JP4075980B2 - Evaluation method of natural mountain by drilling data in mountain tunnel - Google Patents

Evaluation method of natural mountain by drilling data in mountain tunnel Download PDF

Info

Publication number
JP4075980B2
JP4075980B2 JP2002118715A JP2002118715A JP4075980B2 JP 4075980 B2 JP4075980 B2 JP 4075980B2 JP 2002118715 A JP2002118715 A JP 2002118715A JP 2002118715 A JP2002118715 A JP 2002118715A JP 4075980 B2 JP4075980 B2 JP 4075980B2
Authority
JP
Japan
Prior art keywords
pressure
drilling
feed
corrected
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002118715A
Other languages
Japanese (ja)
Other versions
JP2003314189A (en
Inventor
隆生 村上
城太郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP2002118715A priority Critical patent/JP4075980B2/en
Publication of JP2003314189A publication Critical patent/JP2003314189A/en
Application granted granted Critical
Publication of JP4075980B2 publication Critical patent/JP4075980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Earth Drilling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油圧ジャンボ式の穿孔機で穿孔作業行なうときに、穿孔機の穿孔速度と種々の負荷を計測して地山を評価する山岳トンネルにおける穿孔データによる地山の評価方法に関する。
【0002】
【従来の技術】
従来、トンネル等の地下空洞の掘削に際し、切羽前方あるいは空洞周辺の地質を的確に評価し、予測することは施工を進める上から極めて重要であるとされている。
【0003】
そこで、油圧式パーカッションドリルの試験削孔により得られた削孔データを用いて、工事の進捗を妨げることなく、より原位置に即して迅速かつ的確に岩盤評価及び切羽前方地質の予測を行なうことのできる油圧ドリルによる削孔データを用いた岩盤評価及び切羽前方地質の予測方法に関する特公平7−49756号の発明が知られている。
【0004】
この公知の発明は、切羽に垂直方向30mから50mを削孔し、その時に要するエネルギーを計測して、切羽前方の地山の硬さを評価する方法であるが、この場合、通常の穿孔の他に、わざわざ前方を穿孔する必要がある問題点と、30mから50mのロッドを装着して削孔するため、削孔せずにロッドを装着した状態で回転、送り、打撃に要するエネルギーを把握できず、得られた値が地山だけのものではないという問題点がある。即ち、30mから50mのロッドを装着して気中で回転、送り、打撃に要するエネルギーを計測しようとしても、ロッドが垂れてしまって計測不可能である。
【0005】
また、上記の発明では、地山の硬さの程度だけしか判断できず、地山も岩片も柔らかいか硬いか、または破砕されているか、さらには粘土のようにビット、ロッドに巻き付くかなどの状態は判断できず、穿孔しているトンネルの支保工のタイプを決定する資料とはなり得ないという問題点がある。
【0006】
【発明が解決しようとする課題】
本発明は、穿孔している地山の部分的に弱い部分や、そのトンネルで過去の切羽の状況との比較ができて、設けられる支保工の構造を決定する指標とすることのできる山岳トンネルにおける穿孔データによる地山の評価方法を提供する。
【0007】
【課題を解決するための手段】
本発明は、穿孔する地山の性状に合わせて、穿孔機の打撃圧力と最大送り圧力を設定し、所定のロッドとビットを装着した穿孔機を下半部、側壁部、肩部、天井部に向けて、それぞれ無負荷状態で設定した打撃圧力で打撃しながら、想定される複数の穿孔速度で穿孔機に送りをかけ、穿孔機の回転圧力と送り圧力を計測し、得られたデータをガイドシェル角度にまとめ、無負荷状態での回転圧力と送り圧力を設定した後、穿孔機で地山を穿孔するときの穿孔機の穿孔長、穿孔速度、打撃圧力、回転圧力、送り圧力を計測し、その計測した回転圧力と送り圧力から、穿孔したガイドシェル角度に相当する無負荷状態での回転圧力および送り圧力を差し引いて、補正後の回転圧力と送り圧力として評価を行なう山岳トンネルにおける穿孔データによる地山の評価方法において、同一切羽における評価を行なう場合は、穿孔の開始付近と終了付近のデータを除外し、同一切羽の各穿孔ごとに、打撃圧力、穿孔速度、補正後の回転圧力および補正後の送り圧力を平均して、穿孔速度当りの補正後の回転圧力と穿孔速度当りの補正後の送り圧力をそれぞれ座標軸にとり、各穿孔ごとの平均値から得られる値をプロットし、傾向が異なる穿孔があるかどうかを評価する山岳トンネルにおける穿孔データによる地山の評価方法からなり、さらに本発明は、上記の地山の評価の際に、切羽ごとの評価を行う場合は、各切羽における穿孔長ごとに穿孔速度当りの補正後の回転圧力と穿孔速度当りの補正後の送り圧力を算定した後、穿孔速度当りの補正後の回転圧力の平均値と標準偏差および穿孔速度当りの補正後の送り圧力の平均値と標準偏差を求め、穿孔速度当りの補正後の回転圧力と穿孔速度当りの補正後の送り圧力をそれぞれ座標軸にとり、切羽ごとに平均値と標準偏差をプロットして、切羽ごとの傾向を評価する山岳トンネルにおける穿孔データによる地山の評価方法からなる。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態につき説明するが、図1は本発明の山岳トンネルにおいて穿孔を行なう油圧ジャンボ式の穿孔機1の一実施形態の側面図であり、前方にはドリフタ2を保持したガイドシェル3を装備しており、機体上には、ガイドスライド操作検出圧力スイッチ4とフィード長さL及び速度検出油量センサ5が設けられ、機体下部にはコントロールボックス6と、打撃圧力、回転圧力および送り圧力をそれぞれ検出する油圧検出センサ7と、ノートパソコン等の記録装置8及び記録装置用受け台9が設けられている。
【0009】
そこで本発明では、穿孔作業を行なう前に過去の経験から、その地山の性状に合わせて、穿孔機1の打撃圧力と最大送り圧力を設定する。
【0010】
次に、穿孔機1に所定のロッドとビットをドリフタ2に装着し、穿孔機1のガイドシェル3の角度を下半部、側壁部、肩部、天井部に向くように、例えば−15°、0°、45°、90°のそれぞれの角度を変えながら、それぞれについて、地山を掘らない無負荷状態で上記で設定した打撃圧力で空打ち状態の打撃をしながら、その地山の性状から想定される複数の穿孔速度、例えば1.0m/min.、2.0m/min.、3.0m/min.で穿孔機1に送りをかけ、その穿孔機1の回転圧力と送り圧力を計測する。
【0011】
計測で得られたデータを前記ガイドシェル3の角度−15°、0°、45°、90°の角度別にまとめ、無負荷状態での回転圧力と送り圧力を計測する。
【0012】
上記の計測した測定結果を、図2のガイドシェル角度と穿孔速度との表に示しており、表に示した送り圧力の補正値と回転圧力の補正値がそれぞれ図2に示すごとく得られる。
【0013】
次に、穿孔機1で地山の1つの切羽断面にそれぞれ15個の穿孔を行ない、各孔ごとの穿孔機1の穿孔長、穿孔速度、打撃圧力、回転圧力、送り圧力を計測したデータを図3の(A)に元データとして示している。
【0014】
上記の(A)の元データの計測した回転圧力および送り圧力から、図2で示した穿孔したガイドシェル3の角度に相当する無負荷状態での回転圧力及び送り圧力の補正値を差し引き、図3の(B)に示すデータ補正した補正後の回転圧力と送り圧力としている。
【0015】
なお、上記図3の元データのうち吹付コンクリートを穿孔する影響が及ぶ部分、例えば吹付厚さ+5cmの穿孔の開始付近の部分と、穿孔終了の影響が及ぶ部分、例えば穿孔長−10cmの終了付近のデータはそれぞれDで示す範囲を除外し、同一切羽の各穿孔ごとに、打撃圧力、穿孔速度、補正後の回転圧力および補正後の送り圧力を平均して、穿孔速度当りの補正後の回転圧力と穿孔速度当りの補正後の送り圧力をそれぞれ座標にとり各穿孔ごとの平均値から得られる値をプロットし、傾向が異なる穿孔があるかどうかを表する。
【0016】
即ち、穿孔データの平均値処理において、穿孔速度をV、打撃圧力をPp 、補正した回転圧力をPr −Pr O、そして補正した送り圧力をPf −Pf Oとし、算出した平均値をもとに、図3では(Pr −Pr O)/Vすなわち、穿孔速度1m/min.当りの穿孔機1の正味の回転圧力の平均が23.8で、(Pf −Pf O)/Vすなわち、穿孔速度1mm/min.当りの穿孔機1の正味送り圧力の平均が10.5となる。
【0017】
なお、上記の打撃圧力の平均値は、設定した値と相違がないかどうかを確認するものである。
【0018】
そこで、上記の同一切羽における個別評価を図4の(Pr −Pr O)/Vを縦軸に(Pf −Pf O)/Vを横軸にした座標に示しており、これは地山の209mのポイントから1.9m地点と3.9m地点の2m離れた地山の同一切羽の2つのグループで得られた値をプロットしたものである。
【0019】
ここで、(Pr −Pr O)/Vを縦軸に、(Pf −Pf O)/Vを横軸にした座標を図5に示すようにA、B、C、Dの4つの領域に分けて、それぞれの領域の特性を述べると、A領域は、送り圧力も回転圧力も小さいので、地山も穿孔した岩片も軟らかい状態であり、B領域は、送り圧力は大きく、回転圧力は小さいので、地山は硬いが、穿孔した岩片は軟らかく、細かく破砕された状態であり、C領域は、送り圧力も回転圧力も大きいので、地山も穿孔した岩片も硬いか、もしくは岩片は大きく破砕されている状態であり、D領域は、送り圧力は小さく、回転圧力は大きいので、地山は軟らかいが、岩片は硬いか、もしくは粘土のようにビットやロッドに巻き付く状態である。
【0020】
図4において209+1.9の肩部Bの(Pf −Pf O)/Vが他に比べて小さい。このことは、この部分に他と相違する軟らかい介在物や風化帯等の何かが存在することである。
【0021】
しかしながら(Pr −Pr O)/Vの値は同一切羽の2つのグループではほぼ同程度であるので、破砕された岩塊の硬さは他と同一であることが判る。
【0022】
次に、切羽ごとの評価を行なう場合は、同一切羽における全データの各データごとに穿孔速度当りの補正後の回転圧力と穿孔速度当りの補正後の送り圧力を算定した後、穿孔速度当りの補正後の回転圧力(Pr −Pr O)/Vの平均値と標準偏差および穿孔速度当りの補正後の送り圧力(Pf −Pf O)/Vの平均値と標準偏差を求め、穿孔速度当りの補正後の回転圧力と穿孔速度当りの補正後の送り圧力をそれぞれ座標軸により、切羽ごとに平均値と標準偏差をプロットして、切羽ごとの傾向を評価する。
【0023】
図6は、209m+1.9の各データごとの(Pr −Pr O)/Vおよび(Pf −Pf O)/Vを算定し、それぞれの平均値と標準偏差を算定した状況の一部を示しており、その結果を(Pr −Pr O)/Vを縦軸に、(Pf −Pf O)/Vを横軸にして座標に示したものが、図7である。
【0024】
これを図において、各切羽における全体評価の比較を座標に標準偏差の枠内に平均値を丸で示しており、図中209+1.9系列2のAの地山と209+3.9系列4のBは同程度の地山であり、これと比べて209+88.5系列6のCと209+90.0系列8のDは、地山自体を硬く、岩塊も硬いことが判る。
【0025】
さらに209+90.0系列8のDは、209+88.5系列6のCと比べて領域が広いため、全体としては硬いが、岩塊に硬軟を繰り返す地山であり、不均一であることが判る。
【0026】
【発明の効果】
以上に説明した本発明における山岳トンネルにおける穿孔データによる地山の評価方法によれば、穿孔している地山の部分的に弱い部分や、そのトンネルで過去の切羽の状況と比較ができるので、設けられる支保工の構造を決定する指標とすることができる。
【0027】
また本発明は、例えば地山の状態が、ある領域は地山も岩片も柔らかいとか、他の領域は地山は硬いが、岩片は柔らかく、細かく破砕されているとか、また他の領域は地山も岩片も硬い、もしくは岩片は大きく破砕されているとか、さらに他の領域は地山は柔らかいが、岩片は硬い、もしくは粘土のようにビット、ロッドに巻き付くというような性状が判断できるので最適な支保工のタイプを決定する資料が得られる。
【図面の簡単な説明】
【図1】本発明の山岳トンネルの穿孔用の穿孔機の一実施形態における側面図である。
【図2】本発明の評価方法における無負荷状態で圧力測定をする測定結果と送り圧力及び回転圧力の補正値を示す図表である。
【図3】本発明の評価方法で地山を穿孔して計測した元データとその元データを図2の補正値で補正した補正データを示す図表である。
【図4】本発明の同一切羽における個別評価例の座標を示す図表である。
【図5】本発明の(Pr−PrO)/Vを縦軸に、(Pf−PfO)/Vを横軸にした座標の4領域を示す図表である。
【図6】本発明の評価方法における各切羽における全体評価を行う際の各データごとの(Pr−PrO)/Vおよび(Pf−PfO)/Vを算定し、それぞれの平均値と標準偏差を算定した状況の一部を示す図表である。
【図7】本発明の評価方法における図6の結果を座標で示す図表である。
【図8】本発明の各切羽における全体評価の比較例の座標を示す図表である。
【符号の説明】
1 穿孔機
3 ガイドシェル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating a natural ground based on drilling data in a mountain tunnel for evaluating a natural ground by measuring the drilling speed and various loads of the drilling machine when performing a drilling operation with a hydraulic jumbo type drilling machine.
[0002]
[Prior art]
Conventionally, when excavating underground cavities such as tunnels, it has been said that it is extremely important to accurately evaluate and predict the geology in front of the face or around the cavity.
[0003]
Therefore, using the drilling data obtained by the test drilling of the hydraulic percussion drill, the rock mass evaluation and the geology ahead of the face are predicted more quickly and accurately according to the original position without hindering the progress of the construction. An invention of Japanese Patent Publication No. 7-49756 relating to a rock evaluation using a drilling data by a hydraulic drill capable of predicting and a method of predicting the geology ahead of the face is known.
[0004]
This known invention is a method of drilling holes 30m to 50m perpendicular to the face, measuring the energy required at that time, and evaluating the hardness of the natural ground in front of the face. In addition, it is necessary to perforate the front and both the 30m and 50m rods are drilled for drilling, so the energy required for rotation, feeding and striking with the rod mounted without drilling is grasped. There is a problem that the obtained value is not only for natural mountains. That is, even if it is attempted to measure the energy required for rotation, feeding and striking in the air with a 30 to 50 m rod attached, the rod will sag and cannot be measured.
[0005]
Moreover, in the above invention, only the degree of hardness of the natural ground can be judged, whether the natural ground and the rock fragment are soft or hard, or crushed, or whether it wraps around a bit or rod like clay, etc. However, it is impossible to judge the condition of the tunnel, and it cannot be used as a material for determining the type of support for the tunnel that has been drilled.
[0006]
[Problems to be solved by the invention]
The present invention is a mountain tunnel that can be used as an index for determining the structure of a supporting work that can be compared with a partially weak part of a drilled ground and the situation of a past face in the tunnel. A method for evaluating natural ground using drilling data is provided.
[0007]
[Means for Solving the Problems]
The present invention sets the percussion pressure and the maximum feed pressure of the drilling machine according to the nature of the natural ground to be drilled, and sets the drilling machine equipped with a predetermined rod and bit to the lower half, the side wall, the shoulder, and the ceiling. For each of these, while striking with the impact pressure set in the no-load state, feed the drilling machine at multiple possible drilling speeds, measure the rotational pressure and feed pressure of the drilling machine, and obtain the obtained data. Summarize the guide shell angle, set the rotation pressure and feed pressure in the no-load state, and then measure the drilling length, drilling speed, impact pressure, rotational pressure, and feed pressure of the drilling machine when drilling the ground with the drilling machine Drilling in a mountain tunnel that evaluates the corrected rotational pressure and feed pressure by subtracting the rotational pressure and feed pressure in the unloaded state corresponding to the drilled guide shell angle from the measured rotational pressure and feed pressure. To data In the evaluation method that the natural ground, if the evaluation in the same working face, excluding the data in the vicinity of and end near the beginning of the perforations, each perforation in the same working face, percussion pressure, drilling speed, rotation pressure after correction and The corrected feed pressure is averaged, the corrected rotation pressure per drilling speed and the corrected feed pressure per drilling speed are plotted on the coordinate axes, and the values obtained from the average value for each drilling are plotted. It consists of an evaluation method of natural ground by drilling data in a mountain tunnel that evaluates whether there is a different drilling, and the present invention further provides an evaluation method for each face when evaluating the natural ground . after calculating the feed pressure corrected per drilling speed and the rotation pressure after correction per drilling speed for each drilling length, the average value of the rotation pressure after correction per perforation rate and the standard deviation and the drilling speed equivalent Obtain the average value and standard deviation of the feed pressure after correction, plot the corrected rotation pressure per drilling speed and the corrected feed pressure per drilling speed on the coordinate axes, and plot the average value and standard deviation for each face. It consists of a method for evaluating natural ground by drilling data in a mountain tunnel that evaluates the tendency of each face.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
1 is a side view of an embodiment of a hydraulic jumbo type drilling machine 1 for drilling in a mountain tunnel according to the present invention. It is equipped with a guide shell 3 that holds a drifter 2. A guide slide operation detection pressure switch 4, a feed length L and a speed detection oil amount sensor 5 are provided on the machine body, and a control box 6 and a lower part of the machine body. A hydraulic pressure detection sensor 7 for detecting the impact pressure, the rotational pressure and the feed pressure, a recording device 8 such as a notebook personal computer, and a recording device cradle 9 are provided.
[0009]
Therefore, in the present invention, the percussion pressure and the maximum feed pressure of the drilling machine 1 are set according to the nature of the natural ground from past experience before performing the drilling operation.
[0010]
Next, a predetermined rod and bit are attached to the drifter 2 in the drilling machine 1, and the angle of the guide shell 3 of the drilling machine 1 is set to, for example, −15 ° so as to face the lower half, the side wall, the shoulder, and the ceiling. While changing each angle of 0 °, 45 °, and 90 °, the characteristics of the natural ground while striking in the blanking state with the impact pressure set above in an unloaded state where no natural ground is dug. From a plurality of perforation speeds, for example, 1.0 m / min. 2.0 m / min. 3.0 m / min. Is fed to the punch 1 and the rotational pressure and feed pressure of the punch 1 are measured.
[0011]
The data obtained by the measurement is collected according to the angles of the guide shell 3 of −15 °, 0 °, 45 °, and 90 °, and the rotational pressure and feed pressure in the no-load state are measured.
[0012]
The measurement results measured above are shown in the table of guide shell angle and drilling speed in FIG. 2, and the feed pressure correction value and the rotation pressure correction value shown in the table are obtained as shown in FIG.
[0013]
Next, 15 holes are drilled in each face section of the natural ground with the drilling machine 1, and the data obtained by measuring the drilling length, drilling speed, impact pressure, rotational pressure, and feed pressure of the drilling machine 1 for each hole are obtained. FIG. 3A shows the original data.
[0014]
The correction values of the rotational pressure and feed pressure in the no-load state corresponding to the angle of the drilled guide shell 3 shown in FIG. 2 are subtracted from the measured rotational pressure and feed pressure of the original data in (A) above. The corrected rotation pressure and feed pressure after the data correction shown in 3 (B) are used.
[0015]
In addition, in the original data of FIG. 3 above, the portion affected by drilling of shotcrete, for example, the portion near the start of drilling with a spray thickness of +5 cm, and the portion affected by the end of drilling, for example, near the end of the drilling length of −10 cm The above data excludes the range indicated by D and averages the impact pressure, drilling speed, corrected rotational pressure and corrected feed pressure for each drilling of the same face, and the corrected rotation per drilling speed. The values obtained from the average value for each perforation are plotted taking the pressure and the corrected feed pressure per perforation speed as coordinates, and indicate whether there are perforations with different tendencies.
[0016]
That is, in the average value processing of the drilling data, the drilling speed is V, the impact pressure is P p , the corrected rotational pressure is Pr-Pr O, and the corrected feed pressure is Pf-Pf O. In FIG. 3, (Pr-PrO) / V, that is, a drilling speed of 1 m / min. The average net rotational pressure of the perforator 1 per unit is 23.8, and (Pf-PfO) / V, that is, the perforation speed is 1 mm / min. The average net feed pressure of the perforating machine 1 is 10.5.
[0017]
In addition, it is confirmed whether the average value of said striking pressure is not different from the set value.
[0018]
Therefore, the individual evaluation on the same face is shown in the coordinates of (Pr-PrO) / V on the vertical axis and (Pf-PfO) / V on the horizontal axis in FIG. This is a plot of the values obtained from two groups of the same face of a natural mountain 2m away from the point of 1.9m and 3.9m.
[0019]
Here, the coordinates with (Pr−PrO) / V on the vertical axis and (Pf−PfO) / V on the horizontal axis are divided into four regions A, B, C, and D as shown in FIG. The characteristics of each region are described below. Since the feed pressure and the rotational pressure are small in the region A, the ground and the rocks drilled are soft, and in the region B, the feed pressure is large and the rotational pressure is small. The ground is hard, but the drilled rock fragments are soft and finely crushed. In the region C, both the feed pressure and the rotational pressure are large, so the ground rock and the drilled rock fragments are hard, or the rock fragments are largely crushed. In the D region, the feed pressure is small and the rotational pressure is large, so the ground is soft, but the rock is hard, or it is wrapped around a bit or rod like clay.
[0020]
In FIG. 4, (Pf−PfO) / V of the shoulder B of 209 + 1.9 is smaller than the others. This means that there are some soft inclusions and weathering zones that are different from others.
[0021]
However, since the value of (Pr-PrO) / V is almost the same in the two groups of the same face, it can be seen that the hardness of the crushed rock mass is the same as the others.
[0022]
Next, when evaluating each face, after calculating the corrected rotational pressure per piercing speed and the corrected feed pressure per piercing speed for each data of all data on the same face, The average value and standard deviation of the corrected rotational pressure (Pr-PrO) / V and the average value and standard deviation of the corrected feed pressure per punching speed (Pf-PfO) / V are obtained. The corrected rotation pressure and the corrected feed pressure per piercing speed are plotted on the coordinate axes, and the average value and standard deviation are plotted for each face to evaluate the tendency for each face.
[0023]
FIG. 6 shows (Pr-PrO) / V and (Pf-PfO) / V for each data of 209m + 1.9, and shows a part of the situation where the average value and standard deviation are calculated. FIG. 7 shows the results in terms of (Pr-PrO) / V on the vertical axis and (Pf-PfO) / V on the horizontal axis.
[0024]
In FIG. 8 , the average value is shown in a circle within the standard deviation frame with the comparison of the overall evaluation at each face as coordinates. In the figure, 209 + 1.9 series 2 A ground and 209 + 3.9 series 4 B is a natural ground of the same degree. Compared with this, C of 209 + 88.5 series 6 and D of 209 + 90.0 series 8 are hard ground and the rock mass is hard.
[0025]
Further, D of 209 + 90.0 series 8 has a wide area compared to C of 209 + 88.5 series 6, so that it is hard as a whole, but it is a ground that repeats hardness and softness in the rock mass.
[0026]
【The invention's effect】
According to the evaluation method of the natural ground by the drilling data in the mountain tunnel according to the present invention described above, since it can be compared with the partially weak part of the drilled natural mountain, the situation of the past face in the tunnel, It can be used as an index for determining the structure of the support work provided.
[0027]
In addition, the present invention is, for example, a state where the ground is soft in some areas, the ground is soft, and in other areas, the ground is hard, but the rock is soft and finely crushed, and other areas are ground. Because the mountain and rock fragments are hard, or the rock fragments are largely crushed, and in other areas the ground mountain is soft, but the rock fragments are hard, or it can be judged that it is wrapped around a bit or rod like clay Materials are available to determine the optimal support type.
[Brief description of the drawings]
FIG. 1 is a side view of an embodiment of a drilling machine for drilling a mountain tunnel according to the present invention.
FIG. 2 is a table showing measurement results of pressure measurement in the no-load state in the evaluation method of the present invention, and correction values for feed pressure and rotational pressure.
3 is a chart showing original data measured by drilling a natural ground by the evaluation method of the present invention and correction data obtained by correcting the original data with the correction values shown in FIG.
FIG. 4 is a chart showing coordinates of individual evaluation examples in the same face according to the present invention.
FIG. 5 is a chart showing four regions of coordinates according to the present invention with (Pr-PrO) / V on the vertical axis and (Pf-PfO) / V on the horizontal axis.
FIG. 6 calculates (Pr-PrO) / V and (Pf-PfO) / V for each data when performing overall evaluation on each face in the evaluation method of the present invention, and calculates the average value and standard deviation of each. It is a chart which shows a part of the calculated situation.
7 is a chart showing the results of FIG. 6 in the evaluation method according to the present invention in coordinates.
FIG. 8 is a chart showing coordinates of a comparative example of overall evaluation for each face according to the present invention.
[Explanation of symbols]
1 Drilling machine 3 Guide shell

Claims (2)

穿孔する地山の性状に合わせて、穿孔機の打撃圧力と最大送り圧力を設定し、所定のロッドとビットを装着した穿孔機を下半部、側壁部、肩部、天井部に向けて、それぞれ無負荷状態で設定した打撃圧力で打撃しながら、想定される複数の穿孔速度で穿孔機に送りをかけ、穿孔機の回転圧力と送り圧力を計測し、得られたデータをガイドシェル角度にまとめ、無負荷状態での回転圧力と送り圧力を設定した後、穿孔機で地山を穿孔するときの穿孔機の穿孔長、穿孔速度、打撃圧力、回転圧力、送り圧力を計測し、その計測した回転圧力と送り圧力から、穿孔したガイドシェル角度に相当する無負荷状態での回転圧力および送り圧力を差し引いて、補正後の回転圧力と送り圧力として評価を行なう山岳トンネルにおける穿孔データによる地山の評価方法において、同一切羽における評価を行なう場合は、穿孔の開始付近と終了付近のデータを除外し、同一切羽の各穿孔ごとに、打撃圧力、穿孔速度、補正後の回転圧力および補正後の送り圧力を平均して、穿孔速度当りの補正後の回転圧力と穿孔速度当りの補正後の送り圧力をそれぞれ座標軸にとり、各穿孔ごとの平均値から得られる値をプロットし、傾向が異なる穿孔があるかどうかを評価する山岳トンネルにおける穿孔データによる地山の評価方法。 Set the percussion pressure and maximum feed pressure of the drilling machine according to the nature of the natural ground to be drilled, and point the drilling machine equipped with the prescribed rod and bit toward the lower half, side wall, shoulder, and ceiling, While striking with the impact pressure set in the no-load state, feed to the drilling machine at multiple possible drilling speeds, measure the rotational pressure and feed pressure of the drilling machine, and use the obtained data as the guide shell angle. In summary, after setting the rotational pressure and feed pressure in the no-load state, measure the drilling length, drilling speed, impact pressure, rotational pressure, and feed pressure of the drilling machine when drilling the ground with the drilling machine, and measure the measurement By subtracting the rotational pressure and feed pressure in the unloaded state corresponding to the drilled guide shell angle from the measured rotational pressure and feed pressure, the ground pressure based on the drilling data in the mountain tunnel is evaluated as the corrected rotational pressure and feed pressure. of In valence method, if the evaluation in the same working face, excluding the data in the vicinity of and end near the beginning of the perforations, each perforation in the same working face, percussion pressure, drilling speed, rotation pressure and feed the corrected after the correction There are drills with different tendencies by averaging the pressure, plotting the corrected rotation pressure per drilling speed and the corrected feed pressure per drilling speed on the coordinate axes, and plotting the value obtained from the average value for each drilling. A method for evaluating natural ground by drilling data in a mountain tunnel. 穿孔する地山の性状に合わせて、穿孔機の打撃圧力と最大送り圧力を設定し、所定のロッドとビットを装着した穿孔機を下半部、側壁部、肩部、天井部に向けて、それぞれ無負荷状態で設定した打撃圧力で打撃しながら、想定される複数の穿孔速度で穿孔機に送りをかけ、穿孔機の回転圧力と送り圧力を計測し、得られたデータをガイドシェル角度にまとめ、無負荷状態での回転圧力と送り圧力を設定した後、穿孔機で地山を穿孔するときの穿孔機の穿孔長、穿孔速度、打撃圧力、回転圧力、送り圧力を計測し、その計測した回転圧力と送り圧力から、穿孔したガイドシェル角度に相当する無負荷状態での回転圧力および送り圧力を差し引いて、補正後の回転圧力と送り圧力として評価を行なう山岳トンネルにおける穿孔データによる地山の評価方法において、切羽ごとの評価を行う場合は、各切羽における穿孔長ごとに穿孔速度当りの補正後の回転圧力と穿孔速度当りの補正後の送り圧力を算定した後、穿孔速度当りの補正後の回転圧力の平均値と標準偏差および穿孔速度当りの補正後の送り圧力の平均値と標準偏差を求め、穿孔速度当りの補正後の回転圧力と穿孔速度当りの補正後の送り圧力をそれぞれ座標軸にとり、切羽ごとに平均値と標準偏差をプロットして、切羽ごとの傾向を評価する山岳トンネルにおける穿孔データによる地山の評価方法。Set the impact pressure and maximum feed pressure of the drilling machine according to the nature of the natural ground to drill, and point the drilling machine equipped with the predetermined rod and bit toward the lower half, side wall, shoulder, and ceiling, While striking with the impact pressure set in an unloaded condition, feed the drilling machine at multiple possible drilling speeds, measure the rotational pressure and feed pressure of the drilling machine, and use the obtained data as the guide shell angle. In summary, after setting the rotational pressure and feed pressure in the no-load state, measure the drilling length, drilling speed, impact pressure, rotational pressure, and feed pressure of the drilling machine when drilling the ground with the drilling machine, and measure the measurement By subtracting the rotation pressure and feed pressure in the unloaded state corresponding to the drilled guide shell angle from the measured rotation pressure and feed pressure, it is evaluated as the corrected rotation pressure and feed pressure. of In the evaluation method, when evaluating each face, after calculating the corrected rotational pressure per piercing speed and the corrected feed pressure per piercing speed for each piercing length in each face, The average value and standard deviation of the rotational pressure and the average value and standard deviation of the corrected feed pressure per piercing speed are obtained, and the corrected rotational pressure per piercing speed and the corrected feed pressure per piercing speed are coordinate axes. In the meantime, the average value and standard deviation are plotted for each face, and the tendency of each face is evaluated, and the evaluation method of the natural ground by the drilling data in the mountain tunnel.
JP2002118715A 2002-04-22 2002-04-22 Evaluation method of natural mountain by drilling data in mountain tunnel Expired - Fee Related JP4075980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118715A JP4075980B2 (en) 2002-04-22 2002-04-22 Evaluation method of natural mountain by drilling data in mountain tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118715A JP4075980B2 (en) 2002-04-22 2002-04-22 Evaluation method of natural mountain by drilling data in mountain tunnel

Publications (2)

Publication Number Publication Date
JP2003314189A JP2003314189A (en) 2003-11-06
JP4075980B2 true JP4075980B2 (en) 2008-04-16

Family

ID=29535474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118715A Expired - Fee Related JP4075980B2 (en) 2002-04-22 2002-04-22 Evaluation method of natural mountain by drilling data in mountain tunnel

Country Status (1)

Country Link
JP (1) JP4075980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244101A (en) * 2013-04-27 2013-08-14 中国矿业大学 Rock stratum quality evaluation method along drilling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339425B2 (en) * 2014-06-27 2018-06-06 大成建設株式会社 Drilling condition determination method, drilling length calculation method, and geological logging method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244101A (en) * 2013-04-27 2013-08-14 中国矿业大学 Rock stratum quality evaluation method along drilling
CN103244101B (en) * 2013-04-27 2016-06-01 中国矿业大学 Rock stratum quality evaluation method along drilling

Also Published As

Publication number Publication date
JP2003314189A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
AU2013396723B2 (en) Arrangement for controlling percussive drilling process
WO2010065808A3 (en) Method of monitoring wear of rock bit cutters
JP3380795B2 (en) Rock bed exploration method
Navarro et al. Assessment of drilling deviations in underground operations
WO2021088190A1 (en) Method for using multiple parameters and measurements while drilling to determine coal mass stress peak region and issue early warning
CN103124830A (en) Method and device for monitoring down-the-hole percussion drilling
Abu Bakar et al. Penetration rate and specific energy prediction of rotary–percussive drills using drill cuttings and engineering properties of selected rock units
JP4883405B2 (en) Correlation curve creation method, drilling speed correction method, ground mountain division evaluation table creation method and face front prediction method
JP4075980B2 (en) Evaluation method of natural mountain by drilling data in mountain tunnel
Cigla et al. Computer modeling for improved production of mechanical excavators
JP3721486B2 (en) Evaluation method of ground in tunnel excavation and tunnel excavation method using it
JP2012193592A (en) Forward natural ground evaluation method with water hammer
JP6131160B2 (en) Rock exploration method, rock exploration system, and drilling data correction device for rock exploration
US12006770B2 (en) Method and system for estimating wear of a drill bit
JP5258734B2 (en) Tunnel front face exploration method and exploration system
JP2011122335A (en) Drilling management system
US20200181981A1 (en) Method and apparatus for percussion drilling
JP3943430B2 (en) Method for predicting natural conditions ahead of face and excavation method
JP6339425B2 (en) Drilling condition determination method, drilling length calculation method, and geological logging method
JP3831904B2 (en) Geological rock mass discrimination method
KR20110076022A (en) Prediction of rock mass strength ahead of tunnel face using hydraulic drilling data
Kumar et al. Development of a drill energy utilization index for aiding selection of drill machines in surface mines
US20200072046A1 (en) Method and system for determining a soil class and use during determination of a soil class
Boldyrev et al. The boring sounding of alluvial soils
JPH11294079A (en) Tunnel boring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees