JP4033420B2 - 排ガス中の塩化水素の乾式除去方法および乾式除去装置 - Google Patents
排ガス中の塩化水素の乾式除去方法および乾式除去装置 Download PDFInfo
- Publication number
- JP4033420B2 JP4033420B2 JP12959298A JP12959298A JP4033420B2 JP 4033420 B2 JP4033420 B2 JP 4033420B2 JP 12959298 A JP12959298 A JP 12959298A JP 12959298 A JP12959298 A JP 12959298A JP 4033420 B2 JP4033420 B2 JP 4033420B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- hydrogen chloride
- sodium
- residue
- carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Incineration Of Waste (AREA)
- Treating Waste Gases (AREA)
Description
【発明の属する技術分野】
本発明は、排ガス中の塩化水素の乾式除去方法および乾式除去装置にかかり、特に、都市ごみ等の燃焼によって発生する排ガス中の塩化水素を乾式で除去する方法およびその装置に関する。
【0002】
【従来の技術】
都市ごみなど一般廃棄物,廃プラスチックなど産業廃棄物の排出量は、年々増加傾向にある。可燃性物質を含むこれら廃棄物の大半は、焼却装置により焼却処理が行われている。
特に、都市ごみには塩化ビニルなど多くの塩素(Cl)系化合物が含まれている。このような廃棄物を焼却装置で燃焼させると、発生する排ガスの中には、高濃度の塩化水素(HCl),硫黄酸化物(SOx),ばいじん等が含まれる。
「ばいじん」は、燃焼によって生じたすす,灰等の固体の粒状物質であり、ばいじんには、いわゆる飛灰も含まれる。
【0003】
塩化水素は有毒な物質であるので、焼却装置から排出される排ガス中から除去しなければならない。
排ガス中の塩化水素を乾式で除去するためには、水酸化カルシウム(Ca(OH)2 )の粉末を塩化水素と反応させて除去する方法が広く使用されている。これは、水酸化カルシウムはアルカリ性が弱く取り扱いが比較的容易であるからである。
【0004】
【発明が解決しようとする課題】
しかしながら、この塩化水素の乾式除去方法では、生成される脱塩残渣の最終廃棄処分が課題になっていた。この脱塩残渣は、塩化カルシウム(CaCl2 )を含んでいるので、融雪剤として有効利用することも可能である。
ところが、融雪剤の消費量は少ないので、脱塩残渣のほとんどは埋立て処分していた。塩化カルシウムを主成分とする脱塩残渣をそのまま埋立てると塩害が発生する可能性がある。また、脱塩残渣に含まれている有害な重金属類が土壌や地下水を汚染する恐れもある。
【0005】
そのため、埋立て処分する前に、脱塩残渣をセメントで固化するなど各種の無害化処理を行っている。脱塩残渣は、この処理を行ったのち埋立てられるが、埋立地の確保が年々困難になってきている。
したがって、脱塩残渣の埋立て処分が近年大きな社会問題になっている。また、脱塩残渣をセメントで固化する処理を行えば、脱塩残渣自体にセメントと水が加えられる。その結果、埋立てすべき処分量はますます多くなってしまう。
【0006】
そこで、カルシウム(Ca)系の物質の代わりに、ナトリウム(Na)系の物質で、排ガス中の塩化水素を除去することも可能である。ナトリウム系の物質と塩化水素とを反応させた場合には、その反応生成物は塩化ナトリウム(NaCl)が主成分である。
たとえば、特表平7−504880号公報には、炭酸水素ナトリウム(NaHCO3 )により排ガス中の塩化水素を除去する技術が開示されている。
この従来技術では、塩化水素を除去することにより発生した脱塩残渣を、高純度の塩化ナトリウムとして回収している。しかし、塩化ナトリウムを高純度で回収する場合の回収効率は低いので、脱塩残渣の全量を回収して再利用することは困難である。
【0007】
本発明は、このような課題を解決するためになされたもので、排ガス中の塩化水素を除去した時に発生する脱塩残渣を廃棄処分せずに有効利用することができる排ガス中の塩化水素の乾式除去方法およびその装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述のように、ナトリウム系の物質で排ガス中の塩化水素を除去した場合には、この化学反応により発生する脱塩残渣の主成分は塩化ナトリウムである。
一方、たとえばアンモニアソーダ法(ソルベー法)は、食塩(NaCl)を原料として、炭酸水素ナトリウム(NaHCO3 )および炭酸ナトリウム(Na2 CO3 )の一方または両方を製造する工程である。しかも、この製造工程では、原料となる食塩はそれほど高純度なものでなくてもよい。
そこで、本発明者は、塩化ナトリウムを主成分とする脱塩残渣を前記製造工程の原料として利用することができ、しかも、この工程で製造される物質は、塩化水素と反応できる炭酸水素ナトリウムおよび炭酸ナトリウムの一方または両方であることに着目した。
【0009】
すなわち、排ガス中の塩化水素を除去して発生した脱塩残渣の全量を、前記製造工程の原料の一部(または、全部)として供給する。この製造工程では、供給された脱塩残渣を、炭酸水素ナトリウムおよび炭酸ナトリウムの一方または両方の生成物質に再生することができる。したがって、脱塩残渣を廃棄処分せずに有効利用することができる。
再生されたナトリウム系の生成物質は、別の用途に使用することもできるが、この生成物質を排ガス中の塩化水素の除去に再利用した場合には、全体としてナトリウム系の物質の理想的な循環経路が形成されることになる。
【0010】
上述の目的を達成するため、本発明にかかる排ガス中の塩化水素の乾式除去方法は、炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成した後、食塩を原料として炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を製造する製造工程に前記脱塩残渣を原料として供給し、前記製造工程で前記脱塩残渣を炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方に再生する。
【0011】
なお、前記方法において、炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を製造する製造工程はアンモニアソーダ法による製造工程であり、前記脱塩残渣をこの製造工程の原料として供給し、食塩水の精製工程で精製したのち炭酸化工程に供給するのが好ましい。
【0012】
本発明の好ましい態様にかかる排ガス中の塩化水素の乾式除去方法は、炭酸水素ナトリウムおよび水酸化カルシウムを含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成した後、アンモニアソーダ法による製造工程に前記脱塩残渣を原料として供給し前記製造工程で前記脱塩残渣を炭酸水素ナトリウムに再生し、この再生された粉末状の炭酸水素ナトリウムと、前記製造工程のアンモニア回収工程で供給される水酸化カルシウムの一部が余剰分として抜き出された粉末状の水酸化カルシウムとを含む排ガス処理剤を、前記排ガス中に供給して塩化水素と反応させている。
【0013】
また、その他の方法は、炭酸水素ナトリウム,炭酸ナトリウムおよび水酸化カルシウムを含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成した後、アンモニアソーダ法による製造工程に前記脱塩残渣を原料として供給し前記製造工程で前記脱塩残渣を炭酸水素ナトリウムおよび炭酸ナトリウムに再生し、この再生された粉末状の炭酸水素ナトリウムおよび炭酸ナトリウムと、前記製造工程のアンモニア回収工程で供給される水酸化カルシウムの一部が余剰分として抜き出された粉末状の水酸化カルシウムとを、前記排ガス処理剤として前記排ガス中に供給して塩化水素と反応させている。
【0014】
なお、前記各方法において、前記排ガス中のばいじんを第1の集じん装置により除去した後、前記排ガス中の塩化水素を前記排ガス処理剤により除去して前記脱塩残渣を生成するのが好ましい。
また、前記第1の集じん装置の下流側に第2の集じん装置を設置し、前記第1の集じん装置で前記ばいじんが除去された後の前記排ガスを前記第2の集じん装置に流し、この第2の集じん装置で前記排ガス中の塩化水素を前記排ガス処理剤により除去して前記脱塩残渣を生成するのが好ましい。
【0015】
また、前記各方法において、前記製造工程で再生された粉末状の炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を、前記排ガス処理剤として前記排ガス中の塩化水素の除去に再利用するのが好ましい。
【0016】
前記方法を実施する上で好適な排ガス中の塩化水素の乾式除去装置は、炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成する脱塩処理装置と、食塩を原料として炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を製造する製造工程からなり、この製造工程に前記脱塩残渣を原料として供給することにより、この脱塩残渣を炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方に再生するナトリウム塩回収装置とを備えている。
【0017】
なお、前記乾式除去装置において、炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を製造する前記製造工程はアンモニアソーダ法による製造工程であり、前記脱塩残渣をこの製造工程の原料として供給し、食塩水の精製工程で精製したのち炭酸化工程に供給するのが好ましい。
【0018】
本発明の好ましい態様にかかる排ガス中の塩化水素の乾式除去装置は、炭酸水素ナトリウムおよび水酸化カルシウムを含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成する脱塩処理装置と、アンモニアソーダ法による製造工程からなり、この製造工程に前記脱塩残渣を原料として供給することによりこの脱塩残渣を炭酸水素ナトリウムに再生するナトリウム塩回収装置とを備え、このナトリウム塩回収装置で再生された粉末状の炭酸水素ナトリウムと、前記製造工程のアンモニア回収工程で供給される水酸化カルシウムの一部が余剰分として抜き出された粉末状の水酸化カルシウムとを含む前記排ガス処理剤を、前記排ガス中に供給して塩化水素と反応させている。
【0019】
また、他の乾式除去装置は、炭酸水素ナトリウム,炭酸ナトリウムおよび水酸化カルシウムを含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成する脱塩処理装置と、アンモニアソーダ法による製造工程からなり、この製造工程に前記脱塩残渣を原料として供給することによりこの脱塩残渣を炭酸水素ナトリウムおよび炭酸ナトリウムに再生するナトリウム塩回収装置とを備え、このナトリウム塩回収装置で再生された粉末状の炭酸水素ナトリウムおよび炭酸ナトリウムと、前記製造工程のアンモニア回収工程で供給される水酸化カルシウムの一部が余剰分として抜き出された粉末状の水酸化カルシウムとを、前記排ガス処理剤として前記排ガス中に供給して塩化水素と反応させている。
【0020】
前記各乾式除去装置において、前記排ガス中のばいじんを除去する第1の集じん装置を前記脱塩処理装置の上流側に設け、前記第1の集じん装置で前記排ガス中の前記ばいじんを除去した後、前記脱塩処理装置で前記排ガス中の塩化水素を前記排ガス処理剤により除去して前記脱塩残渣を生成するのが好ましい。
また、前記第1の集じん装置の下流側に設置された第2の集じん装置を前記脱塩処理装置の反応器とし、前記第1の集じん装置で前記ばいじんが除去された後の前記排ガスを前記第2の集じん装置に流し、この第2の集じん装置で前記排ガス中の塩化水素を前記排ガス処理剤により除去して前記脱塩残渣を生成するのが好ましい。
【0021】
また、前記各乾式除去装置において、前記ナトリウム塩回収装置の前記製造工程で再生された粉末状の炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を、前記排ガス処理剤として前記排ガス中の塩化水素の除去に再利用するのが好ましい。
【0022】
前記各乾式除去の方法および装置では、塩化水素を含む前記排ガスは燃焼溶融システムで発生した排ガスであり、この燃焼溶融システムは、廃棄物の熱分解によって熱分解ガスと熱分解残留物を生成し、この熱分解残留物を燃焼性成分と不燃焼性成分に分離し、前記熱分解ガスと前記燃焼性成分とを燃焼溶融炉において燃焼させることにより溶融スラグを生成するのが好ましい。
【0023】
【発明の実施の形態】
以下、本発明に係る実施の形態の一例を図1ないし図9を参照して説明する。
塩化水素を含む排ガスは、各種燃焼設備から発生する。この燃焼設備には、都市ごみなど一般廃棄物,各種産業廃棄物,シュレッダーダストおよび汚泥のような廃棄物を焼却処理するための焼却装置が含まれる。
焼却装置としては、燃焼溶融システム(図8)のほか、固定床式,流動床式の焼却炉を有する焼却装置などがある。前記排ガスは、このような焼却装置における燃焼により発生する場合が多い。
【0024】
(第1の実施形態)
まず最初に、各種燃焼設備における燃焼により発生する一般的な排ガス中の塩化水素を乾式で除去する本発明の第1の実施形態について、図1ないし図3を参照して説明する。
図1は脱塩処理装置の説明図、図2はナトリウム塩回収装置の工程図、図3はろ過集じん装置の部分拡大断面図である。
【0025】
図1および図3に示すように、排ガスGに高濃度の塩化水素と少量の硫黄酸化物など酸性の気体が含まれている場合に、脱塩処理装置1で排ガスGの処理を行う。
脱塩処理装置1に供給される排ガスGは、ばいじんが除去されているのが好ましいが、ばいじんを含んでいる場合であってもよい。
【0026】
脱塩処理装置1は反応器を有しており、この反応器には集じん装置を使用するのが好ましい。集じん装置としては、ろ過集じん装置3が好ましいが、電気集じん機,サイクロン等であってもよい。
ろ過集じん装置3は、いわゆるバグフィルタ(Bag filter)4を多数並設した構造を有している。ろ過集じん装置3は、バグハウス(Bag house ),ファブリックフィルタ(Fabric filter )とも呼ばれている。バグフィルタ4は、不織布を有底円筒状に形成した構造になっている。
【0027】
脱塩処理装置1では、この装置1の入口側での排ガスGの温度が約150ないし約200℃であれば、塩化水素との反応が良好であるので好ましい。
ろ過集じん装置3の上流側には、未処理の排ガスGが流れる上流側ダクト5が接続されている。ろ過集じん装置3の下流側には、処理済の排ガスGA が流れる下流側ダクト6が接続されている。下流側ダクト6は、吸引ブロワ等を介して煙突に連通している。
【0028】
脱塩処理装置1では、炭酸水素ナトリウム(NaHCO3 )および炭酸ナトリウム(Na2CO3)の一方または両方を含む排ガス処理剤7と、排ガスG中の塩化水素とを反応させている。これにより、塩化水素を排ガスG中から除去し、この化学反応による反応生成物を含有する脱塩残渣8を生成している。
粉末状の炭酸水素ナトリウムなど排ガス処理剤7を、上流側ダクト5の内部に供給すれば、排ガス処理剤7の粉末9は、直ちに排ガスG内に拡散される。そして、粉末9は、バグフィルタ4のろ材10に層状に付着してろ過層11を形成する。
【0029】
塩化水素を含んだ排ガスGは、上流側ダクト5とろ過集じん装置3内を流れたのち、ろ過層11を通過する。このあいだに、塩化水素のガスと粉末9とが接触することにより、固気反応が起こって塩化水素が除去される。ろ過層11の厚みが約10mmになった時が、塩化水素を除去するのに最も好ましい。
また、ばいじんが排ガスGに含まれている場合も、ばいじんは、ろ過層11とろ材10により除去される。ろ材10を通過した処理済の排ガスGA は、ばいじんや有害物質が除去された清浄なガスになって、下流側ダクト6を通って煙突に流れる。
【0030】
炭酸水素ナトリウムを供給した場合の、アルカリ性の炭酸水素ナトリウムと酸性の塩化水素とが接触した中和反応の化学反応式を下記に示す。
NaHCO3+HCl → NaCl+H2O+CO2 ………(1)
また、アルカリ性の炭酸ナトリウムと塩化水素とが接触した中和反応の化学反応式を下記に示す。
Na2CO3+2HCl → 2NaCl+H2O+CO2 ………(2)
【0031】
排ガスGが、上流側ダクト5とろ過集じん装置3内を流れる時と、ろ過層11を通過する時に、炭酸水素ナトリウムおよび炭酸ナトリウムの一方または両方の粉末9の表面に塩化水素ガスが吸着される。そして、反応式(1),(2)の化学反応が起こって、塩化ナトリウム(NaCl)を主成分とする反応生成物が生成される。
脱塩処理装置1で排ガス処理剤7として使用される炭酸水素ナトリウムおよび炭酸ナトリウムは、平均粒径で約30μm以下にするのが好ましい。約2ないし約10μmの平均粒径がより好ましい。
平均粒径が約30μmを越える場合には、塩化水素との接触面積が小さいので反応速度が低下し、吸収効率が低下するからである。また、平均粒径が約2μm未満の場合には、粒子同士が固着してしまい、粉体としての取り扱いが難しくなる傾向がある。
【0032】
したがって、平均粒径が小さい場合には、固結防止剤を混合して、粉末9の流動性を改良してもよい。この固結防止剤としては、かさ比重が小さく比表面積の大きなものが好ましく、たとえば、珪藻土,パーライト等がよい。
また、固結防止剤の混合量は、炭酸水素ナトリウムまたは炭酸ナトリウムの重量に対して、約3ないし約20重量%であるのが好ましく、より好ましくは約5ないし約10重量%である。
粉末9を構成する粒子の形状としては、表面に凹凸があり、内部に多くの空洞のある多孔質であれば、比表面積が大きくなるので好ましい。このようにすれば、塩化水素ガスと粉末9の粒子との接触面積が大きくなるので、反応式(1),(2)に示す化学反応が促進される。
【0033】
排ガス処理剤7として炭酸水素ナトリウムを供給した場合には、式(1)に示す化学反応の反応速度が速い。この場合の脱塩残渣8に含まれる物質としては、そのほとんどが塩化ナトリウムである。
脱塩残渣8には、排ガス中の硫黄酸化物と炭酸水素ナトリウムとの反応による硫酸ナトリウム(Na2SO4)も若干含まれている。
【0034】
一方、排ガス処理剤7として炭酸ナトリウムを供給した場合には、式(2)に示す化学反応の反応速度は比較的遅い。この場合の脱塩残渣8は塩化ナトリウムが主成分であり、その他に、若干の硫酸ナトリウムと未反応の炭酸ナトリウムも含まれる。
したがって、塩化水素と反応させる排ガス処理剤7としては、炭酸水素ナトリウムと炭酸ナトリウムの一方または両方の場合があるが、炭酸水素ナトリウム単独の方が好ましい。
なお、排ガスGがばいじんを含んでいた場合には、脱塩残渣8中にもばいじんが含まれる。
【0035】
こうして、脱塩処理装置1で生成され塩化ナトリウムを主成分とするナトリウム(Na)系の脱塩残渣8は、その全量がナトリウム塩回収装置2に送られて再生処理される。
脱塩処理装置1とナトリウム塩回収装置2により、排ガス中の塩化水素の乾式除去装置12が構成されている。
【0036】
図2では、化学工場等で生産設備として稼動しているアンモニアソーダ法の工程を、ナトリウム塩回収装置2に使用した場合を示している。
ナトリウム塩回収装置2としては、アンモニアソーダ法による製造工程,アンモニアソーダ法の一種である塩安ソーダ法による製造工程,または有機アミンを用いた製造工程を使用することができる。
図2に示すように、ナトリウム塩回収装置2は、食塩(原塩)20を原料として、炭酸水素ナトリウム21および炭酸ナトリウム23の一方または両方を製造する製造工程からなっている。
したがって、ナトリウム塩回収装置2は、この製造工程に脱塩残渣8を原料として供給すれば、脱塩残渣8を、炭酸水素ナトリウムおよび炭酸ナトリウムの一方または両方に再生することができる。
【0037】
ナトリウム塩回収装置2の工程は、食塩水24の精製工程25と、炭酸化工程26とアンモニア回収工程27等を含んでいる。
精製工程25では、原料である食塩20と海水28が、溶解槽29で溶解されて溶解液30になる。溶解液30は、不純物を取り除くために第1の精製槽31で水酸化カルシウム(Ca(OH)2 )58が加えられたのち、第2の精製槽32に送られる。第2の精製槽32で、溶解液30から重金属類など不純物33が取り除かれて、食塩水24が精製される。
【0038】
脱塩処理装置1で生成した脱塩残渣8は、精製工程25に供給されてここで精製される。脱塩残渣8は第2の精製槽32の上流側に供給される。なお、脱塩残渣8は、第2の精製槽32の下流側,第1の精製槽31の上流側,または溶解槽29に供給してもよい。
このように、脱塩残渣8を、アンモニアソーダ法の製造工程の原料として供給し、食塩水の精製工程25で精製したのち、炭酸化工程26に供給している。
【0039】
炭酸化工程26においては、アンモニア吸収塔34で、精製食塩水24にアンモニア(NH3 )35を吸収させて、アンモニア性食塩水36を作成する。アンモニア性食塩水36は、分離槽37で、炭酸カルシウム(CaCO3 )や重金属など不純物38が分離される。不純物33,38は、無害な状態に処理されたのち廃棄処分される。
次いで、アンモニア性食塩水36は、中和槽39で中和されたのち炭酸化塔(いわゆる、ソルベー塔)40に送られる。炭酸化塔40では、次式に示す化学反応により炭酸水素ナトリウムの結晶が析出する。
NaCl+NH3+H2O+CO2 → NaHCO3+NH4Cl ……(3)
析出した炭酸水素ナトリウムは分離機41で母液42と分離され、スラリー状の炭酸水素ナトリウム(いわゆる、粗重曹)21が得られる。
【0040】
母液42はアンモニア回収工程27に送られる。アンモニア回収工程27においては、コークス47と、石灰石48,49と、空気50とを、石灰炉46に供給する。石灰石48,49は、炭酸カルシウム(CaCO3 )を主成分とする。
石灰炉46では、次式に示す化学反応により、炭酸カルシウムから酸化カルシウム(CaO)51と二酸化炭素(CO2 )52を生成する。
CaCO3 → CaO+CO2 ………(4)
石灰炉46で発生した二酸化炭素52は、炭酸化塔40,中和槽39及びアンモニア吸収塔34に供給される。石灰炉46で得られた酸化カルシウム51に水53を加えて水酸化カルシウム(Ca(OH)2 )54を生成する。この水酸化カルシウム54はアンモニア蒸留塔55に供給される。
【0041】
アンモニア蒸留塔55では、水酸化カルシウム54と、母液42に含まれる塩化アンモニウム(NH4 Cl)とを次式の化学反応により反応させて、アンモニア(NH3 )35を回収する。
2NH4Cl+Ca(OH)2 → CaCl2+2NH3+2H2O …(5)
この化学反応により生成した塩化カルシウム(CaCl2 )は、中性で無害であるので廃液56,57として放流される。アンモニア蒸留塔55で回収されたアンモニア35は、アンモニア吸収塔34に送られて循環使用される。
【0042】
なお、塩安ソーダ法の場合には、分離機41で炭酸水素ナトリウムを分離した後の母液42に食塩を加える。そして、塩化ナトリウムが母液42に溶解した後に塩化アンモニウムが析出するので、この塩化アンモニウムを分離機で分離して循環使用する。
このように、塩安ソーダ法はアンモニアソーダ法の一部が異なる工程なので、本発明におけるアンモニアソーダ法に含まれる。
【0043】
炭酸化塔40で析出した炭酸水素ナトリウムを、脱塩処理装置1で再使用することができる。この場合には、分離機41で分離されたスラリー状の炭酸水素ナトリウム21を第1の乾燥機43で乾燥させる。これにより、粉末状の炭酸水素ナトリウム44が製造される。
一般的に、アンモニアソーダ法では炭酸ナトリウムを製造している。この場合には、分離機41で分離された炭酸水素ナトリウム21は、ロータリーキルンなど燃焼炉45で加熱される。
すると、次式の化学反応により粉末状の炭酸ナトリウム22,23が得られる。燃焼炉45で発生した二酸化炭素59は、炭酸化塔40に供給される。
2NaHCO3 → Na2CO3+H2O+CO2 ………(6)
【0044】
この製造工程における上述の複数の反応式をまとめた全体の化学反応式は下記のようになる。炭酸ナトリウムを製造する場合には次式になる。
2NaCl+CaCO3 → Na2CO3+CaCl2 ………(7)
一方、炭酸水素ナトリウムを製造する場合には次式になる。
2NaCl+2CaCO3+2H2O
→ 2NaHCO3+Ca(OH)2+CaCl2 ………(8)
【0045】
このように、ナトリウム塩回収装置2で脱塩残渣8から再生された粉末状の炭酸水素ナトリウム44および炭酸ナトリウム23の一方または両方を、排ガス用の脱塩処理装置1に戻すことができる。
これにより、脱塩残渣8の全量を、排ガス処理剤7として排ガス中の塩化水素の除去に再利用することができ、ナトリウム系物質の循環経路が形成される。
【0046】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。
図4は第2の実施形態にかかる乾式除去装置の説明図で、図1相当図である。
図4に示すように、排ガスG中の塩化水素の乾式除去装置60では、脱塩処理装置1の上流側に第1の集じん装置70を設けている。
【0047】
第1の集じん装置70は、未処理の排ガスG中のばいじん71を除去する機能を有している。第1の集じん装置70は、上述のろ過集じん装置3と同一の構成の第1のろ過集じん装置70が好ましいが、電気集じん機やサイクロン等の集じん装置であってもよい。
第1のろ過集じん装置70によりばいじん71を捕集すると、集じん灰72が得られる。
集じん灰72は埋立て処分してもよいが、後述する燃焼溶融システム100(図8)の場合には、集じん灰72を燃焼溶融炉112に戻して溶融処理するので、埋立て処分の必要はない。
排ガスGは、ばいじん71が第1のろ過集じん装置70により除去された後、脱塩処理装置1に送られる。
【0048】
好ましい実施形態として、乾式除去装置60では、第1の集じん装置(第1のろ過集じん装置70)の下流側に第2の集じん装置73が設置されている。この第2の集じん装置73を脱塩処理装置1の反応器として使用している。第1,第2のろ過集じん装置70,73は、ダクト74により接続されている。
第2の集じん装置73には、上述のろ過集じん装置3,70と同じ構成の第2のろ過集じん装置73を使用するのが好ましいが、電気集じん機,サイクロンなどの集じん装置であってもよい。
【0049】
第1のろ過集じん装置70でばいじんが除去された後の排ガスGは、ダクト74を通って第2のろ過集じん装置73に流れる。
第2のろ過集じん装置73では、排ガス中の塩化水素を、炭酸水素ナトリウムおよび炭酸ナトリウムの一方または両方を含む排ガス処理剤7により除去して、脱塩残渣8を生成している。脱塩残渣8の全量は、ナトリウム塩回収装置2に原料として供給されて、炭酸水素ナトリウムおよび炭酸ナトリウムの一方または両方に再生される。
【0050】
このように、乾式除去装置60では、ばいじんを除去する第1のろ過集じん装置70と、塩化水素を除去する脱塩処理装置1とが役割分担をしている。
したがって、脱塩処理装置1に流れ込む排ガスGは、ばいじんが除去されているので、脱塩残渣8には、ばいじんはほとんど含まれない。その結果、脱塩残渣8をナトリウム塩回収装置2に供給しても、このナトリウム塩回収装置2に悪影響を与える恐れがない。
【0051】
(第3の実施形態)
次に、本発明の第3の実施形態を図5および図6を参照して説明する。
図5は排ガスG中の塩化水素の乾式除去装置81の説明図で、図1相当図、図6はナトリウム塩回収装置80の工程図で、図2相当図である。なお、第1,第2の実施形態と同一または相当部分には同一符号を付してその説明を省略し、異なる部分のみ説明する。
【0052】
図2に示すナトリウム塩回収装置2にアンモニアソーダ法を使用した場合には、反応式(7),(8)に示す化学反応が起こっている。
そこで、ナトリウム塩回収装置2において、脱塩残渣8の反応に関する物質収支に着目する。脱塩残渣8を炭酸ナトリウム23に再生して、脱塩処理装置1で排ガス処理剤7として再利用する場合、化学反応は式(7)になる。
【0053】
脱塩残渣8の主成分である塩化ナトリウムは、石灰炉46に供給される石灰石48中の炭酸カルシウムと反応する。この化学反応により、最終的に炭酸ナトリウム23が再生され、塩化カルシウム57が廃液として放流される。
この場合、式(7)から分かるように、脱塩残渣8中の塩化ナトリウムが2モル(mol)の場合には、この塩化ナトリウムに対応する炭酸カルシウム(石灰石48)は1mol必要である。生成する炭酸ナトリウム23も1molである。
【0054】
ところで、炭酸ナトリウムより炭酸水素ナトリウムの方が、排ガス中の塩化水素との反応速度が速いので、炭酸水素ナトリウムを排ガス処理剤7として使用する方が好ましい。
そのため、ナトリウム塩回収装置2で脱塩残渣8を炭酸水素ナトリウム44に再生して、排ガス処理剤7として再利用する場合、化学反応は式(8)になる。
この場合には、式(8)から分かるように、上述と同じく脱塩残渣8中の2molの塩化ナトリウムに対しては、炭酸カルシウム(石灰石48)が2mol必要である。その結果、2molの炭酸水素ナトリウム44と、1molの水酸化カルシウムが生成する。
【0055】
このように、炭酸水素ナトリウムが再生される時には、結果的に水酸化カルシウムが余剰分として生成される。この水酸化カルシウムは、元来、排ガス中の塩化水素の除去に使用することが可能である。
そこで、図5および図6に示すように、本実施形態では、この余剰分の水酸化カルシウムを塩化水素の除去に有効利用している。乾式除去装置81は、第1のろ過集じん装置70と脱塩処理装置82とナトリウム塩回収装置80とを備えている。
脱塩処理装置82は、炭酸水素ナトリウムおよび水酸化カルシウムを含む排ガス処理剤88と、排ガスG中の塩化水素とを反応させる。そして、塩化水素を排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣83を生成する。
【0056】
ナトリウム塩回収装置80は、アンモニアソーダ法による製造工程からなっている。ナトリウム塩回収装置80では、脱塩残渣83の全量を原料として供給している。
スラリー状の炭酸水素ナトリウム21を、第1の乾燥機43で乾燥することにより、粉末状の炭酸水素ナトリウム44が得られる。こうして、脱塩残渣83を炭酸水素ナトリウム44に再生している。
【0057】
その結果、この製造工程では、アンモニア回収工程27で供給される水酸化カルシウム54の一部が余剰分84として抜き出される。
分岐管86が、アンモニア蒸留塔55に供給される水酸化カルシウム54の配管に設けられている。分岐管86で抜き出された余剰分の水酸化カルシウム84を、第2の乾燥機87で乾燥することにより、粉末状の水酸化カルシウム85が得られる。
こうして再生された粉末状の炭酸水素ナトリウム44と水酸化カルシウム85は、排ガス処理剤88として脱塩処理装置82に戻される。排ガス処理剤88は、排ガスG中に供給して塩化水素の除去に再利用される。
【0058】
脱塩処理装置82の反応器として、第2のろ過集じん装置73が使用されている。第2のろ過集じん装置73では、粉末状の炭酸水素ナトリウムおよび水酸化カルシウムの両方を含む排ガス処理剤88と、排ガスG中の塩化水素とを反応させている。
これにより、塩化水素を排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣83を生成している。
【0059】
第2のろ過集じん装置73内では、次式の化学反応が起こっている。
NaHCO3+HCl → NaCl+H2O+CO2 ………(9)
Ca(OH)2+2HCl → CaCl2+2H2O ………(10)
【0060】
この化学反応式から分かるように、脱塩残渣83の主成分は塩化ナトリウムである。脱塩残渣83には、その他に、塩化カルシウムと、未反応の炭酸水素ナトリウムおよび水酸化カルシウムと、炭酸水素ナトリウムと硫黄酸化物との化学反応による若干の硫酸ナトリウムとが含まれている。
この実施形態によれば、炭酸水素ナトリウムに加えて水酸化カルシウムが排ガス処理剤88となって、排ガスG中の塩化水素と反応するので、塩化水素をより多く除去することができる。
【0061】
(第4の実施形態)
次に、第4の実施形態について図7を参照して説明する。
図7はこの実施形態にかかる排ガス中の塩化水素の乾式除去装置92の説明図で、図5相当図である。なお、前記各実施形態と同一または相当部分の説明は省略する。
【0062】
第3の実施形態では、排ガス処理剤88が、炭酸水素ナトリウムと水酸化カルシウムとを含む場合を示した。一方、図7に示す塩化水素の乾式除去装置92では、排ガス処理剤90が、炭酸水素ナトリウム(主成分),炭酸ナトリウムおよび水酸化カルシウムを含んでいる。
そして、排ガス処理剤90と排ガスG中の塩化水素とを反応させて塩化水素を排ガスG中から除去し、この化学反応による反応生成物を含有する脱塩残渣91を生成している。
【0063】
ナトリウム塩回収装置80の構成は、第3の実施形態と同一である。乾式除去装置92には、第1のろ過集じん装置70が設けられている。
ナトリウム塩回収装置80では、脱塩残渣91の全量を原料として供給することにより、この脱塩残渣91を、粉末状の炭酸水素ナトリウム44と炭酸ナトリウム23の両方に再生している。
再生された粉末状の炭酸水素ナトリウム44および炭酸ナトリウム23と、余剰分84として抜き出された粉末状の水酸化カルシウム85とを、排ガス処理剤90として排ガスG中に供給している。
脱塩処理装置82の第2のろ過集じん装置73では、炭酸水素ナトリウム,炭酸ナトリウムおよび水酸化カルシウムを含む排ガス処理剤90と、排ガスG中の塩化水素とを反応させて、塩化水素を排ガスG中から除去する。
【0064】
第2のろ過集じん装置73内では、化学反応式(9),(10)の化学反応と、炭酸ナトリウムによる次式の化学反応とが起こっている。
Na2CO3+2HCl → 2NaCl+H2O+CO2 ………(11)
したがって、脱塩残渣91の主成分は塩化ナトリウムであり、その他に塩化カルシウムと、未反応の炭酸ナトリウムおよび水酸化カルシウムと、若干の硫酸ナトリウムとが含まれている。
【0065】
【実施例】
本発明の乾式除去の方法およびその装置は、各種燃焼設備から発生する排ガス中の塩化水素の除去に使用することができる。
図8は、本発明にかかる排ガス中の塩化水素の乾式除去装置60を、焼却装置の一種である燃焼溶融システム100に適用した一実施例を示すブロック図である。なお、他の乾式除去装置12,81,92を適用した場合であってもよい。
【0066】
図8に示すように、燃焼溶融システム100は、都市ごみなど廃棄物Bを燃焼溶融炉112で焼却処理するシステムである。このシステム100では、廃棄物Bを熱分解装置105で熱分解することによって熱分解ガスG1 と熱分解残留物Fを生成する。次いで、熱分解残留物Fを燃焼性成分Cと不燃焼性成分Dに分離する。
そして、熱分解ガスG1 と燃焼性成分Cとを、燃焼溶融炉112において燃焼させることにより溶融スラグEを生成している。このシステム100は、廃棄物Bの減容化率が優れている。
【0067】
次に、このシステム100の詳細について説明する。
はじめに、廃棄物Bは廃棄物受入れ装置102に受け入れられる。次いで、廃棄物Bは、破砕機103で所望の大きさ(たとえば、150mm以下)に破砕される。破砕された廃棄物Bは、スクリューフィーダ104により熱分解装置105に供給される。
熱分解装置105は、その内部がシール機構により低酸素濃度の雰囲気に維持されている。熱分解装置105は、横型の回転ドラム106と、回転ドラム106に接続された排出装置107とを備えている。
回転ドラム106は、回転動作をしながら、廃棄物Bを低酸素の雰囲気中で熱分解させる。回転ドラム106には加熱空気を流すためのライン108,109が接続され、加熱空気で回転ドラム106を加熱する。
【0068】
ライン109は、回転ドラム106の一方の側に接続され、送風機110を介して熱交換器111に接続されている。熱交換器111は、燃焼溶融炉112で発生する排ガスが排出される出口部に配置されて空気を加熱する。ライン108は、熱交換器111と回転ドラム106の他方の側とを接続している。
熱交換器111で加熱された空気は、ライン108を流れて回転ドラム106を加熱する。その後、この空気は、ライン109,送風機110を流れて、熱交換器111で再び加熱される。
【0069】
回転ドラム106に供給された廃棄物Bは、加熱空気により約300ないし約600℃(通常は、約450℃)に加熱される。これにより、廃棄物Bは熱分解されて、熱分解ガスG1 と不揮発性の熱分解残留物Fとを生成する。
熱分解ガスG1 と熱分解残留物Fは、排出装置107で分離される。分離された熱分解ガスG1 は、ライン114を流れて燃焼溶融炉112のバーナ115に供給される。熱分解残留物Fは、比較的高温(たとえば、約450℃)で排出装置107から排出される。排出された熱分解残留物Fは、冷却装置117に供給され、ここで約80℃に冷却される。
【0070】
次いで、熱分解残留物Fは分離装置120に供給され、ここで燃焼性成分Cと不燃焼性成分Dに分離される。分離装置120には、たとえば、磁選式,遠心式,風力選別式等の各種の分別機が使用されている。不燃焼性成分Dは、鉄,アルミニウムなどの有効な資源となって再利用される。
分離装置120で分離された燃焼性成分Cは、ライン122を通って燃焼溶融炉112のバーナ115に供給される。バーナ115には、燃焼用空気が送風機123によってライン124を流れて供給される。
【0071】
バーナ115に供給された燃焼性成分Cと、ライン114からバーナ115に供給された熱分解ガスG1 は、燃焼用空気によって燃焼溶融炉112の内部で約1300℃の高温域で燃焼する。この燃焼によって、灰分は溶融して溶融スラグEを生成する。
溶融スラグEは、燃焼溶融炉112の下部の排出口125から水槽126内に落下して冷却される。冷却されたスラグEは、水槽126から排出され、所定の形状のブロックまたは粒状に成形されたのち、住宅建材や舗装材料などとして再利用される。有害な重金属類などは、スラグE内に封入されるので無害になる。
【0072】
燃焼溶融炉112内での燃焼により排ガスGB が発生する。排ガスGB は、燃焼溶融炉112に設けられた熱交換器111により、空気とのあいだで熱交換される。排ガスGB は、熱交換器111で熱回収され冷却された後、廃熱ボイラ127でさらに熱回収されて約150ないし約200℃まで冷却される。
排ガスGB には、塩化水素(HCl),硫黄酸化物(SOx),ばいじん等が含まれている。廃棄物Bが都市ごみの場合には、排ガスGB 中の塩化水素の濃度が特に高い。都市ごみにおける硫黄(S)の含有量は少ないので、排ガスGB 中の硫黄酸化物の濃度は低い。
【0073】
廃熱ボイラ127を出た排ガスGB は、乾式除去装置60に送られる。排ガスGB は、乾式除去装置60で、ばいじんの捕集,塩化水素など有害物質の除去がなされる。その後、排ガスは、吸引ブロワ128を通って煙突129から大気中に排出される。
乾式除去装置60は、第1のろ過集じん装置70と、第1のろ過集じん装置70の下流側に設置された第2のろ過集じん装置73とを備えている。吸引ブロワ128は、第2のろ過集じん装置73と煙突129とのあいだに設置されている。
第1のろ過集じん装置70は、廃熱ボイラ127の下流側に設置されており、排ガスGB 中のばいじんを捕集する。ばいじんを捕集して得られた集じん灰Hは、廃熱ボイラ127の下部に落下した集じん灰と一緒になる。そして、集じん灰は、ライン130を通って燃焼溶融炉112のバーナ115に戻されて溶融処理される。
【0074】
乾式除去装置60は、脱塩処理装置1とナトリウム塩回収装置2とを備えている。第2のろ過集じん装置73は、脱塩処理装置1の反応器としての機能を有している。
ナトリウム塩回収装置2は、乾式除去装置60用の専用の装置であるのが好ましいが、必ずしも専用でなくてもよい。ナトリウム塩回収装置2は、燃焼溶融システム100など焼却装置の近傍に設置するのが好ましいが、離れた場所たとえば化学工場等に生産設備として設置されていてもよい。
【0075】
図9は、本発明の乾式除去装置60と従来技術に関して、脱塩残渣の量などを比較した説明図である。図9には、都市ごみ1000kgを燃焼溶融システムで燃焼した場合を示している。
従来技術では、燃焼溶融システムで発生する排ガス中の塩化水素を、水酸化カルシウム(排ガス処理剤)のみで除去している。したがって、排ガス中から塩化水素を除去した反応生成物の主成分は塩化カルシウムであり、その量は約11kgである。脱塩残渣は、塩化カルシウムと未反応の水酸化カルシウムを含んでいる。
この脱塩残渣を埋立て処分するために、セメントにより固化する処理を行う場合には、セメントと水を加えることになるので、脱塩残渣の発生量は約32kgになる。したがって、埋立てる脱塩残渣の最終的な量は約32kgである。
【0076】
これに対して、本発明では、燃焼溶融システム100で発生する排ガスGB 中の塩化水素を、乾式除去装置60を用いて炭酸水素ナトリウム(排ガス処理剤)で除去している。
したがって、排ガス中から塩化水素を除去した反応生成物の主成分は塩化ナトリウムである。反応生成物の量は、約12kgであり従来技術の場合とほぼ同じである。
しかし、脱塩残渣を埋立て処分しなくてよいので、セメントによる固化処理は不要である。したがって、脱塩残渣の発生量は、約12kgの反応生成物に、若干の余剰の炭酸水素ナトリウムが約2kg加わるのみなので、12+2=14kgになる。この脱塩残渣の発生量は、従来技術の約44%であり大幅に減少している。
【0077】
しかも、この脱塩残渣の全量を、ナトリウム塩回収装置2に原料として供給して炭酸水素ナトリウムに再生できる。したがって、埋立てる脱塩残渣の量はほぼ零になるので、埋立て処分が不要になる。
また、本発明では、(廃棄する脱塩残渣の量)÷(焼却前の廃棄物の量)の値である減容率(かさの比較)と減量率(重さの比較)とを、ほとんど零にすることができる。
【0078】
本発明の方法および乾式除去装置12,60,81,92では、アンモニアソーダ法等による製造工程で再生された粉末状の炭酸水素ナトリウムおよび炭酸ナトリウムの一方または両方を、排ガス処理剤以外の用途に使用することも可能である。
この再生された物質を、排ガス処理剤7(または、88,90)として排ガス中の塩化水素の除去に再利用するのが好ましい。このようにすれば、燃焼溶融システム100など燃焼設備に乾式除去装置60(または、12,81,92)を適用した全体のシステムにおいて、クローズド化したサイクルが実現できる。
したがって、脱塩残渣を廃棄処分せずに有効利用することができるので、地球環境に対して良好になる。
【0079】
炭酸水素ナトリウムは、高価であるが、排ガス中の塩化水素との反応速度が速い。本発明では、この炭酸水素ナトリウムで塩化水素を有効に除去した後、脱塩残渣を廃棄処分せずに全量を炭酸水素ナトリウムに再生して循環使用できる。
したがって、高価な炭酸水素ナトリウムを新たに供給する必要がほとんどなく有効利用することができる。
なお、各図中同一符号は同一または相当部分を示す。
【0080】
【発明の効果】
本発明は上述のように構成したので、排ガス中の塩化水素を除去した時に発生する脱塩残渣を廃棄処分せずに有効利用することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態にかかる脱塩処理装置の説明図である。
【図2】ナトリウム塩回収装置の工程図である。
【図3】ろ過集じん装置の部分拡大断面図である。
【図4】本発明の第2の実施形態にかかる乾式除去装置の説明図で、図1相当図である。
【図5】本発明の第3の実施形態にかかる乾式除去装置の説明図で、図1相当図である。
【図6】ナトリウム塩回収装置の工程図で、図2相当図である。
【図7】本発明の第4の実施形態にかかる乾式除去装置の説明図で、図5相当図である。
【図8】本発明にかかる排ガス中の塩化水素の乾式除去装置を燃焼溶融システムに適用した一実施例を示すブロック図である。
【図9】本発明と従来技術に関して、脱塩残渣の量などを比較した説明図である。
【符号の説明】
1,82 脱塩処理装置
2,80 ナトリウム塩回収装置
3 ろ過集じん装置(集じん装置)
7,88,90 排ガス処理剤
8,83,91 脱塩残渣
12,60,81,92 乾式除去装置
25 食塩水の精製工程
26 炭酸化工程
27 アンモニア回収工程
44 粉末状の炭酸水素ナトリウム
70 第1のろ過集じん装置(第1の集じん装置)
71 ばいじん
73 第2のろ過集じん装置(第2の集じん装置)
84 余剰分の水酸化カルシウム
85 粉末状の水酸化カルシウム
100 燃焼溶融システム
112 燃焼溶融炉
B 廃棄物
C 燃焼性成分
D 不燃焼性成分
E 溶融スラグ
F 熱分解残留物
G,GB 排ガス
G1 熱分解ガス
Claims (16)
- 炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成した後、
食塩を原料として炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を製造する製造工程に前記脱塩残渣を原料として供給し、
前記製造工程で前記脱塩残渣を炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方に再生することを特徴とする排ガス中の塩化水素の乾式除去方法。 - 炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を製造する製造工程はアンモニアソーダ法による製造工程であり、
前記脱塩残渣をこの製造工程の原料として供給し、食塩水の精製工程で精製したのち炭酸化工程に供給することを特徴とする請求項1に記載の排ガス中の塩化水素の乾式除去方法。 - 炭酸水素ナトリウムおよび水酸化カルシウムを含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成した後、
アンモニアソーダ法による製造工程に前記脱塩残渣を原料として供給し前記製造工程で前記脱塩残渣を炭酸水素ナトリウムに再生し、
この再生された粉末状の炭酸水素ナトリウムと、前記製造工程のアンモニア回収工程で供給される水酸化カルシウムの一部が余剰分として抜き出された粉末状の水酸化カルシウムとを含む排ガス処理剤を、前記排ガス中に供給して塩化水素と反応させることを特徴とする排ガス中の塩化水素の乾式除去方法。 - 炭酸水素ナトリウム,炭酸ナトリウムおよび水酸化カルシウムを含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成した後、
アンモニアソーダ法による製造工程に前記脱塩残渣を原料として供給し前記製造工程で前記脱塩残渣を炭酸水素ナトリウムおよび炭酸ナトリウムに再生し、
この再生された粉末状の炭酸水素ナトリウムおよび炭酸ナトリウムと、前記製造工程のアンモニア回収工程で供給される水酸化カルシウムの一部が余剰分として抜き出された粉末状の水酸化カルシウムとを、前記排ガス処理剤として前記排ガス中に供給して塩化水素と反応させることを特徴とする排ガス中の塩化水素の乾式除去方法。 - 前記排ガス中のばいじんを第1の集じん装置により除去した後、
前記排ガス中の塩化水素を前記排ガス処理剤により除去して前記脱塩残渣を生成することを特徴とする請求項1ないし4のいずれかの項に記載の排ガス中の塩化水素の乾式除去方法。 - 前記第1の集じん装置の下流側に第2の集じん装置を設置し、
前記第1の集じん装置で前記ばいじんが除去された後の前記排ガスを前記第2の集じん装置に流し、
この第2の集じん装置で前記排ガス中の塩化水素を前記排ガス処理剤により除去して前記脱塩残渣を生成することを特徴とする請求項5に記載の排ガス中の塩化水素の乾式除去方法。 - 前記製造工程で再生された粉末状の炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を、前記排ガス処理剤として前記排ガス中の塩化水素の除去に再利用することを特徴とする請求項1,2,5または6に記載の排ガス中の塩化水素の乾式除去方法。
- 塩化水素を含む前記排ガスは燃焼溶融システムで発生した排ガスであり、
この燃焼溶融システムは、廃棄物の熱分解によって熱分解ガスと熱分解残留物を生成し、この熱分解残留物を燃焼性成分と不燃焼性成分に分離し、前記熱分解ガスと前記燃焼性成分とを燃焼溶融炉において燃焼させることにより溶融スラグを生成することを特徴とする請求項1ないし7のいずれかの項に記載の排ガス中の塩化水素の乾式除去方法。 - 炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成する脱塩処理装置と、
食塩を原料として炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を製造する製造工程からなり、この製造工程に前記脱塩残渣を原料として供給することにより、この脱塩残渣を炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方に再生するナトリウム塩回収装置とを備えたことを特徴とする排ガス中の塩化水素の乾式除去装置。 - 炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を製造する前記製造工程はアンモニアソーダ法による製造工程であり、
前記脱塩残渣をこの製造工程の原料として供給し、食塩水の精製工程で精製したのち炭酸化工程に供給することを特徴とする請求項9に記載の排ガス中の塩化水素の乾式除去装置。 - 炭酸水素ナトリウムおよび水酸化カルシウムを含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成する脱塩処理装置と、
アンモニアソーダ法による製造工程からなり、この製造工程に前記脱塩残渣を原料として供給することによりこの脱塩残渣を炭酸水素ナトリウムに再生するナトリウム塩回収装置とを備え、
このナトリウム塩回収装置で再生された粉末状の炭酸水素ナトリウムと、前記製造工程のアンモニア回収工程で供給される水酸化カルシウムの一部が余剰分として抜き出された粉末状の水酸化カルシウムとを含む前記排ガス処理剤を、前記排ガス中に供給して塩化水素と反応させることを特徴とする排ガス中の塩化水素の乾式除去装置。 - 炭酸水素ナトリウム,炭酸ナトリウムおよび水酸化カルシウムを含む排ガス処理剤と、排ガス中の塩化水素とを反応させて塩化水素を前記排ガス中から除去し、この化学反応による反応生成物を含有する脱塩残渣を生成する脱塩処理装置と、
アンモニアソーダ法による製造工程からなり、この製造工程に前記脱塩残渣を原料として供給することによりこの脱塩残渣を炭酸水素ナトリウムおよび炭酸ナトリウムに再生するナトリウム塩回収装置とを備え、
このナトリウム塩回収装置で再生された粉末状の炭酸水素ナトリウムおよび炭酸ナトリウムと、前記製造工程のアンモニア回収工程で供給される水酸化カルシウムの一部が余剰分として抜き出された粉末状の水酸化カルシウムとを、前記排ガス処理剤として前記排ガス中に供給して塩化水素と反応させることを特徴とする排ガス中の塩化水素の乾式除去装置。 - 前記排ガス中のばいじんを除去する第1の集じん装置を前記脱塩処理装置の上流側に設け、
前記第1の集じん装置で前記排ガス中の前記ばいじんを除去した後、前記脱塩処理装置で前記排ガス中の塩化水素を前記排ガス処理剤により除去して前記脱塩残渣を生成することを特徴とする請求項9ないし12のいずれかの項に記載の排ガス中の塩化水素の乾式除去装置。 - 前記第1の集じん装置の下流側に設置された第2の集じん装置を前記脱塩処理装置の反応器とし、
前記第1の集じん装置で前記ばいじんが除去された後の前記排ガスを前記第2の集じん装置に流し、
この第2の集じん装置で前記排ガス中の塩化水素を前記排ガス処理剤により除去して前記脱塩残渣を生成することを特徴とする請求項13に記載の排ガス中の塩化水素の乾式除去装置。 - 前記ナトリウム塩回収装置の前記製造工程で再生された粉末状の炭酸水素ナトリウムおよび炭酸ナトリウムの少なくともいずれか一方を、前記排ガス処理剤として前記排ガス中の塩化水素の除去に再利用することを特徴とする請求項9,10,13または14に記載の排ガス中の塩化水素の乾式除去装置。
- 塩化水素を含む前記排ガスは燃焼溶融システムで発生した排ガスであり、
この燃焼溶融システムは、廃棄物の熱分解によって熱分解ガスと熱分解残留物を生成し、この熱分解残留物を燃焼性成分と不燃焼性成分に分離し、前記熱分解ガスと前記燃焼性成分とを燃焼溶融炉において燃焼させることにより溶融スラグを生成することを特徴とする請求項9ないし15のいずれかの項に記載の排ガス中の塩化水素の乾式除去装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12959298A JP4033420B2 (ja) | 1998-04-23 | 1998-04-23 | 排ガス中の塩化水素の乾式除去方法および乾式除去装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12959298A JP4033420B2 (ja) | 1998-04-23 | 1998-04-23 | 排ガス中の塩化水素の乾式除去方法および乾式除去装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11300157A JPH11300157A (ja) | 1999-11-02 |
JP4033420B2 true JP4033420B2 (ja) | 2008-01-16 |
Family
ID=15013265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12959298A Expired - Fee Related JP4033420B2 (ja) | 1998-04-23 | 1998-04-23 | 排ガス中の塩化水素の乾式除去方法および乾式除去装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4033420B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5114820B2 (ja) * | 2000-09-13 | 2013-01-09 | 旭硝子株式会社 | 塩化ナトリウムの精製方法及び水酸化ナトリウムの製造方法 |
JP2002282650A (ja) * | 2001-03-26 | 2002-10-02 | Mitsui Eng & Shipbuild Co Ltd | 廃棄物燃焼排ガス処理装置および廃棄物処理システム |
JP4756415B2 (ja) * | 2001-08-03 | 2011-08-24 | 三井造船株式会社 | ガスの処理方法 |
BE1015841A3 (fr) * | 2003-12-24 | 2005-10-04 | Lhoist Rech & Dev Sa | Composition pulverulente a base d'un compose calco-magnesien. |
JP4735600B2 (ja) * | 2006-08-18 | 2011-07-27 | 旭硝子株式会社 | 酸性成分除去剤およびその製造方法 |
PT2108011E (pt) * | 2007-01-08 | 2013-09-06 | Basf Se | Processo para a produção de difenilmetano diamina |
JP5264591B2 (ja) * | 2009-03-27 | 2013-08-14 | 三井造船株式会社 | 排ガス処理およびNa系化合物製造システム、および方法 |
WO2021079824A1 (ja) * | 2019-10-24 | 2021-04-29 | Agc株式会社 | 排ガス処理方法 |
-
1998
- 1998-04-23 JP JP12959298A patent/JP4033420B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11300157A (ja) | 1999-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4033420B2 (ja) | 排ガス中の塩化水素の乾式除去方法および乾式除去装置 | |
JP3285692B2 (ja) | 焼却炉における飛灰処理装置 | |
JP3856711B2 (ja) | 窯業原料として再利用が可能な無機化学成分を含む無機系廃棄物の再資源化方法及び再資源化装置 | |
JP4039647B2 (ja) | 廃棄物溶融炉におけるダストの処理方法及びその装置 | |
JP3448149B2 (ja) | 塩素含有プラスチック廃棄物の処理方法 | |
CN210523361U (zh) | 一种废盐资源化处理处置系统 | |
EP1043046A1 (en) | Wet type method of rendering dioxins innoxious | |
JP2017087099A (ja) | 廃棄物焼却における排ガス処理装置および排ガス処理方法 | |
JPH04504378A (ja) | ごみ焼却時に生成する煙道ガスの浄化法 | |
JP2005068535A (ja) | 鉛、亜鉛を含有するガス又は飛灰の処理方法 | |
JP4355817B2 (ja) | 高温排ガス用の浄化処理剤及びそれを用いた高温排ガスの浄化処理方法 | |
JP4067660B2 (ja) | 煙霧を精製し、かつ塩化ナトリウム水溶液を製造する方法 | |
JP2000102721A (ja) | 排ガス乾式脱塩方法 | |
JP2004263952A (ja) | 排ガスからの熱回収方法及び装置 | |
JP2005195228A (ja) | 廃棄物溶融処理システム | |
JP2003117520A (ja) | 焼却灰の処理方法 | |
JPH108118A (ja) | 廃棄物焼却排ガスからの製鋼用脱硫剤の製造方法 | |
CN214719281U (zh) | 一种焚烧炉渣及飞灰的资源化处置系统 | |
JP2007117890A (ja) | 排ガス処理方法及びシステム | |
JP7671711B2 (ja) | ばいじん処理方法及びばいじん処理装置 | |
JP2977743B2 (ja) | プラスチック系廃棄物ガス化ガスの処理方法 | |
JP7494143B2 (ja) | 放射性物質含有物の処理方法及び放射性物質含有物の処理システム | |
JP2005021774A (ja) | 廃棄物処理用加熱炉の排ガスの処理方法および処理システム | |
JP2004188414A (ja) | 重金属回収装置、重金属回収方法および廃棄物処理装置 | |
JPH11197453A (ja) | 排ガス中の塩化水素の乾式除去方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071019 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071022 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141102 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |