 that condenses the light L to be measured from the light source 2 on the optical fiber 6, the optical fiber 6 that limits the measurement region at its side end face, and the optical fiber 6. The illumination lens 8 that converts the measured light L into parallel light, and the reflective diffraction that diffracts the measured light L and separates it into a 0th-order diffracted light L 0 (regularly reflected light) and a first-order diffracted light L 1 (high-order diffracted light). a grating 10, and each of the diffracted light L 0, condenser lenses 12, 14 L 1 a respectively condensing, 0 a spot-type light receiving sensor 18 for receiving the order diffracted light L 0, the line type for receiving the first order diffracted light L 1 A light receiving sensor 16.
[0016]
As shown in FIG. 4, the spectrometer is further amplified by amplifiers 22 and 23 that amplify analog electric signals photoelectrically converted by the line-type light receiving sensor 16 and the spot-type light receiving sensor 18, and the amplifiers 22 and 23, respectively. A / D converters 24 and 25 for converting the analog electric signals into digital signals, and the start / end control of the integration operation of the line-type light receiving sensor 16, the gain control of the amplifier 22, and the digital signal read control CPU30 which performs control.
[0017]
A spectroscopic measurement method using the spectrophotometer will be described with reference to FIGS.
[0018]
The light L to be measured emitted from the light source 2 is focused on the side end face of the optical fiber 6 by the objective lens 4, then passes through the optical fiber 6 and is collimated by the illumination lens 8. When light to be measured L of the parallel light is irradiated to the reflection type diffraction grating 10, light to be measured L is a predetermined angle, 0-order diffracted light L 0, 1 order diffracted light L 1, 2-order diffracted light, third-order diffracted light, etc. Is diffracted into
[0019]
The 0th-order diffracted light L 0 as the regular reflection light is condensed on the spot type light receiving sensor 18 by the condenser lens 14. The light received by the spot type light receiving sensor 18 is photoelectrically converted, and then an analog electric signal is amplified by the amplifier 23. The analog electrical signal related to the 0th-order diffracted light L 0 is converted into a digital signal by the A / D converter 25 and then read out by the CPU 30.
[0020]
On the other hand, the first-order diffracted light L 1 as high-order diffracted light is also condensed on the line-type light receiving sensor 16 by the condenser lens 12. In the line-type light receiving sensor 16 in which a large number of photoelectric conversion elements are arranged in a straight line, each wavelength is positioned at a position corresponding to each wavelength (λ 1 ,... Λ 2 ,... Λ 3 ) of the first-order diffracted light L 1 . A diffraction image is formed. The light received on the line type light receiving sensor 16 is photoelectrically converted, and then an analog electric signal is amplified by the amplifier 24. Each analog electric signal relating to each wavelength of the first-order diffracted light L 1 is converted into a digital signal by the A / D converter 24, and then the digital signal is sequentially read out by the CPU 30.
[0021]
Next, an integration operation control method in the spot type light receiving sensor 18 and the line type light receiving sensor 16 will be specifically described with reference to FIGS.
[0022]
Generally, 0 because the next intensity of diffracted light L 0 is one-to-one correspondence with 1 intensity of diffracted light L 1, as shown in FIG. 5, the output level of 0 for order diffraction spot-type light receiving sensor 18 (A / The (D value) has a one-to-one correspondence with the output level (A / D value) of the line type light receiving sensor 16 for the first-order diffracted light.
[0023]
By the pre-measurement, an approximate measurement time, that is, an integration time (t L1 , t S1 ) is determined for the line type light receiving sensor 16 and the spot type light receiving sensor 18 (steps # 110 and # 210). Since the spot-type light receiving sensor 18 can read data in a short time, the integration time t S1 of the first zero-order diffracted light L 0 is equal to or less than the integration time t L 1 of the first first-order diffracted light L 1. That is, t L1 ≧ t S1 may be satisfied. In line-type light receiving sensor 16 and the spot-type light receiving sensor 18, first 1 integration operation order diffracted light L 1 and the zero-order diffracted light L 0 relates the measured light L are started simultaneously (step # 120, # 220). 0 integral action of the order diffracted light L 0 is terminated after t S1 (Step # 230), 1 integration operation of the order diffracted light L 1 is ended after the lapse of t L1 (Step # 130).
[0024]
After completion of the integration operation, the measured values for the first-order diffracted light L 1 and the zero-order diffracted light L 0 is converted into a digital signal. Thereafter, 0 A / D value of the output level for order diffracted light L 0 (C1) is, after being read in CPU 30, is temporarily stored in a memory not shown (step # 240).
[0025]
Next, a second measurement is performed. In the second integration operation, the integration result of the 0th-order diffracted light L0 is used for the integration operation of the 1st-order diffracted light L1, and the spot-type light receiving sensor 18 can read data in a short time. 0 integration time t S2-order diffracted light L 0 is shorter than the first 0 integration time t S1 in order diffracted light L 0, that is, set to t S2 «t S1 (step # 242).
[0026]
In line-type light receiving sensor 16 and the spot-type light receiving sensor 18, the integration operation of the first order of the second diffracted light L 1 and the zero-order diffracted light L 0 is started at the same time (step # 150, # 250).
[0027]
0th integration operation of the diffracted light L 0 is terminated after t S2 (Step # 252), after being converted into a digital signal, 0 A / D value of the output level for order diffracted light L 0 (C2) is a CPU30 It is read (step # 254). At this time, the integration operation of the first-order diffracted light L1 in the line type light receiving sensor 16 is continued.
[0028]
From second 0 A / D value of the output level for order diffracted light L 0 (C2), the estimated A / D value of the output level corresponding to the first integration time t S1 (C2 ') is calculated (step # 256). Thereafter, the integration time t L2 at which the A / D value (C2) of the output level of the line type light receiving sensor 16 is appropriate is estimated (step # 258). 1 integration operation of the order diffracted light L 1 of the second are terminated after t L2 (Step # 160).
Obtainable.
[0029]
After completion of the integration operation, the analog electrical signal related to the second 1 each wavelength order diffracted light L 1 was converted to a digital signal by the A / D converter 24 (Step # 170) after the digital signal she is sequentially read by CPU30 It is.
[0030]
The spectroscopic measuring instrument according to the present invention is also applicable to the case where light (that is, flicker light) whose measured light fluctuates periodically (that is, flicker light) is measured at a desired timing, such as a fluorescent lamp. Measurement of flicker light will be described with reference to FIGS.
[0031]
As shown in FIG. 8, the light of the fluorescent lamp repeatedly blinks at a predetermined cycle. When measuring the light of the fluorescent lamp as the light to be measured, the measurement timing of the 0th-order diffracted light L0 is set to be shorter than the blinking period of the fluorescent lamp.
[0032]
In the spot type light receiving sensor 18, the integration operation of the zero-order diffracted light L0 of the light to be measured is started (step # 320). The integration operation of the 0th-order diffracted light L0 is completed in a short time (step # 330), and the measured value related to the 0th-order diffracted light L0 is converted into a digital signal, and then the A / D of the output level related to the 0th-order diffracted light L0. A value (C) is calculated (step # 340). After the A / D value (C) is read by the CPU 30, it is determined whether or not the A / D value (C) is equal to or greater than a predetermined threshold (step # 342). If the A / D value (C) is smaller than the predetermined threshold value, the integration operation of the 0th-order diffracted light L0 is performed again.
[0033]
If the A / D value (C) is equal to or greater than the predetermined threshold value, the integration operation of the first-order diffracted light L1 of the light to be measured is started (step # 350). The integration operation of the first-order diffracted light L1 ends after a predetermined time has elapsed (step # 360). Each analog electrical signal relating to each wavelength of the first-order diffracted light L 1 is converted into a digital signal by the A / D converter 24 (step # 370), and then the digital signal is sequentially read out by the CPU 30.
[0034]
By repeating such a series of measurements, it is possible to know the light emission state of the fluorescent lamp and its stability at a desired timing.
[0035]
In addition to the original spectroscopic measurement function, the spectroscopic measuring device having the above-described configuration also has a function of measuring a change over time in a short time of the light to be measured.
[0036]
For example, in a liquid crystal application product, light from a light source is transmitted or blocked by changing a twisted state of liquid crystal molecules. Liquid crystal devices are also used as high-speed optical shutters, and there is a desire to know the high-speed response of liquid crystal devices. Application of the spectrometer according to the present invention to liquid crystal device measurement will be described with reference to FIGS.
[0037]
When the liquid crystal device changes the light from the light source from the blocking state to the transmitting state, the intensity of the light to be measured changes as shown in the upper diagram of FIG. At this time, microscopically, the twisted state of the liquid crystal molecules changes. When the light emitted from the liquid crystal device is measured as the light to be measured, the measurement timing of the 0th-order diffracted light L0 is set to a shorter cycle than the switching cycle of the liquid crystal device, as shown in the middle diagram of FIG. Is done.
[0038]
As shown in FIG. 11, in the spot-type light receiving sensor 18, the integration operation of the zero-order diffracted light L0 of the light to be measured is started (step # 420). The integration operation of the 0th-order diffracted light L0 is completed in a short time (step # 430), and the measured value related to the 0th-order diffracted light L0 is converted into a digital signal and then the A / D of the output level related to the 0th-order diffracted light L0. A value (C) is calculated (step # 440). One A / D value (C) is read by the CPU 30 and then plotted on the graph (step # 450).
[0039]
By repeating such a series of measurements, as shown in the lower diagram of FIG. 10, many A / D values (C) are plotted on the graph, and the time-series change of the twist of the liquid crystal molecules and the response speed of the liquid crystal device. Etc. can be known.
[0040]
Next, a spectrometer according to a second embodiment of the present invention will be described with reference to FIG.
[0041]
The spectrophotometer shown in FIG. 3 is different from that shown in FIG. 2 in the presence or absence of the condenser lens 14 and the arrangement of the spot-type light receiving sensor 18, but the other configurations are shown in FIG. Since it is the same as the above, the explanation will be made paying attention to the difference between the two.
[0042]
That is, the spot type light receiving sensor 18 is disposed in the vicinity of the line type light receiving sensor 16, and the condenser lens 12 used for the line type light receiving sensor 16 is replaced with the condenser lens 14 used for the spot type light receiving sensor 18. I also use it. That is, 0-order diffracted light L 0 and 1-order diffracted light L 1 diffracted by the diffraction grating 10 is in close positions. In order to realize this, the diffraction grating 10 having a smaller number of grooves than that shown in FIG. 2 is used. With the configuration described above, the number of parts can be reduced, and a reduction in size and space can be achieved.
[0043]
The spectrophotometer according to the present invention is applied to various spectrophotometers including the diffraction grating 10 in the measurement optical path, for example, a spectral luminance meter, a spectrocolorimeter, a spectrocolorimeter, and the like. Further, as an example of the diffraction grating 10, the reflection type diffraction grating using the reflected diffracted light by arranging the grating grooves on the flat or concave substrate has been described. However, the transmission type using the transmitted diffracted light that transmits the grating surface. A diffraction grating can also be used.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a spectrometer according to a conventional example.
FIG. 2 is an explanatory diagram showing a spectrometer according to the first embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a spectrometer according to a second embodiment of the present invention.
FIG. 4 is a block diagram of a sensor control circuit used in the spectrometer of the present invention.
FIG. 5 is a diagram for explaining the relationship between the 0th-order diffracted light sensor output and the high-order diffracted light sensor output in the spectrometer of the present invention.
FIG. 6 is a timing chart of an integration operation in each light receiving sensor.
FIG. 7 is a flowchart of integration operation in each light receiving sensor with respect to FIG. 6;
FIG. 8 is a timing chart of integration operation in each light receiving sensor with respect to periodically fluctuating light.
FIG. 9 is a flowchart of integration operation in each light receiving sensor with respect to FIG. 8;
FIG. 10 is a diagram illustrating another usage pattern of the spectrometer of the present invention.
11 is a flowchart of the integration operation in the spot type light receiving sensor with respect to FIG.
[Explanation of symbols]
2 Light source 4 Objective lens 6 Optical fiber 8 Illumination lens 10 Diffraction gratings 12 and 14 Condensing lens 16 Line type light receiving sensor 18 Spot type light receiving sensor 22, 23 Amplifier 24, 25 A / D converter 30 CPU

Claims (3)

被測定光を分光する回折手段と、
前記回折手段からの0次回折光を受光するスポット型の第一光電変換素子と、
前記第一光電変換素子に対して近接配置され、前記回折手段からの高次回折光を受光する、前記第一光電変換素子とは別体のライン型の第二光電変換素子と、
前記第一光電変換素子で光電変換された0次回折光の受光出力に基づいて、第二光電変換素子での受光を制御する制御手段と、を備え、
一つの集光レンズを介して0次回折光及び高次回折光を、それぞれ、第一光電変換素子及び第二光電変換素子に集光することを特徴とする分光測定器。
Diffractive means for splitting the light under measurement;
A spot-type first photoelectric conversion element that receives zero-order diffracted light from the diffraction means;
Disposed close to said first photoelectric conversion element, receives the high-order diffracted light from said diffraction means, a second photoelectric conversion elements of the line type separate from said first photoelectric conversion elements,
Control means for controlling the light reception by the second photoelectric conversion element based on the light reception output of the 0th-order diffracted light photoelectrically converted by the first photoelectric conversion element,
A spectrophotometer for collecting 0th-order diffracted light and higher-order diffracted light on a first photoelectric conversion element and a second photoelectric conversion element, respectively, through one condenser lens .
前記制御手段は、前記第一光電変換素子の積分時間を第二光電変換素子の積分時間より短く設定し、
第一光電変換素子と第二光電変換素子とが同時に積分を開始して、先に積分が終了した第一光電変換素子の積分結果に基づいて第二光電変換素子の積分時間を決定するように制御することを特徴とする、請求項1記載の分光測定器。
The control means sets the integration time of the first photoelectric conversion element shorter than the integration time of the second photoelectric conversion element,
The first photoelectric conversion element and the second photoelectric conversion element start integration at the same time, and the integration time of the second photoelectric conversion element is determined based on the integration result of the first photoelectric conversion element that has been previously integrated. The spectroscopic measuring device according to claim 1, wherein the spectroscopic measuring device is controlled.
前記第一光電変換素子は、第二光電変換素子よりも短時間でデータの読み出しが可能であって、
前記制御手段は、第一光電変換素子が積分動作を所定周期で繰り返している際に、第一光電変換素子の受光出力が所定の閾値以上になったときに、第二光電変換素子が積分動作を行うように制御することを特徴とする、請求項1記載の分光測定器。
The first photoelectric conversion element can read data in a shorter time than the second photoelectric conversion element,
When the first photoelectric conversion element repeats the integration operation at a predetermined cycle, the second photoelectric conversion element performs the integration operation when the light reception output of the first photoelectric conversion element exceeds a predetermined threshold value. The spectroscopic measurement device according to claim 1, wherein the spectroscopic measurement device is controlled to perform the following.
JP2002195414A 2002-07-04 2002-07-04 Spectrometer using 0th-order diffracted light of diffraction means Expired - Fee Related JP4089314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195414A JP4089314B2 (en) 2002-07-04 2002-07-04 Spectrometer using 0th-order diffracted light of diffraction means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195414A JP4089314B2 (en) 2002-07-04 2002-07-04 Spectrometer using 0th-order diffracted light of diffraction means

Publications (3)

Publication Number Publication Date
JP2004037282A JP2004037282A (en) 2004-02-05
JP2004037282A5 JP2004037282A5 (en) 2005-06-16
JP4089314B2 true JP4089314B2 (en) 2008-05-28

Family

ID=31703798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195414A Expired - Fee Related JP4089314B2 (en) 2002-07-04 2002-07-04 Spectrometer using 0th-order diffracted light of diffraction means

Country Status (1)

Country Link
JP (1) JP4089314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290714A (en) * 1991-03-20 1992-10-15 Shin Kobe Electric Mach Co Ltd Molding method of molded object with hole

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063684A1 (en) * 2003-01-08 2004-07-29 Nikon Corporation Optical device, monitor device, inverse dispersion double spectroscope, and method for controlling inverse dispersion double spectroscope
JP5115796B2 (en) * 2007-11-29 2013-01-09 横河電機株式会社 Spectrometer
JP2010261861A (en) * 2009-05-08 2010-11-18 Ricoh Co Ltd Spectral characteristics acquisition apparatus, image evaluation apparatus, and image forming apparatus
JP2015219153A (en) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 Spectrum sensor
CN105938013B (en) * 2016-04-20 2019-12-17 杭州远方光电信息股份有限公司 Spectrometer and correction method thereof
NL2025681B1 (en) * 2020-05-26 2021-12-13 Admesy B V Optical instrument for measuring at least one property of a beam of light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290714A (en) * 1991-03-20 1992-10-15 Shin Kobe Electric Mach Co Ltd Molding method of molded object with hole

Also Published As

Publication number Publication date
JP2004037282A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US8437582B2 (en) Transmitting light with lateral variation
JP4089314B2 (en) Spectrometer using 0th-order diffracted light of diffraction means
JP3654458B2 (en) Light source device
JP2003255113A (en) Light separation element and optical appliance using the same
CN106104255A (en) Tunable optic filter for spectroscopy sensing
WO2011120234A1 (en) Micro spectrometer capable of receiving zero order and first order spectral components
KR100820947B1 (en) Wavelength Power Meter
KR102364854B1 (en) Spectrometer comprising light filter
JPS6228623A (en) Photometer
CN112697274A (en) Single-capture spectrum measurement method and device
JP2004219330A (en) Fluorescence measuring apparatus
US20060290928A1 (en) Photodiode array
JPH05157628A (en) Broad-band spectrometric measuring instrument
JP2004037282A5 (en)
JP2010112808A (en) Optical power meter
JP3367545B2 (en) Optical spectrum detector
JP6091291B2 (en) Spectrometer for pulsed light source
US8786853B2 (en) Monochromator having a tunable grating
RU81574U1 (en) FIBER OPTICAL MEASURING SYSTEM (OPTIONS)
JP2001116618A (en) Spectrometer
JPH06167390A (en) Spectroscopic measuring method
JPS6319788Y2 (en)
JP2001108614A (en) Optical system for radical measurement
JP4099695B2 (en) Optical signal monitor
JP2006201094A (en) Multichannel spectrophotometer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050609

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R150 Certificate of patent or registration of utility model

Ref document number: 4089314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees