JP4065709B2 - Regeneration method of deteriorated catalyst - Google Patents

Regeneration method of deteriorated catalyst Download PDF

Info

Publication number
JP4065709B2
JP4065709B2 JP2002110672A JP2002110672A JP4065709B2 JP 4065709 B2 JP4065709 B2 JP 4065709B2 JP 2002110672 A JP2002110672 A JP 2002110672A JP 2002110672 A JP2002110672 A JP 2002110672A JP 4065709 B2 JP4065709 B2 JP 4065709B2
Authority
JP
Japan
Prior art keywords
catalyst
deteriorated catalyst
regenerating
molybdenum
catalyst according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002110672A
Other languages
Japanese (ja)
Other versions
JP2003305368A (en
Inventor
浩也 中村
和治 田澤
幸雄 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002110672A priority Critical patent/JP4065709B2/en
Publication of JP2003305368A publication Critical patent/JP2003305368A/en
Application granted granted Critical
Publication of JP4065709B2 publication Critical patent/JP4065709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、プロピレンからアクロレインを、イソブテンまたはターシャリーブタノールからメタクロレインを製造する気相接触反応に使用されるモリブデン−ビスマス−鉄系複合酸化物触媒について、プラント運転で使用した後の劣化触媒を再生する方法に関する。
【0002】
【従来の技術】
モリブデン−ビスマス−鉄系複合酸化物触媒はプロピレンからアクロレイン、イソブテンまたはターシャリーブタノールからメタクロレイン等の選択酸化反応に対して有用な触媒であり、工業的にも用いられている。
【0003】
このような気相接触反応に用いられる触媒は比較的長時間使用され、触媒性能の劣化がある程度進行した時点で新しい触媒と交換される。使用済み触媒は一部有用金属が回収される程度で、他は廃棄処分されるというのがほとんどである。
【0004】
これらの気相接触反応に用いられるモリブデン−ビスマス−鉄系複合酸化物触媒の性能劣化は、主として、モリブデンの昇華によるその損失によって生じることはよく知られている。
【0005】
上記触媒の再生方法に関し、特公平5−29502号公報、特公平5−70503号公報、特許第3140135号公報、特開平7−165663号公報、特開平7−185349号公報及び特開平9−12489号公報等に示されたものがある。
【0006】
例えば、特公平5−29502号公報あるいは特公平5−70503号公報には、モリブデン−ビスマス−鉄系多元酸化物触媒の再生方法として、空気あるいは酸素含有ガス雰囲気中で劣化触媒を加熱処理する方法が提案されている。ところが、これらの方法では再生処理の際に、劣化により実質的に飛散したモリブデンを補うことを行わず、加熱条件下で空気と接触させることで、触媒粒子表面へのモリブデンの粒子内拡散により触媒性能を回復させるというものであるから、再生方法としての効果は十分でない。
【0007】
また、特開平7−165663号公報あるいは特開平9−12489号公報には、前述酸化物触媒の再生方法として、劣化により飛散したモリブデンを補うために実質的に不活性な酸化モリブデンあるいは未使用触媒粉末を混合あるいは粉砕後、混合してから熱処理する方法が提案されている。しかしながら、これらの方法では、モリブデンの補給再生に加熱処理の際の固相反応により、モリブデンを拡散させ再生するものであるから、十分な再生効果が得られないと思われ、また未使用触媒の混合では100%再生が期待できないため工業的な有用性はあまり高くない。
【0008】
【発明が解決しようとする課題】
そこで、この発明の課題は、プロピレンからアクロレインを、イソブテンまたはターシャリーブタノールからメタクロレインを製造する気相接触反応に使用されるモリブデン−ビスマス−鉄系複合酸化物触媒について、プラント運転で使用した後の劣化触媒のより有効な再生方法を提供することにある。
【0009】
【課題を解決するための手段】
この発明者らは、上記課題を解決するために鋭意検討した結果、前記反応に用いるモリブデン−ビスマス−鉄系複合酸化物触媒について、プラント運転で使用して劣化した触媒を再生するに際し、モリブデンを含有する溶液を添加した後、特定の条件下で加熱処理をし、該使用済みの劣化触媒に必要なモリブデンをより有効に補給する方法、同方法においてさらに粉砕工程を含む方法あるいは、同方法においてさらに水性スラリー状にもどしてから再生する方法で、新触媒に匹敵する性能を有する触媒として再生することが可能であることを見いだしたのである。
【0010】
【発明の実施の形態】
以下本発明をさらに詳しく説明する。
この発明で対象となる触媒は、プロピレンからアクロレインを、イソブテンまたはターシャリーブタノールからメタクロレインを製造する気相接触酸化反応に使用されるモリブデン−ビスマス−鉄系複合酸化物触媒について、プラント運転で使用した後の劣化触媒である。
【0011】
再生する工程としては、該劣化触媒を粉砕する粉砕工程、モリブデン溶液を添加するモリブデン添加工程、成形工程及び焼成工程がある。ただし、モリブデン添加工程及び焼成工程以外の上記工程がすべて必須ではなく必要に応じて工程を組み合わせることで再生が実施される。また必要に応じて水性スラリー状にもどして再度該スラリーを乾燥させてから再生する、水性スラリー化工程を経る方法も可能である。
【0012】
つづいて各工程について詳細に説明する。
<粉砕工程>
再生効果を向上させるうえで、当該劣化触媒を一度粉砕する工程である。この工程の再生に及ぼす効果は明らかではないが、粒子間の組成の格差を均一にする効果と再生の際のモリブデン添加効果あるいは拡散効果を向上させより有効に再生することができると考えられる。粉砕方法としては、種々の方法をとることが可能であるが、粉砕後の平均粒子径として5μm〜100μm、より好ましくは10μm〜60μmである。ただし最適粒子径はその後の工程に依存するものであり、後工程で引き続き成形工程を採用する場合、成形の際の粒子のハンドリング、おもに流れ性をよくするためにあるいは触媒の2次構造を保持するためには平均粒子径として20μm〜60μm程度がよく、10μm未満の微粉が極力少ないことが好ましい。また、後工程で一度水性スラリーにもどしてから該スラリーを乾燥させてから再生する方法を採用する場合、スラリー中の固形物の沈降を抑制するために平均粒子径として10〜30μm程度がよく、100μm以上の粗粉が極力少ないことが好ましい。
【0013】
<モリブデン添加工程>
再生効果を向上させるうえで、飛散により失われたモリブデンを溶液状態で添加することが望ましい。モリブデンの減量については、通常の元素分析法(蛍光X線分析法、ICP発光分光分析法など)によりプラント運転前と運転後の触媒についてモリブデン元素の含有量を測定することにより計算できる。モリブデン溶液としては、種々の形態をとることが可能であるが、一般的には水溶性のモリブデン化合物を水に溶解させた溶液が用いられる。この溶液の濃度については、特に制限はないが、分散性をよくするうえで十分に低濃度であればよく、20重量%以下の溶液を用いることが多い。同工程は焼成工程の前に実施されることが必須である以外は特に制約はなく、適宜実施することが可能であるが、粉砕工程を含む場合は粉砕後、成形前に実施されることが好ましい。
【0014】
<水性スラリー化工程>
この工程は必須ではないが、必要に応じて採用することが可能である。この工程の前には、スラリー化のために一度粉砕工程を経てから実施される。スラリー濃度については特に制限はないが、高濃度すぎるとハンドリング性が悪化し、また低濃度すぎると乾燥工程でエネルギーコストがかかり経済性の悪化が考えられるため、通常はスラリー原料の粒子重量/スラリー重量として20重量%〜50重量%とすることが多い。またスラリーの分散性の向上あるいはスラリーを乾燥する際の粒子形状保持のために、適宜有機結合剤を添加することが好ましい。有機結合剤としては、種々のものがあるが、一般的に用いられるものはポリビニルアルコール等の水溶性ポリマー、あるいは各種セルロースなどである。有機結合剤の添加量としては、粉砕粒子に対し0.5重量%〜5重量%であり、より好ましくは1重量%〜3重量%である。これは、添加量が少なすぎる場合は、その添加効果が十分でなく、多すぎる場合は焼成工程において異常発熱を起こす恐れがあるためである。乾燥方法としては種々の方法をとることが可能であるが、一般的には乾燥時の前駆体粒子の均一性を高めるうえでスプレードライヤーなどによる噴霧乾燥法が採用される。
【0015】
<成形工程>
この工程は必須ではないが、固定床反応器で使用される触媒の場合は採用されるものである。成形方法としては種々の方法が考えられ、打錠成形あるいは押し出し成形等があげられる。押し出し成形の際には一度適宜必要量の水を添加し、また必要に応じて成形助剤として有機結合剤を添加することが好ましい。打錠成形の際にも必要に応じ成形助剤として有機結合剤を添加することが好ましい。上記有機結合剤としては、種々のものがあげられるが、一般的には前述のようなポリビニルアルコール等の水溶性ポリマー、あるいは各種セルロースなどである。有機結合剤の添加量としては粉砕粒子に対し1重量%〜10重量%であり、より好ましくは2重量%〜6重量%である。これは、添加量が少なすぎる場合は、その添加効果が十分でなく、多すぎる場合は焼成工程において異常発熱を起こす恐れがあるためである。
【0016】
<焼成工程>
再生効果を向上させるうえで、再生工程の最後に加熱処理する工程である。この工程の再生に及ぼす効果はあきらかではないが、添加されたモリブデン溶液中のモリブデン成分が触媒中に取り込まれ触媒性能を回復させる効果と触媒内のモリブデン成分を十分に熱拡散させる効果があるものと考えられる。焼成条件としては、400℃〜600℃の温度で行い、空気流通下で焼成するのが好ましい。より好ましくは420℃〜550℃である。これは、焼成温度が低すぎる場合は、モリブデン元素の熱拡散が十分でなく、高すぎる場合は、モリブデン元素が昇華により失われる恐れがあるからである。また前工程で有機結合剤を添加した場合、この工程において異常発熱を起こすことが考えられるため、昇温の際は適宜より低温状態で保持するか、あるいは昇温速度を制御することが望ましい。
【0017】
【実施例】
<未使用新触媒の調製>
パラモリブデン酸アンモニウム2.7kgを純水2.2Lに加熱して溶解させる。次に硝酸第二鉄325g、硝酸コバルト1.05kg及び硝酸ニッケル1.59kgを純水3Lに加温して溶解させる。これらの溶液を、充分に撹拌しながら徐々に混合する。
次に、シリカ2.9kgを加えて、充分に撹拌する。
このスラリーを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理に付す。
得られた粒状固体を粉砕し、パラモリブデン酸アンモニウム2.0kgを純水7.5Lにアンモニア水0.5Lを加え溶解した溶液に分散する。次に、純水2Lにホウ砂43g及び硝酸カリウム18gを加温下に溶解させて、上記スラリーに加える。次に、ナトリウムを0.45%固溶した次炭酸ビスマス2.7kgを加えて、撹拌混合する。
このスラリーを加熱乾燥した後、得られた粒状固体100重量部あたりレイモンドミル社製グラファイト(示差熱重量分析での燃焼開始温度540℃、47μm以下の粒子の割合が98重量%以上)2重量%を加え、よく混合した後、小型成形機にて径5mm、高さ4mmの錠剤に打錠成型し、次に500℃/4時間の焼成を行って、触媒とした。
なお、この触媒をガラスビード法にて前処理した後、蛍光X線分析装置(理学電気工業製:ZSX−100e)にて元素分析したところ、その原子比は以下であった。
Mo:Bi:Ni:Co:Fe:Na:B:K:Si=12:4.60:2.44:1.62:0.36:0.35:0.20:0.08:22.00
この触媒20mlを内径15mmのステンレス鋼製ナイタージャケット付反応管に充填し、プロピレン濃度10%、スチーム濃度17%、及び空気濃度73%の原料ガスを常圧にて接触時間1.8秒にて通過させて、プロピレンの酸化反応を実施した。
反応浴温305℃にて表1に示す結果が得られた。なお、反応生成物の分析はガスクロマトグラフィー法により、常法に従って実施した。
【0018】
<使用済触媒の作製>
上記未使用触媒を内径25mmのステンレス鋼製ナイタージャケット付反応管に充填し、プロピレン濃度10%、スチーム濃度17%、及び空気濃度73%の原料ガスを常圧にて接触時間1.8秒にて通過させて、プロピレンの酸化反応を2年間継続した。これにより反応管から触媒を抜き出し、劣化触媒を得た。この劣化触媒について、未使用触媒と同様方法にて元素分析したところ、その原子比は以下であった。
Mo:Bi:Ni:Co:Fe:Na:B:K:Si=12:4.65:2.46:1.64:0.36:0.35:0.20:0.08:22.22
この劣化触媒を未使用触媒と同様の方法で反応を実施したところ、表1に示す結果が得られた。
【0019】
<実施例1>
パラモリブデン酸アンモニウム0.8gを純水90mlに加熱して溶解させる。次にこの溶液を40℃まで冷却した後、上記劣化触媒300gにハンドスプレーにて添加含浸させ、攪拌容器内にて30分間攪拌させた後、乾燥器にて120℃12時間乾燥させる。最後に乾燥前駆体を空気流通下で500℃/4時間の焼成を行って、再生触媒とした。
仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Ni:Co:Fe:Na:B:K:Si=12:4.60:2.44:1.62:0.36:0.35:0.20:0.08:22.00
この再生触媒を新触媒と同様の方法で反応を実施したところ、表1に示す結果が得られた。
【0020】
<比較例1>
上記劣化触媒を、空気流通下で500℃/4時間焼成を行って再生触媒を得た。この再生触媒を新触媒と同様の方法で反応を実施したところ、表1に示す結果が得られた。
【0021】
<比較例2>
焼成時の温度が350℃であること以外は実施例1と同様の方法で再生触媒を得た。この再生触媒を新触媒と同様の方法で反応を実施したところ、表1に示す結果が得られた。
【0022】
<実施例2>
上記プラント使用触媒1000gをハンマーミルにて乾式粉砕し、粉砕粒子をえた。この粉砕粒子の粒度分布をレーザー回折・散乱式粒度分布測定器(セイシン企業(株)製、LMS−24)にて測定したところ、平均粒径は49μmであった。次にパラモリブデン酸アンモニウム0.8gを純水90mlに加熱して溶解させた溶液を40℃まで冷却した後、先に得た粉砕粒子300gにスプレーにて添加含浸させ、攪拌容器内にて30分間攪拌させた後、乾燥器にて120℃で12時間乾燥させた。次にこの前駆体粒子に対し微結晶セルロース18g及び前記未使用新触媒の調製時に用いたものと同じグラファイト3gを添加し、十分に混合させた後、打錠成形機にて径5mm、高さ4mmに成形した。最後に成形前駆体を空気流通下で、500℃/4時間の焼成を行って、再生触媒とした。
仕込み原料から計算される触媒は、実施例1と同じ原子比を有する複合酸化物である。
この再生触媒を新触媒と同様の方法で反応を実施したところ、表1に示す結果が得られた。
【0023】
<実施例3>
上記プラント使用触媒1000gをハンマーミルにて乾式粉砕し、粉砕粒子を得た。この粉砕粒子の粒度分布を実施例2と同様の方法で測定したところ、平均粒径は25μmであった。次にパラモリブデン酸アンモニウム2.0gを純水890mlに加熱して溶解させた溶液を40℃まで冷却した後、ポリビニルアルコール5%水溶液160gを添加してから、先に得た粉砕粒子800gを添加し、水性スラリーを得た。次にこの水性スラリーをスプレードライヤーにて出口温度140℃に制御して乾燥させた。この乾燥粒子の粒度分布を実施例2と同様の方法で測定したところ、平均粒子径は69μmであった。次にこの乾燥粒子300gに対し、微結晶セルロース18g及び前記未使用新触媒の調製時に用いたものと同じグラファイト3gを添加し、十分に混合させた後、打錠成形機にて径5mm、高さ4mmに成形した。最後に成形前駆体を空気流通下で500℃/4時間の焼成を行って、再生触媒とした。
仕込み原料から計算される触媒は、実施例1と同じ原子比を有する複合酸化物である。
この再生触媒を新触媒と同様の方法で反応を実施したところ、表1に示す結果が得られた。
【0024】
表1は、反応浴温330℃における反応評価であり、プロピレン転化率、アクロレイン選択率、アクロレイン収率の定義は、次の通りである。
プロピレン転化率(モル%)=(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
アクロレイン選択率(モル%)=(生成したアクロレインのモル数/反応したプロピレンのモル数)×100
アクロレイン収率(モル%)=(生成したアクロレインのモル数/供給したプロピレンのモル数)×100
【0025】
【表1】

Figure 0004065709
【0026】
【発明の効果】
以上のように、この発明によれば、プロピレンからアクロレインを、イソブテンまたはターシャリーブタノールからメタクロレインを製造する気相接触反応に使用されるモリブデン−ビスマス−鉄系複合酸化物触媒について、プラント運転で使用した後の劣化触媒を新触媒と同等レベルの性能を有するまで、再生することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molybdenum-bismuth-iron composite oxide catalyst used in a gas phase catalytic reaction for producing acrolein from propylene and methacrolein from isobutene or tertiary butanol. It relates to the method of playing.
[0002]
[Prior art]
Molybdenum-bismuth-iron composite oxide catalysts are useful catalysts for selective oxidation reactions such as propylene to acrolein, isobutene or tertiary butanol to methacrolein, and are also used industrially.
[0003]
The catalyst used in such a gas phase catalytic reaction is used for a relatively long time, and is replaced with a new catalyst when the catalyst performance deteriorates to some extent. Most of the spent catalyst is recovered to the extent that some useful metals are recovered, and others are discarded.
[0004]
It is well known that the performance deterioration of the molybdenum-bismuth-iron composite oxide catalyst used in these gas phase catalytic reactions is mainly caused by loss due to sublimation of molybdenum.
[0005]
Regarding the regeneration method of the above-mentioned catalyst, Japanese Patent Publication No. 5-29502, Japanese Patent Publication No. 5-70503, Japanese Patent No. 3140135, Japanese Patent Application Laid-Open No. 7-165663, Japanese Patent Application Laid-Open No. 7-185349 and Japanese Patent Application Laid-Open No. 9-12489. There are those shown in the gazettes.
[0006]
For example, Japanese Patent Publication No. 5-29502 or Japanese Patent Publication No. 5-70503 discloses a method for heat-treating a deteriorated catalyst in air or an oxygen-containing gas atmosphere as a method for regenerating a molybdenum-bismuth-iron multi-component oxide catalyst. Has been proposed. However, in these methods, in the regeneration treatment, the molybdenum that has been substantially scattered due to deterioration is not supplemented, and the catalyst is brought into contact with the air under heating conditions, thereby diffusing molybdenum into the catalyst particle surface. Since the performance is restored, the effect as a reproduction method is not sufficient.
[0007]
Japanese Patent Application Laid-Open No. 7-165663 or Japanese Patent Application Laid-Open No. 9-12489 discloses a substantially inert molybdenum oxide or unused catalyst as a method for regenerating the above-mentioned oxide catalyst in order to compensate for molybdenum scattered due to deterioration. A method has been proposed in which powder is mixed or pulverized and then mixed and then heat-treated. However, in these methods, molybdenum is diffused and regenerated by a solid-phase reaction during heat treatment for replenishment of molybdenum, so that it is considered that a sufficient regeneration effect cannot be obtained, and the unused catalyst In mixing, 100% regeneration cannot be expected, so industrial utility is not so high.
[0008]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to use a molybdenum-bismuth-iron composite oxide catalyst used in a plant operation for a gas phase catalytic reaction for producing acrolein from propylene and methacrolein from isobutene or tertiary butanol. It is an object of the present invention to provide a more effective method for regenerating a deteriorated catalyst.
[0009]
[Means for Solving the Problems]
As a result of diligent investigations to solve the above problems, the inventors of the present invention have used molybdenum-bismuth-iron-based composite oxide catalysts used in the above-mentioned reaction to regenerate a deteriorated catalyst used in plant operation. After adding the contained solution, heat treatment under specific conditions to more effectively replenish molybdenum necessary for the used deteriorated catalyst, in the same method, further including a pulverization step, or in the same method Furthermore, it was found that the catalyst can be regenerated as a catalyst having performance comparable to that of the new catalyst by the method of regenerating after returning to an aqueous slurry.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in more detail below.
The target catalyst in this invention is a molybdenum-bismuth-iron-based composite oxide catalyst used in a gas-phase catalytic oxidation reaction for producing acrolein from propylene and methacrolein from isobutene or tertiary butanol. This is a deteriorated catalyst.
[0011]
The regenerating process includes a pulverizing process for pulverizing the deteriorated catalyst, a molybdenum adding process for adding a molybdenum solution, a forming process, and a firing process. However, the above steps other than the molybdenum addition step and the firing step are not essential, and regeneration is performed by combining the steps as necessary. Moreover, the method which passes through the aqueous | water-based slurrying process of returning to the aqueous | water-based slurry form as needed and drying this slurry again and also reproducing | regenerating is also possible.
[0012]
Next, each step will be described in detail.
<Crushing process>
In order to improve the regeneration effect, this is a step of once crushing the deteriorated catalyst. The effect of this process on regeneration is not clear, but it is thought that the effect of making the compositional difference between the particles uniform and the effect of adding molybdenum or the diffusion effect during regeneration can be improved and more effectively regenerated. Various methods can be used as the pulverization method, and the average particle size after pulverization is 5 μm to 100 μm, more preferably 10 μm to 60 μm. However, the optimum particle size depends on the subsequent process. If the molding process is to be continued in the subsequent process, the particle handling during molding, mainly to improve flowability, or keep the secondary structure of the catalyst. In order to do so, the average particle size is preferably about 20 to 60 μm, and it is preferable that the fine powder of less than 10 μm is as little as possible. In addition, when adopting a method of regenerating the slurry after returning it to an aqueous slurry once in a subsequent step, an average particle size of about 10 to 30 μm is good for suppressing sedimentation of solids in the slurry, It is preferable that the coarse powder of 100 μm or more is as little as possible.
[0013]
<Molybdenum addition process>
In order to improve the regeneration effect, it is desirable to add molybdenum lost by scattering in a solution state. The weight loss of molybdenum can be calculated by measuring the content of molybdenum element in the catalyst before and after the plant operation by ordinary elemental analysis methods (fluorescence X-ray analysis method, ICP emission spectroscopic method, etc.). The molybdenum solution can take various forms, but generally a solution in which a water-soluble molybdenum compound is dissolved in water is used. The concentration of this solution is not particularly limited, but may be a sufficiently low concentration to improve dispersibility, and a solution of 20% by weight or less is often used. The step is not particularly limited except that it is essential to be carried out before the firing step, and can be carried out appropriately. However, if it includes a grinding step, it may be carried out after grinding and before molding. preferable.
[0014]
<Aqueous slurrying process>
This step is not essential, but can be employed as necessary. Prior to this step, the slurry is once pulverized for slurrying. The slurry concentration is not particularly limited. However, if the concentration is too high, the handling property is deteriorated. If the concentration is too low, the energy cost is increased in the drying process, and the economy may be deteriorated. The weight is often 20% to 50% by weight. Moreover, it is preferable to add an organic binder as appropriate in order to improve the dispersibility of the slurry or to maintain the particle shape when the slurry is dried. There are various kinds of organic binders, but generally used are water-soluble polymers such as polyvinyl alcohol, and various celluloses. The addition amount of the organic binder is 0.5 to 5% by weight, more preferably 1 to 3% by weight, based on the pulverized particles. This is because when the amount added is too small, the effect of the addition is not sufficient, and when it is too large, abnormal heat generation may occur in the firing step. Various methods can be used as the drying method. Generally, a spray drying method using a spray dryer or the like is employed to improve the uniformity of the precursor particles during drying.
[0015]
<Molding process>
This step is not essential, but it is employed in the case of a catalyst used in a fixed bed reactor. Various methods can be considered as the molding method, such as tableting molding or extrusion molding. In the case of extrusion molding, it is preferable to add a necessary amount of water once and, if necessary, an organic binder as a molding aid. It is preferable to add an organic binder as a molding aid as necessary during tableting. Examples of the organic binder include various organic binders, and are generally water-soluble polymers such as polyvinyl alcohol as described above, or various celluloses. The addition amount of the organic binder is 1 to 10% by weight, more preferably 2 to 6% by weight, based on the pulverized particles. This is because when the amount added is too small, the effect of the addition is not sufficient, and when it is too large, abnormal heat generation may occur in the firing step.
[0016]
<Baking process>
In order to improve the regeneration effect, it is a step of heat treatment at the end of the regeneration step. The effect of this process on regeneration is not clear, but the molybdenum component in the added molybdenum solution is incorporated into the catalyst and has the effect of restoring the catalyst performance and the effect of sufficiently thermally diffusing the molybdenum component in the catalyst. it is conceivable that. As firing conditions, it is preferable to carry out at a temperature of 400 ° C. to 600 ° C., and to fire under an air flow. More preferably, it is 420 degreeC-550 degreeC. This is because when the firing temperature is too low, thermal diffusion of the molybdenum element is not sufficient, and when it is too high, the molybdenum element may be lost by sublimation. In addition, when an organic binder is added in the previous step, abnormal heat generation may occur in this step. Therefore, it is desirable that the temperature rise is appropriately maintained at a lower temperature or the rate of temperature rise is controlled.
[0017]
【Example】
<Preparation of unused new catalyst>
2.7 kg of ammonium paramolybdate is dissolved in 2.2 L of pure water by heating. Next, 325 g of ferric nitrate, 1.05 kg of cobalt nitrate and 1.59 kg of nickel nitrate are heated and dissolved in 3 L of pure water. These solutions are gradually mixed with good stirring.
Next, 2.9 kg of silica is added and stirred thoroughly.
The slurry is heat-dried and then subjected to a heat treatment at 300 ° C./1 hour in an air atmosphere.
The obtained granular solid is pulverized, and 2.0 kg of ammonium paramolybdate is dispersed in a solution in which 0.5 L of ammonia water is added to 7.5 L of pure water and dissolved. Next, 43 g of borax and 18 g of potassium nitrate are dissolved in 2 L of pure water under heating and added to the slurry. Next, 2.7 kg of secondary bismuth carbonate in which 0.45% of sodium is dissolved is added and mixed with stirring.
After drying this slurry by heating, 2% by weight of graphite (manufactured by Raymond Mill Co., Ltd., with a combustion start temperature of 540 ° C. and a proportion of particles of 47 μm or less in the differential thermogravimetric analysis is 98% by weight or more) per 100 parts by weight of the obtained granular solid After mixing well, the mixture was compressed into tablets with a diameter of 5 mm and a height of 4 mm with a small molding machine, and then calcined at 500 ° C. for 4 hours to obtain a catalyst.
The catalyst was pretreated by the glass bead method and then subjected to elemental analysis with a fluorescent X-ray analyzer (manufactured by Rigaku Denki Kogyo Co., Ltd .: ZSX-100e). The atomic ratio was as follows.
Mo: Bi: Ni: Co: Fe: Na: B: K: Si = 12: 4.60: 2.44: 1.62: 0.36: 0.35: 0.20: 0.08: 22. 00
20 ml of this catalyst was filled into a stainless steel nighter jacketed reaction tube with an inner diameter of 15 mm, and a raw material gas having a propylene concentration of 10%, a steam concentration of 17%, and an air concentration of 73% was obtained at normal pressure with a contact time of 1.8 seconds. The propylene oxidation reaction was carried out.
The results shown in Table 1 were obtained at a reaction bath temperature of 305 ° C. The reaction product was analyzed by gas chromatography according to a conventional method.
[0018]
<Preparation of spent catalyst>
The above unused catalyst is filled in a stainless steel nighter jacketed reaction tube with an inner diameter of 25 mm, and a raw material gas having a propylene concentration of 10%, a steam concentration of 17%, and an air concentration of 73% is brought to a contact time of 1.8 seconds at normal pressure. The propylene oxidation reaction was continued for 2 years. Thereby, the catalyst was extracted from the reaction tube to obtain a deteriorated catalyst. About this deteriorated catalyst, when the elemental analysis was carried out by the method similar to an unused catalyst, the atomic ratio was the following.
Mo: Bi: Ni: Co: Fe: Na: B: K: Si = 12: 4.65: 2.46: 1.64: 0.36: 0.35: 0.20: 0.08: 22. 22
When this degraded catalyst was reacted in the same manner as the unused catalyst, the results shown in Table 1 were obtained.
[0019]
<Example 1>
0.8 g of ammonium paramolybdate is dissolved in 90 ml of pure water by heating. Next, this solution is cooled to 40 ° C., then added and impregnated with 300 g of the above deteriorated catalyst by hand spraying, stirred for 30 minutes in a stirring vessel, and then dried at 120 ° C. for 12 hours in a drier. Finally, the dried precursor was calcined at 500 ° C. for 4 hours under air flow to obtain a regenerated catalyst.
The catalyst calculated from the charged raw materials is a complex oxide having the following atomic ratio.
Mo: Bi: Ni: Co: Fe: Na: B: K: Si = 12: 4.60: 2.44: 1.62: 0.36: 0.35: 0.20: 0.08: 22. 00
When this regenerated catalyst was reacted in the same manner as the new catalyst, the results shown in Table 1 were obtained.
[0020]
<Comparative Example 1>
The above deteriorated catalyst was calcined at 500 ° C. for 4 hours under air flow to obtain a regenerated catalyst. When this regenerated catalyst was reacted in the same manner as the new catalyst, the results shown in Table 1 were obtained.
[0021]
<Comparative example 2>
A regenerated catalyst was obtained in the same manner as in Example 1 except that the temperature during calcination was 350 ° C. When this regenerated catalyst was reacted in the same manner as the new catalyst, the results shown in Table 1 were obtained.
[0022]
<Example 2>
1000 g of the above-mentioned catalyst used in the plant was dry pulverized with a hammer mill to obtain pulverized particles. When the particle size distribution of the pulverized particles was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Seishin Enterprise Co., Ltd., LMS-24), the average particle size was 49 μm. Next, a solution in which 0.8 g of ammonium paramolybdate was dissolved in 90 ml of pure water was cooled to 40 ° C., and then added and impregnated with 300 g of the pulverized particles obtained above by spraying. After stirring for 1 minute, it was dried at 120 ° C. for 12 hours in a dryer. Next, 18 g of microcrystalline cellulose and 3 g of the same graphite used in the preparation of the above-mentioned unused new catalyst were added to the precursor particles and mixed well. Molded to 4 mm. Finally, the molding precursor was calcined at 500 ° C. for 4 hours under air flow to obtain a regenerated catalyst.
The catalyst calculated from the charged raw materials is a composite oxide having the same atomic ratio as in Example 1.
When this regenerated catalyst was reacted in the same manner as the new catalyst, the results shown in Table 1 were obtained.
[0023]
<Example 3>
1000 g of the above-mentioned catalyst used in the plant was dry pulverized with a hammer mill to obtain pulverized particles. When the particle size distribution of the pulverized particles was measured by the same method as in Example 2, the average particle size was 25 μm. Next, after a solution prepared by heating 2.0 g of ammonium paramolybdate in 890 ml of pure water and cooling to 40 ° C., 160 g of a 5% aqueous solution of polyvinyl alcohol was added, and then 800 g of the pulverized particles obtained above were added. An aqueous slurry was obtained. Next, this aqueous slurry was dried by controlling the outlet temperature at 140 ° C. with a spray dryer. When the particle size distribution of the dry particles was measured in the same manner as in Example 2, the average particle size was 69 μm. Next, to 300 g of the dried particles, 18 g of microcrystalline cellulose and 3 g of the same graphite used in the preparation of the new unused catalyst were added and mixed well. Molded to 4 mm. Finally, the molding precursor was calcined at 500 ° C. for 4 hours under air flow to obtain a regenerated catalyst.
The catalyst calculated from the charged raw materials is a composite oxide having the same atomic ratio as in Example 1.
When this regenerated catalyst was reacted in the same manner as the new catalyst, the results shown in Table 1 were obtained.
[0024]
Table 1 shows the reaction evaluation at a reaction bath temperature of 330 ° C. The definitions of propylene conversion rate, acrolein selectivity, and acrolein yield are as follows.
Propylene conversion rate (mol%) = (number of moles of reacted propylene / number of moles of supplied propylene) × 100
Acrolein selectivity (mol%) = (number of moles of acrolein produced / number of moles of propylene reacted) × 100
Acrolein yield (mol%) = (number of moles of acrolein produced / number of moles of propylene supplied) × 100
[0025]
[Table 1]
Figure 0004065709
[0026]
【The invention's effect】
As described above, according to the present invention, a molybdenum-bismuth-iron composite oxide catalyst used in a gas phase catalytic reaction for producing acrolein from propylene and methacrolein from isobutene or tertiary butanol is used in a plant operation. The used deteriorated catalyst can be regenerated until it has the same level of performance as the new catalyst.

Claims (9)

プロピレン、イソブチレンまたはターシャリーブタノールの接触気相酸化反応によってそれぞれに対応する不飽和アルデヒドを製造する工程に用いられるモリブデン、ビスマス、鉄を主成分とする複合酸化物触媒をプラント運転で使用して劣化した劣化触媒にモリブデン含有溶液を添加し、次いで400℃〜600℃の温度で焼成することを特徴とする劣化触媒の再生方法。  Degradation by using a complex oxide catalyst mainly composed of molybdenum, bismuth and iron used in the process of producing the corresponding unsaturated aldehyde by catalytic gas phase oxidation reaction of propylene, isobutylene or tertiary butanol in the plant operation A method for regenerating a deteriorated catalyst, comprising adding a molybdenum-containing solution to the deteriorated catalyst, followed by firing at a temperature of 400 ° C to 600 ° C. 上記劣化触媒を粉砕する粉砕工程と、粉砕工程により粉砕した粉砕粒子を再成形し、請求項1における焼成を行う成形焼成工程とを備えることを特徴とする請求項1記載の劣化触媒の再生方法。The method for regenerating a deteriorated catalyst according to claim 1, comprising: a pulverizing step for pulverizing the deteriorated catalyst ; and a molded calcination step for remolding the pulverized particles pulverized in the pulverizing step and performing calcination in claim 1. . 上記成形焼成工程の成形時に有機結合剤を添加することを特徴とする請求項2記載の劣化触媒の再生方法。  3. The method for regenerating a deteriorated catalyst according to claim 2, wherein an organic binder is added during molding in the molding and firing step. 上記成形焼成工程の成形時に、粉砕粒子に対し有機結合剤を1重量%〜10重量%添加することを特徴とする請求項3記載の劣化触媒の再生方法。  4. The method for regenerating a deteriorated catalyst according to claim 3, wherein an organic binder is added in an amount of 1% by weight to 10% by weight with respect to the pulverized particles at the time of molding in the molding and firing step. 上記劣化触媒を粉砕した粉砕粒子を水性スラリー状にし、該スラリーを乾燥させた後、請求項1における焼成を行うことを特徴とする請求項1記載の劣化触媒の再生方法。2. The method for regenerating a deteriorated catalyst according to claim 1, wherein the pulverized particles obtained by pulverizing the deteriorated catalyst are made into an aqueous slurry, and the slurry is dried, followed by calcination in claim 1. モリブデン含有溶液を水性スラリーに添加することを特徴とする請求項5記載の劣化触媒の再生方法。  6. The method for regenerating a deteriorated catalyst according to claim 5, wherein the molybdenum-containing solution is added to the aqueous slurry. 有機結合剤を水性スラリーに添加することを特徴とする請求項5または6に記載の劣化触媒の再生方法。  The method for regenerating a deteriorated catalyst according to claim 5 or 6, wherein an organic binder is added to the aqueous slurry. 粉砕粒子に対し0.5重量%〜5重量%の有機結合剤を水性スラリーに添加することを特徴とする請求項7記載の劣化触媒の再生方法。  The method for regenerating a deteriorated catalyst according to claim 7, wherein 0.5% by weight to 5% by weight of an organic binder is added to the aqueous slurry with respect to the pulverized particles. 粉砕後の粉砕粒子の平均粒子径が5〜100μmであることを特徴とする請求項2〜8のいずれかに記載の劣化触媒の再生方法。  The method for regenerating a deteriorated catalyst according to any one of claims 2 to 8, wherein the average particle size of the pulverized particles after pulverization is 5 to 100 µm.
JP2002110672A 2002-04-12 2002-04-12 Regeneration method of deteriorated catalyst Expired - Lifetime JP4065709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002110672A JP4065709B2 (en) 2002-04-12 2002-04-12 Regeneration method of deteriorated catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110672A JP4065709B2 (en) 2002-04-12 2002-04-12 Regeneration method of deteriorated catalyst

Publications (2)

Publication Number Publication Date
JP2003305368A JP2003305368A (en) 2003-10-28
JP4065709B2 true JP4065709B2 (en) 2008-03-26

Family

ID=29393736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110672A Expired - Lifetime JP4065709B2 (en) 2002-04-12 2002-04-12 Regeneration method of deteriorated catalyst

Country Status (1)

Country Link
JP (1) JP4065709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567199B2 (en) 2006-05-29 2017-02-14 Khs Gmbh Beverage bottle filling machine for filling bottles with fruit juices, beverage filling element in a beverage bottle filling machine with such beverage filling elements for filling bottles or similar containers with fruit juices, and a beverage bottle filling element for filling bottles or similar containers with fruit juices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567199B2 (en) 2006-05-29 2017-02-14 Khs Gmbh Beverage bottle filling machine for filling bottles with fruit juices, beverage filling element in a beverage bottle filling machine with such beverage filling elements for filling bottles or similar containers with fruit juices, and a beverage bottle filling element for filling bottles or similar containers with fruit juices

Also Published As

Publication number Publication date
JP2003305368A (en) 2003-10-28

Similar Documents

Publication Publication Date Title
JP5227176B2 (en) Mixed oxide catalysts for catalytic gas phase oxidation of olefins and methods for their production
FR2502977A1 (en) CATALYST FOR THE CONVERSION OF UNSATURATED HYDROCARBONS TO DIOLEFINS AND / OR UNSATURATED ALDEHYDES AND NITRILES, AND PROCESS FOR PREPARING THE CATALYST
TW200427509A (en) Particulate porous ammoxidation catalyst
CN1053126C (en) Recovery of waste multi-metal oxide catalyst for catalytic oxidization of low organic in gas phase
JP4421558B2 (en) Method for producing a catalyst for methacrylic acid production
WO1996019290A1 (en) Process for the preparation of supported catalyst for synthesis of methacrolein and methacrylic acid
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
WO2004073857A1 (en) Catalyst for methacrylic acid production and process for producing the same
JP6812869B2 (en) Method for producing composite oxide catalyst
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP4065709B2 (en) Regeneration method of deteriorated catalyst
JP4065710B2 (en) Regeneration method of deteriorated catalyst
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP4296020B2 (en) Regeneration method of deteriorated catalyst
JP3790080B2 (en) Catalyst for synthesizing methacrolein and methacrylic acid, and method for producing methacrolein and methacrylic acid
JP2005169311A (en) Production method for complex oxide catalyst
JP4017412B2 (en) Method for producing composite oxide catalyst
JP2005161309A (en) Method for manufacturing compound oxide catalyst
JP4424192B2 (en) Method for producing composite oxide catalyst
JP4187856B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP3999972B2 (en) Method for producing acrylic acid or methacrylic acid
KR20130000348A (en) Method for regenerating catalyst for production of methacrylic acid and process for preparing methacrylic acid
JP7532841B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP2008000710A (en) Manufacturing method of heteropolyacid based catalyst for manufacturing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4065709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term