JP4080716B2 - Pulse current welding method for small joint surface - Google Patents

Pulse current welding method for small joint surface Download PDF

Info

Publication number
JP4080716B2
JP4080716B2 JP2001301600A JP2001301600A JP4080716B2 JP 4080716 B2 JP4080716 B2 JP 4080716B2 JP 2001301600 A JP2001301600 A JP 2001301600A JP 2001301600 A JP2001301600 A JP 2001301600A JP 4080716 B2 JP4080716 B2 JP 4080716B2
Authority
JP
Japan
Prior art keywords
joining
small
joined
members
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001301600A
Other languages
Japanese (ja)
Other versions
JP2003112264A (en
Inventor
正雄 鴇田
Original Assignee
Spsシンテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spsシンテックス株式会社 filed Critical Spsシンテックス株式会社
Priority to JP2001301600A priority Critical patent/JP4080716B2/en
Publication of JP2003112264A publication Critical patent/JP2003112264A/en
Application granted granted Critical
Publication of JP4080716B2 publication Critical patent/JP4080716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はパルス通電焼結法の原理を利用したパルス通電接合方法、その接合装置並びにそのような接合方法によって接合した接合体に関し、更に詳細には、薄肉パイプ、チューブ又は小片状チップ(小面積の円形、多角形、その他の形状のチップ)或いは細い棒又は線同士の接合、或いはそれらと大面積の部材との接合のような接合面積の小さな部材の接合をパルス通電焼結の原理を利用して行う接合方法、接合装置並びに接合体に関する。
【0002】
【従来技術】
薄肉のパイプの端縁を突き合わせてその突き合わせ端で接合する場合、或いは細い棒、線又は小片状チップの端面を他の部材に接合する場合のように、小接合面を有する部材を互いに接合する従来の方法としては、(1)接合すべき端部を局部的に加熱溶解すると共に溶接補助材も溶解し、それによって溶接補助材を介在させて互いに接合する方法、(2)互いに接合すべき部分の周囲にレーザービーム、電子ビーム等の高エネルギービームを局部的に照射してその部分を局部的に溶解させ、それによって部材を互いに接合する方法及び(3)上記溶接補助材とは異なり接合する部材とは異なる材料でできた蝋材(Cu、Agなどの合金或いはアモルファス金属)を真空雰囲気又は不活性雰囲気で接合面間で溶かして接合する方法等が一般的であった。
【0003】
しかしながら、上記(1)の接合方法では、(a)溶接補助材を使用しなければならない問題、(b)接合すべき部材を局部的に溶解させるため部材の母材に変質が起こる問題、及び(c)互いに接合できる部材の材質に制限がある問題等がある。また、上記(2)の接合方法では、上記(a)のように溶接補助材を必要とする問題はなくなるが、上記(b)及び(c)と同様に接合すべき部材を局部的に溶解させるため部材の母材に変質が起こる問題、及び互いに接合できる部材の材質に制限がある問題があり、更に、(d)接合が周辺部で局部的に行われるため高い接合強度を得ることができない問題がある。更に、(3)の接合方法では上記(a)ないし(c)及び蝋材を介しての接合であるため接合できる部材の材質に制限があるのみならず、十分な耐熱性や接合強度が得られない問題がある。
【0004】
【発明が解決しようとする課題】
ところで、技術の進歩により様々な機器の開発及びかかる機器の小型化が進むと共に素材の新しい利用分野が開発され、従来では考えられない素材同士の接合が、或いは小接合面積同士又は大面積母材に小片状チップ(小面積の円形、多角形、その他の形状のチップ)のような小さな接合面積で強固に接合されることが要求されるようになってきた。例えば、薄肉の所定長さのステンレスパイプに十分な接合強度で完全密閉シール状に繋ぎ合わせて使用する場合、非磁性材のパイプ、中実棒材(横断面が円形、多角形、その他の形状の棒材)等に同じく薄肉の磁性材のパイプ、中実棒材(横断面が円形、多角形、その他の形状の棒材)等を繋ぎ合わせて使用する場合、タングステンカーバイド、コバルト系超硬材料と鉄系材料とを繋ぎ合わせて使用する場合、或いは銅系の材料と鉄系の材料とを繋ぎ合わせて使用する場合などである。
【0005】
近年パルス電流を流して行うパルス通電加圧焼結(放電プラズマ焼結、放電焼結或いはプラズマ活性化焼結等を含む)の原理を利用して、粉末でなく所定の嵩を有し比較的大きな接合面を有している部材同士を接合させる技術が開発されつつあるが、このパルス通電加圧焼結法を利用した接合装置では材料に比較的大きな圧力を付加した状態で行う必要があったため、例えば、薄肉パイプの端面同士を突き合わせて接合させる場合のように、互いに接合される部材の接合面が小さくて大きな力を加えると部材が座屈する場合には使用できない。このような問題を解決するためには座屈を防止するための外形、中子型或いはジグを使用しなければならない。
しかしながら、型或いはジグを使用する場合には、互いに接合される被接合部材の形状、寸法等が異なるごとにその被接合部材の形状、寸法に合った型或いはジグを用意しなければならず接合作業が繁雑になる問題、型又はジグに通電する必要が生じるため接合時間が長くなりまた消費電力も多くなる問題、それだけ接合コストが高くなる問題等大量生産、実用性については大きな問題がある。
【0006】
本発明が解決しようとする課題は、放電プラズマ焼結、放電焼結或いはプラズマ活性化焼結等を含むパルス通電加圧焼結の原理を利用し、しかも接合面の小さな部材同士の接合に適したパルス通電接合方法を提供することである。
本発明が解決しようとする他の課題は、被接合部材に対する加圧力を押圧装置により高精度に制御して被接合部材の座屈、屈曲等の発生を阻止できる、大量生産及び実用性の高いパルス通電接合方法を提供することである。
【0007】
【課題を解決するための手段】
本願の一つの発明は、互いに接合すべき小接合面を有する複数の部材を、所望の雰囲気に保持されたチャンバ内に入れかつ接合面を当接させた状態で対の通電電極により挟み、前記複数の部材に前記対の通電電極を介して所望の電圧及び電流のパルス電流を流して前記接合面で接合する小接合面用パルス通電接合方法において、
通電開始前に所望の第1の押圧力で前記複数の部材を押圧し、
通電開始後前記チャンバ内の温度が前記接合される複数の部材の材質及び寸法によって決まる温度に達した後、前記材質及び寸法によって決まる第2の押圧力で前記複数の部材を押圧し、
前記複数の部材を座屈、屈曲変形等を起こさせることなく固層拡散接合させて仮接合体するように構成されている。なお、上記第2の押圧力は適宜変化する可変の押圧力であり得る。
上記小接合面用パルス通電接合方法において、前記第2の押圧力での押圧を、前記部材に加えられる押圧力を常時圧力センサで検出し、フィードバックさせて制御するようにしても良く、また、前記接合面を鏡面に研磨してもよい。また、小接合面用パルス通電接合方法が、更に、前記仮接合された部材を前記部材の材質及び寸法によって決まる温度及び時間により熱処理を施すことを含んでいてもよい。
更にまた、前記小接合面用パルス通電接合方法において、前記熱処理を、前記仮接合に引き続いて前記チャンバ内で前記通電電極により熱処理電流を流して行っても、或いは前記仮接合された複数の仮接合体をまとめて熱処理炉によって行ってもよい。
【0009】
【実施例】
次に図面を参照して本発明による小接合面用パルス通電接合方法を実施する接合装置の実施形態について説明する。
図1ないし図3において、本実施形態による小接合面用パルス通電接合装置(以下単に通電接合装置と呼ぶ)1が示されている。この通電接合装置1は、放電プラズマ焼結、放電焼結或いはプラズマ活性化焼結等を含むパルス通電焼結法の原理を利用するものであるが、通常焼結で使用されるグラファイト製などの焼結型(ダイ、パンチ等)は使用しない。通電接合装置1は、フレーム装置10と、フレーム装置10の中央部(図1において)に関して上下方向(図1において)に移動可能に支持された可動テーブル装置20と、可動テーブル装置20に取り付けられた通電電極装置30の下通電電極組立体31と、可動テーブル装置を上下動させる押圧装置40と、フレーム装置10の上部に取り付けられた通電電極装置30の上通電電極組立体32と、被接合部材の周囲を所望の雰囲気(例えば真空雰囲気或いは不活性ガス雰囲気)にするチャンバを画成するハウジング組立体50と、を備えている。この実施形態の通電接合装置は制御装置60(図3)により全体的な動作の制御が行われ、電源装置70(図3)から接合用の直流パルス電流が供給される。
【0010】
フレーム装置10は、箱状の下フレーム11と、下フレーム11の上部にに固定された下支持プレート12と、下支持プレート12に公知の方法で取り付けられた複数(この実施例では下支持プレートの四隅に近接して配置された4本)の支柱13と、支柱13の上端に公知の方法で取り付けられた上支持プレート14とを備えている。下支持プレート12には4個の貫通穴が形成されて、その貫通穴内には軸受け部材121が装着されている。各軸受け部材121内には、可動テーブル装置20の可動テーブル21の四隅に公知の方法で取り付けられていて下方に伸びる案内軸22が滑り可能に挿入されている。したがって、可動テーブル21は案内軸22及び軸受け122によって単に上下方向にのみ移動できるように案内されている。
【0011】
下フレーム11内には押圧装置40が配設固定されている。この押圧装置40は上下方向に所定の長さ伸びる公知の構造及び機能のボールねじ装置41と、ボールねじ装置41の入力軸(図示せず)に入力を与える駆動源としての電動モータ42と、電動モータ42の回転出力をボールねじ装置41に与える伝動機構43とを備えている。電動モータ42は微小の回転角を高精度に制御できるステッピングモータが好ましい。この電動モータ42は制御装置60に接続されていてその制御装置の制御の下で回転を制御されるようになっている。ボールねじ装置41の出力軸411の上端近傍(図1において)にはガイドプレート24が取り付けられ、そのガイドプレート24には可動テーブル21に取り付けられかつ下方に伸びる複数のガイドロッド25が相対移動可能に案内されている。ボールねじ装置41の軸線及び下通電電極組立体31の軸線は装置全体の軸線0−0に一致させてある。可動テーブル21と出力軸411との間には本通電接合装置の動作の制御を行う制御装置60の圧力センサ61が配置されている。この圧力センサ61は公知の構造及び機能を有するものでよい。したがって、押圧装置40によって可動テーブル21に加えられる軸方向押圧力は圧力センサ61によって検出される。ボールねじ装置の出力軸411はガイドプレート及びガイドロッドの作用により回転しないようになっている。
【0012】
可動テーブル21の上面には絶縁性の取り付け板35を介して下通電電極組立体31が可動テーブルに関して絶縁して固定されている。取り付け板35と下通電電極組立体31の下端との固定は複数の公知の止めねじで行われ、取り付け板35は公知の止めねじにより可動テーブル21に固定される。下通電電極組立体31は硬質で靭性を有する材料、例えばステンレスで作られた円柱状の下通電電極33を有している。下通電電極33はケーブル及びスイッチ装置71(図3)を介して電源装置70(図3)に接続可能になっている。スイッチ装置71は電源装置の一部を構成しても良く、本出願人による特願2000−284771号「パルス通電焼結機用通電装置」に示されるスイッチ機構と同様の構造のものでも良い。下通電電極33内には冷却流体を流す冷却通路(図示せず)が形成され、その冷却通路には一対の給排パイプ(図1で1個のみ図示)331を介して冷却流体が循環されるようになっている。取り付け板35は全体が絶縁材料でできていても、或いは金属板の表面に絶縁処理を施したものでもよい。
【0013】
下通電電極33の外側にはハウジング組立体50の下ハウジング部分51が下通電電極33に関して相対的に移動可能に設けられている。下ハウジング部分51は、下通電電極の外周に滑動可能に取り付けられた底壁部材511と、底壁部材に互いに隔ててかつ底壁部材に関して密閉して固定された内周壁部材512及び外周壁部材513と、内及び外周壁部材の上端に固定された環状の端板514とを有している。底壁部材511の下通電電極に対する接触面には公知の構造のシール部材(図示せず)が設けられ、それらの間の隙間を密閉している。底壁部材511には、下支持プレート12の貫通穴に装着された軸受け123に滑動可能に支持された駆動ロッド53が取り付けられている。この駆動ロッドは、ラック及びピニオン装置及びピニオン回転用の電動モータ(図示せず)により駆動されるようになっている。これにより下ハウジング部分51を下通電電極に関して相対的に移動できるようにしている。55は可動テーブルに取り付けられていて下ハウジング部分51の下降を制限するストッパであって、軸線0−0を中心として直径方向の2カ所に設けられている。なお、57は耐熱ガラスでできたのぞき窓である。
【0014】
上支持プレート14の下面には取り付け板36及び絶縁板38を介して下通電電極組立体32が固定されている。絶縁板38と下通電電極組立体32の上端との固定、絶縁板38と取り付け板36との固定並びに取り付け板36と上支持プレート14との固定は、複数の公知の止めねじで行われる。上通電電極組立体32はステンレスで作られた円柱状の上通電電極34を有している。上通電電極34は、ケーブルを介して電源装置70に接続可能になっている。上通電電極33内には冷却流体を流す冷却通路(図示せず)が形成され、その冷却通路には一対の給排パイプ(図1で1個のみ図示)341を介して冷却流体が循環されるようになっている。
【0015】
上通電電極34の外側にはハウジング組立体50の上ハウジング部分52が配設されている。上ハウジング部分52は、下通電電極の外周に公知の方法で密封して取り付けられた頂壁部材521と、頂壁部材521に互いに隔ててかつ底壁部材に関して密閉して固定された内周壁部材522及び外周壁部材523と、内及び外周壁部材の下端に固定された環状の端板524とを有している。頂壁部材521は、上支持プレート14に固定された複数(本実施形態では4個であるが1個のみ図示)の連結ロッド54を介して上支持プレート14に固定されている。56は内周壁部材522及び外周壁部材523に取り付けたパイプであって、図示しない導管を介して真空雰囲気又は不活性ガス雰囲気にする雰囲気制御装置(図示せず)に接続されている。下ハウジング部分51の端板514の上面及び上ハウジング部分52の端板524の下面の少なくとも一方には環状の溝が形成され、その溝内にはOリングシールが設けられ、両者が合わされたときそれらの間からの空気の漏れを防止し得るようになっている。上ハウジング部分52内には、図3に示されるように、圧力センサ62及び温度センサ63が設けられ、それらの圧力センサ及び温度センサにより下ハウジング部分51と上ハウジング部分52とによって画成されたチャンバC内のガス圧及び温度をそれぞれ検出できるようになっている。圧力センサ62及び温度センサ63は制御装置70に接続され、その検出信号を制御装置に入力できるようになっている。なお、温度フィードバックと組み合わせた圧力制御を行ってもよい。
【0016】
【実施例1】
次に上記の通電接合装置1を使用して図4[A]に示されるような薄肉のパイプM1とM2とを端面を突き合わせた状態で接合する場合について説明する。ここで、パイプM1は非磁性ステンレス(SUS304)製のパイプであり、パイプM2は磁性ステンレス(SUS430)製のパイプであり、いずれも長さL1=30mm、内径d1=8mm、外径d2=10mm、で肉厚はt1=1mmであるものとする。この場合、パイプM1及びM2の互いに接合する端面すなわちパイプM1の上端面M1e及びパイプM2の下端面M2eは全面にわたって均等に接触するよう切削しておく。好ましくは、鏡面に研磨しておく。このように用意しかつ端面を突き合わせた二つのパイプを下通電電極33の上端面上に、例えば、V溝構造の位置合わせ冶具などを用いてセットした後、制御装置60により押圧装置40を動作させて可動テーブル12を上昇させ、下通電電極組立体31と上通電電極組立体32との間でパイプを挟む。この時押圧装置40の押圧力を調整して、初期押圧力を、当接表面がなじみ易いように例えば1ないし3メガパスカルの力で押さえるようにする。この状態で下ハウジング部分51を上昇させて端板514を上ハウジング部分52の端板524に当接させ、ハウジングにより被接合部材であるM1及びM2の周囲に外部から密閉されたチャンバCを画成する。
【0017】
この状態で雰囲気制御装置を動作させてチャンバC内を所望の雰囲気にする。この場合にはチャンバ内を真空引きして真空状態、例えば、約6.7パスカル(Pa)(5×10-2torr)にする。チャンバ内の真空引きが完了した後は、制御装置60の指令によりスイッチ装置71をオンにして電源装置70から上下通電電極組立体を通してパイプM1及びM2に6ないし12ボルト(V)で300ないし800アンペア(A)の直流パルス電流を流す。電流が流れるに従ってパイプは発熱し高温になり、上下は機械的に固定されているため熱膨張により軸方向の歪みが発生し、加圧力は徐々に増大し、そのまま高い押圧力でパイプを軸方向に押圧しているとパイプは座屈する。このためパイプを固定後、押圧装置40によりパイプに加えられる押圧力を、例えば0.5ないし1.0メガパスカル(MP)まで下げ、パルス電流の通電を始める。その後、圧力センサ61からの検出信号に基づき押圧力をフィードバック制御してこの押圧力を保持する。通電加圧軸の送り機構には、パイプの上端面の1〜2mm程度手前まで早送りし、その後端面に当接するまで減速送りするプログラムが組み込まれていても良い。パイプへの通電開始から2〜5分程度の短時間で両パイプは接合されるので、スイッチ装置オフにして通電を停止する。この接合の原理は次の通りである。直流パルス電流を流すと、接触抵抗の高い当接している界面部分がジュール加熱により高温に熱せされる。また、材料自体の抵抗値により全体がジュール加熱される。また、上下一軸加圧力による塑性変形と熱膨張により上下に重ねられた部材の当接界面には高い圧力が発生する。更にon−offパルス電流の流れの方向に沿って電場が生じ、電界拡散が生じる。この電界拡散効果と前述の熱拡散の機械的圧力が固相拡散接合に寄与し金属結晶構造の配向性をもたらすと考えられる。この接合は必ずしも十分な接合強度で行われていないので、ここでは仮接合と呼び、仮接合されたものを仮接合体と呼ぶ。通電を停止した後チャンバを大気圧に戻し、下ハウジング部分を降下させて上下通電電極間に挟まれた仮接合体を取り出せるようにする。その後可動テーブルを降下させて上下通電電極間から仮接合体を取り出し仮接合が完了する。上記の場合は仮接合体を自然冷却により冷却させる場合であるが、強制的に冷却したい場合には、通電停止後チャンバ内に冷却された不活性ガスを供給し、或いは吸熱構造部材を有する冷却ステージを別途設けて冷却してもよい。なお、実施例1は上下に重ねされた部材の場合であるが、内外に同軸円筒重ね合わせ状(バウムクーヘン状或いは同心円状)に複数のパイプ及び中実丸棒を接合してもよい。
【0018】
上記のような薄肉のパイプ同士の接合、径の小さい棒材又は線材同士の接合、或いは棒材、線材又は薄肉パイプと板材との接合のように接合面の面積が小さい場合には大きな力を加えると被接合部材が常温でも座屈、屈曲等が起こり、被接合部材が発熱して高温になるとより小さな押圧力で座屈を起こす。このため、被接合部材の寸法(長さ、外径、肉厚等)及び材質に応じた制御プログラム(押圧力減少開始温度、押圧力、通電時間等を決めた制御プログラム)を予め種々作成しておき、その制御プログラムにしたがって押圧装置40により押圧力の増減フィードバック制御を行う。そして、押圧装置による押圧力は、可能な限りゼロに近い値でも制御できるようにしておく。このようなフィードバック制御のフローチャートを示せば図5に示されるようになる。
【0019】
上記通電接合装置により行われた両パイプの接合は仮接合である。パイプの使用目的によっては仮接合程度の接合強度でも良い場合がある。その場合には、上記仮接合されたパイプM1及びM2を、図4[B]に示される仮接合体M3として通電接合装置から取り出して使用に供する。両パイプの接合を高い接合強度で本接合させる場合には、下記のような条件で熱処理を行う。
熱処理温度 900℃〜1000℃
熱処理時間 30分〜90分
上記熱処理の条件は被接合部材として前記ステンレス鋼製薄肉パイプを仮接合した仮接合体に対するものであり、被接合部材の大きさ、材質等により異なるものである。
【0020】
次に、上記のように仮接合されたパイプM1及びM2(したがってここでは仮接合体M3)を上記通電接合装置を使用して熱処理を行う場合について説明する。仮接合のための通電が終了した後、チャンバC内の真空雰囲気をそのまま保持しておき、或いはチャンバ内に不活性ガスを流して冷却することによりチャンバC内の温度が上記熱処理温度に適した温度まで下がった後、電源装置70から熱処理温度に保つための熱処理用電流すなわち5ないし20ボルトで、500ないし1000アンペアの直流電流を約10〜30分流す。この場合チャンバ内に設けられた温度センサによりチャンバ内の温度が熱処理温度に保たれるように、電流値をフィードバック制御する。この熱処理により両パイプの接合は完全なもの(本接合)になる。熱処理が完了後チャンバC内の冷却(自然冷却でも強制冷却でもよい)を待って下ハウジング部分を降下させかつ可動テーブルを降下させて本接合されたパイプを取り出して使用に供する。通常、熱処理時間が仮接合時間より遙かに長いので、上記のように通電接合装置を使用して熱処理を行うのは効率が悪い。したがって、このような熱処理を行うのは単品、少量生産の場合などに適している。
【0021】
図6において、本発明の通電接合装置の別の実施形態が示されている。この通電接合装置は、熱処理を行う熱処理部80を更に備えている。この熱処理部は市場で入手可能な公知の構造の熱処理炉で良い。この熱処理炉で熱処理する場合は、上記通電接合装置1により仮接合されたパイプが複数個たまったときまとめてバッチ式に熱処理炉に入れて一度に熱処理を行う。このようにするのは、仮接合は数分で行えるのに対して熱処理は数十分かかるので仮接合された仮接合体を複数まとめて熱処理を行うことによって、効率を良くでき、接合品の大量生産に適している。
【0022】
通電接合装置は、更に、仮接合された部材すなわち仮接合体を熱処理部80に自動的に供給する搬送装置90を備えていても良い。この搬送装置は、通電接合装置1の上、下通電電極間から仮接合体を取り出す公知の構造のロボット装置91と、ロボット装置91により取り出された仮接合体を複数個まとめて熱処理部80内に送るコンベヤ92とを備えている。ロボット装置91は、角θの範囲で揺動可能なアーム911と、そのアームの先端に取り付けられたチャック912とを備えている。この別個に設けられた熱処理部に熱処理を行うことにより複数の仮接合体をバッチ式まとめて熱処理できるので効率良く接合できる。したがって、同一品から成る多数の接合体を製造する場合に適している。なお、図示しないが、アーム911の揺動範囲の途中に設けた供給コンベアにより接合すべき部材を上下に重ねた状態で供給し、チャックで把持して自動的に上、下通電電極の間に自動的に供給し、チャックで把持した状態でそれらの通電電極で押圧して押さえるようにしてもよい。
なお、図示しないが、TPマガジンから接合装置へ、接合装置から熱処理炉へ、更に熱処理炉から冷却済み又は処理済み接合品用のマガジンへの自動搬送を行う装置を備えていても良い。
【0023】
【実施例2】
図7[A]に示されるような細い線材N1の端面と板材N2一方の表面とを接合する場合について説明する。ここで、線材N1はモリブデン製で、長さL2=25mm、外径d3=5mmであり、板材N2はタングステン製で、直径d4=30mmで肉厚がt2=5mmの円板であるものとする。この場合、線材N1の端面及び板材N2の表面の互いに当接する部分は均等に接触するよう加工しておく。好ましくは、鏡面に研磨しておく。このように用意しかつ互いに突き合わせた線材及び板材を前記実施例1と同様にして通電接合装置1によりまず仮接合した。その時、初期押圧5メガパスカルの力で上下通電電極により押さえた。
【0024】
この状態で雰囲気制御装置を動作させてチャンバC内を真空引きして真空状態(5×10-2torr)にした後、押圧装置によるプリセット設定圧力を2メガパスカルにし上下通電電極組立体を通して線材及び板材に3ないし12ボルト(V)で200ないし600アンペア(A)の直流パルス電流を流した。電流が流れるに従ってパイプは発熱し高温になったので、非接触式の赤外線放射型温度計で計測した。接合部分の温度が1350℃になるまで押圧力を1〜2メガパスカルの間でフィードバック制御してこの押圧力を保持した。通電開始から5分後に通電を停止した。これにより図7[B]に示されるような線材と板材の仮接合体N3ができあがった。この仮接合体N3を熱処理部80の真空熱処理炉内を使用して熱処理温度1180℃、熱処理時間40〜60分に亘って熱処理を行った。この熱処理により線材と板材の接合は完全なものになった。
なお、上記実施例ではステンレス製薄肉パイプの接合及びモリブデン製線材とタングステン製板材との接合についてのみ説明したが、その他、接合面積の小さな種々の部材の接合に、しかも種々の材質の部材の接合に本発明の方法及び装置を使用することが可能である。例えば、図8[A]に示されるように、基板O1に複数の小径の円柱状又は円筒状チップO2を接合する場合、 図8[B]に示されるように、円板P1に小歯車P2を接合する場合、図8[C]に示されるように、基板Q1にカム部材Q2を接合する場合、図8[D]に示されるように、複数の形状の異なる複数の小形のカムR1ないしR3を隣接して接合する場合、図8[E]に示されるように、ブロック材S1に小部品S2を接合する場合等である。
【0025】
【発明の効果】
本発明により次のような効果を奏することが可能である。
(イ)薄肉パイプ同士のように接合面積の小さな部材間の接合を固相拡散接合になるパルス通電接合法で相互の部材が全当接面に亘り完全密着シール状態で簡単にしかも座屈、屈曲変形等を起こさせることなくかつ母材並の強度を持った高品位の接合部品の大量生産ができる。
(ロ)従来の接合法では接合できない異種又は同種材質の部材同士を簡単に接合させることができる。
(ハ)台座形状部品を、ブロック状の素材から切削加工(フライス加工、放電加工等)で複雑な形状に削り出すことなく、基板材料に小片の部材をパルス通電接合することで製作できるので、大幅な工程削減、コスト削減ができる。
(ニ)エンドミルの刃先では切削不可能な直角や鋭角をもつ平坦部と突起部分との一体形状やアンダーカット形状でも容易につくることができ、一体部材から切削加工で製造するよりも形状設計の自由度が広がる。
(ホ)固相拡散接合部品が短時間で廉価に簡便に量産が可能となる。
(ヘ)ロー付け品、溶接品に比べて組織的にもまた機械特性的にも信頼度の高い部品をつくることができる。
【図面の簡単な説明】
【図1】本発明による小接合面用パルス通電接合装置の縦断面図である。
【図2】図1の線A−Aに沿って見た小接合面用パルス通電接合装置の断面図である。
【図3】図1の小接合面用パルス通電接合装置の電気及び制御系統の接続関係を示すずである。
【図4】図1の小接合面用パルス通電接合装置を使用して接合する第1の実施例の部材及び仮接合体を示す斜視図である。
【図5】図1の小接合面用パルス通電接合装置の押圧力のフィードバック制御を示すフローチャートである。
【図6】本発明の小接合面用パルス通電接合装置の変形例を示す図である。
【図7】図1の小接合面用パルス通電接合装置を使用して接合する第2の実施例の部材及び仮接合体を示す斜視図である。
【図8】小接合面用パルス通電接合装置を使用して接合するその他の例を示す概略斜視図である。
1 パルス通電接合装置
10 フレーム装置 20 可動テーブル装置
21 可動テーブル 30 通電電極装置
31 下通電電極組立体 32 上通電電極組立体
33 下通電電極 34 上通電電極
40 押圧装置 50 ハウジング
51 下ハウジング部分 52 上ハウジング部分
60 制御装置 61 圧力センサ
62 圧力センサ 63 温度センサ
70 電源装置 71 スイッチ装置
80 熱処理部 90 搬送装置
[0001]
[Industrial application fields]
The present invention relates to a pulse current joining method using the principle of pulse current sintering method, a joining apparatus thereof, and a joined body joined by such a joining method, and more specifically, a thin-walled pipe, a tube, or a small chip (small size). (Chips with circular, polygonal, or other shapes) or thin rods or wires, or the joining of small members such as those with large areas. The present invention relates to a bonding method, a bonding apparatus, and a bonded body that are used.
[0002]
[Prior art]
Joining members with small joint surfaces to each other, such as when joining the ends of thin pipes and joining them at the abutting end, or joining the end face of a thin bar, wire, or small chip to another member As a conventional method, (1) a method in which the end portions to be joined are locally heated and melted and the welding auxiliary material is also melted, thereby joining them with the welding auxiliary material interposed therebetween, and (2) joining together. A method of locally irradiating a high energy beam such as a laser beam or an electron beam around the power part to locally melt the part and thereby joining the members to each other; and (3) different from the above welding auxiliary material Commonly used is a method in which a brazing material (an alloy such as Cu or Ag or an amorphous metal) made of a material different from the member to be joined is melted and joined between the joining surfaces in a vacuum atmosphere or an inert atmosphere. There was.
[0003]
However, in the joining method of the above (1), (a) a problem that a welding auxiliary material must be used, (b) a problem that the base material of the member changes in quality because the member to be joined is locally dissolved, and (C) There is a problem that the material of members that can be joined to each other is limited. Further, in the joining method of (2), the problem of requiring a welding auxiliary material as in (a) is eliminated, but the members to be joined are dissolved locally as in (b) and (c). Therefore, there is a problem that the base material of the member is deteriorated, and there is a problem that the material of the members that can be bonded to each other is limited. Furthermore, (d) a high bonding strength can be obtained because the bonding is locally performed in the peripheral portion. There is a problem that cannot be done. Furthermore, in the joining method (3), since the joining is performed through the above (a) to (c) and the wax material, not only the material of the member that can be joined is limited, but also sufficient heat resistance and joining strength are obtained. There is a problem that can not be.
[0004]
[Problems to be solved by the invention]
By the way, the development of various devices and the miniaturization of such devices have progressed due to the advance of technology, and new fields of use of materials have been developed. In addition, it has been required to be firmly bonded with a small bonding area such as a small chip (a small area circular, polygonal, or other shape chip). For example, when connecting to a thin-walled stainless steel pipe of sufficient length with a sufficient sealing strength, a non-magnetic pipe, solid bar (circular cross section, polygon, other shapes) In the same way, when connecting thin magnetic pipes, solid bars (bars with circular, polygonal or other shapes), tungsten carbide, cobalt carbide For example, when the material and the iron-based material are used in combination, or when the copper-based material and the iron-based material are used in combination.
[0005]
In recent years, using the principle of pulse-current pressure sintering (including discharge plasma sintering, discharge sintering, or plasma activated sintering) performed by applying a pulsed current, the powder has a predetermined bulk rather than powder. A technique for joining members having large joining surfaces is being developed. However, in a joining apparatus using this pulse current pressurization and sintering method, it is necessary to carry out with a relatively large pressure applied to the material. For this reason, for example, when the end surfaces of the thin-walled pipes are brought into contact with each other and joined, the joining surfaces of the members to be joined together are small, and when a large force is applied, the members cannot be used. In order to solve such a problem, an outer shape, a core type or a jig for preventing buckling must be used.
However, when using a mold or jig, each time the shapes and dimensions of the members to be joined are different, a die or jig that matches the shape and dimensions of the members to be joined must be prepared. There are major problems with mass production and practicality, such as the problem of complicated work, the need to energize the mold or jig, the problem of long joining time and power consumption, and the problem of high joining cost.
[0006]
The problem to be solved by the present invention is based on the principle of pulsed current pressure sintering including discharge plasma sintering, discharge sintering or plasma activated sintering, and is suitable for joining members having small joint surfaces. Another object of the present invention is to provide a pulse current joining method.
Another problem to be solved by the present invention is that mass production and high practicality can be achieved by controlling the pressure applied to the members to be joined with high precision by a pressing device to prevent the occurrence of buckling, bending, etc. of the members to be joined. It is to provide a pulse current joining method.
[0007]
[Means for Solving the Problems]
In one aspect of the present invention, a plurality of members having small joining surfaces to be joined to each other are placed in a chamber maintained in a desired atmosphere. small It is sandwiched between a pair of energizing electrodes in a state where the joint surfaces are in contact with each other, and a pulse current of a desired voltage and current is supplied to the plurality of members via the pair of energizing electrodes. small In the pulse energization joining method for small joint surfaces that join at the joint surface,
Pressing the plurality of members with a desired first pressing force before starting energization,
After the start of energization, the temperature in the chamber reaches a temperature determined by the material and dimensions of the plurality of members to be joined, and then presses the plurality of members with a second pressing force determined by the material and dimensions,
The plurality of members Solid layer diffusion bonding without causing buckling, bending deformation, etc. Temporary joint In Is configured to do. The second pressing force may be a variable pressing force that changes as appropriate.
In the above-described pulse energization joining method for small joining surfaces, the pressing with the second pressing force may be controlled by always detecting the pressing force applied to the member with a pressure sensor and feeding it back. Above small The joining surface may be polished to a mirror surface. In addition, the pulse joining method for small joining surfaces may further include subjecting the temporarily joined member to heat treatment at a temperature and time determined by the material and dimensions of the member.
Furthermore, in the pulse energization joining method for small joining surfaces, the heat treatment may be performed by passing a heat treatment current through the energizing electrode in the chamber subsequent to the temporary joining, or a plurality of temporarily joined temporary works. The joined body may be put together by a heat treatment furnace.
[0009]
【Example】
Next, with reference to the drawings, an embodiment of a joining apparatus for carrying out the pulse current joining method for small joining surfaces according to the present invention will be described.
1 to 3, a pulse energization joining device for small joint surfaces (hereinafter simply referred to as an energization joining device) 1 according to the present embodiment is shown. This energization joining apparatus 1 uses the principle of pulse electric current sintering method including discharge plasma sintering, discharge sintering or plasma activated sintering, etc. Do not use a sintering die (die, punch, etc.). The energization joining device 1 is attached to the frame device 10, the movable table device 20 supported so as to be movable in the vertical direction (in FIG. 1) with respect to the center portion (in FIG. 1) of the frame device 10, and the movable table device 20. The lower energizing electrode assembly 31, the pressing device 40 for moving the movable table device up and down, the upper energizing electrode assembly 32 attached to the upper part of the frame device 10, And a housing assembly 50 that defines a chamber that creates a desired atmosphere (for example, a vacuum atmosphere or an inert gas atmosphere) around the member. The overall operation of the energization joining device of this embodiment is controlled by the control device 60 (FIG. 3), and a DC pulse current for joining is supplied from the power supply device 70 (FIG. 3).
[0010]
The frame device 10 includes a box-shaped lower frame 11, a lower support plate 12 fixed to the upper portion of the lower frame 11, and a plurality of (in this embodiment, lower support plate) attached to the lower support plate 12 by a known method. 4) of support columns 13 disposed in the vicinity of the four corners, and an upper support plate 14 attached to the upper end of the support column 13 by a known method. The lower support plate 12 is formed with four through holes, and a bearing member 121 is mounted in the through holes. In each bearing member 121, guide shafts 22 attached to the four corners of the movable table 21 of the movable table device 20 by a known method and extending downward are slidably inserted. Therefore, the movable table 21 is guided by the guide shaft 22 and the bearing 122 so as to be movable only in the vertical direction.
[0011]
A pressing device 40 is disposed and fixed in the lower frame 11. The pressing device 40 includes a ball screw device 41 having a known structure and function extending in a vertical direction in a vertical direction, an electric motor 42 as a drive source for supplying an input to an input shaft (not shown) of the ball screw device 41, And a transmission mechanism 43 that gives the rotation output of the electric motor 42 to the ball screw device 41. The electric motor 42 is preferably a stepping motor capable of controlling a minute rotation angle with high accuracy. The electric motor 42 is connected to a control device 60 and its rotation is controlled under the control of the control device. A guide plate 24 is attached to the vicinity of the upper end (in FIG. 1) of the output shaft 411 of the ball screw device 41, and a plurality of guide rods 25 attached to the movable table 21 and extending downward are movable relative to the guide plate 24. It is guided to. The axis of the ball screw device 41 and the axis of the lower energizing electrode assembly 31 are made to coincide with the axis 0-0 of the entire device. Between the movable table 21 and the output shaft 411, a pressure sensor 61 of a control device 60 that controls the operation of the energization joining device is disposed. The pressure sensor 61 may have a known structure and function. Therefore, the axial pressing force applied to the movable table 21 by the pressing device 40 is detected by the pressure sensor 61. The output shaft 411 of the ball screw device is prevented from rotating by the action of the guide plate and the guide rod.
[0012]
A lower energizing electrode assembly 31 is insulated and fixed on the upper surface of the movable table 21 with respect to the movable table via an insulating mounting plate 35. The attachment plate 35 and the lower end of the lower energizing electrode assembly 31 are fixed by a plurality of known set screws, and the attachment plate 35 is fixed to the movable table 21 by a known set screw. The lower energizing electrode assembly 31 includes a cylindrical lower energizing electrode 33 made of a hard and tough material, for example, stainless steel. The lower energizing electrode 33 can be connected to the power supply device 70 (FIG. 3) via a cable and switch device 71 (FIG. 3). The switch device 71 may constitute a part of the power supply device, or may have the same structure as the switch mechanism disclosed in Japanese Patent Application No. 2000-284771 “Current Supply Device for Pulsed Current Sintering Machine” by the present applicant. A cooling passage (not shown) for flowing a cooling fluid is formed in the lower energization electrode 33, and the cooling fluid is circulated through the cooling passage via a pair of supply / discharge pipes (only one shown in FIG. 1) 331. It has become so. The attachment plate 35 may be entirely made of an insulating material, or may be a metal plate whose surface is subjected to an insulation treatment.
[0013]
A lower housing portion 51 of the housing assembly 50 is provided outside the lower energizing electrode 33 so as to be relatively movable with respect to the lower energizing electrode 33. The lower housing portion 51 includes a bottom wall member 511 slidably attached to the outer periphery of the lower energizing electrode, an inner peripheral wall member 512 and an outer peripheral wall member fixed to the bottom wall member so as to be separated from each other and sealed with respect to the bottom wall member. 513 and an annular end plate 514 fixed to the upper ends of the inner and outer peripheral wall members. A contact surface of the bottom wall member 511 with respect to the lower energization electrode is provided with a seal member (not shown) having a known structure, and seals a gap between them. A drive rod 53 is attached to the bottom wall member 511 so as to be slidably supported by a bearing 123 mounted in a through hole of the lower support plate 12. The drive rod is driven by a rack and pinion device and an electric motor (not shown) for rotating the pinion. Thus, the lower housing portion 51 can be moved relative to the lower energizing electrode. Reference numeral 55 denotes a stopper which is attached to the movable table and restricts the lowering of the lower housing portion 51, and is provided at two locations in the diametrical direction about the axis 0-0. Reference numeral 57 denotes an observation window made of heat-resistant glass.
[0014]
A lower energizing electrode assembly 32 is fixed to the lower surface of the upper support plate 14 via a mounting plate 36 and an insulating plate 38. The fixing between the insulating plate 38 and the upper end of the lower energizing electrode assembly 32, the fixing between the insulating plate 38 and the mounting plate 36, and the fixing between the mounting plate 36 and the upper support plate 14 are performed by a plurality of known set screws. The upper energizing electrode assembly 32 has a cylindrical upper energizing electrode 34 made of stainless steel. The upper energizing electrode 34 can be connected to the power supply device 70 via a cable. A cooling passage (not shown) for flowing a cooling fluid is formed in the upper energizing electrode 33, and the cooling fluid is circulated through the cooling passage via a pair of supply / discharge pipes (only one shown in FIG. 1) 341. It has become so.
[0015]
An upper housing portion 52 of the housing assembly 50 is disposed outside the upper energizing electrode 34. The upper housing portion 52 includes a top wall member 521 that is sealed and attached to the outer periphery of the lower energizing electrode by a known method, and an inner peripheral wall member that is fixed to the top wall member 521 in a sealed manner with respect to the bottom wall member. 522 and an outer peripheral wall member 523, and an annular end plate 524 fixed to the lower ends of the inner and outer peripheral wall members. The top wall member 521 is fixed to the upper support plate 14 via a plurality of connecting rods 54 (four in this embodiment, but only one is shown) fixed to the upper support plate 14. Reference numeral 56 denotes a pipe attached to the inner peripheral wall member 522 and the outer peripheral wall member 523, and is connected to an atmosphere control device (not shown) for making a vacuum atmosphere or an inert gas atmosphere via a conduit (not shown). An annular groove is formed in at least one of the upper surface of the end plate 514 of the lower housing portion 51 and the lower surface of the end plate 524 of the upper housing portion 52, and an O-ring seal is provided in the groove. Air leakage between them can be prevented. As shown in FIG. 3, a pressure sensor 62 and a temperature sensor 63 are provided in the upper housing portion 52, and are defined by the lower housing portion 51 and the upper housing portion 52 by the pressure sensor and the temperature sensor. The gas pressure and temperature in the chamber C can be detected. The pressure sensor 62 and the temperature sensor 63 are connected to the control device 70 so that detection signals can be input to the control device. Note that pressure control combined with temperature feedback may be performed.
[0016]
[Example 1]
Next, the case where the thin-walled pipes M1 and M2 as shown in FIG. 4 [A] are joined with their end faces butted using the above-described current joining apparatus 1 will be described. Here, the pipe M1 is a pipe made of non-magnetic stainless steel (SUS304), and the pipe M2 is a pipe made of magnetic stainless steel (SUS430), both of which have a length L. 1 = 30 mm, inner diameter d 1 = 8 mm, outer diameter d 2 = 10mm, thickness is t 1 = 1 mm. In this case, the end surfaces of the pipes M1 and M2, which are joined to each other, that is, the upper end surface M1e of the pipe M1 and the lower end surface M2e of the pipe M2, are cut so as to be in uniform contact over the entire surface. Preferably, it is polished to a mirror surface. After the two pipes prepared in this way and having the end faces abutted are set on the upper end face of the lower energizing electrode 33 using, for example, a V-groove structure alignment jig or the like, the control device 60 operates the pressing device 40. Thus, the movable table 12 is raised, and a pipe is sandwiched between the lower energizing electrode assembly 31 and the upper energizing electrode assembly 32. At this time, the pressing force of the pressing device 40 is adjusted so that the initial pressing force is pressed with a force of, for example, 1 to 3 megapascals so that the contact surface can be easily adjusted. In this state, the lower housing portion 51 is raised to bring the end plate 514 into contact with the end plate 524 of the upper housing portion 52, and the chamber C sealed from the outside around the M1 and M2 members to be joined is defined by the housing. To do.
[0017]
In this state, the atmosphere control device is operated to make the chamber C have a desired atmosphere. In this case, the chamber is evacuated to a vacuum state, for example, about 6.7 Pascals (Pa) (5 × 10 5 -2 torr). After the evacuation of the chamber is completed, the switch device 71 is turned on by a command from the control device 60, and 300 to 800 at 6 to 12 volts (V) is applied to the pipes M1 and M2 from the power supply device 70 through the vertical conduction electrode assembly. An ampere (A) DC pulse current is passed. As the current flows, the pipe generates heat and becomes hot, and since the upper and lower sides are mechanically fixed, distortion in the axial direction occurs due to thermal expansion, the applied pressure gradually increases, and the pipe is axially moved with high pressing force. The pipe will buckle when pressed against. For this reason, after fixing the pipe, the pressing force applied to the pipe by the pressing device 40 is reduced to, for example, 0.5 to 1.0 megapascal (MP), and energization of the pulse current is started. Thereafter, the pressing force is feedback-controlled based on the detection signal from the pressure sensor 61 to hold the pressing force. The feeding mechanism of the energizing and pressing shaft may incorporate a program that fast-forwards to about 1 to 2 mm before the upper end surface of the pipe and decelerates until it comes into contact with the rear end surface. Since both pipes are joined in a short time of about 2 to 5 minutes from the start of energization to the pipe, the switch device is turned off to stop energization. The principle of this joining is as follows. When a direct current pulse current is passed, the contacting interface portion having a high contact resistance is heated to a high temperature by Joule heating. Further, the whole is Joule-heated by the resistance value of the material itself. In addition, high pressure is generated at the contact interface of the members stacked one above the other due to plastic deformation and thermal expansion caused by the vertical uniaxial pressure. Furthermore, an electric field is generated along the direction of on-off pulse current flow, and electric field diffusion occurs. It is considered that this electric field diffusion effect and the above-described mechanical pressure of thermal diffusion contribute to the solid phase diffusion bonding and bring about the orientation of the metal crystal structure. Since this joining is not necessarily performed with sufficient joining strength, it is called temporary joining here, and what was temporarily joined is called a temporary joined body. After energization is stopped, the chamber is returned to atmospheric pressure, and the lower housing part is lowered so that the temporary joined body sandwiched between the upper and lower energized electrodes can be taken out. Thereafter, the movable table is lowered, the temporary joined body is taken out between the upper and lower energized electrodes, and the temporary joining is completed. In the above case, the temporary joined body is cooled by natural cooling. However, when forced cooling is desired, the cooled inert gas is supplied into the chamber after the energization is stopped, or the cooling having the endothermic structure member is performed. A stage may be separately provided and cooled. In addition, although Example 1 is the case of the member piled up and down, you may join a some pipe and a solid round bar inside and outside a coaxial cylinder pile shape (Baumkuchen shape or concentric circle shape).
[0018]
If the area of the joint surface is small, such as joining thin pipes as described above, joining rods or wires having a small diameter, or joining rods, wires or thin pipes and plates, a large force is required. If it is added, the member to be joined will buckle, bend, etc. even at room temperature, and if the member to be joined generates heat and becomes high temperature, it will buckle with a smaller pressing force. For this reason, various control programs (control programs that determine the pressing force decrease start temperature, pressing force, energization time, etc.) according to the dimensions (length, outer diameter, thickness, etc.) and material of the members to be joined are created in advance. In addition, the pressure device increases / decreases feedback control by the pressing device 40 in accordance with the control program. The pressing force by the pressing device can be controlled with a value as close to zero as possible. A flowchart of such feedback control is shown in FIG.
[0019]
The joining of the two pipes performed by the energization joining device is a temporary joining. Depending on the purpose of use of the pipe, there may be a case where the joining strength is about the temporary joining. In that case, the temporarily joined pipes M1 and M2 are taken out from the energization joining apparatus as a temporarily joined body M3 shown in FIG. When the two pipes are joined with high joining strength, heat treatment is performed under the following conditions.
Heat treatment temperature 900 ° C-1000 ° C
Heat treatment time 30 minutes to 90 minutes
The heat treatment conditions are for a temporary joined body in which the thin stainless steel pipe is temporarily joined as a member to be joined, and varies depending on the size and material of the member to be joined.
[0020]
Next, the case where the pipes M1 and M2 temporarily joined as described above (and hence the temporary joined body M3 here) is subjected to heat treatment using the above-described electrical joining apparatus will be described. After energization for temporary bonding is completed, the vacuum atmosphere in the chamber C is kept as it is, or the temperature in the chamber C is suitable for the heat treatment temperature by flowing an inert gas into the chamber and cooling it. After the temperature is lowered, a DC current of 500 to 1000 amperes is applied for about 10 to 30 minutes from the power supply device 70 at a heat treatment current for maintaining the heat treatment temperature, that is, 5 to 20 volts. In this case, the current value is feedback-controlled by a temperature sensor provided in the chamber so that the temperature in the chamber is maintained at the heat treatment temperature. By this heat treatment, both pipes are completely joined (main joining). After the heat treatment is completed, after waiting for cooling in the chamber C (either natural cooling or forced cooling), the lower housing part is lowered and the movable table is lowered to take out the main joined pipe for use. Usually, since the heat treatment time is much longer than the temporary bonding time, it is inefficient to perform the heat treatment using the energization bonding apparatus as described above. Therefore, performing such heat treatment is suitable for single items or small-scale production.
[0021]
In FIG. 6, another embodiment of the current bonding apparatus of the present invention is shown. This energization joining apparatus further includes a heat treatment unit 80 for performing heat treatment. This heat treatment section may be a heat treatment furnace having a known structure available on the market. When heat treatment is performed in this heat treatment furnace, when a plurality of pipes temporarily joined by the current-carrying joining apparatus 1 are collected, the pipes are collectively put into a heat treatment furnace and heat treatment is performed at once. This is because the temporary bonding can be performed in a few minutes, but the heat treatment takes several tens of minutes. Therefore, by performing the heat treatment on a plurality of temporarily bonded bodies collectively, the efficiency can be improved. Suitable for mass production.
[0022]
The energization joining apparatus may further include a conveying device 90 that automatically supplies the temporarily joined member, that is, the temporarily joined body, to the heat treatment unit 80. The transfer device is configured such that a robot apparatus 91 having a known structure for taking out a temporary joined body from between upper and lower energized electrodes on the energizing joining apparatus 1 and a plurality of temporary joined bodies taken out by the robot apparatus 91 are collected in the heat treatment unit 80. And a conveyor 92 to be sent to the vehicle. The robot device 91 includes an arm 911 that can swing within a range of an angle θ, and a chuck 912 attached to the tip of the arm. By performing a heat treatment on the separately provided heat treatment portion, a plurality of temporary joined bodies can be heat-treated in a batch manner, so that they can be joined efficiently. Therefore, it is suitable for manufacturing a large number of joined bodies made of the same product. Although not shown in the drawing, the members to be joined are supplied in a state of being stacked one above the other by a supply conveyor provided in the middle of the swing range of the arm 911, and are gripped by the chuck and automatically between the upper and lower energizing electrodes. It may be supplied automatically and pressed by these energizing electrodes while being held by the chuck.
Although not shown, an apparatus may be provided that performs automatic conveyance from the TP magazine to the bonding apparatus, from the bonding apparatus to the heat treatment furnace, and further from the heat treatment furnace to the cooled or processed bonded article magazine.
[0023]
[Example 2]
A case where the end face of the thin wire N1 and one surface of the plate N2 as shown in FIG. 7A will be described. Here, the wire N1 is made of molybdenum and has a length L. 2 = 25 mm, outer diameter d Three = 5 mm, the plate material N2 is made of tungsten, and the diameter d Four = 30mm and wall thickness is t 2 = 5 mm disk. In this case, the end surface of the wire N1 and the surface of the plate N2 that are in contact with each other are processed so as to be in uniform contact. Preferably, it is polished to a mirror surface. The wire material and the plate material thus prepared and butted against each other were first temporarily joined by the energization joining apparatus 1 in the same manner as in Example 1. At that time, it was pressed by the upper and lower energizing electrodes with an initial pressing force of 5 megapascals.
[0024]
In this state, the atmosphere control device is operated to evacuate the chamber C to obtain a vacuum state (5 × 10 5 -2 Torr), the preset pressure set by the pressing device was set to 2 megapascals, and a DC pulse current of 200 to 600 amperes (A) was applied to the wire and plate through the vertical conducting electrode assembly at 3 to 12 volts (V). As the current flowed, the pipe heated up and became hot, so we measured it with a non-contact infrared radiation thermometer. The pressing force was maintained by feedback control of the pressure between 1 and 2 megapascals until the temperature of the joined portion reached 1350 ° C. The energization was stopped 5 minutes after the energization started. As a result, a temporary joined body N3 of wire and plate as shown in FIG. 7B was completed. This temporary joined body N3 was heat-treated using a vacuum heat treatment furnace of the heat treatment part 80 for a heat treatment temperature of 1180 ° C. and a heat treatment time of 40 to 60 minutes. By this heat treatment, the joining of the wire and the plate became complete.
In the above embodiment, only the joining of the stainless steel thin pipe and the joining of the molybdenum wire and the tungsten plate have been described, but in addition to joining of various members having a small joining area, joining of members of various materials. It is possible to use the method and apparatus of the present invention. For example, as shown in FIG. 8A, when joining a plurality of small-diameter columnar or cylindrical chips O2 to the substrate O1, as shown in FIG. 8B, the small gear P2 is connected to the disk P1. As shown in FIG. 8C, when the cam member Q2 is joined to the substrate Q1, as shown in FIG. 8D, a plurality of small cams R1 to R8 having a plurality of different shapes are joined. When R3 is joined adjacently, as shown in FIG. 8E, there is a case where a small part S2 is joined to the block material S1.
[0025]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(B) The members of small joint areas, such as thin pipes, can be easily buckled in a fully sealed state over the entire contact surface by the pulse current welding method in which solid phase diffusion bonding is used to join the members. It is possible to mass-produce high-quality bonded parts without causing bending deformation and the like and having the same strength as the base material.
(B) Members of different or similar materials that cannot be joined by conventional joining methods can be easily joined together.
(C) Since pedestal-shaped parts can be manufactured by pulse-electrically joining small-piece members to the substrate material without cutting into complex shapes by cutting (milling, electrical discharge machining, etc.) from block-shaped materials, Significant process reduction and cost reduction.
(D) It can be easily made with an integral shape or undercut shape of a flat part and a protruding part that have a right angle or acute angle that cannot be cut with an end mill edge, and the shape design is more than that produced by cutting from an integral member. Increases freedom.
(E) Solid phase diffusion bonding parts can be easily mass-produced in a short time at a low cost.
(F) Compared to brazed and welded parts, it is possible to produce parts that are more reliable in terms of organization and mechanical properties.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a pulse current welding apparatus for small joint surfaces according to the present invention.
FIG. 2 is a cross-sectional view of a small-junction-surface pulse energization bonding apparatus viewed along line AA in FIG.
FIG. 3 is a diagram showing a connection relationship between electricity and a control system of the pulse energization joining device for a small joining surface in FIG. 1;
4 is a perspective view showing a member and a temporary joined body of the first embodiment that are joined using the pulse current joining apparatus for small joining surfaces of FIG. 1; FIG.
5 is a flowchart showing feedback control of the pressing force of the pulsed joining apparatus for small joining surfaces of FIG. 1. FIG.
FIG. 6 is a view showing a modification of the pulse energization bonding apparatus for small bonding surfaces according to the present invention.
7 is a perspective view showing a member and a temporary joined body of a second embodiment that are joined by using the pulse energization joining device for small joining surfaces of FIG. 1. FIG.
FIG. 8 is a schematic perspective view showing another example of joining using a pulse energization joining device for small joining surfaces.
1 Pulse current welding equipment
10 frame device 20 movable table device
21 movable table 30 energizing electrode device
31 Lower conducting electrode assembly 32 Upper conducting electrode assembly
33 Lower conducting electrode 34 Upper conducting electrode
40 pressing device 50 housing
51 Lower housing part 52 Upper housing part
60 control device 61 pressure sensor
62 Pressure sensor 63 Temperature sensor
70 Power supply device 71 Switch device
80 Heat treatment section 90 Transport device

Claims (6)

互いに接合すべき小接合面を有する複数の部材を、所望の雰囲気に保持されたチャンバ内に入れかつ小接合面を当接させた状態で対の通電電極により挟み、前記複数の部材に前記対の通電電極を介して所望の電圧及び電流のパルス電流を流して前記小接合面で接合する小接合面用パルス通電接合方法において、
前記パルス電流の通電開始前に所望の第1の押圧力で前記複数の部材を押圧し、
前記パルス電流の通電開始後前記チャンバ内の温度が前記接合される複数の部材の材質及び寸法によって決まる温度に達した後、前記材質及び寸法によって決まる第2の押圧力で前記複数の部材を押圧し、
前記複数の部材を座屈、屈曲変形等を起こさせることなく固相拡散接合させて仮接合体にすることを特徴とする小接合面用パルス通電接合方法。
A plurality of members having small joining surfaces to be joined to each other are placed in a chamber maintained in a desired atmosphere and sandwiched by a pair of energizing electrodes in a state where the small joining surfaces are in contact with each other, and the pair of members are sandwiched between the plurality of members. In the pulse energization joining method for small joint surfaces in which a pulse current of a desired voltage and current is passed through the energizing electrode and joined at the small joint surface,
Pressing the plurality of members with a desired first pressing force before the start of energization of the pulse current,
After energization of the pulse current, after the temperature in the chamber reaches a temperature determined by the material and dimensions of the members to be joined, the members are pressed with a second pressing force determined by the material and dimensions. And
A pulse energization joining method for small joining surfaces, characterized in that the plurality of members are bonded by solid phase diffusion bonding without causing buckling, bending deformation or the like to form a temporary joined body.
請求項1に記載の小接合面用パルス通電接合方法において、
前記第2の押圧力での押圧を、前記部材に加えられる押圧力を常時圧力センサで検出し、フィードバックさせて制御する小接合面用パルス通電接合方法。
In the pulse energization joining method for small joint surfaces according to claim 1,
The pulse energization joining method for small joining surfaces, in which the pressing with the second pressing force is detected by a pressure sensor that is constantly applied to the member and fed back to control.
請求項1又は2に記載の小接合面用パルス通電接合方法において、前記小接合面を鏡面に研磨する小接合面用パルス通電接合方法。  The pulse energization joining method for small joint surfaces according to claim 1 or 2, wherein the small joint surface is polished into a mirror surface. 請求項1、2又は3に記載の小接合面用パルス通電接合方法において、更に、
前記仮接合された部材を前記部材の材質及び寸法によって決まる温度及び時間により熱処理を施すことを特徴とする小接合面用パルス通電接合方法。
In the pulse energization joining method for small joint surfaces according to claim 1, 2, or 3,
A pulse energization joining method for small joining surfaces, characterized in that the temporarily joined member is heat-treated at a temperature and time determined by the material and dimensions of the member.
請求項4に記載の小接合面用パルス通電接合方法において、
前記熱処理を、前記仮接合に引き続いて前記チャンバ内で前記通電電極により熱処理電流を流して行うことを特徴とする小接合面用パルス通電接合方法。
In the pulse energization joining method for small joint surfaces according to claim 4,
A pulse energization joining method for small joining surfaces, wherein the heat treatment is performed by passing a heat treatment current through the energizing electrode in the chamber following the temporary joining.
請求項4に記載の小接合面用パルス通電接合方法において、
前記熱処理を、前記仮接合された複数の仮接合体をまとめて熱処理炉によって行うことを特徴とする小接合面用パルス通電接合方法。
In the pulse energization joining method for small joint surfaces according to claim 4,
A pulse energization joining method for small joint surfaces, wherein the heat treatment is performed in a heat treatment furnace by combining the plurality of temporarily joined temporary joined bodies.
JP2001301600A 2001-09-28 2001-09-28 Pulse current welding method for small joint surface Expired - Fee Related JP4080716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301600A JP4080716B2 (en) 2001-09-28 2001-09-28 Pulse current welding method for small joint surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301600A JP4080716B2 (en) 2001-09-28 2001-09-28 Pulse current welding method for small joint surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007128257A Division JP4533401B2 (en) 2007-05-14 2007-05-14 Pulse current welding equipment for small joint surfaces

Publications (2)

Publication Number Publication Date
JP2003112264A JP2003112264A (en) 2003-04-15
JP4080716B2 true JP4080716B2 (en) 2008-04-23

Family

ID=19121988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301600A Expired - Fee Related JP4080716B2 (en) 2001-09-28 2001-09-28 Pulse current welding method for small joint surface

Country Status (1)

Country Link
JP (1) JP4080716B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030013A (en) * 2005-07-29 2007-02-08 Hitachi Ltd Electric-joining method and electric-joining apparatus
JP5706193B2 (en) * 2011-03-02 2015-04-22 株式会社タカコ Manufacturing method of sliding member
JP5780594B2 (en) * 2011-10-21 2015-09-16 アキム株式会社 Welding method and apparatus
WO2013076759A1 (en) * 2011-11-22 2013-05-30 三菱電機株式会社 Metal bonding method
KR102043679B1 (en) * 2017-09-29 2019-11-12 서울대학교산학협력단 Activated sintering apparatus having pressure control part
CN113492252A (en) * 2021-06-10 2021-10-12 河北荣泰模具科技股份有限公司 Automatic fusion welding device for production of PTA process punch

Also Published As

Publication number Publication date
JP2003112264A (en) 2003-04-15

Similar Documents

Publication Publication Date Title
US6515250B2 (en) Electric joining method and apparatus and a joined unit of members
US20070023401A1 (en) Electric joining method and electric joining apparatus
WO2011162345A1 (en) Joining method and joining apparatus
WO2012033040A1 (en) Welding method and welding device
JP4533401B2 (en) Pulse current welding equipment for small joint surfaces
JP4080716B2 (en) Pulse current welding method for small joint surface
US4734552A (en) Induction heated pressure welding
JP2007301590A (en) Method for manufacturing joined body
US3851138A (en) Diffusion bonding of butt joints
JP5427746B2 (en) Spot welding equipment
US20070220743A1 (en) Electric current bonding apparatus and electric current bonding method
EP0306036B1 (en) A high-power-density beam welding method in combination with upset welding and apparatus therefor
JP2004243333A (en) Welding apparatus and welding method
JP2007175740A (en) Electric current bonding process and apparatus
WO2009055758A2 (en) Electric induction brazing in an inert atmosphere
JPS6235868B2 (en)
JP2005224832A (en) Method and device for producing electron acceleration tube
JP7255119B2 (en) Indirect spot welding device and welding method
JP6140023B6 (en) Joining method and apparatus for producing a long rod-shaped bonding material from a short rod-shaped workpiece
JP6140023B2 (en) Joining method and apparatus for producing a long rod-shaped bonding material from a short rod-shaped workpiece
JP2017104877A (en) Joining method using laser
JP2003183708A (en) Cooling device for current-carrying electrode and assembly of current-carrying electrode and cooling device
CN117444487A (en) Method for improving welding quality by electric pulse treatment
JP2022049597A (en) Processing method for semiconductor crystal body and processing device for semiconductor crystal body
Avagyan Diffusion brazing and welding of the accelerating structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees