JP4057863B2 - Deep hole cutting equipment - Google Patents

Deep hole cutting equipment Download PDF

Info

Publication number
JP4057863B2
JP4057863B2 JP2002250947A JP2002250947A JP4057863B2 JP 4057863 B2 JP4057863 B2 JP 4057863B2 JP 2002250947 A JP2002250947 A JP 2002250947A JP 2002250947 A JP2002250947 A JP 2002250947A JP 4057863 B2 JP4057863 B2 JP 4057863B2
Authority
JP
Japan
Prior art keywords
cutting
discharge port
coolant
discharge ports
deep hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002250947A
Other languages
Japanese (ja)
Other versions
JP2004090105A (en
Inventor
倬司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitac Inc
Original Assignee
Unitac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitac Inc filed Critical Unitac Inc
Priority to JP2002250947A priority Critical patent/JP4057863B2/en
Publication of JP2004090105A publication Critical patent/JP2004090105A/en
Application granted granted Critical
Publication of JP4057863B2 publication Critical patent/JP4057863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、切削加工中に生じる切り屑をボーリングヘッドに設けた排出口からクーラントと共に中空状ボーリングバーの内部を通して外部へ排出するようにした深穴切削装置に関する。
【0002】
【従来の技術】
一般的に、深穴加工の切削能率は、工具系の能力よりも、加工中に切削穴内部に発生する切り屑の外部への排出能力に大きく依存する。このため、深穴切削装置では、中空状ボーリングバーを用いると共に、ボーリングヘッドの頂部に頂面から周面にわたって開口する排出口を設け、切り屑を切刃部へ供給されるクーラントと共に該排出口から該ボーリングバーの内部を通して外部へ排出するようにしている。しかして、切削穴径が比較的に大きい深穴切削に適用するボーリングヘッドとして、切削穴の中央部から周辺部に至る切削域の各々一部の切削を担う複数の切刃を用いると共に、これら切刃を大小2つの前記排出口の開口側縁に振り分けて取着したものがある。
【0003】
図4(イ)(ロ)は、従来の深穴切削装置に用いられている、3枚の切刃を備えた一般的なボーリングヘッド30を示す。このボーリングヘッド30は、基端側に開放した中空部31を有する略円筒状であり、その頂部32には中空部31に連通する大小2つの排出口33,34を有し、略鈍角円錐形の頂面30aに臨んで扇形に開口した大排出口33の開口側縁33aに、中央部切刃41及び周辺部切刃42が取着されると共に、同じく扇形の一部が欠けた略台形に開口した小排出口34の開口側縁34aに、中間部切刃43が取着されている。そして、両排出口33,34は、開口面積比が略2:1に設定されており、外周面30b側には開口下縁33b,34bを同位置として矩形に開口している。また、両排出口33,34間の外周面30bには超硬材製のガイドパッド51,52が取着されており、両ガイドパッド51,52及び周辺部切刃42の各取付位置のヘッド回転方向後方側には、切削加工中にこれら部材51,52,42に加わる負荷を受け止めるために他の周面領域よりも大半径で狭幅の膨出部35a〜35cとしている。
【0004】
このようなボーリングヘッド30は、外周に雄ねじ36aを設けた基部36を図4(ロ)の仮想線で示す中空状ボーリングバー60の先端部に螺入して取り付け、該ボーリングバー60を工作機械のスピンドル等の駆動軸に連結して回転駆動させるか、又は被削材側を回転させることにより、切刃41〜43で被削材を切削して深穴を形成する。なお、ボーリングヘッド30の相対回転方向は図4(イ)における時計回り方向である。しかして、この切削加工中、切削穴の開口部から当該切削穴とボーリングバー60との隙間を通してクーラントを高圧で切刃側へ供給し、このクーラントを発生する切り屑と共にボーリングヘッド30の両排出口33,34より中空部31内へ流入させ、中空状ボーリングバー60内を通して外部へ排出する。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来のボーリングヘッド30による切削加工では、大小2つの排出口33,34の内、小排出口34側における切り屑の排出性が悪くなる傾向があり、そのために切削能率の低下をきたすと共に、往々にして該小排出口34が詰まって切削不能に陥ることがあった。
【0006】
そこで、本発明者らは、従来のこの種ボーリングヘッドにおける小排出口側の切り屑の排出性が悪くなる原因を調べたところ、小排出口は開口面積が小さいために元来より切り屑の通過性が悪いことに加え、構造的にボーリングヘッド頂部でのクーラントの流れが大排出口側に著しく偏り、小排出口側へのクーラント流入量が不足することが判明した。例えば、図4(イ)(ロ)に示すボーリングヘッド30では、切刃側へ送られてきたクーラントは、頂部32の手前までは全周にわたって均等に流れるが、頂部32では切削穴内周に近接する3ヵ所の膨出部35a〜35cで仕切られる形で分流して両排出口33,34に流入する。このとき、開口面積の大きい大排出口33は流通抵抗が小さい上、大排出口33には周辺部切刃42から突出部35aまでの間の広い周方向幅の流通域を通してクーラントが流れ込むのに対し、開口面積が小さく流通抵抗の大きい小排出口34へのクーラントの流通域は突出部35bからガイドパッド51までの間の狭い周方向幅であるため、両排出口33,34の開口面積比2:1に対して実際のクーラント流入量は3:1〜5:1と偏っていた。
【0007】
本発明は、切削加工中に生じる切り屑をボーリングヘッドの大小2つの排出口からクーラントと共に中空状ボーリングバーの内部を通して外部へ排出するようにした深穴切削装置として、上記知見に基づいてボーリングヘッドに適切な改良を加えることにより、切り屑の排出性に優れて切削能率が高く、小排出口側の詰まりによる切削不能を確実に回避できるものを提供するものである。
【0008】
【課題を解決するための手段】
すなわち、請求項1の発明は、図面の参照符号を付して示せば、中空状ボーリングバー1の先端に設けたボーリングヘッド2の頂部21に、その頂面2aから外周面2bにわたって開口してボーリングバー1内部に連通する大小2つの排出口3,4と、各排出口3,4のボーリングヘッド頂面2aに臨む開口側縁3a,4aに取着された切刃5a〜5cとを備え、該ボーリングヘッド2の外周面2bと切削穴H内周面との間の流通間隙を通して切刃側へ供給されるクーラントCを切削にて発生する切り屑Sと共に前記両排出口3,4に流入させてボーリングバー1内部を通して外部へ排出する深穴切削装置において、前記両排出口3,4へのクーラント流入量の比を、両排出口3,4の開口面積比と同一、もしくは小排出口4への流入量が該開口面積比よりも多い割合となるように、前記流通間隙を設定してなり、該流通間隙を設定するに当たって、ボーリングヘッド2の頂部21における前記両排出口3,4によって分かたれた両側の外周面21a,21bに、両排出口3,4の開口下縁3c,4dに沿う外周部(中間部23)よりも前記流通間隙を狭くする膨出部7が形成され、両排出口3,4の各々から周方向に続く非膨出部8の有無又は大小によって前記流通間隙が設定され、これによって前記クーラント流入量の比が設定されてなる構成としている。
【0009】
請求項2の発明は、請求項1の深穴切削装置において、小排出口4へのクーラント流入量が、大排出口3へのクーラント流入量以下となるように、前記流通間隙を設定してなる構成を採用している。
【0010】
また、請求項の発明は、請求項の深穴切削装置において、大排出口3から周方向に続く非膨出部8を有さず、小排出口4からヘッド回転方向後方側のガイドパッド6a取付位置まで続く非膨出部8を有してなるものとしている。
【0011】
請求項の発明は、請求項1〜のいずれかの深穴切削装置において、大排出口3側に中央部切刃5a及び周辺部切刃5bが取着されると共に、小排出口4側に中間部切刃5cが取着され、両排出口3,4の開口面積比が略2:1であり、大排出口/小排出口のクーラント流入量の比を2/1〜1/1に設定してなる構成としている。
【0012】
【発明の実施の形態】
以下、本発明の一実施例に係る深穴切削装置について、図面を参照して具体的に説明する。図1(イ)(ロ)は該深穴切削装置に用いるボーリングヘッド、図2は該深穴切削装置による切削加工状態、図3は切削加工中のボーリングヘッド頂端部をそれぞれ示す。
【0013】
図1(イ)(ロ)に示すボーリングヘッド2は、基端側に開放した中空部20を有する略円筒状であり、その略鈍角円錐形の頂面2aから周面2bにわたって開口した大小2つの排出口3,4と3枚の切刃5a〜5cを有する頂部21、外周に雄ねじ22aを設けた基部22、両排出口3,4の開口下縁3c,4dから基部22までの間の中間部23より構成されており、図2に示すように中空状ボーリングバー1の先端部に基部22を螺入して取り付けるようになっている。
【0014】
両排出口3,4はボーリングヘッド2の径方向に略対向して配置しており、頂部21における両排出口3,4によって分かたれた両側の外周面21a,21bには、それぞれ超硬材製のガイドパッド6a,6bが小排出口4側に偏った配置で一部突出状態に取り付けられている。そして、大排出口3は頂面2aに臨んで扇形に開口しており、その片側の開口側縁3aに中央部切刃5a及び周辺部切刃5bが取着されている。一方、小排出口4は頂面2aに臨んで扇形の一部が欠けた略台形に開口しており、大排出口3側の開口側縁3aとは逆方向に面する開口側縁4aに、中間部切刃5cが取着されている。また、両排出口3,4は、ボーリングヘッド2の外周面2b側には開口下縁3c,4dを同位置として矩形に開口しており、全体の開口面積比が略2:1になるように設定されている。
【0015】
しかして、このボーリングヘッド2では、中間部23の全体がボーリングバー1と略等しい外径に設定されているが、頂部21の外周面21aにおけるガイドパッド6aと大排出口3のヘッド回転方向〔図1(イ)における反時計回り方向〕前方側の開口側縁bとの間、ならびに外周面21bの全幅が中間部23よりも大半径の膨出部7となり、外周面21aにおける小排出口4のヘッド回転方向方側の開口側縁4bとガイドパッド6aとの間のみが中間部23と同一半径の非膨出部8となっている。
【0016】
深穴切削装置は、図2に示すように、中空状ボーリングバー1の先端部に上記構成のボーリングヘッド2を基部22の螺入によって取り付け、このボーリングバー1を図示省略した工具チャックを介して工作機械のスピンドル等に連結して回転駆動させることにより、被削材Wに対する深穴切削加工を行う。この切削加工では、ボーリングバー1をシール部材9を介して油密に包囲するクーラント供給ジャケット10を用い、このジャケット10をシールリング12を介して被削材Wに押接した状態で導入口10aより高圧のクーラントCを導入しつつ、ボーリングバー1を図2の矢印F方向、つまりボーリングヘッド2との螺合度合を深める方向に回転駆動させ、被削材Wに該ボーリングヘッド2を押接し、その切刃5a〜5cで該被削材Wを切削して切削穴Hを形成してゆく。なお、ガイドパッド6a,6bは、切削加工中に切削穴Hの内周面に摺接することにより、ボーリングヘッド2を切削穴Hに対して同心状に保持させる機能を果たす。
【0017】
しかして、ジャケット10に導入されたクーラントCは、ボーリングバー1を取り囲む環状導出口10bより、形成中の切削穴Hと該ボーリングバー1との間の流通間隙Tを通してボーリングヘッド2側へ供給され、切削によって発生する切り屑Sを伴って該ボーリングヘッド2の両排出口3,4に流入し、ボーリングバー1の内部1aを通って外部へ排出される。このとき、供給されるクーラントCは、ボーリングヘッド2の中間部23までは全周にわたって均等に流れるが、頂部21では膨出部7,7が切削穴Hの内周に近接して流通間隙Tを狭くしているため、膨出部7,7と切削穴Hの内周との間を通る量は極めて僅かになり、実質的に膨出部7,7にて仕切られる形で分流して両排出口3,4に流入する。しかるに、図3に示すように、大排出口3側では開口下縁3cの周方向幅のみがクーラントCの流入域になるのに対し、小排出口4側では開口下縁4dと非膨出部8を合わせた周方向幅、つまりヘッド回転方向前方側の開口側縁4cより同後方側のガイドパッド6aに至る広い周方向幅がクーラントCの流入域になる。
【0018】
従って、開口面積の小さい小排出口4は大排出口3に比べて切り屑Sの通過性が悪い上にクーラントCの流通抵抗も大きいが、大排出口3側の流入域が従来構成よりも格段に狭く絞られていることから、小排出口4側へのクーラント流入割合が大きくなり、これに伴って小排出口4からの切り屑Sの排出が促進されると共に、小排出口4での切り屑Sの詰まりによって切削不能に陥る事態を確実に回避できる上、頂部21の全体としてもクーラントCの流路断面積が中間部23よりも大幅に縮小しているから、両排出口3,4へのクーラントCの流入圧力も増大し、もって両排出口3,4からの切り屑Sの排出効率が高まって切削能率の向上に繋がることになる。なお、本実施例構成における両排出口3,4の開口面積比は略2:1であるが、両排出口3,4へのクーラントCの流入量の比は、小排出口4側への流入量が該開口面積比よりも多い割合となる。
【0019】
なお、上記実施例では大排出口3より周方向に続く非膨出部8を設けない構成としているが、本発明では小排出口4へのクーラント流入量を充分に確保できる範囲で、大排出口3より周方向に続く非膨出部8をある程度の周方向幅で設けてもよい。すなわち、本発明の深穴切削装置は、中空状ボーリングバーの先端に設けたボーリングヘッドの頂部に大小2つの排出口に、該ボーリングヘッドの外周面と切削穴内周面との間の流通間隙を通して切刃側へ供給されるクーラントを切り屑と共に流入させてボーリングバー内部を通して外部へ排出する構成において、小排出口からの切り屑の排出を促進すると共に、該小排出口での切り屑の詰まりを防止する上で、両排出口へのクーラント流入量の比が、両排出口の開口面積比と同一、もしくは小排出口への流入量が該開口面積比よりも多い割合となるように、前記流通間隙を設定することを特徴としている。ただし、小排出口へのクーラント流入量が大排出口への流入量を上回ると、大排出口側での切り屑の排出性が悪化して全体としての切削効率の低下を招くため、小排出口へのクーラント流入量は大排出口へのクーラント流入量以下となるように設定することが望ましい。
【0020】
従って、上記実施例のように大小2つの排出口3,4の開口面積比が2:1の場合は、両排出口3,4へのクーラント流入量の比を2:1〜1:1の範囲になるように前記流通間隙を設定するのがよい。しかして、このような流通間隙の設定手段としては、特に制約はないが、上記実施例のようにボーリングヘッド2の頂部21における両排出口3,4によって分かたれた両側の外周面21a,21bに前記流通間隙Tを狭くする膨出部7を形成し、両排出口3,4の各々から周方向に続く非膨出部8の有無又は大小によって、クーラント流入量の比が前記規定範囲となるよう調整するのが最も簡易である。すなわち、この種のボーリングヘッドは丸軸状の如き単純形状の原材を研削して所要形状に仕上げるが、膨出部7の形成のためには従来の研削による設定形状を僅かに変えるだけ、つまりガイドパッド及び周辺部切刃の各取付位置のヘッド回転後方側に設けていた従来の膨出部の幅を広くするだけでよい上、その広くする分だけ研削量が少なくて済むことになる。
【0021】
上記実施例で用いたボーリングヘッド2では頂部21における外周面21b側は全体を膨出部7としているが、頂面2aへのクーラントCの供給を多くするために、この外周面21b側については従来構成と同様に周辺部切刃5bとガイドパッド6b取付位置との間に非膨出部8を設けてもよい。ただし、ガイドパッド6a,6b及び周辺部切刃5bの各々のヘッド回転方向側には、切削加工中にこれら部材6a,6b,5bに加わる負荷を受け止めるために、ある程度の周方向幅で膨出部7を設けることが望ましい。また、上記実施例では膨出部7をボーーリングヘッド2の頂部21の領域内に形成しているが、該膨出部7を頂部21から中間部23にわたって形成しても差し支えない。
【0022】
本発明の対象とする深穴切削装置は、ボーリングヘッドに取着される切刃が2又は4以上であってもよく、これらの配置構成に対応して大小2つの排出口の開口面積比及び開口形状が種々異なるものを包含する。また、前記実施例ではクーラントCが外部よりボーリングバー1と切削穴Hとの間を通して切刃側に供給される外部供給方式のものを例示したが、本発明は二重管状のボーリングバーの内外管の間を通してクーラントCを供給する内部供給方式の深穴切削装置にも適用可能である。
【0023】
この内部供給方式の深穴切削装置では、ボーリングヘッドの中間部に内外を透通する導出口を設けると共に、その中空部内の該導出口よりも切刃側に位置する環状段部にボーリングバーの内管の先端を液密に接当させ、ボーリングバーの内外管の間を通して供給されるクーラントを該導出口からボーリングヘッドの外周面と切削穴の間に導出させ、このクーラントを前記同様に切り屑を伴って当該ボーリングヘッドの大小2つの排出口へ流入させ、ボーリングバーの内管を通して外部へ排出させるが、この場合にも両排出口へのクーラント流入量の比が前記規定範囲になるように流通間隙を設定すればよい。なお、この内部供給方式では、クーラントが切削穴の開口端側へ逆流するのを防ぐために、ボーリングヘッドの基部外周あるいはボーリングバーの先端部外周に、ラビリンスシール等による逆流防止手段を設けることが望ましい。
【0024】
【発明の効果】
請求項1の発明によれば、中空状ボーリングバーの先端に設けたボーリングヘッドの頂部に大小2つの排出口に、該ボーリングヘッドの外周面と切削穴内周面との間の流通間隙を通して切刃側へ供給されるクーラントを切り屑と共に流入させてボーリングバー内部を通して外部へ排出する深穴切削装置として、前記両排出口へのクーラント流入量の比が、両排出口の開口面積比と同一、もしくは小排出口への流入量が該開口面積比よりも多い割合となるように、前記流通間隙を設定していることから、小排出口からの切り屑の排出が促進されると共に、該小排出口での切り屑の詰まりが防止され、全体としても切り屑の排出性に優れて切削能率が高く、前記詰まりによる切削不能を確実に回避できて高い信頼性を備えるものが提供される。
そして、該流通間隙を設定するに当たって、ボーリングヘッドの頂部における前記両排出口によって分かたれた両側の外周面に、両排出口の開口下縁に沿う外周部よりも前記流通間隙を狭くする膨出部を設け、両排出口の各々から周方向に続く非膨出部の有無又は大小によって前記流通間隙が設定され、これによって前記クーラント流入量の比を設定することから、ボーリングヘッドの外周部の形状を従来形状から僅かに変えるだけで該流入量の比を簡単に設定できるという利点がある。
【0025】
請求項2の発明によれば、上記の深穴切削装置において、小排出口へのクーラント流入量が大排出口へのクーラント流入量以下となるように前記流通間隙を設定することから、大排出口側での切り屑の排出性を損なうことなく、全体として切り屑の良好な排出性を確保し、高い切削能率が得られるという利点がある。
【0027】
請求項の発明によれば、上記のようにボーリングヘッドの頂部両側の外周面に膨出部を設ける構成の深穴切削装置において、大排出口から周方向に続く非膨出部を有さず、小排出口からヘッド回転方向後方側のガイドパッド取付位置まで続く非膨出部を有することから、大排出口側のクーラント流入域が狭く絞られ、それだけ小排出口側へのクーラント流入割合が多くなって切り屑の排出を促進できると共に、頂部でクーラントの流路断面積が大幅に縮小して両排出口へのクーラント流入圧力が増すため、全体としての切り屑の排出効率が高まって切削能率をより向上できるとう利点がある。
【0028】
請求項の発明によれば、特に、大排出口側に中央部切刃及び周辺部切刃が、小排出口側に中間部切刃が取着され、両排出口の開口面積比を略2:1とした上記の深穴切削装置として、大排出口/小排出口のクーラント流入量の比を2/1〜1/1に設定していることから、小排出口からの切り屑の排出が良く、該小排出口での切り屑の詰まりを生じず、切削能率が高く信頼性に優れるものが提供される。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る深穴切削装置に用いるボーリングヘッドを示し、(イ)は頂面側の平面図、(ロ)は大排出口側から見た側面図である。
【図2】 同深穴切削装置による切削加工状態を示す縦断側面図である。
【図3】 同切削加工におけるボーリングヘッドの頂端位置での横断面図である。
【図4】 従来の深穴切削装置に用いるボーリングヘッドの構成例を示し、(イ)は頂面側の平面図、(ロ)は大排出口側から見た側面図である。
【符号の説明】
1 中空状ボーリングバー
1a 内部
2 ボーリングヘッド
2a 頂面
2b 外周面
20 中空部
21 頂部
21a,21b 外周面
22 基部
23 中間部
3 大排出口
3a,3b 開口側縁
3c 開口下縁
4 小排出口
4a〜4c 開口側縁
4d 開口下縁
5a 中央部切刃
5b 周辺部切刃
5a 中間部切刃
6a,6b ガイドパッド
7 膨出部
8 非膨出部
C クーラント
H 切削穴
S 切り屑
T 流通間隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deep hole cutting apparatus that discharges chips generated during cutting to the outside through a hollow boring bar together with coolant from a discharge port provided in a boring head.
[0002]
[Prior art]
In general, the cutting efficiency of deep hole machining is more dependent on the capability of discharging chips generated inside the cutting hole during machining to the outside than the capability of the tool system. For this reason, in the deep hole cutting apparatus, a hollow boring bar is used, a discharge port that opens from the top surface to the peripheral surface is provided at the top of the boring head, and the discharge port is provided with coolant that is supplied to the cutting blade. From the inside of the boring bar to the outside. Therefore, as a boring head applied to deep hole cutting with a relatively large cutting hole diameter, a plurality of cutting blades responsible for cutting each part of the cutting area from the central part to the peripheral part of the cutting hole are used. There is one in which the cutting blades are distributed and attached to the opening side edges of the two large and small discharge ports.
[0003]
4 (a) and 4 (b) show a general boring head 30 having three cutting edges, which is used in a conventional deep hole cutting apparatus. The boring head 30 has a substantially cylindrical shape having a hollow portion 31 opened on the base end side, and has a large and small discharge ports 33 and 34 communicating with the hollow portion 31 at the top portion 32, and has a substantially obtuse cone shape. A central cutting edge 41 and a peripheral cutting edge 42 are attached to the opening side edge 33a of the large discharge port 33 that opens in a fan shape facing the top surface 30a of the main body, and a substantially trapezoidal shape in which a part of the fan shape is also missing. An intermediate cutting edge 43 is attached to the opening side edge 34a of the small discharge port 34 that is open to the center. Both the discharge ports 33 and 34 are set to have an opening area ratio of about 2: 1, and are opened in a rectangular shape on the outer peripheral surface 30b side with the opening lower edges 33b and 34b at the same position. Further, guide pads 51, 52 made of super hard material are attached to the outer peripheral surface 30b between the discharge ports 33, 34, and the heads at the mounting positions of the guide pads 51, 52 and the peripheral cutting blade 42 are attached. On the rear side in the rotational direction, bulging portions 35a to 35c having a larger radius and a narrower width than other peripheral surface regions are provided in order to receive a load applied to these members 51, 52, and 42 during the cutting process.
[0004]
In such a boring head 30, a base portion 36 having a male screw 36a on the outer periphery is screwed into and attached to a tip portion of a hollow boring bar 60 indicated by a phantom line in FIG. 4B, and the boring bar 60 is attached to a machine tool. The cutting material is cut by the cutting edges 41 to 43 to form a deep hole by being connected to a driving shaft such as a spindle of the above and rotating it or rotating the material side. The relative direction of rotation of boring head 30 is a counterclockwise direction in FIG. 4 (b). During the cutting process, coolant is supplied from the opening of the cutting hole through the gap between the cutting hole and the boring bar 60 to the cutting blade side at a high pressure, and both the boring head 30 is discharged together with the chips that generate the coolant. It flows into the hollow portion 31 from the outlets 33 and 34 and is discharged to the outside through the hollow boring bar 60.
[0005]
[Problems to be solved by the invention]
However, in the cutting process by the conventional boring head 30, the chip discharge performance on the small discharge port 34 side of the two large and small discharge ports 33, 34 tends to be deteriorated, and therefore the cutting efficiency is lowered. At the same time, the small discharge port 34 is often clogged, making it impossible to cut.
[0006]
Therefore, the present inventors investigated the cause of the poor chip discharge performance on the small discharge port side in this type of conventional boring head. In addition to the poor passage, it was found that the coolant flow at the top of the boring head was structurally significantly biased toward the large outlet, and the amount of coolant flowing into the small outlet was insufficient. For example, in the boring head 30 shown in FIGS. 4 (a) and 4 (b), the coolant that has been sent to the cutting edge flows evenly over the entire circumference up to the front of the top 32, but in the top 32 is close to the inner periphery of the cutting hole. The flow is divided in the form of being partitioned by the three bulging portions 35a to 35c, and flows into the discharge ports 33 and 34. At this time, the large discharge port 33 having a large opening area has a small flow resistance, and the coolant flows into the large discharge port 33 through a wide circumferential width range from the peripheral cutting edge 42 to the protruding portion 35a. On the other hand, the coolant flow area to the small discharge port 34 with a small opening area and a large flow resistance has a narrow circumferential width between the protruding portion 35b and the guide pad 51, and therefore the ratio of the opening areas of the discharge ports 33 and 34 to each other. The actual coolant inflow amount was biased from 3: 1 to 5: 1 with respect to 2: 1.
[0007]
The present invention provides a boring head based on the above knowledge as a deep hole cutting device that discharges chips generated during cutting from the two large and small discharge ports of the boring head together with coolant to the outside through the hollow boring bar. By making an appropriate improvement to the above, it is possible to provide a chip that has excellent chip discharge performance and high cutting efficiency, and can reliably avoid inability to cut due to clogging on the small discharge port side.
[0008]
[Means for Solving the Problems]
That is, according to the first aspect of the present invention, the reference numeral of the drawing is attached, and the top portion 21 of the boring head 2 provided at the tip of the hollow boring bar 1 is opened from the top surface 2a to the outer peripheral surface 2b. Two large and small discharge ports 3 and 4 communicating with the inside of the boring bar 1 and cutting edges 5a to 5c attached to the opening side edges 3a and 4a facing the boring head top surface 2a of the respective discharge ports 3 and 4 are provided. The coolant C supplied to the cutting edge through the flow gap between the outer peripheral surface 2b of the boring head 2 and the inner peripheral surface of the cutting hole H together with the chips S generated by the cutting is supplied to both the discharge ports 3 and 4. In the deep hole cutting apparatus that flows in and discharges to the outside through the inside of the boring bar 1, the ratio of the coolant inflow amount to both the discharge ports 3 and 4 is the same as the opening area ratio of both the discharge ports 3 and 4, or small discharge The inflow to the outlet 4 is As will be greater rate than the mouth area ratio, Ri name by setting the flow gap, in order to set the flow through the gap, on both sides that Wakata by the two outlet 3,4 at the top 21 of the boring head 2 On the outer peripheral surfaces 21a and 21b, a bulging portion 7 is formed that narrows the flow gap more than the outer peripheral portion (intermediate portion 23) along the lower opening edges 3c and 4d of both the discharge ports 3 and 4, The flow gap is set by the presence or absence or size of the non-bulged portion 8 extending in the circumferential direction from each of the four, and the ratio of the coolant inflow amount is thereby set.
[0009]
According to a second aspect of the present invention, in the deep hole cutting apparatus according to the first aspect, the flow gap is set so that the coolant inflow amount to the small discharge port 4 is equal to or less than the coolant inflow amount to the large discharge port 3. Is adopted.
[0010]
According to a third aspect of the present invention, in the deep hole cutting device according to the first aspect , the guide does not have the non-bulged portion 8 continuing from the large discharge port 3 in the circumferential direction, and is guided from the small discharge port 4 to the rear side in the head rotation direction. It is assumed that it has a non-bulged portion 8 that continues to the pad 6a mounting position.
[0011]
According to a fourth aspect of the present invention, in the deep hole cutting apparatus according to any one of the first to third aspects, the central cutting edge 5a and the peripheral cutting edge 5b are attached to the large discharge port 3 side, and the small discharge port 4 is attached. The intermediate cutting edge 5c is attached to the side, the opening area ratio of both the discharge ports 3 and 4 is approximately 2: 1, and the ratio of the coolant inflow rate of the large discharge port / small discharge port is 2/1 to 1 / 1 is set.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a deep hole cutting apparatus according to an embodiment of the present invention will be specifically described with reference to the drawings. FIGS. 1A and 1B are boring heads used in the deep hole cutting apparatus, FIG. 2 is a cutting state by the deep hole cutting apparatus, and FIG. 3 is a top end portion of the boring head during the cutting process.
[0013]
The boring head 2 shown in FIGS. 1 (a) and 1 (b) has a substantially cylindrical shape having a hollow portion 20 opened on the base end side, and has a large and small 2 opening from the top surface 2a of the substantially obtuse conical shape to the peripheral surface 2b. A top portion 21 having two discharge ports 3 and 4 and three cutting blades 5a to 5c, a base portion 22 provided with a male screw 22a on the outer periphery, and between the opening lower edges 3c and 4d of both discharge ports 3 and 4 to the base portion 22 It comprises an intermediate part 23, and as shown in FIG. 2, the base part 22 is screwed into the tip part of the hollow boring bar 1 and attached.
[0014]
Both the discharge ports 3 and 4 are arranged substantially opposite to each other in the radial direction of the boring head 2, and the outer peripheral surfaces 21 a and 21 b separated by the both discharge ports 3 and 4 at the top portion 21 are respectively made of cemented carbide. The guide pads 6a and 6b made of metal are attached in a partially protruding state with an arrangement that is biased toward the small discharge port 4 side. The large discharge port 3 opens in a fan shape facing the top surface 2a, and a central cutting edge 5a and a peripheral cutting edge 5b are attached to an opening side edge 3a on one side thereof. On the other hand, the small discharge port 4 faces the top surface 2a and opens in a substantially trapezoidal shape with a part of a fan-shaped part cut off. The intermediate cutting blade 5c is attached. Further, both the discharge ports 3 and 4 are formed in a rectangular shape with the opening lower edges 3c and 4d at the same position on the outer peripheral surface 2b side of the boring head 2 so that the ratio of the entire opening area is approximately 2: 1. Is set to
[0015]
In this boring head 2, the entire intermediate portion 23 is set to have an outer diameter substantially equal to that of the boring bar 1, but the guide pad 6 a on the outer peripheral surface 21 a of the top portion 21 and the head rotation direction of the large discharge port 3 [ Figure 1 (a) between the the opening edge 3 b in the counterclockwise direction] front side, and the large radius of the bulging portion 7 becomes than the full width intermediate portion 23 of the outer peripheral surface 21b, the small discharge on the outer circumferential surface 21a only between the opening edge 4b and the guide pad 6a of the head rotation direction rear side in the outlet 4 is in the non-bulged portion 8 of the same radius and the intermediate portion 23.
[0016]
As shown in FIG. 2, the deep hole cutting apparatus has a boring head 2 having the above-described configuration attached to the distal end portion of a hollow boring bar 1 by screwing a base portion 22, and the boring bar 1 is inserted through a tool chuck not shown. Deep hole cutting is performed on the work material W by being connected to a spindle of a machine tool and driven to rotate. In this cutting process, a coolant supply jacket 10 that oil-tightly surrounds the boring bar 1 via a seal member 9 is used, and the introduction port 10a is in a state where the jacket 10 is pressed against the work material W via a seal ring 12. While introducing the higher pressure coolant C, the boring bar 1 is rotationally driven in the direction of arrow F in FIG. 2, that is, in the direction of increasing the degree of screwing with the boring head 2, and the boring head 2 is pressed against the work material W. Then, the workpiece W is cut with the cutting blades 5a to 5c to form the cutting hole H. The guide pads 6a and 6b perform a function of holding the boring head 2 concentrically with the cutting hole H by slidingly contacting the inner peripheral surface of the cutting hole H during the cutting process.
[0017]
Thus, the coolant C introduced into the jacket 10 is supplied to the boring head 2 side from the annular outlet 10b surrounding the boring bar 1 through the flow gap T between the cutting hole H being formed and the boring bar 1. Then, it flows into both the discharge ports 3 and 4 of the boring head 2 together with the chips S generated by the cutting, and is discharged to the outside through the inside 1 a of the boring bar 1. At this time, the supplied coolant C flows evenly over the entire circumference up to the intermediate part 23 of the boring head 2, but at the top part 21, the bulging parts 7, 7 come close to the inner circumference of the cutting hole H and the flow gap T Therefore, the amount passing between the bulging portions 7 and 7 and the inner periphery of the cutting hole H becomes extremely small, and the flow is divided in a form substantially partitioned by the bulging portions 7 and 7. It flows into both discharge ports 3 and 4. However, as shown in FIG. 3, only the circumferential width of the opening lower edge 3 c becomes the inflow region of the coolant C on the large discharge port 3 side, whereas the lower opening edge 4 d and the non-bulging on the small discharge port 4 side. The combined circumferential width, that is, the wide circumferential width from the opening side edge 4c on the front side in the head rotation direction to the guide pad 6a on the rear side is the inflow region of the coolant C.
[0018]
Therefore, the small discharge port 4 with a small opening area has poorer passage of the chips S and larger flow resistance of the coolant C than the large discharge port 3, but the inflow area on the large discharge port 3 side is larger than that of the conventional configuration. Since it is narrowed down significantly, the coolant inflow rate to the small discharge port 4 increases, and accordingly, the discharge of the chips S from the small discharge port 4 is promoted, and the small discharge port 4 In addition, it is possible to surely avoid a situation where cutting becomes impossible due to clogging of the chips S, and the flow passage cross-sectional area of the coolant C is greatly reduced as compared with the intermediate portion 23 as a whole, so both the discharge ports 3 , 4 also increases the inflow pressure of the coolant C, so that the efficiency of discharging the chips S from both the discharge ports 3 and 4 increases, leading to an improvement in cutting efficiency. In addition, although the opening area ratio of both the discharge ports 3 and 4 in this Example structure is about 2: 1, the ratio of the inflow amount of the coolant C to both the discharge ports 3 and 4 is the small discharge port 4 side. The amount of inflow is larger than the opening area ratio.
[0019]
In the above-described embodiment, the non-bulged portion 8 extending in the circumferential direction from the large discharge port 3 is not provided. However, in the present invention, the large discharge amount is within a range in which the coolant inflow amount to the small discharge port 4 can be sufficiently secured. The non-bulged portion 8 that continues in the circumferential direction from the outlet 3 may be provided with a certain circumferential width. That is, the deep hole cutting device of the present invention passes through the flow gap between the outer peripheral surface of the boring head and the inner peripheral surface of the cutting hole through two discharge ports at the top of the boring head provided at the tip of the hollow boring bar. In the configuration in which the coolant supplied to the cutting edge is introduced together with the chips and discharged to the outside through the boring bar, the discharge of the chips from the small discharge port is promoted and the clogging of the chips at the small discharge port In order to prevent this, the ratio of the coolant inflow amount to both discharge ports is the same as the opening area ratio of both discharge ports, or the ratio of the inflow amount to the small discharge ports is larger than the opening area ratio. The distribution gap is set. However, if the coolant flow rate to the small discharge port exceeds the flow rate to the large discharge port, the chip discharge performance at the large discharge port side will deteriorate and the overall cutting efficiency will be reduced. It is desirable to set the coolant inflow to the outlet to be equal to or less than the coolant inflow to the large outlet.
[0020]
Therefore, when the opening area ratio between the large and small discharge ports 3 and 4 is 2: 1 as in the above embodiment, the ratio of the coolant inflow amount to both the discharge ports 3 and 4 is 2: 1 to 1: 1. It is preferable to set the flow gap so as to be in a range. The means for setting the flow gap is not particularly limited, but the outer peripheral surfaces 21a and 21b on both sides separated by the two discharge ports 3 and 4 at the top 21 of the boring head 2 as in the above embodiment. A bulging portion 7 that narrows the flow gap T is formed in the upper and lower portions, and the ratio of the coolant inflow amount is different from the specified range depending on the presence / absence of the non-bulging portion 8 that continues in the circumferential direction from each of the discharge ports 3 and 4. It is easiest to adjust so that That is, this type of boring head grinds a raw material of a simple shape such as a round shaft shape and finishes it to a required shape, but in order to form the bulging portion 7, the setting shape by conventional grinding is slightly changed, In other words, it is only necessary to widen the width of the conventional bulging portion provided on the head rotation rear side of each mounting position of the guide pad and the peripheral cutting edge, and the amount of grinding can be reduced by the widening. .
[0021]
In the boring head 2 used in the above embodiment, the entire outer peripheral surface 21b side of the top portion 21 is the bulging portion 7, but in order to increase the supply of the coolant C to the top surface 2a, the outer peripheral surface 21b side is Similarly to the conventional configuration, the non-bulged portion 8 may be provided between the peripheral cutting edge 5b and the guide pad 6b mounting position. However, each of the guide pads 6a and 6b and the peripheral cutting edge 5b bulges to a certain circumferential width to receive the load applied to these members 6a, 6b and 5b during the cutting process. It is desirable to provide the portion 7. In the above embodiment, the bulging portion 7 is formed in the region of the top portion 21 of the bowling head 2. However, the bulging portion 7 may be formed from the top portion 21 to the intermediate portion 23.
[0022]
The deep hole cutting apparatus targeted by the present invention may have 2 or 4 or more cutting blades attached to the boring head, and the opening area ratio of the two large and small discharge ports according to these arrangement configurations and The thing with various opening shapes is included. In the above embodiment, an example of an external supply system in which the coolant C is supplied from the outside to the cutting edge side through the gap between the boring bar 1 and the cutting hole H is illustrated. The present invention can also be applied to an internal supply type deep hole cutting device that supplies coolant C between pipes.
[0023]
In this internal supply type deep hole cutting apparatus, a lead-out port that penetrates the inside and outside is provided in the middle part of the boring head, and a boring bar is provided in an annular step portion located on the cutting edge side of the lead-out port in the hollow part. The tip of the inner pipe is in liquid-tight contact, and the coolant supplied through the boring bar between the inner and outer pipes is led out between the outer peripheral surface of the boring head and the cutting hole through the outlet, and the coolant is cut in the same manner as described above. The waste flows into the two large and small discharge ports of the boring head and is discharged to the outside through the inner pipe of the boring bar. In this case as well, the ratio of the coolant inflow amount to both discharge ports is within the specified range. What is necessary is just to set a distribution gap to. In this internal supply method, in order to prevent the coolant from flowing back to the opening end side of the cutting hole, it is desirable to provide a backflow prevention means such as a labyrinth seal on the outer periphery of the base of the boring head or the outer periphery of the tip of the boring bar. .
[0024]
【The invention's effect】
According to the first aspect of the present invention, the cutting blade is passed through the flow gap between the outer peripheral surface of the boring head and the inner peripheral surface of the cutting hole into the two large and small discharge ports at the top of the boring head provided at the tip of the hollow boring bar. As a deep hole cutting device that flows the coolant supplied to the side with chips and discharges it to the outside through the boring bar, the ratio of the coolant inflow amount to both the discharge ports is the same as the opening area ratio of both discharge ports, Alternatively, since the flow gap is set so that the amount of inflow into the small discharge port is larger than the opening area ratio, the discharge of chips from the small discharge port is promoted, and the small discharge port is Chips are prevented from being clogged at the discharge port, and are excellent in chip dischargeability as a whole, have high cutting efficiency, and can reliably prevent the inability to cut due to the clogging and have high reliability.
Then, when setting the flow gap, bulges that narrow the flow gap on the outer peripheral surfaces of both sides separated by the two discharge ports at the top of the boring head than the outer peripheral portion along the lower edge of the openings of both discharge ports. Since the flow gap is set by the presence or absence or size of the non-bulged portion that continues in the circumferential direction from each of the two discharge ports, thereby setting the ratio of the coolant inflow amount, the outer peripheral portion of the boring head There is an advantage that the ratio of the inflow can be easily set by slightly changing the shape from the conventional shape.
[0025]
According to the invention of claim 2, in the deep hole cutting apparatus, the flow gap is set so that the coolant inflow amount to the small discharge port is equal to or less than the coolant inflow amount to the large discharge port. There is an advantage that a good cutting efficiency is ensured as a whole and a high cutting efficiency can be obtained without impairing the chip discharging performance on the outlet side.
[0027]
According to the third aspect of the present invention, in the deep hole cutting apparatus having the configuration in which the bulging portions are provided on the outer peripheral surfaces on both sides of the top portion of the boring head as described above, the deep hole cutting device has a non-bulging portion extending in the circumferential direction from the large discharge port. In addition, since it has a non-bulged part that extends from the small discharge port to the guide pad mounting position on the rear side in the head rotation direction, the coolant inflow area on the large discharge port side is narrowed and the proportion of coolant inflow to the small discharge port side As a result, the discharge of chips can be promoted, and the cross-sectional area of the coolant flow path can be greatly reduced at the top, increasing the coolant inflow pressure to both outlets, increasing the overall chip discharge efficiency. There is an advantage that the cutting efficiency can be further improved.
[0028]
According to the invention of claim 4 , in particular, the central cutting edge and the peripheral cutting edge are attached to the large discharge port side, and the intermediate cutting blade is attached to the small discharge port side, so that the opening area ratio of both discharge ports is substantially reduced. Since the ratio of the coolant inflow rate of the large discharge port / small discharge port is set to 2/1 to 1/1 as the deep hole cutting device of 2: 1, the amount of chips from the small discharge port is Discharge is good, no clogging of chips at the small discharge port, high cutting efficiency and excellent reliability are provided.
[Brief description of the drawings]
1A and 1B show a boring head used in a deep hole cutting apparatus according to an embodiment of the present invention, where FIG. 1A is a plan view of a top surface side and FIG. 1B is a side view of the boring head viewed from a large discharge port side.
FIG. 2 is a longitudinal side view showing a cutting state by the deep hole cutting apparatus.
FIG. 3 is a cross-sectional view at the top end position of the boring head in the same cutting process.
FIGS. 4A and 4B show a configuration example of a boring head used in a conventional deep hole cutting device, in which FIG. 4A is a plan view on the top surface side, and FIG. 4B is a side view as viewed from the large discharge port side.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hollow boring bar 1a Inside 2 Boring head 2a Top surface 2b Outer peripheral surface 20 Hollow part 21 Top part 21a, 21b Outer peripheral surface 22 Base 23 Middle part 3 Large discharge port 3a, 3b Opening side edge 3c Opening lower edge 4 Small discharge port 4a -4c Opening edge 4d Opening lower edge 5a Center part cutting edge 5b Peripheral part cutting edge 5a Intermediate part cutting edge 6a, 6b Guide pad 7 Expansion part 8 Non-expansion part C Coolant H Cutting hole S Chip T Flow gap

Claims (4)

中空状ボーリングバーの先端に設けたボーリングヘッドの頂部に、その頂面から外周面にわたって開口してボーリングバー内部に連通する大小2つの排出口と、各排出口のボーリングヘッド頂面に臨む開口側縁に取着された切刃とを備え、該ボーリングヘッドの外周面と切削穴内周面との間の流通間隙を通して切刃側へ供給されるクーラントを切削にて発生する切り屑と共に前記両排出口に流入させてボーリングバー内部を通して外部へ排出する深穴切削装置において、
前記両排出口へのクーラント流入量の比が、両排出口の開口面積比と同一、もしくは小排出口への流入量が該開口面積比よりも多い割合となるように、前記流通間隙を設定してなり、
該流通間隙を設定するに当たって、ボーリングヘッドの頂部における前記両排出口によって分かたれた両側の外周面に、両排出口の開口下縁に沿う外周部よりも前記流通間隙を狭くする膨出部が形成され、両排出口の各々から周方向に続く非膨出部の有無又は大小によって前記流通間隙が設定され、これによって前記クーラント流入量の比が設定されてなる深穴切削装置。
At the top of the boring head provided at the tip of the hollow boring bar, there are two large and small discharge ports that open from the top surface to the outer peripheral surface and communicate with the inside of the boring bar, and the opening side of each discharge port facing the top surface of the boring head A cutting blade attached to the edge, and coolant that is supplied to the cutting blade through a flow gap between the outer peripheral surface of the boring head and the inner peripheral surface of the cutting hole together with chips generated by cutting. In the deep hole cutting device that flows into the outlet and discharges to the outside through the boring bar,
The flow gap is set so that the ratio of the coolant inflow amount to the two discharge ports is the same as the opening area ratio of the two discharge ports, or the ratio of the inflow amount to the small discharge port is larger than the opening area ratio. Ri name and,
In setting the flow gap, a bulging portion that narrows the flow gap on the outer peripheral surfaces of both sides separated by the two discharge ports at the top of the boring head than the outer peripheral portion along the lower opening edge of both discharge ports. A deep hole cutting device in which the flow gap is set by the presence or absence or size of a non-bulged portion that is formed and continues in the circumferential direction from each of the two discharge ports, thereby setting the ratio of the coolant inflow amount .
小排出口へのクーラント流入量が、大排出口へのクーラント流入量以下となるように、前記流通間隙を設定してなる請求項1記載の深穴切削装置。  The deep hole cutting device according to claim 1, wherein the flow gap is set so that a coolant inflow amount to the small discharge port is equal to or less than a coolant inflow amount to the large discharge port. 大排出口から周方向に続く非膨出部を有さず、小排出口からヘッド回転方向後方側のガイドパッド取付位置まで続く非膨出部を有してなる請求項記載の深穴切削装置。Without a non-bulging portion continuous in the circumferential direction from the large discharge opening, comprising a non-bulging portion continuous from the small outlet to guide pad mounting position of the head rotation direction rear side Claim 1 deep hole cutting according apparatus. 大排出口側に中央部切刃及び周辺部切刃が取着されると共に、小排出口側に中間部切刃が取着され、両排出口の開口面積比が略2:1であり、大排出口/小排出口のクーラント流入量の比を2/1〜1/1に設定してなる請求項1〜のいずれかに記載の深穴切削装置。A central cutting edge and a peripheral cutting edge are attached to the large outlet side, an intermediate cutting edge is attached to the small outlet side, and the opening area ratio of both outlets is approximately 2: 1. The deep hole cutting device according to any one of claims 1 to 3 , wherein a ratio of a coolant inflow amount of a large discharge port / a small discharge port is set to 2/1 to 1/1.
JP2002250947A 2002-08-29 2002-08-29 Deep hole cutting equipment Expired - Lifetime JP4057863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250947A JP4057863B2 (en) 2002-08-29 2002-08-29 Deep hole cutting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250947A JP4057863B2 (en) 2002-08-29 2002-08-29 Deep hole cutting equipment

Publications (2)

Publication Number Publication Date
JP2004090105A JP2004090105A (en) 2004-03-25
JP4057863B2 true JP4057863B2 (en) 2008-03-05

Family

ID=32057651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250947A Expired - Lifetime JP4057863B2 (en) 2002-08-29 2002-08-29 Deep hole cutting equipment

Country Status (1)

Country Link
JP (1) JP4057863B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180767A (en) * 2015-04-17 2016-12-07 上海睿锆信息科技有限公司 The manufacture method of cutting element

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004019535A1 (en) * 2004-04-22 2005-11-17 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Knife plate and tool for machining bore surfaces
JP4908900B2 (en) * 2006-04-07 2012-04-04 ユニタック株式会社 Deep hole cutting equipment
JP2008126339A (en) * 2006-11-17 2008-06-05 Yunitakku Kk Manufacturing method for drill head
DE102010018959A1 (en) * 2010-04-23 2011-10-27 Tbt Tiefbohrtechnik Gmbh + Co Drilling head for a deep drilling tool for BTA deep drilling and deep hole drilling tool
CN103737074A (en) * 2013-12-05 2014-04-23 常州大学 Novel trepanning tool
CN106180770A (en) * 2015-04-17 2016-12-07 上海睿锆信息科技有限公司 Workpiece and the application in machining thereof
EP3098006A1 (en) 2015-05-25 2016-11-30 Sandvik Intellectual Property AB Cutter head
CN113319337B (en) * 2021-05-18 2022-05-17 青岛理工大学 Medium circulation heat dissipation milling system based on inside and outside cold intelligence switches

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180767A (en) * 2015-04-17 2016-12-07 上海睿锆信息科技有限公司 The manufacture method of cutting element
CN106180767B (en) * 2015-04-17 2019-05-24 上海精韧激光科技有限公司 The manufacturing method of cutting element

Also Published As

Publication number Publication date
JP2004090105A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP4908900B2 (en) Deep hole cutting equipment
US10710173B2 (en) Slot milling disc, a slot milling tool comprising a slot milling disc and a disc for a milling disc
JP6526987B2 (en) Slot milling disc and rotatable mounting shaft for such slot milling disc
US2188631A (en) Trepanning drill
JP4961246B2 (en) Deep hole cutting equipment
JP4057863B2 (en) Deep hole cutting equipment
KR20120097328A (en) Milling cutter, especially a round-head milling cutter
US20110280675A1 (en) Method for Forming Through-Hole
JP2009220200A (en) Fluid feeding unit
KR20190084029A (en) A disk milling cutter and a kit including such a disk milling cutter
US20230166383A1 (en) High-rotational speed cup-shaped grinding wheel
CN100423888C (en) Tool for chip removal with a central channel
US5655907A (en) Rotatable tool suitable for high speed drive
JPH10501183A (en) Drill tool with rounded insert support surface
JP2010142889A (en) Tool holder, cutting fluid supply plate for holding tool and cutting method
WO2016188903A1 (en) Cutter head
JP5811919B2 (en) Drill with coolant hole
WO2023174459A1 (en) Rotary tool with internal cooling
US20110079445A1 (en) Drill Head for Deep-Hole Drilling
EP4335576A1 (en) Spray nozzle for lubricant and coolant fluid
JP7368030B1 (en) diamond bit
WO2021228170A1 (en) Special-shaped wheel having positive correlation water passing structure for full-grinding surface
JP2008168386A (en) Rotary tool
CN212704614U (en) Welding T-shaped knife
JP2004025344A (en) Rotary cutter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4057863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term