JP4062856B2 - Positive electrode active material and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4062856B2
JP4062856B2 JP2000111044A JP2000111044A JP4062856B2 JP 4062856 B2 JP4062856 B2 JP 4062856B2 JP 2000111044 A JP2000111044 A JP 2000111044A JP 2000111044 A JP2000111044 A JP 2000111044A JP 4062856 B2 JP4062856 B2 JP 4062856B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000111044A
Other languages
Japanese (ja)
Other versions
JP2001297764A (en
Inventor
道子 込山
毅 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27342987&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4062856(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2000102624A priority Critical patent/JP4106644B2/en
Priority to JP2000108412A priority patent/JP2001291517A/en
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000111044A priority patent/JP4062856B2/en
Priority to EP16178916.9A priority patent/EP3101715A1/en
Priority to EP05025373A priority patent/EP1675208A3/en
Priority to EP10009818A priority patent/EP2264813B1/en
Priority to EP14003948.8A priority patent/EP2849264A1/en
Priority to EP01108177A priority patent/EP1143549A3/en
Priority to TW090107595A priority patent/TW492210B/en
Priority to EP05025372A priority patent/EP1672730B1/en
Priority to KR1020010017881A priority patent/KR100812549B1/en
Priority to CNB200410056794XA priority patent/CN100394639C/en
Priority to US09/825,988 priority patent/US6967066B2/en
Priority to CNB011214384A priority patent/CN100359745C/en
Priority to CNB2004100567954A priority patent/CN1310369C/en
Publication of JP2001297764A publication Critical patent/JP2001297764A/en
Priority to US11/073,510 priority patent/US20050175891A1/en
Priority to US11/073,509 priority patent/US7563539B2/en
Priority to US11/073,511 priority patent/US7223495B2/en
Priority to US11/112,295 priority patent/US20050184302A1/en
Publication of JP4062856B2 publication Critical patent/JP4062856B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/141Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、正極活物質および非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、カメラ一体型ビデオテープレコーダ(VTR)、携帯電話、携帯用コンピューター等のポータブル電子機器が多く登場し、これらのポータブル電子機器を駆動するための電源として、経済性や省資源の目的から二次電池が使用され、近年その用途は急速に拡大しつつある。また、電子機器の小型化、高性能化に伴い、用いられる電池は小型、軽量で且つ高容量であることが求められている。このため、これらのポータブル電子機器の電源として、二次電池の中でも特に、高エネルギー密度の非水電解質二次電池が実用化されている。
【0003】
非水電解液二次電池の一例である、非水系リチウムイオン二次電池は、充電時に正極中のリチウムが電解液を介して負極中にドープされ、放電時には負極中のリチウムが電解液を介して正極中にドープされるという電気化学的な可逆反応を利用した電池であり、電解液としてリチウム塩を溶解した非水系溶媒を用いている。このため、電解液の漏れの防止のために、剛性を備えた金属製のハードケース・セル(正極蓋及び負極缶)を使用する必要がある。
【0004】
しかし、金属製のハードケース・セルの使用は、最近の二次電池に対する軽量化、小型化、更に薄型化の強い要請に十分に応えられないという問題がある。また、電子機器のいっそうの小型化に伴ない、二次電池に対しては形状の自由度を高めることも要請されているが、金属製のハードケース・セルの使用は形状に関する要請にも十分に応えられない。
【0005】
そこで、これらの問題を解決する二次電池として、非水ゲルポリマー二次電池が提案され、薄型や折り曲げ可能な電池として研究開発が活発に進められている。この非水ゲルポリマー二次電池は、正極集電体上に正極活物質層が形成された正極と、負極集電体上に負極活物質が形成された負極とを有し、正極の正極活物質層と負極の負極活物質層との間に電解質含有ゲル層が挟持された構造を有している。
【0006】
このような非水ゲルポリマー二次電池の電解質含有ゲル層においては、電解液がゲルマトリックス中に保持されている。従って、非水ゲルポリマー二次電池においては、電解液の液漏れの問題がなくなるので、ハードケース・セルが不要となり、いっそうの小型化、軽量化、薄型化、形状自由度の向上が実現されている。
【0007】
【発明が解決しようとする課題】
一方、従来の非水系リチウムイオン二次電池には、正極活物質中に炭酸リチウム(Li2 CO3 )が0.8%〜1.2%含有されている。これは、加熱、過充電時に電池が高温になったときにCO2 ガスを発生させ、安全弁をシャットダウンさせる機能を持たせるためである。また、従来の正極活物質中には水分が500ppmほど含まれており、加熱、過充電時にガスを発生させる要因となっている。
【0008】
これに対して、非水ゲルポリマー二次電池では、加熱、過充電の安全性が向上し、高温でガス発生の必要はなくなった。また、従来の非水ゲルポリマー二次電池では、正極活物質としてコバルト酸リチウムが用いられてきたが、ラミネートフィルムで密封される非水ゲルポリマー二次電池においては、高温保存試験等による膨れを改善することが大きな課題となっている。この膨れにより、アルミラミネートパックがセットケースに入らなくなるおそれがあるからである。
【0009】
本発明は、このような課題に鑑みてなされたものであり、高温保存時の膨れを抑制・改善することができる正極活物質および非水電解質二次電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の正極活物質は、正極集電体上に正極活物質層が形成された正極の、該正極活物質層に含有される正極活物質において、以下のものである。
すなわち、(イ)正極活物質は、Liと他の金属との複合酸化物である。(ロ)正極活物質に含まれるLi CO 、0.15質量%以下0.01質量%以上である。(ハ)正極は、非水ゲルポリマー二次電池または固体電解質二次電池に用いる。(ニ)上記非水ゲルポリマー二次電池または上記固体電解質二次電池は、ラミネートフィルムで密封される。(ホ)正極活物質に含まれる水分は、300ppm以下である。
【0011】
また、上述の正極活物質は以下のものである。すなわち、(イ)Liと他の金属との複合酸化物は、LiCoO 2 である。
【0012】
また、本発明の非水電解質二次電池は、正極集電体上に正極活物質を含有する正極活物質層が形成された正極と、負極集電体上に負極活物質層が形成された負極とを有する非水電解質二次電池において、以下のものである。
すなわち、(イ)正極活物質は、Liと他の金属との複合酸化物である。(ロ)正極活物質に含まれるLi CO が、0.15質量%以下0.01質量%以上である。(ハ)正極は、非水ゲルポリマー二次電池または固体電解質二次電池に用いる。(ニ)上記非水ゲルポリマー二次電池または上記固体電解質二次電池は、ラミネートフィルムで密封される。(ホ)正極活物質に含まれる水分は、300ppm以下である。
【0013】
また、上述の非水電解質二次電池は以下のものである。すなわち、(イ)Liと他の金属との複合酸化物は、LiCoO 2 である。
【0014】
本発明の正極活物質および非水電解質二次電池によれば、正極活物質がLiと他の金属との複合酸化物であり、正極活物質に含まれるLi CO が0.15質量%以下0.01質量%以上であり、正極活物質に含まれる水分が300ppm以下であることから、この正極を有する、ラミネートフィルムで密封される非水ゲルポリマー二次電池または固体電解質二次電池における、高温保存時における分解反応が抑えられ、ガスの発生が抑制される。
【0020】
【発明の実施の形態】
以下、正極活物質および非水電解質二次電池に係る発明の実施の形態について説明する。
【0021】
まず、非水電解質二次電池の構成について説明する。図1は、非水電解質二次電池に係る発明の実施の形態を示す図である。具体的には、非水電解質二次電池の一例として、非水ゲルポリマー二次電池を示すものである。
【0022】
本発明の非水ゲルポリマー二次電池は、正極集電体上に正極活物質層が形成された正極と、負極集電体上に負極活物質層が形成された負極と、正極の正極活物質層上並びに負極の負極活物質層上にそれぞれ形成された電解液含有ゲル層とを有し、正極側並びに負極側の電解液含有ゲル層同士が互いに重ね合わされた構造の電極体を有している。この構造の電極体は、正極リードと負極リードとを接合した後に、図1に示すように、一対のラミネートフィルム4と5とで密封することにより非水ゲルポリマー二次電池の完成品となる。
【0023】
なお、本発明の非水ゲルポリマー二次電池においては、必要に応じて電解液含有ゲル層同士の間に多孔質セパレータ(例えば、ポリエチレンやポリプロピレン製の微多孔膜)を配設してもよい。セパレータを配設することにより、両電極活物質層の物理的接触を完全に避けることができる。
【0024】
正極に用いる正極活物質としては、TiS2 ,MoS2 ,NbSe2 ,V25 等のリチウムを含有しない金属硫化物あるいは酸化物や、LiMO2(式中Mは一種以上の遷移金属を表し、この遷移金属Mとしては、Co,Ni,Mn等が望ましい。)により表せる、リチウムと他の金属との複合酸化物等を使用することができる。
【0025】
このようなリチウム複合酸化物としてはLiCoO2 、Lix Co1-y Aly2 (式中0.05≦x≦1.10であり、また0.01≦y≦0.10である。)、LiNiO2,LiNiy Co1-y2 (式中、0<y<1である。)、Lix Niy1-y2 (式中Mは遷移金属,B,Al,Ga,Inの中の少なくとも1種を表し、0.05≦x≦1.10であり、また0.7≦y≦1.0である。)、LiMn24 等であることが望ましい。これらリチウム複合酸化物は、高電圧を発生でき、エネルギー密度的に優れた正極活物質となる。正極には、これらの正極活物質の複数種をあわせて使用してもよい。
【0026】
正極活物質がリチウムと他の金属との複合酸化物である場合においては、正極活物質中に炭酸塩、例えば炭酸リチウム(Li2 CO3 )が含有してもよい。ここで、炭酸リチウムと水分の含有量はつぎの範囲にあることが望ましい。すなわち、炭酸リチウムの含有量が0.15質量%以下0.01質量%以上、かつ水分の含有量が300ppm以下の場合である。
【0028】
正極は、上述した正極活物質とアセチレンブラック等の導電剤とをポリフッ化ビニリデン等の結着剤と共に溶媒中に分散した分散液を、アルミニウム箔等の正極集電体上に薄膜状に塗布・乾燥して正極活物質層を形成することにより得られる。
【0029】
このように、正極活物質層は正極活物質を含有する。正極活物質層は、正極集電体の片面もしくは両面に形成してもよい。また、所望の正極活物質層密度を得るために、必要に応じてプレス処理を施してもよい。
【0030】
負極活物質としては、リチウムをドープ、脱ドープできる材料を使用することができる。このような負極の構成材料、たとえば難黒鉛化炭素系材料や黒鉛系材料の炭素材料を使用することができる。より具体的には、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス)、黒鉛類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、脱ドープできる材料としては、ポリアセチレン、ポリピロール等の高分子やSnO2 等の酸化物を使用することもできる。
【0031】
負極としては、上述した負極活物質をポリフッ化ビニリデン等の結着剤と共に溶媒中に分散した分散液を、銅箔等の負極集電体上に薄膜状に塗布・乾燥して負極活物質層を形成することにより得られる。負極活物質層は、負極集電体の片面もしくは両面に形成してもよい。また、所望の負極活物質層密度を得るために、必要に応じてプレス処理を施してもよい。
【0032】
電解液含有ゲル層は、ゲルのマトリックスを構成可能な樹脂とその樹脂を膨潤させる溶媒と電解質とからなる電解液含有ゲル層形成用組成物を成膜したものである。
【0033】
電解液含有ゲル層の形成は、電解液含有ゲル層形成用組成物が常温でゼリー状で流動性が十分でないため、一般には加熱して液状化させて行う。この場合、ゲルの電極への染み込み(即ち、電解液の電極活物質層への染み込み)を向上させるために、電解質を溶解させるための溶媒よりも沸点の低い溶媒を希釈溶媒として使用することができる。
【0034】
また、電解液含有ゲル層の形成の際の電解液含有ゲル層形成用組成物の加熱温度としては、その組成物が液状になる温度以上、且つそれらに含まれる溶媒のうち最も沸点の低い溶媒の沸点よりも低い温度を採用する。
【0035】
電解液含有ゲル層形成用組成物に用いる樹脂としては、シリコンゲル、アクリルゲル、アクリロニトリル、ポリフォスファゼンゲル変成ポリマー、ポリエチレンオキサイド、ポリプロピレンオキサイド、及びこれらの複合ポリマーや架橋ポリマー、変成ポリマーなどもしくはフッ素系ポリマーとして、例えばポリ(ビニリデンフルオロライド)やポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)、ポリ(ビニリデンフルオロライド−co−テトラフルオロエチレン)、ポリ(ビニリデンフルオロライド−co−トリフルオロエチレン)などおよびこれらの混合物が各種使用できるが、勿論、これらに限定されるものではない。
【0036】
また、溶媒としては、γ−ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等を挙げることができる。
【0037】
また、電解質としては、六フッ化リン酸リチウム、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩を挙げることができる。
【0038】
ラミネートフィルムの構成としては、たとえば下記に示される材料を使用することができる。ここで、使用するプラスチック材料として、次の略称を使う。すなわち、ポリエチレンテレフタレート:PET、溶融ポリプロピレン:PP、無延伸ポリプロピレン:CPP、ポリエチレン:PE、低密度ポリエチレン:LDPE、高密度ポリエチレン:HDPE、直鎖状低密度ポリエチレン:LLDPE、ナイロン:Nyである。また、耐透湿性のバリア膜として用いる金属材料のアルミニウムにALの略称を用いる。
【0039】
最も一般的な構成は、外装層/金属膜/シーラント層=PET/AL/PEである。また、この組み合わせばかりでなく、以下に示すような他の一般的なラミネートフィルムの構成を採用することができる。すなわち、外装層/金属膜/シーラント層=Ny/AL/CPP、PET/AL/CPP、PET/AL/PET/CPP、PET/Ny/AL/CPP、PET/Ny/AL/Ny/CPP、PET/Ny/AL/Ny/PE、Ny/PE/AL/LLDPE、PET/PE/AL/PET/LDPE、またはPET/Ny/AL/LDPE/CPPとすることができる。なお、金属膜としてはAL以外の金属を採用することができることはもちろんである。
【0040】
つぎに、非水電解質二次電池の製造方法について説明する。最初に、正極集電体上に正極活物質層を形成することにより正極を作製する。次に、常温を超える温度に正極を加熱しながら、正極の正極活物質層上に電解質含有ゲル層を形成する。
【0041】
ここで、電解液含有ゲル層は、片面逐次塗布装置により片面塗布又は片面ずつ両面塗布することができる。即ち、巻き出しロールから巻き出された電極は、電極予熱装置で加熱され、そしてその片面の電極活物質層上にコーターヘッドから電解液含有ゲル層形成用組成物が塗布される。塗布された電解液含有ゲル層形成用組成物は、ドライヤーを通過する際に乾燥し電解液含有ゲル層となる。電解液含有ゲル層が形成された電極は、巻き取りロールに巻き取られる。
【0042】
また、電解液含有ゲル層は、両面同時塗布装置により両面同時に塗布することもできる。即ち、巻き出しロールから巻き出された電極は、電極予熱装置で加熱され、そしてその両面の電極活物質層上にコーターヘッドから電解液含有ゲル層形成用組成物が同時に塗布される。塗布された電解液含有ゲル層形成用組成物は、ドライヤーを通過する際に乾燥し電解液含有ゲル層となる。電解液含有ゲル層が形成された電極は、巻き取りロールに巻き取られる。
【0043】
なお、プレスが必要とされる場合には、例えば、電極活物質層形成後であって、電解液含有ゲル層形成前に、一般的なプレスロール装置によりプレスすることができる。
【0044】
次に、正極を作製する場合と同様に、負極集電体上に負極活物質層を形成することにより負極を作製し、ついで、常温を超える温度に負極を加熱しながら、負極の負極活物質層上に電解液含有ゲル層を形成する。
【0045】
そして、正極側並びに負極側の電解液含有ゲル層を互いに重ね合わせる。これにより電極体が得られる。
【0046】
得られた電極体から電池完成品製造のための組み込みは、電解液含有ゲル層形成後の電極をスリットして組み込む方法や、逆に電極をスリットしてから電解液含有ゲル層を形成して組み込む方法、あるいはこの二つの方法を組み合わせて一方の電極は電解液含有ゲル層形成後にスリットし、他方の電極はスリットしてから電解液含有ゲル層を形成して組み込む方法により行うことができる。また、電極の片面のみ電解液含有ゲル層を形成してスリットし、その後に電極の他面に電解液含有ゲル層を形成してから組み込む方法等により行うことができる。
【0047】
なお、電池素子は活物質層を塗布していない集電体の部分にリード線を溶接した後、両極の活物質層が対向するように重ね合わせる。この重ね合わせ方としては、所望の大きさに切り取られた電極を重ねる方法や、重ねた電極を巻く方法等がある。
【0048】
このようにして作製された電池素子は、ラミネートフィルムの間に挟んだ後、両電極の電解液含有ゲル層の密着性を上げるためにプレスを行い、電池素子が外気と触れないようにシールが施される。これにより図1に示すような、アルミラミネートパックを用いた非水ゲルポリマー二次電池が得られる。
【0049】
本発明における電解液含有ゲル層形成用組成物塗布前の電極予熱の方法は、特に限定するものではなく、温度調節したロールを通す方法や温度調節した空気の送風による方法、赤外線ランプを設ける方法等が挙げられる。
【0050】
なお、本発明は、非水ゲルポリマー二次電池ばかりでなく、非水電解液二次電池や固体電解質二次電池等に適用できることはもちろんである。
【0051】
固体電解質は、リチウム塩とそれを溶解する高分子化合物からなり、高分子化合物としては、ポリ(エチレンオキサイド)や同架橋体などのエーテル系高分子、ポリ(メタクリレート)エステル系、アクリレート系、ポリ(ビニリデンフルオロライド)やポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)などのフッ素系高分子などを単独、または混合して用いることができる。
【0052】
また、本発明は上述の実施の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。
【0053】
【実施例】
次に、本発明の具体的な実施例について説明する。ただし、本発明はこれら実施例に限定されるものではないことはもちろんである。
【0054】
サンプル1(正極の作製)以下の正極活物質層組成の懸濁液をディスパーにて4時間混合し、これを厚さ20μmのアルミニウム箔の両面にパターン塗布した。塗布パターンは、両面とも塗布長160mm、未塗布部分長30mmの繰り返しで、両面の塗り始め及び塗り終わりの位置は互いに一致するように制御した。
【0055】
正極活物質層組成 重量部
LiCoO2 (平均粒径10μm) 100
ポリフッ化ビニリデン(平均分子量30万) 5
カーボンブラック(平均粒径15nm) 10
N−メチル−2−ピロリドン 100
【0056】
なお、上述の正極活物質LiCoO2 は、炭酸リチウム(Li2 CO3 )を1質量%含有している。また、上述の正極活物質LiCoO2は、水分を400ppm含有している。ここで、正極活物質LiCoO2 中の水分は、正極活物質LiCoO2 を真空乾燥し、乾燥時間をコントロールすることにより400ppmにした。
【0057】
なお、水分の定量分析はつぎのように行った。すなわち、正極活物質試料を0.5g秤取り、これを試験温度250℃で加熱し水分を気化させて、カールフィッシャー測定装置により、水分の含有量を測定した。また、炭酸リチウムの含有量はつぎのように定量分析した。すなわち、正極活物質を2.0gを秤取り、A.G.K式CO2 分析法(JISR9101に記載されている滴定法)を用いて測定した。
【0058】
なお、水分は、他の材料例えば負極活物質、ゲル、電解質等にも含まれているが、これらに含まれる水分は非常に少ない。したがって、電池内に存在する水分は、正極活物質中に含有される水分をコントロールすることにより決定できる。
【0059】
両面塗布後の正極原反は、線圧300kg/cmでプレスした。正極厚及び正極活物質層密度は、プレス後においてそれぞれ100μm及び3.45g/ccであった。
【0060】
(負極の作製)
以下の負極活物質層組成の懸濁液をディスパーにて4時間混合し、これを厚さ10μmの銅箔の両面にパターン塗布した。塗布パターンは、両面とも塗布長160mm、未塗布部分長30mmの繰り返しで、両面の塗り始め及び塗り終わりの位置は互いに一致するように制御した。
【0061】
負極活物質層組成 重量部
人造グラファイト(平均粒径20μm) 100
ポリフッ化ビニリデン(平均分子量30万) 15
N−メチル−2−ピロリドン 200
【0062】
両面塗布後の負極原反は、線圧300kg/cmでプレスした。負極厚及び負極活物質層密度は、プレス後においてそれぞれ90μm及び1.30g/ccであった。
【0063】
(電解液含有ゲル層の形成)
以下の電解液含有ゲル層形成用組成物を70℃加熱状態でディスパーにて1時間混合し、これを層厚20μmになるように負極の両面の負極活物質層上にパターン塗布し、また、正極の両面の正極活物質層上に、層厚20μmになるようにパターン塗布した。このとき、ドライヤーは実質的にジメチルカーボネートだけが蒸発するように調製した。
【0064】
電解液含有ゲル層形成用組成物 重量部
ポリ(ヘキサフルオロプロピレン−フッ化ビニリデン)共重合体*1
ジメチルカーボネート(DMC) 75
電解液(LiPF6 :1.2モル/リットル)*2 20
ここで、*1:ヘキサフルオロプロピレン含有量=6部
*2:電解液使用溶媒:エチレンカーボネート(EC)/プロピレンカーボネート(PC)/γ−ブチロラクトン(GBL)=4/3/3
【0065】
なお、正極及び負極は、電解液含有ゲル層の形成に際し、電極予熱装置を所定の温度60℃に設定して加熱した。
【0066】
つぎに、電解液含有ゲル層が形成された負極原反を40mm幅に裁断し、帯状電極のパンケーキを作製した。そして、正極原反を38mm幅に裁断し、帯状電極のパンケーキを作製した。
【0067】
(電池の作製)
その後、正負両電極にそれぞれリード線を溶接し、さらに互いの電極活物質層面が対向するように貼り合わせた後、圧着し、組み込み部に送り、電池素子を形成した。そしてラミネートフィルムに覆われる形で電池素子を挟み込んだ上、ラミネートフィルムを溶着して図1に示すような非水ゲルポリマー二次電池を作製した。このように、本実施例の非水ゲルポリマー二次電池は、アルミラミネートパックを用いている。なお、ラミネートフィルムとしては、外側からナイロン−アルミニウム−無延伸ポリプロピレン(CPP)を積層したものであり、厚さはナイロンが30μm、アルミニウムが40μm、CPPが30μmであり、全体の積層の厚さが100μmのものを用いた。
【0068】
サンプル2〜16サンプル2〜16は、サンプル1と比べて、正極活物質中の炭酸リチウムと水分の含有量が異なる。他の点においてはサンプル1と同じである。具体的には、サンプル2〜4は炭酸リチウムの含有量が1質量%である。水分については、サンプル2が300ppm、サンプル3が200ppm、サンプル4が100ppmである。
【0069】
また、サンプル5〜8は炭酸リチウムの含有量が0.15質量%である。水分については、サンプル5が400ppm、サンプル6が300ppm、サンプル7が200ppm、サンプル8が100ppmである。また、サンプル9〜12は炭酸リチウムの含有量が0.07質量%である。水分については、サンプル9が400ppm、サンプル10が300ppm、サンプル11が200ppm、サンプル12が100ppmである。また、サンプル13〜16は炭酸リチウムの含有量が0.01質量%である。水分については、サンプル13が400ppm、サンプル14が300ppm、サンプル15が200ppm、サンプル16が100ppmである。
【0070】
つぎに、上述のように作製したサンプル1〜16について評価を行った。評価項目は膨れ率である。ここで、膨れ率について説明する。膨れ率はつぎのように測定する。最初に、各サンプルの電池を4.2V、500mA、2時間30分の条件で充電し、そのときの電池の厚みを測定する。その後、90℃で4時間保存する。つぎに、保存終了の1時間後の各電池の厚みを測定する。そして、保存前後の厚みの差を膨れ量とした。ここで、膨れ率はつぎにように定義する。すなわち、膨れ率(%)=(膨れ量/保存前の厚み)×100である。
【0071】
なお、電池の厚みの測定方法はつぎにようである。すなわち、電池を水平な平面を有する台の上におき、この平面に平行でありかつ電池の表面部より大きな円盤をこの電池上に下ろす。電池の厚みは、この円盤に300gの荷重をかけた状態で測定した。なお、電池の表面部が平面でないときは、電池の表面部の一番高いところが電池の厚みとなる。
【0072】
なお図1において、L=62mm,W=35mm,D=3. 8mmである。また、素子面積は56mm×34mm=1904mm2 てある。したがって、電池の表面部が平面であるときは、電池に加わる圧力は0.16gf/mm2 となる。
【0073】
保存後の膨れ率の測定結果は表1に示すとおりである。ここで、高温保存時の膨れ率が4%以下であれば、実用上問題がない。このことから、膨れ率は4%以下であることが望ましい。
【0074】
【表1】

Figure 0004062856
【0075】
膨れ率が4%以下とする範囲としては、炭酸リチウムの含有量が0.15質量%以下であり、かつ水分の含有量が300ppm以下の場合である。特に、炭酸リチウムの含有量が0.15質量%以下0.01質量%以上、かつ水分の含有量が300ppm以下の場合には、膨れ率がより抑制され、アルミラミネートパックがセットケースに入らなくなるなどの問題をより確実に回避することが可能となる。
【0076】
このように、正極活物質中の炭酸リチウムおよび水分の含有量を制御することにより、電池の膨れ率を4%以下に抑制することができる。このように、膨れ率が小さくなる理由はつぎのように考えられる。すなわち、正極活物質中に炭酸リチウムが含まれていると、この炭酸リチウムが高温保存時に熱分解し炭酸ガス(CO2 )を発生させる。また、正極活物質中に水分が存在すると、この水分と電解質例えばLiPF6 が反応してHFが発生する。このHFの作用により炭酸リチウムの分解反応が促進され、炭酸ガスが発生する。これらの炭酸ガスの発生が、電池の膨れの原因となるものと考えられる。したがって、本実施例では、炭酸ガスの発生の原因となる、炭酸リチウムおよび水分の含有量を特定の範囲(例えば炭酸リチウムについては0.15質量%以下0.01質量%以上)で小さくしているので、炭酸ガスの発生が抑制され、その結果電池の膨れが抑制されるものと考えられる。
【0077】
以上のことから、本実施例によれば、正極活物質がLiと他の金属との複合酸化物であり、正極活物質に含まれる炭酸リチウムが0.15質量%以下0.01質量%以上であり、かつ水分の含有量が300ppm以下であるので、高温保存時における分解反応が抑えられ、ガスの発生が抑制される。したがって、ラミネートフィルムで密封される非水ゲルポリマー二次電池または固体電解質二次電池においても、高温保存時の膨れを抑制・改善することができる。
【0078】
【発明の効果】
本発明は、以下に記載されるような効果を奏する。正極活物質がLiと他の金属との複合酸化物であり、正極活物質に含まれる炭酸リチウムが0.15質量%以下0.01質量%以上であり、かつ水分の含有量が300ppm以下であることから、この正極を有する、ラミネートフィルムで密封される非水ゲルポリマー二次電池または固体電解質二次電池における、高温保存時の膨れを抑制・改善することができる。
【図面の簡単な説明】
【図1】 非水電解質二次電池に係る発明の実施の形態を示す図である。
【符号の説明】
1‥‥非水電解質二次電池、2‥‥負極リード、3‥‥正極リード、4,5‥‥ラミネートフィルム[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a positive electrode active material and a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, many portable electronic devices such as a camera-integrated video tape recorder (VTR), a mobile phone, and a portable computer have appeared. As a power source for driving these portable electronic devices, there are two reasons from the viewpoint of economy and resource saving. Secondary batteries are used, and their use is expanding rapidly in recent years. In addition, with the downsizing and high performance of electronic devices, the batteries used are required to be small, light and high capacity. For this reason, high energy density non-aqueous electrolyte secondary batteries have been put to practical use as power sources for these portable electronic devices, particularly among secondary batteries.
[0003]
  An example of a non-aqueous electrolyte secondary battery is a non-aqueous lithium ion secondary battery in which lithium in the positive electrode is doped into the negative electrode through the electrolyte during charging, and lithium in the negative electrode through the electrolyte during discharge. The battery uses an electrochemical reversible reaction that is doped in the positive electrode, and uses a non-aqueous solvent in which a lithium salt is dissolved as an electrolyte. For this reason, in order to prevent leakage of the electrolyte, it is necessary to use a metal hard case cell (positive electrode lid and negative electrode can) having rigidity.
[0004]
  However, the use of a metal hard case cell has a problem in that it cannot fully meet the recent demand for lighter, smaller, and thinner secondary batteries. In addition, along with the further miniaturization of electronic equipment, it is also required to increase the degree of freedom of shape for secondary batteries, but the use of metal hard case cells is sufficient for the demands on shape. I can not respond to.
[0005]
  In view of this, a non-aqueous gel polymer secondary battery has been proposed as a secondary battery that solves these problems, and research and development has been actively promoted as a thin and foldable battery. This non-aqueous gel polymer secondary battery has a positive electrode in which a positive electrode active material layer is formed on a positive electrode current collector, and a negative electrode in which a negative electrode active material is formed on a negative electrode current collector. An electrolyte-containing gel layer is sandwiched between the material layer and the negative electrode active material layer of the negative electrode.
[0006]
  In the electrolyte-containing gel layer of such a non-aqueous gel polymer secondary battery, the electrolytic solution is held in the gel matrix. Therefore, the non-aqueous gel polymer secondary battery eliminates the problem of electrolyte leakage, eliminating the need for a hard case cell and further reducing the size, weight, thickness, and shape. ing.
[0007]
[Problems to be solved by the invention]
  On the other hand, in a conventional non-aqueous lithium ion secondary battery, lithium carbonate (Li2COThree ) Is contained in an amount of 0.8% to 1.2%. This is because when the battery becomes hot during heating and overcharging,2 This is to provide a function of generating gas and shutting down the safety valve. Further, the conventional positive electrode active material contains about 500 ppm of water, which is a factor for generating gas during heating and overcharging.
[0008]
  On the other hand, in the non-aqueous gel polymer secondary battery, the safety of heating and overcharging is improved, and it is no longer necessary to generate gas at a high temperature. Moreover, in the conventional non-aqueous gel polymer secondary battery, lithium cobaltate has been used as a positive electrode active material,Sealed with laminate filmIn a non-aqueous gel polymer secondary battery, it is a big problem to improve the swelling caused by a high temperature storage test or the like. This is because the swelling may prevent the aluminum laminate pack from entering the set case.
[0009]
  This invention is made | formed in view of such a subject, and it aims at providing the positive electrode active material and nonaqueous electrolyte secondary battery which can suppress and improve the swelling at the time of high temperature storage.
[0010]
[Means for Solving the Problems]
  The positive electrode active material of the present invention is the following in the positive electrode active material contained in the positive electrode active material layer of the positive electrode in which the positive electrode active material layer is formed on the positive electrode current collector.
  That is, (a) the positive electrode active material is a composite oxide of Li and another metal. (B) Included in the positive electrode active materialLi 2 CO 3 But0.15mass%0.01 belowmass%That's it. (C) The positive electrode is used for a non-aqueous gel polymer secondary battery or a solid electrolyte secondary battery. (D) The non-aqueous gel polymer secondary battery or the solid electrolyte secondary battery is sealed with a laminate film.(E) Moisture contained in the positive electrode active material is 300 ppm or less.
[0011]
  The positive electrode active material described above is as follows. That is, (a) a complex oxide of Li and another metal is LiCoO 2 It is.
[0012]
  The nonaqueous electrolyte secondary battery of the present invention has a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on a positive electrode current collector, and a negative electrode active material layer formed on the negative electrode current collector. A nonaqueous electrolyte secondary battery having a negative electrode is as follows.
  That is, (a) the positive electrode active material is a composite oxide of Li and another metal. (B) Li contained in the positive electrode active material 2 CO 3 However, it is 0.15 mass% or less and 0.01 mass% or more. (C) The positive electrode is used for a non-aqueous gel polymer secondary battery or a solid electrolyte secondary battery. (D) The non-aqueous gel polymer secondary battery or the solid electrolyte secondary battery is sealed with a laminate film. (E) Moisture contained in the positive electrode active material is 300 ppm or less.
[0013]
  Moreover, the nonaqueous electrolyte secondary battery described above is as follows. That is, (a) a complex oxide of Li and another metal is LiCoO 2 It is.
[0014]
  According to the positive electrode active material and the nonaqueous electrolyte secondary battery of the present invention, the positive electrode active material is a composite oxide of Li and another metal, and Li contained in the positive electrode active material 2 CO 3 Is 0.15% by mass or less and 0.01% by mass or more, and the moisture contained in the positive electrode active material is 300 ppm or less. Therefore, the nonaqueous gel polymer secondary battery having the positive electrode and sealed with a laminate film or In the solid electrolyte secondary battery, the decomposition reaction during high temperature storage is suppressed, and the generation of gas is suppressed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the invention relating to the positive electrode active material and the non-aqueous electrolyte secondary battery will be described.
[0021]
  First, the configuration of the nonaqueous electrolyte secondary battery will be described. FIG. 1 is a diagram showing an embodiment of the invention relating to a nonaqueous electrolyte secondary battery. Specifically, a non-aqueous gel polymer secondary battery is shown as an example of a non-aqueous electrolyte secondary battery.
[0022]
  The non-aqueous gel polymer secondary battery of the present invention includes a positive electrode having a positive electrode active material layer formed on a positive electrode current collector, a negative electrode having a negative electrode active material layer formed on a negative electrode current collector, and a positive electrode active material for the positive electrode. An electrolyte solution-containing gel layer formed on the material layer and the negative electrode active material layer of the negative electrode, respectively, and an electrode body having a structure in which the electrolyte solution-containing gel layers on the positive electrode side and the negative electrode side are overlapped with each other ing. After the positive electrode lead and the negative electrode lead are joined, the electrode body having this structure is sealed with a pair of laminate films 4 and 5 as shown in FIG. 1, thereby completing a non-aqueous gel polymer secondary battery. .
[0023]
  In the non-aqueous gel polymer secondary battery of the present invention, a porous separator (for example, a microporous film made of polyethylene or polypropylene) may be disposed between the electrolyte-containing gel layers as necessary. . By disposing a separator, physical contact between both electrode active material layers can be completely avoided.
[0024]
  The positive electrode active material used for the positive electrode is TiS.2 , MoS2 , NbSe2, V2 OFive Lithium-free metal sulfides or oxides such as LiMO2(Wherein M represents one or more transition metals, and the transition metal M is preferably Co, Ni, Mn, etc.), and a composite oxide of lithium and other metals can be used. .
[0025]
  As such a lithium composite oxide, LiCoO2 , Lix Co1-y Aly02 (Wherein 0.05 ≦ x ≦ 1.10 and 0.01 ≦ y ≦ 0.10), LiNiO2, LiNiy Co1-y O2 (Where 0 <y <1), Lix NiyM1-y O2 (In the formula, M represents at least one of transition metals, B, Al, Ga, and In, and 0.05 ≦ x ≦ 1.10 and 0.7 ≦ y ≦ 1.0.) , LiMn2OFour Etc. are desirable. These lithium composite oxides can generate a high voltage and become a positive electrode active material excellent in energy density. A plurality of these positive electrode active materials may be used in combination for the positive electrode.
[0026]
  When the positive electrode active material is a composite oxide of lithium and another metal, a carbonate such as lithium carbonate (Li2 COThree ) May be contained. Here, it is desirable that the contents of lithium carbonate and moisture be in the following ranges. That is,The lithium carbonate content is 0.15% by mass or less and 0.01% by mass or more, and the water content is 300 ppm or less.Is the case.
[0028]
  For the positive electrode, a dispersion in which the above-described positive electrode active material and a conductive agent such as acetylene black are dispersed in a solvent together with a binder such as polyvinylidene fluoride is applied in a thin film on a positive electrode current collector such as an aluminum foil. It is obtained by drying to form a positive electrode active material layer.
[0029]
  Thus, the positive electrode active material layer contains the positive electrode active material. The positive electrode active material layer may be formed on one side or both sides of the positive electrode current collector. Moreover, in order to obtain a desired positive electrode active material layer density, you may press-process as needed.
[0030]
  As the negative electrode active material, a material capable of doping and dedoping lithium can be used. A constituent material of such a negative electrode, for example, a non-graphitizable carbon material or a carbon material such as a graphite material can be used. More specifically, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke), graphites, glassy carbons, organic polymer compound fired bodies (phenolic resin, furan resin, etc.) at an appropriate temperature. Baked and carbonized), carbon fibers, materials that can be dedope include polymers such as polyacetylene and polypyrrole, SnO2Oxides such as these can also be used.
[0031]
  As a negative electrode, a negative electrode active material layer is prepared by applying a coating liquid obtained by dispersing the above-described negative electrode active material in a solvent together with a binder such as polyvinylidene fluoride in a thin film onto a negative electrode current collector such as a copper foil. Is obtained. The negative electrode active material layer may be formed on one side or both sides of the negative electrode current collector. Moreover, in order to obtain a desired negative electrode active material layer density, you may press-process as needed.
[0032]
  The electrolyte solution-containing gel layer is formed by forming a composition for forming an electrolyte solution-containing gel layer comprising a resin that can constitute a gel matrix, a solvent that swells the resin, and an electrolyte.
[0033]
  Formation of the electrolyte solution-containing gel layer is generally performed by heating and liquefying the electrolyte solution-containing gel layer forming composition at room temperature because it is jelly-like and insufficient in fluidity. In this case, in order to improve the penetration of the gel into the electrode (that is, the penetration of the electrolytic solution into the electrode active material layer), a solvent having a boiling point lower than that of the solvent for dissolving the electrolyte may be used as the dilution solvent. it can.
[0034]
  In addition, the heating temperature of the electrolyte solution-containing gel layer forming composition at the time of forming the electrolyte solution-containing gel layer is equal to or higher than the temperature at which the composition becomes liquid and has the lowest boiling point among the solvents contained therein. A temperature lower than the boiling point of is adopted.
[0035]
  Examples of the resin used in the composition for forming an electrolyte-containing gel layer include silicon gel, acrylic gel, acrylonitrile, polyphosphazene gel modified polymer, polyethylene oxide, polypropylene oxide, and composite polymers, cross-linked polymers, modified polymers, etc. of these or fluorine. Examples of the polymer include poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), poly (vinylidene fluoride-co-tetrafluoroethylene), poly (vinylidene fluoride-co-trifluoroethylene) And various mixtures thereof can be used, but of course, the present invention is not limited thereto.
[0036]
  Examples of the solvent include γ-butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
[0037]
  Examples of the electrolyte include lithium salts such as lithium hexafluorophosphate, lithium perchlorate, and lithium tetrafluoroborate.
[0038]
  As the configuration of the laminate film, for example, the following materials can be used. Here, the following abbreviations are used as plastic materials to be used. That is, polyethylene terephthalate: PET, molten polypropylene: PP, unstretched polypropylene: CPP, polyethylene: PE, low density polyethylene: LDPE, high density polyethylene: HDPE, linear low density polyethylene: LLDPE, nylon: Ny. In addition, the abbreviation AL is used for aluminum as a metal material used as a moisture-permeable barrier film.
[0039]
  The most common configuration is: exterior layer / metal film / sealant layer = PET / AL / PE. Moreover, not only this combination but the structure of the other general laminate film as shown below is employable. That is, exterior layer / metal film / sealant layer = Ny / AL / CPP, PET / AL / CPP, PET / AL / PET / CPP, PET / Ny / AL / CPP, PET / Ny / AL / Ny / CPP, PET / Ny / AL / Ny / PE, Ny / PE / AL / LLDPE, PET / PE / AL / PET / LDPE, or PET / Ny / AL / LDPE / CPP. Of course, metals other than AL can be used as the metal film.
[0040]
  Next, a method for producing a nonaqueous electrolyte secondary battery will be described. First, a positive electrode is produced by forming a positive electrode active material layer on a positive electrode current collector. Next, an electrolyte-containing gel layer is formed on the positive electrode active material layer of the positive electrode while heating the positive electrode to a temperature exceeding normal temperature.
[0041]
  Here, the electrolyte solution-containing gel layer can be applied on one side or on both sides by a single-sided sequential application device. That is, the electrode unwound from the unwinding roll is heated by an electrode preheating device, and the electrolyte layer-containing gel layer forming composition is applied from the coater head onto the electrode active material layer on one side. The applied composition for forming an electrolyte solution-containing gel layer is dried when passing through a dryer to form an electrolyte solution-containing gel layer. The electrode on which the electrolyte solution-containing gel layer is formed is wound on a winding roll.
[0042]
  The electrolyte solution-containing gel layer can also be applied simultaneously on both sides by a double-sided simultaneous application device. That is, the electrode unwound from the unwinding roll is heated by an electrode preheating device, and the electrolytic solution-containing gel layer forming composition is simultaneously applied from the coater head onto the electrode active material layers on both sides thereof. The applied composition for forming an electrolyte solution-containing gel layer is dried when passing through a dryer to form an electrolyte solution-containing gel layer. The electrode on which the electrolyte solution-containing gel layer is formed is wound on a winding roll.
[0043]
  In addition, when a press is required, for example, it can be pressed by a general press roll device after the electrode active material layer is formed and before the electrolytic solution-containing gel layer is formed.
[0044]
  Next, as in the case of producing the positive electrode, a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector, and then the negative electrode active material of the negative electrode is heated while heating the negative electrode to a temperature exceeding room temperature. An electrolyte solution-containing gel layer is formed on the layer.
[0045]
  Then, the electrolyte solution-containing gel layers on the positive electrode side and the negative electrode side are overlapped with each other. Thereby, an electrode body is obtained.
[0046]
  Incorporation of the obtained electrode body for the manufacture of a finished battery product can be achieved by slitting the electrode after formation of the electrolyte-containing gel layer, or conversely, slitting the electrode to form the electrolyte-containing gel layer. A method of incorporation or a combination of the two methods can be performed by slitting one electrode after forming the electrolyte solution-containing gel layer, and slitting the other electrode before forming the electrolyte solution-containing gel layer. Alternatively, an electrolytic solution-containing gel layer may be formed on only one surface of the electrode and slitted, and then an electrolytic solution-containing gel layer may be formed on the other surface of the electrode and then incorporated.
[0047]
  The battery element is superposed so that the active material layers of both electrodes face each other after the lead wire is welded to the portion of the current collector not coated with the active material layer. As this superposition method, there are a method of superposing electrodes cut to a desired size, a method of winding the superposed electrodes, and the like.
[0048]
  The battery element produced in this way is sandwiched between laminate films, and then pressed to increase the adhesion of the electrolyte-containing gel layer of both electrodes, and the battery element is sealed to prevent contact with the outside air. Applied. Thereby, a non-aqueous gel polymer secondary battery using an aluminum laminate pack as shown in FIG. 1 is obtained.
[0049]
  The method of electrode preheating before application of the composition for forming an electrolyte solution-containing gel layer in the present invention is not particularly limited, and is a method of passing a temperature-controlled roll, a method of blowing temperature-controlled air, and a method of providing an infrared lamp. Etc.
[0050]
  The present invention can be applied not only to non-aqueous gel polymer secondary batteries but also to non-aqueous electrolyte secondary batteries and solid electrolyte secondary batteries.
[0051]
  The solid electrolyte is composed of a lithium salt and a polymer compound that dissolves the lithium salt. Examples of the polymer compound include ether-based polymers such as poly (ethylene oxide) and crosslinked products, poly (methacrylate) ester-based, acrylate-based, Fluorine polymers such as (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene) can be used alone or in combination.
[0052]
  Further, the present invention is not limited to the above-described embodiments, and various other configurations can be adopted without departing from the gist of the present invention.
[0053]
【Example】
  Next, specific examples of the present invention will be described. However, it goes without saying that the present invention is not limited to these examples.
[0054]
  Sample 1 (Preparation of Positive Electrode) The following positive electrode active material layer composition suspension was mixed with a disper for 4 hours, and this was pattern-coated on both sides of an aluminum foil having a thickness of 20 μm. The coating pattern was controlled such that the coating length was 160 mm on both sides and the uncoated part length was 30 mm, and the coating start and coating end positions on both sides coincided with each other.
[0055]
              Positive electrode active material layer composition parts by weight
      LiCoO2 (Average particle size 10 μm) 100
      Polyvinylidene fluoride (average molecular weight 300,000) 5
      Carbon black (average particle size 15 nm) 10
      N-methyl-2-pyrrolidone 100
[0056]
  The positive electrode active material LiCoO described above2 Lithium carbonate (Li2 COThree ) 1mass%Contains. In addition, the positive electrode active material LiCoO described above2Contains 400 ppm of moisture. Here, the positive electrode active material LiCoO2 The moisture in the positive electrode active material LiCoO2 Was dried in a vacuum and adjusted to 400 ppm by controlling the drying time.
[0057]
  In addition, the moisture quantitative analysis was performed as follows. That is, 0.5 g of a positive electrode active material sample was weighed and heated at a test temperature of 250 ° C. to evaporate moisture, and the moisture content was measured with a Karl Fischer measuring device. The content of lithium carbonate was quantitatively analyzed as follows. That is, 2.0 g of the positive electrode active material was weighed, and A. G. K type CO2 It measured using the analytical method (the titration method described in JISR9101).
[0058]
  Although moisture is contained in other materials such as negative electrode active materials, gels, and electrolytes, the moisture contained in these materials is very small. Therefore, the moisture present in the battery can be determined by controlling the moisture contained in the positive electrode active material.
[0059]
  The positive electrode raw material after double-sided coating was pressed at a linear pressure of 300 kg / cm. The positive electrode thickness and the positive electrode active material layer density were 100 μm and 3.45 g / cc, respectively, after pressing.
[0060]
(Preparation of negative electrode)
  The suspension of the following negative electrode active material layer composition was mixed with a disper for 4 hours, and this was pattern-coated on both surfaces of 10-micrometer-thick copper foil. The coating pattern was controlled such that the coating length was 160 mm on both sides and the uncoated part length was 30 mm, and the coating start and coating end positions on both sides coincided with each other.
[0061]
                Negative electrode active material layer composition parts by weight
      Artificial graphite (average particle size 20 μm) 100
      Polyvinylidene fluoride (average molecular weight 300,000) 15
      N-methyl-2-pyrrolidone 200
[0062]
  The negative electrode raw material after the double-sided coating was pressed at a linear pressure of 300 kg / cm. The negative electrode thickness and the negative electrode active material layer density were 90 μm and 1.30 g / cc, respectively, after pressing.
[0063]
(Formation of gel layer containing electrolyte)
  The following electrolyte solution-containing gel layer forming composition was mixed with a disper for 1 hour while heating at 70 ° C., and this was applied to the negative electrode active material layers on both sides of the negative electrode so as to have a layer thickness of 20 μm. A pattern was applied on the positive electrode active material layers on both sides of the positive electrode so as to have a layer thickness of 20 μm. At this time, the dryer was prepared so that substantially only dimethyl carbonate evaporated.
[0064]
            Electrolyte-containing gel layer forming composition parts by weight
      Poly (hexafluoropropylene-vinylidene fluoride) copolymer* 1   5
      Dimethyl carbonate (DMC) 75
      Electrolyte (LiPF6 : 1.2 mol / liter)* 2                20
  Here, * 1: hexafluoropropylene content = 6 parts
          * 2: Electrolyte solvent: ethylene carbonate (EC) / propylene carbonate (PC) / γ-butyrolactone (GBL) = 4/3/3
[0065]
  In addition, the positive electrode and the negative electrode were heated by setting the electrode preheating device at a predetermined temperature of 60 ° C. when forming the electrolyte-containing gel layer.
[0066]
  Next, the negative electrode original fabric on which the electrolyte solution-containing gel layer was formed was cut into a width of 40 mm to prepare a pancake of a strip electrode. And the positive electrode original fabric was cut | judged to 38 mm width, and the pancake of the strip | belt-shaped electrode was produced.
[0067]
(Production of battery)
  Thereafter, lead wires were welded to the positive and negative electrodes, respectively, and further bonded to each other so that the electrode active material layer surfaces face each other, and then crimped and sent to the built-in portion to form a battery element. The battery element was sandwiched between the laminated films and the laminated film was welded to produce a non-aqueous gel polymer secondary battery as shown in FIG. Thus, the non-aqueous gel polymer secondary battery of this example uses an aluminum laminate pack. In addition, as a laminate film, nylon-aluminum-unstretched polypropylene (CPP) is laminated from the outside, and the thickness is 30 μm for nylon, 40 μm for aluminum, and 30 μm for CPP. The thing of 100 micrometers was used.
[0068]
  Samples 2 to 16 Samples 2 to 16 are different from Sample 1 in the content of lithium carbonate and moisture in the positive electrode active material. The other points are the same as Sample 1. Specifically, samples 2 to 4 have a lithium carbonate content of 1.mass%It is. Regarding moisture, sample 2 is 300 ppm, sample 3 is 200 ppm, and sample 4 is 100 ppm.
[0069]
  Samples 5 to 8 have a lithium carbonate content of 0.15.mass%It is. Regarding moisture, sample 5 is 400 ppm, sample 6 is 300 ppm, sample 7 is 200 ppm, and sample 8 is 100 ppm. Samples 9 to 12 have a lithium carbonate content of 0.07.mass%It is. Regarding moisture, sample 9 is 400 ppm, sample 10 is 300 ppm, sample 11 is 200 ppm, and sample 12 is 100 ppm. Samples 13 to 16 have a lithium carbonate content of 0.01.mass%It is. Regarding moisture, sample 13 is 400 ppm, sample 14 is 300 ppm, sample 15 is 200 ppm, and sample 16 is 100 ppm.
[0070]
  Next, the samples 1 to 16 produced as described above were evaluated. The evaluation item is the swelling rate. Here, the swelling rate will be described. The swelling rate is measured as follows. First, the battery of each sample is charged under conditions of 4.2 V, 500 mA, 2 hours and 30 minutes, and the thickness of the battery at that time is measured. Thereafter, it is stored at 90 ° C. for 4 hours. Next, the thickness of each battery 1 hour after the end of storage is measured. The difference in thickness before and after storage was taken as the amount of swelling. Here, the swelling rate is defined as follows. That is, the swelling ratio (%) = (blowing amount / thickness before storage) × 100.
[0071]
  The battery thickness measurement method is as follows. That is, the battery is placed on a table having a horizontal plane, and a disk parallel to the plane and larger than the surface portion of the battery is lowered onto the battery. The thickness of the battery was measured in a state where a load of 300 g was applied to the disk. When the surface portion of the battery is not flat, the highest portion of the surface portion of the battery is the battery thickness.
[0072]
  In FIG. 1, L = 62 mm, W = 35 mm, and D = 3.8 mm. The element area is 56 mm × 34 mm = 1904 mm 2. Therefore, when the surface portion of the battery is flat, the pressure applied to the battery is 0.16 gf / mm @ 2.
[0073]
  Table 1 shows the measurement results of the swelling rate after storage. Here, if the swelling rate during high temperature storage is 4% or less, there is no practical problem. Therefore, it is desirable that the swelling rate is 4% or less.
[0074]
[Table 1]
Figure 0004062856
[0075]
  As a range in which the swelling rate is 4% or less, the lithium carbonate content is 0.15.mass%And the moisture content is 300 ppm or less. In particular, the lithium carbonate content is 0.15mass%0.01 belowmass%When the moisture content is 300 ppm or less as described above, the swelling rate is further suppressed, and problems such as the aluminum laminate pack not entering the set case can be more reliably avoided.
[0076]
  Thus, by controlling the content of lithium carbonate and moisture in the positive electrode active material, the swelling rate of the battery can be suppressed to 4% or less. The reason why the swelling rate is thus reduced is considered as follows. That is, when lithium carbonate is contained in the positive electrode active material, the lithium carbonate is thermally decomposed during high-temperature storage, and carbon dioxide gas (CO2). Further, when moisture is present in the positive electrode active material, this moisture and an electrolyte such as LiPF6 Reacts to generate HF. By the action of HF, the decomposition reaction of lithium carbonate is promoted and carbon dioxide gas is generated. The generation of these carbon dioxide gas is considered to cause the battery to swell. Therefore, in this example, the content of lithium carbonate and moisture, which cause generation of carbon dioxide, is within a specific range (for example, 0.15 for lithium carbonate).mass%0.01 belowmass%Therefore, it is considered that the generation of carbon dioxide gas is suppressed, and as a result, the swelling of the battery is suppressed.
[0077]
  From the above, according to this example, the positive electrode active material is a composite oxide of Li and another metal, and is included in the positive electrode active material.Lithium carbonateIs 0.15mass%0.01 belowmass%more thanAnd the water content is 300 ppm or lessTherefore, the decomposition reaction during high temperature storage is suppressed, and the generation of gas is suppressed. Therefore, even in a non-aqueous gel polymer secondary battery or a solid electrolyte secondary battery sealed with a laminate film, swelling at high temperature storage can be suppressed / improved.
[0078]
【The invention's effect】
  The present invention has the following effects. The positive electrode active material is a composite oxide of Li and another metal, and is included in the positive electrode active materialLithium carbonateIs 0.15mass%0.01 belowmass%more thanAnd the water content is 300 ppm or lessTherefore, the swelling at the time of high temperature storage in the non-aqueous gel polymer secondary battery or solid electrolyte secondary battery sealed with a laminate film having this positive electrode can be suppressed / improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the invention relating to a nonaqueous electrolyte secondary battery.
[Explanation of symbols]
1 ... Non-aqueous electrolyte secondary battery, 2 ... Negative electrode lead, 3 ... Positive electrode lead, 4, 5 ... Laminated film

Claims (4)

正極集電体上に正極活物質層が形成された正極の、該正極活物質層に含有される正極活物質において、以下のことを特徴とする正極活物質。
(イ)正極活物質は、Liと他の金属との複合酸化物である。
(ロ)正極活物質に含まれるLi CO 、0.15質量%以下0.01質量%以上である。
(ハ)正極は、非水ゲルポリマー二次電池または固体電解質二次電池に用いる。
(ニ)上記非水ゲルポリマー二次電池または上記固体電解質二次電池は、ラミネートフィルムで密封される。
(ホ)正極活物質に含まれる水分は、300ppm以下である。
The positive electrode active material of the positive electrode in which the positive electrode active material layer is formed on the positive electrode current collector, which is contained in the positive electrode active material layer.
(A) The positive electrode active material is a composite oxide of Li and another metal.
(B) Li 2 CO 3 contained in the positive electrode active material is 0.15 % by mass or less and 0.01 % by mass or more.
(C) The positive electrode is used for a non-aqueous gel polymer secondary battery or a solid electrolyte secondary battery.
(D) The non-aqueous gel polymer secondary battery or the solid electrolyte secondary battery is sealed with a laminate film.
(E) Moisture contained in the positive electrode active material is 300 ppm or less.
請求項1記載の正極活物質は以下のことを特徴とする。
(イ)Liと他の金属との複合酸化物は、LiCoOである。
The positive electrode active material according to claim 1 is characterized by the following.
(A) A composite oxide of Li and another metal is LiCoO 2 .
正極集電体上に正極活物質を含有する正極活物質層が形成された正極と、負極集電体上に負極活物質層が形成された負極とを有する非水電解質二次電池において、以下のことを特徴とする非水電解質二次電池。
(イ)正極活物質は、Liと他の金属との複合酸化物である。
(ロ)正極活物質に含まれるLi CO 、0.15質量%以下0.01質量%以上である。
(ハ)正極は、非水ゲルポリマー二次電池または固体電解質二次電池に用いる。
(ニ)上記非水ゲルポリマー二次電池または上記固体電解質二次電池は、ラミネートフィルムで密封される。
(ホ)正極活物質に含まれる水分は、300ppm以下である。
In a non-aqueous electrolyte secondary battery having a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on a positive electrode current collector and a negative electrode in which a negative electrode active material layer is formed on a negative electrode current collector, A nonaqueous electrolyte secondary battery characterized by the above.
(A) The positive electrode active material is a composite oxide of Li and another metal.
(B) Li 2 CO 3 contained in the positive electrode active material is 0.15 % by mass or less and 0.01 % by mass or more.
(C) The positive electrode is used for a non-aqueous gel polymer secondary battery or a solid electrolyte secondary battery.
(D) The non-aqueous gel polymer secondary battery or the solid electrolyte secondary battery is sealed with a laminate film.
(E) Moisture contained in the positive electrode active material is 300 ppm or less.
請求項3記載の非水電解質二次電池は以下のことを特徴とする。
(イ)Liと他の金属との複合酸化物は、LiCoOである。
The nonaqueous electrolyte secondary battery according to claim 3 is characterized by the following.
(A) A composite oxide of Li and another metal is LiCoO 2 .
JP2000111044A 2000-04-04 2000-04-12 Positive electrode active material and non-aqueous electrolyte secondary battery Expired - Lifetime JP4062856B2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP2000102624A JP4106644B2 (en) 2000-04-04 2000-04-04 Battery and manufacturing method thereof
JP2000108412A JP2001291517A (en) 2000-04-04 2000-04-10 Positive active material and nonaqueous electrolyte secondary battery
JP2000111044A JP4062856B2 (en) 2000-04-04 2000-04-12 Positive electrode active material and non-aqueous electrolyte secondary battery
EP16178916.9A EP3101715A1 (en) 2000-04-04 2001-03-30 Non-aqueous electrolyte secondary battery
EP05025373A EP1675208A3 (en) 2000-04-04 2001-03-30 Non-aqueous electrolyte secondary battery
EP10009818A EP2264813B1 (en) 2000-04-04 2001-03-30 Non-aqueous electrolyte secondary battery
EP14003948.8A EP2849264A1 (en) 2000-04-04 2001-03-30 Non-aqueous electrolyte secondary battery
EP01108177A EP1143549A3 (en) 2000-04-04 2001-03-30 Non-aqueous electrolyte secondary battery
TW090107595A TW492210B (en) 2000-04-04 2001-03-30 Non-aqueous electrolyte secondary battery
EP05025372A EP1672730B1 (en) 2000-04-04 2001-03-30 Non-aqueous electrolyte secondary battery
KR1020010017881A KR100812549B1 (en) 2000-04-04 2001-04-04 Non-aqueous electrolyte secondary battery
CNB200410056794XA CN100394639C (en) 2000-04-04 2001-04-04 Non-aqueous electrolyte secondary battery
US09/825,988 US6967066B2 (en) 2000-04-04 2001-04-04 Non-aqueous electrolyte secondary battery
CNB011214384A CN100359745C (en) 2000-04-04 2001-04-04 Non-aqueous electrolyte secondary cell
CNB2004100567954A CN1310369C (en) 2000-04-04 2001-04-04 Non-aqueous electrolyte secondary battery
US11/073,511 US7223495B2 (en) 2000-04-04 2005-03-07 Non-aqueous electrolyte secondary battery
US11/073,509 US7563539B2 (en) 2000-04-04 2005-03-07 Non-aqueous electrolyte secondary battery
US11/073,510 US20050175891A1 (en) 2000-04-04 2005-03-07 Non-aqueous electrolyte secondary battery
US11/112,295 US20050184302A1 (en) 2000-04-04 2005-04-22 Nitride semiconductor device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000102624A JP4106644B2 (en) 2000-04-04 2000-04-04 Battery and manufacturing method thereof
JP2000108412A JP2001291517A (en) 2000-04-04 2000-04-10 Positive active material and nonaqueous electrolyte secondary battery
JP2000111044A JP4062856B2 (en) 2000-04-04 2000-04-12 Positive electrode active material and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001297764A JP2001297764A (en) 2001-10-26
JP4062856B2 true JP4062856B2 (en) 2008-03-19

Family

ID=27342987

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2000102624A Expired - Lifetime JP4106644B2 (en) 2000-04-04 2000-04-04 Battery and manufacturing method thereof
JP2000108412A Pending JP2001291517A (en) 2000-04-04 2000-04-10 Positive active material and nonaqueous electrolyte secondary battery
JP2000111044A Expired - Lifetime JP4062856B2 (en) 2000-04-04 2000-04-12 Positive electrode active material and non-aqueous electrolyte secondary battery

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2000102624A Expired - Lifetime JP4106644B2 (en) 2000-04-04 2000-04-04 Battery and manufacturing method thereof
JP2000108412A Pending JP2001291517A (en) 2000-04-04 2000-04-10 Positive active material and nonaqueous electrolyte secondary battery

Country Status (6)

Country Link
US (4) US6967066B2 (en)
EP (6) EP1675208A3 (en)
JP (3) JP4106644B2 (en)
KR (1) KR100812549B1 (en)
CN (3) CN1310369C (en)
TW (1) TW492210B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020503B2 (en) 2013-03-25 2018-07-10 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
US10217995B2 (en) 2013-09-18 2019-02-26 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201459B2 (en) * 2000-03-31 2008-12-24 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20040072072A1 (en) 2001-11-20 2004-04-15 Tadashi Suzuki Electrode active material electrode lithium-ion secondary battery method of making electrode active material and method of making lithium-ion secondary battery
US7563535B2 (en) * 2002-02-06 2009-07-21 Sony Corporation Battery pack with insulating film sheath material and method of producing the same
KR100440933B1 (en) * 2002-02-06 2004-07-21 삼성에스디아이 주식회사 Battery unit and lithium polymer battery applying the same and the fabrication method thereof
JP3759908B2 (en) * 2002-02-19 2006-03-29 株式会社バーテックススタンダード Emergency call device for wireless communication equipment
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
JP4183472B2 (en) * 2002-10-10 2008-11-19 三洋電機株式会社 Nonaqueous electrolyte secondary battery
EP1434288B1 (en) * 2002-12-20 2007-02-28 Toyota Jidosha Kabushiki Kaisha Active material for positive electrode for non-aqueous electrolyte secondary battery and method of manufacturing the same
US7348762B2 (en) * 2003-05-01 2008-03-25 Sony Corporation Battery pack and method for producing battery pack
US8999566B2 (en) 2003-05-22 2015-04-07 Samsung Sdi Co., Ltd. Pouch-type lithium secondary battery and fabrication method thereof
KR100496305B1 (en) 2003-05-22 2005-06-17 삼성에스디아이 주식회사 Pouched-type lithium secondary battery and the fabrication method thereof
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
GB2404781A (en) * 2003-08-08 2005-02-09 Alexander Gilmour Electrochemical cell having "in-situ" generated component
KR101065307B1 (en) 2004-01-19 2011-09-16 삼성에스디아이 주식회사 Cathode active material for lithium secondary battery and lithium secondary battery using the same
JP4794866B2 (en) * 2004-04-08 2011-10-19 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR100601519B1 (en) 2004-06-22 2006-07-19 삼성에스디아이 주식회사 Pouch type lithium polymer battery and its manufacturing method
JP4117573B2 (en) 2004-07-21 2008-07-16 ソニー株式会社 battery
US8778529B2 (en) * 2004-11-29 2014-07-15 Samsung Sdi Co., Ltd. Lithium secondary battery
KR101021536B1 (en) 2004-12-08 2011-03-16 섬모픽스, 인코포레이티드 Deposition of ??????
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
KR100766721B1 (en) * 2005-01-21 2007-10-11 주식회사 엘지화학 Secondary Battery of Excellent Sealability
DE102005005553A1 (en) * 2005-02-07 2006-08-10 Robert Bosch Gmbh Electric hand tool
US20070298512A1 (en) * 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US20080032196A1 (en) 2005-04-13 2008-02-07 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US20070292761A1 (en) 2005-04-13 2007-12-20 Lg Chem, Ltd. Material for lithium secondary battery of high performance
KR100686812B1 (en) * 2005-04-26 2007-02-26 삼성에스디아이 주식회사 Secondary battery
JP5181430B2 (en) * 2005-05-26 2013-04-10 ソニー株式会社 Secondary battery
CN100466340C (en) * 2005-06-17 2009-03-04 松下电器产业株式会社 Non-aqueous electrolyte rechargeable battery
JP4867218B2 (en) * 2005-07-08 2012-02-01 ソニー株式会社 Lithium ion secondary battery
EP1946396B1 (en) * 2005-11-08 2018-02-07 LG Chem, Ltd. Secondary battery with advanced safety
JP4967321B2 (en) 2005-11-21 2012-07-04 ソニー株式会社 Lithium ion secondary battery
KR100906253B1 (en) * 2006-05-01 2009-07-07 주식회사 엘지화학 Secondary Battery Having Electrode With Self Cutting Part To Be Destructed On Application Of Over-Current
JP4215078B2 (en) 2006-07-21 2009-01-28 ソニー株式会社 Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
KR20090069323A (en) 2006-09-29 2009-06-30 인피니트 파워 솔루션스, 인크. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
JP5230108B2 (en) * 2007-01-26 2013-07-10 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5188153B2 (en) * 2007-11-13 2013-04-24 三洋電機株式会社 Method for evaluating positive electrode active material for non-aqueous electrolyte secondary battery and method for evaluating positive electrode for non-aqueous electrolyte secondary battery
KR101349942B1 (en) * 2007-11-23 2014-01-15 삼성에스디아이 주식회사 Polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same
EP2225406A4 (en) 2007-12-21 2012-12-05 Infinite Power Solutions Inc Method for sputter targets for electrolyte films
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
CN101911367B (en) 2008-01-11 2015-02-25 无穷动力解决方案股份有限公司 Thin film encapsulation for thin film batteries and other devices
DE102008015965A1 (en) * 2008-03-20 2009-09-24 Varta Microbattery Gmbh Galvanic element with foil seal
CN101983469B (en) 2008-04-02 2014-06-04 无穷动力解决方案股份有限公司 Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
WO2010019577A1 (en) 2008-08-11 2010-02-18 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
JP5509561B2 (en) * 2008-09-17 2014-06-04 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP5353151B2 (en) * 2008-09-25 2013-11-27 住友金属鉱山株式会社 Method for producing lithium-nickel-containing composite oxide
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
KR101094937B1 (en) 2009-02-16 2011-12-15 삼성에스디아이 주식회사 Cylinder type Secondary Battery
JP5195499B2 (en) * 2009-02-17 2013-05-08 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP4835742B2 (en) * 2009-02-20 2011-12-14 ソニー株式会社 Battery and battery pack
EP2228855B1 (en) 2009-03-12 2014-02-26 Belenos Clean Power Holding AG Open porous electrically conductive nanocomposite material
EP2237346B1 (en) 2009-04-01 2017-08-09 The Swatch Group Research and Development Ltd. Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
JP5487676B2 (en) * 2009-03-30 2014-05-07 Tdk株式会社 Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt
EP2287946A1 (en) * 2009-07-22 2011-02-23 Belenos Clean Power Holding AG New electrode materials, in particular for rechargeable lithium ion batteries
EP2474056B1 (en) 2009-09-01 2016-05-04 Sapurast Research LLC Printed circuit board with integrated thin film battery
KR20110066448A (en) * 2009-12-11 2011-06-17 삼성에스디아이 주식회사 Lithium secondary battery
JP2011138623A (en) * 2009-12-25 2011-07-14 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP5329453B2 (en) * 2010-01-28 2013-10-30 三洋電機株式会社 Non-aqueous secondary battery
JP5329454B2 (en) * 2010-01-28 2013-10-30 三洋電機株式会社 Lithium ion polymer battery
CN102947976B (en) 2010-06-07 2018-03-16 萨普拉斯特研究有限责任公司 Chargeable, highdensity electrochemical apparatus
US10003049B2 (en) * 2010-08-09 2018-06-19 Lg Chem, Ltd. Secondary battery of improved safety
WO2012090368A1 (en) * 2010-12-28 2012-07-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
JP5987336B2 (en) * 2011-03-25 2016-09-07 日本電気株式会社 Secondary battery
JP6093516B2 (en) * 2011-09-30 2017-03-08 株式会社日本触媒 Electrolytic solution, method for producing the same, and power storage device using the same
JP6269475B2 (en) * 2012-03-02 2018-01-31 日本電気株式会社 Secondary battery
CN103718349A (en) * 2012-03-15 2014-04-09 株式会社东芝 Non-aqueous electrolyte secondary battery and battery pack
JP5621869B2 (en) * 2012-03-27 2014-11-12 Tdk株式会社 Lithium ion secondary battery
US11024845B2 (en) * 2012-04-16 2021-06-01 Lg Chem, Ltd. Moisture-limited electrode active material, moisture-limited electrode and lithium secondary battery comprising the same
US20150086865A1 (en) * 2012-05-14 2015-03-26 Nec Energy Devices, Ltd. Positive electrode for secondary battery, secondary battery, and methods for manufacturing the same
CN105905436B (en) * 2013-01-25 2020-04-03 凸版印刷株式会社 Flexible package
JP6283171B2 (en) * 2013-03-29 2018-02-21 デンカ株式会社 Carbon black for lithium ion secondary battery and its use
JP6329888B2 (en) 2013-12-13 2018-05-23 エルジー・ケム・リミテッド Anode material for secondary battery and secondary battery using the same
KR101762508B1 (en) * 2014-10-02 2017-07-27 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
JP2016177901A (en) * 2015-03-18 2016-10-06 株式会社東芝 Positive electrode active material for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP6580886B2 (en) * 2015-06-30 2019-09-25 株式会社エンビジョンAescジャパン Lithium ion secondary battery
KR102448295B1 (en) * 2015-07-16 2022-09-28 삼성에스디아이 주식회사 Secondary battery
KR102515097B1 (en) * 2015-10-26 2023-03-27 삼성에스디아이 주식회사 Rechargeable lithium battery
KR102479486B1 (en) * 2015-10-28 2022-12-19 삼성에스디아이 주식회사 Pouch type rechargeable battery
JP6642471B2 (en) * 2017-02-02 2020-02-05 トヨタ自動車株式会社 Composite active material particles, positive electrode, all-solid lithium-ion battery, and methods for producing these
JP6989322B2 (en) * 2017-08-30 2022-01-05 株式会社エンビジョンAescジャパン Positive electrode for lithium-ion secondary battery
CN108680701A (en) * 2018-04-04 2018-10-19 珠海市赛纬电子材料股份有限公司 The detection method of the inorganic salt compound of class containing oxalic acid in a kind of lithium hexafluorophosphate electrolyte solution
CN208226027U (en) * 2018-04-12 2018-12-11 宁德新能源科技有限公司 Battery core
CN108922991A (en) * 2018-06-26 2018-11-30 苏州英诺达自动化科技有限公司 A kind of lithium battery with environmental-protecting performance
CN110003627B (en) * 2019-04-04 2021-01-19 苏州思达奇环保新材料有限公司 Degradable solid electrolyte membrane, preparation method thereof and lithium battery prepared from degradable solid electrolyte membrane
CN114730910B (en) * 2020-08-14 2023-08-29 宁德时代新能源科技股份有限公司 Secondary battery, method of manufacturing the same, and battery module, battery pack, and device including the same
CN112479271A (en) * 2020-12-09 2021-03-12 山东丰元化学股份有限公司 Preparation method of high-nickel ternary cathode material
JP2022111526A (en) * 2021-01-20 2022-08-01 Fdk株式会社 Laminate type power storage element

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913988A (en) * 1987-06-11 1990-04-03 Eveready Battery Company, Inc. Li2 CO3 -Ca(OH)2 additive for cathodes in nonaqueous cells
JP2615854B2 (en) * 1988-06-01 1997-06-04 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP2934449B2 (en) * 1989-03-23 1999-08-16 株式会社リコー Rechargeable battery
JP3067165B2 (en) * 1990-06-20 2000-07-17 ソニー株式会社 Positive electrode active material LiCoO2 for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3010781B2 (en) * 1991-04-26 2000-02-21 ソニー株式会社 Non-aqueous electrolyte secondary battery
US5427875A (en) * 1991-04-26 1995-06-27 Sony Corporation Non-aqueous electrolyte secondary cell
JP3051506B2 (en) * 1991-05-21 2000-06-12 東芝電池株式会社 Non-aqueous solvent secondary battery
JP3231813B2 (en) * 1991-09-13 2001-11-26 旭化成株式会社 Organic electrolyte battery
US5393622A (en) * 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
WO1996013873A1 (en) * 1994-10-27 1996-05-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
JP3385516B2 (en) * 1995-01-18 2003-03-10 日本電池株式会社 Non-aqueous polymer battery and method for producing polymer film for non-aqueous polymer battery
JPH0959026A (en) * 1995-08-21 1997-03-04 Nikki Kagaku Kk Production of lithium nickelate
JPH09288996A (en) * 1996-04-23 1997-11-04 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JPH1027613A (en) * 1996-07-08 1998-01-27 Sumitomo Metal Mining Co Ltd Positive electrode active substance for nonaqueous electrolyte secondary battery and manufacture thereof
JP3713900B2 (en) * 1996-07-19 2005-11-09 ソニー株式会社 Negative electrode material and non-aqueous electrolyte secondary battery using the same
JPH1040900A (en) * 1996-07-25 1998-02-13 Toyota Motor Corp Positive electrode for lithium ion secondary battery
EP0827230B1 (en) * 1996-09-03 2006-11-22 Ube Industries, Ltd. Non-aqueous lithium ion secondary battery
JP3575582B2 (en) * 1996-09-12 2004-10-13 同和鉱業株式会社 Positive active material for non-aqueous secondary battery and method for producing the same
JPH10144315A (en) * 1996-09-13 1998-05-29 Sumitomo Metal Mining Co Ltd Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture
US5928812A (en) * 1996-11-18 1999-07-27 Ultralife Batteries, Inc. High performance lithium ion polymer cells and batteries
JPH10149832A (en) * 1996-11-20 1998-06-02 Sony Corp Nonaqueous electrolyte secondary battery
JPH10162826A (en) 1996-11-28 1998-06-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US5869207A (en) 1996-12-09 1999-02-09 Valence Technology, Inc. Stabilized electrochemical cell
DE19652174A1 (en) * 1996-12-14 1998-06-18 Varta Batterie Process for the production of polymer electrolytes
CN1246205A (en) * 1996-12-20 2000-03-01 丹尼昂尼克斯公司 Lithium secondary battery
JP3223824B2 (en) * 1996-12-26 2001-10-29 三菱電機株式会社 Lithium ion secondary battery
JP3562187B2 (en) * 1996-12-27 2004-09-08 ソニー株式会社 Non-aqueous electrolyte secondary battery
CN1194278A (en) * 1997-01-20 1998-09-30 松下电器产业株式会社 Polymer electrolyte and lithium-polymer cell using said electrolyte
JPH10255860A (en) * 1997-03-13 1998-09-25 Asahi Chem Ind Co Ltd Nonaqueous battery
FR2761531B1 (en) 1997-03-25 2007-04-13 Ube Industries ELECTROLYTIC SOLUTION FOR LITHIUM BATTERY
JP3706718B2 (en) * 1997-04-01 2005-10-19 日本化学工業株式会社 Lithium ion secondary battery positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3907282B2 (en) * 1997-04-04 2007-04-18 昭和電工株式会社 Composite electrolyte and its use
US6127065A (en) * 1997-04-25 2000-10-03 Sony Corporation Method of manufacturing cathode active material and nonaqueous electrolyte secondary battery
JP3769871B2 (en) * 1997-04-25 2006-04-26 ソニー株式会社 Method for producing positive electrode active material
KR100539322B1 (en) 1997-05-27 2005-12-27 티디케이가부시기가이샤 Electrode for non-aqueous electrolytic cells
JP3817034B2 (en) 1997-07-09 2006-08-30 株式会社スズテック Nursery box parallel laying device
US6337153B1 (en) * 1997-07-23 2002-01-08 Sanyo Electric Co., Ltd. Sealed non-aqueous electrolyte cell having a casing of a sheet of laminated material
JPH1186907A (en) 1997-09-05 1999-03-30 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH11111266A (en) 1997-09-30 1999-04-23 Yuasa Corp High polymer electrolyte secondary battery
JPH11135119A (en) 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
US6195251B1 (en) * 1997-10-29 2001-02-27 Asahi Glass Company Ltd. Electrode assembly and electric double layer capacitor having the electrode assembly
JPH11185811A (en) * 1997-12-16 1999-07-09 Tonen Corp Electrolytic solution for lithium battery and its manufacture
WO1999034471A1 (en) * 1997-12-26 1999-07-08 Tonen Corporation Electrolyte for lithium cells and method of producing the same
JP4071342B2 (en) * 1998-02-16 2008-04-02 富士通株式会社 Lithium secondary battery and positive electrode mixture used therefor
JPH11260346A (en) * 1998-03-06 1999-09-24 Hitachi Maxell Ltd Polymer electrolyte battery
JPH11260368A (en) * 1998-03-13 1999-09-24 Mitsubishi Cable Ind Ltd Positive electrode active material for lithium secondary battery
JP4056123B2 (en) * 1998-03-30 2008-03-05 三洋電機株式会社 Lithium ion battery
JP4127892B2 (en) 1998-03-31 2008-07-30 日立マクセル株式会社 Lithium ion secondary battery
JP4247583B2 (en) * 1998-04-27 2009-04-02 ソニー株式会社 Solid electrolyte secondary battery and manufacturing method thereof
KR100274236B1 (en) * 1998-05-13 2001-02-01 김순택 Cathode active material for lithium secondary battery and method for producing the same
JP4003298B2 (en) * 1998-07-01 2007-11-07 宇部興産株式会社 Non-aqueous secondary battery
JP3690122B2 (en) * 1998-07-03 2005-08-31 宇部興産株式会社 Non-aqueous secondary battery
JP2000040505A (en) * 1998-07-24 2000-02-08 Mitsubishi Cable Ind Ltd Positive electrode body for lithium secondary battery
JP2000058259A (en) * 1998-08-07 2000-02-25 Mitsubishi Electric Corp Resonant electroluminescence element
JP2000067869A (en) * 1998-08-26 2000-03-03 Nec Corp Non-aqueous electrolyte secondary battery
US6632256B1 (en) * 1998-09-01 2003-10-14 Sony Corporation Method for manufacturing a non-aqueous-gel-electrolyte battery
CN1089193C (en) * 1998-10-09 2002-08-14 清华大学 Method for preparing lithium ion battery active material superfines with spray drying method
JP2000200605A (en) * 1998-10-30 2000-07-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacture
JP4193247B2 (en) * 1998-10-30 2008-12-10 ソニー株式会社 Non-aqueous electrolyte battery and manufacturing method thereof
TW439309B (en) * 1999-01-22 2001-06-07 Toshiba Corp Nonaquous electrolyte secondary battery
JP3308232B2 (en) * 1999-05-17 2002-07-29 三菱電線工業株式会社 Li-Co-based composite oxide and method for producing the same
JP4075259B2 (en) * 1999-05-26 2008-04-16 ソニー株式会社 Solid electrolyte secondary battery
JP2001052747A (en) * 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd Lithium secondary battery
GB9929698D0 (en) * 1999-12-15 2000-02-09 Danionics As Non-aqueous electrochemical cell
JP2001273898A (en) * 2000-01-20 2001-10-05 Japan Storage Battery Co Ltd Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing same, and nonaqueous electrolyte secondary battery using the active material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020503B2 (en) 2013-03-25 2018-07-10 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
US10217995B2 (en) 2013-09-18 2019-02-26 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack

Also Published As

Publication number Publication date
US6967066B2 (en) 2005-11-22
EP1143549A2 (en) 2001-10-10
CN100394639C (en) 2008-06-11
US20050186472A1 (en) 2005-08-25
JP4106644B2 (en) 2008-06-25
JP2001297764A (en) 2001-10-26
EP2264813A1 (en) 2010-12-22
US7563539B2 (en) 2009-07-21
TW492210B (en) 2002-06-21
EP2264813A8 (en) 2011-03-23
EP1672730A2 (en) 2006-06-21
JP2001283910A (en) 2001-10-12
EP1675208A3 (en) 2007-04-11
CN100359745C (en) 2008-01-02
EP1672730B1 (en) 2011-10-19
EP2264813B1 (en) 2013-01-02
EP3101715A1 (en) 2016-12-07
CN1571211A (en) 2005-01-26
CN1310369C (en) 2007-04-11
CN1322026A (en) 2001-11-14
US7223495B2 (en) 2007-05-29
JP2001291517A (en) 2001-10-19
US20050153210A1 (en) 2005-07-14
CN1574445A (en) 2005-02-02
EP1675208A2 (en) 2006-06-28
KR20010095309A (en) 2001-11-03
US20020031703A1 (en) 2002-03-14
KR100812549B1 (en) 2008-03-13
US20050175891A1 (en) 2005-08-11
EP2849264A1 (en) 2015-03-18
EP1672730A3 (en) 2007-04-11
EP1143549A3 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
JP4062856B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
US6632256B1 (en) Method for manufacturing a non-aqueous-gel-electrolyte battery
CN209045679U (en) Electrochemical appliance and electronic device comprising it
CN109244475A (en) Electrochemical appliance and electronic device comprising it
JP4517440B2 (en) Lithium ion solid electrolyte secondary battery
JP2001043897A (en) Solid electrolyte battery
JP4840302B2 (en) Separator and battery using the same
JP4815845B2 (en) Polymer battery
JP4449214B2 (en) Non-aqueous electrolyte battery
JP4782266B2 (en) Non-aqueous electrolyte battery
JP2004014300A (en) Nonaqueous electrolyte battery and its manufacturing method
JP4385425B2 (en) Solid electrolyte battery and manufacturing method thereof
JP2003297424A (en) Nonaqueous electrolyte battery and method for manufacturing the same
JP4560851B2 (en) Method for producing solid electrolyte battery
JP5114847B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3778805B2 (en) Secondary battery
JP2003017037A (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2004014248A (en) Nonaqueous electrolytic solution battery and manufacturing method thereof
JP2009277367A (en) Nonaqueous electrolyte secondary battery
JP2001015163A (en) Solid electrolyte battery
JPH11195432A (en) Polymer secondary battery
JP2001325947A (en) Lithium secondary cell cathode, manufacturing method of the same, and lithium secondary cell constituted by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R151 Written notification of patent or utility model registration

Ref document number: 4062856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term