JP4030025B2 - Photocurable liquid solder resist ink composition - Google Patents

Photocurable liquid solder resist ink composition Download PDF

Info

Publication number
JP4030025B2
JP4030025B2 JP23952696A JP23952696A JP4030025B2 JP 4030025 B2 JP4030025 B2 JP 4030025B2 JP 23952696 A JP23952696 A JP 23952696A JP 23952696 A JP23952696 A JP 23952696A JP 4030025 B2 JP4030025 B2 JP 4030025B2
Authority
JP
Japan
Prior art keywords
meth
ink composition
fine particles
parts
polymer fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23952696A
Other languages
Japanese (ja)
Other versions
JPH09137109A (en
Inventor
敏夫 淡路
信章 大槻
元博 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP23952696A priority Critical patent/JP4030025B2/en
Publication of JPH09137109A publication Critical patent/JPH09137109A/en
Application granted granted Critical
Publication of JP4030025B2 publication Critical patent/JP4030025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/184Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Description

【0001】
【発明の属する技術分野】
本発明は、プリント配線基板製造用ソルダーレジスト、無電解メッキレジスト、ビルドアップ法プリント配線板の絶縁層等に適した光硬化性液状ソルダーレジスト用インキ組成物に関するものであり、さらに詳しくは、高感光度で、しかもパターン形成後に熱履歴を受けても優れた密着性や耐薬品性を保持し得る塗膜を形成し得る光硬化性液状ソルダーレジスト用インキ組成物に関するものである。
【0002】
【従来の技術】
近年ICや超LSIの高密度化に伴い、プリント配線基板はますます高密度化・ファインパターン化されており、回路幅および回路間隔の縮小が必要となってきた。高密度化・ファインパターン化の進行に伴い、プリント配線基板上のソルダーレジストの主流は、写真法の原理を応用した現像型レジストへと移行しており、特にコーティング法の限定されない液状現像型レジストが脚光を浴びている。環境対策の点で有機溶剤現像型は好まれないため、希薄な弱アルカリ水溶液で現像できるアルカリ現像型がもっぱら使用されていて、エポキシ樹脂と(メタ)アクリル酸を反応させて得られるエポキシ(メタ)アクリレートに酸無水物を反応させてカルボキシル基を導入した、カルボキシル基含有エポキシ(メタ)アクリレート等がアルカリ現像型の光硬化性樹脂として知られている(例えば、特開昭61−243869号や特開昭63−258975号)。
【0003】
液状現像型レジストによるパターン形成方法は、まずプリント配線基板上にレジストを塗布し加熱乾燥を行って塗膜を形成させた後、この塗膜にパターン形成用フィルムを圧着し、露光して、現像するという一連の工程が採用されている。また上記工程中または後工程に、塗膜の耐薬品性や電気特性を向上させるため、さらに紫外線照射を行ったり、あるいは加熱することによって架橋反応を促進することもある。
【0004】
【発明が解決しようとする課題】
ところが、IC、超LSIの高密度化や、プリント配線基板の小型化・ファインパターン化の要求はとどまるところを知らず、実装技術に対して、あるいはソルダーレジストに対して、様々な点から検討が加えられている。実装技術に関しては、例えば表面実装技術や多ピン化パッケージ技術等が次々と実用化されている。一方ソルダーレジストに関しては、特にレジスト塗膜形成後、高温下に長時間さらされても変化しない特性が要求されているが、満足できる結果はまだ得られておらず、パターン形成後、長時間、高温条件下におかれたレジスト塗膜は、熱衝撃や架橋反応進行によって体積収縮を起こし、塗膜にクラックが発生したり、基板から剥離してしまうという問題があった。
【0005】
そこで本発明では、高感光度で塗膜のタックフリー性や現像性に優れており、しかもレジストパターン形成後に高温条件下の加熱工程を経る場合であっても、レジスト層のクラックの発生や体積収縮によるレジスト層の密着性の低下あるいは剥離等が起り得ない高性能な光硬化性液状ソルダーレジスト用インキ組成物を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
本発明は、光硬化性樹脂を必須成分として含有する光硬化性液状ソルダーレジスト用インキ組成物中に、Tgが20℃以下のポリマー微粒子が分散しているものであるところに要旨を有する。
【0007】
上記ポリマー微粒子が、0.1〜100μmの平均粒子径を有すること、(メタ)アクリル酸エステル系ポリマー微粒子であること、架橋構造を有することは、塗膜形成後に高温条件下にさらされても不良を起こさないレジストを提供する点で、それぞれ本発明の好ましい実施態様である。また上記光硬化性樹脂が、1分子中に2個以上のエポキシ基を有するエポキシ樹脂に不飽和一塩酸を反応させて得られるものであること、特に1分子中に3個以上の(メタ)アクリロイル基を有するものであることが好ましい。この1分子中に3個以上の(メタ)アクリロイル基を有する光硬化性樹脂は、原料である前記エポキシ樹脂としてノボラック型エポキシ樹脂を用いて合成すれば良く、耐熱性、耐薬品性、電気特性等の諸物性を満足する塗膜を形成する。光硬化性樹脂が、エポキシ樹脂と(メタ)アクリル酸との反応前または後に、鎖延長剤との反応によって高分子量化されたものであることも同様の観点から好ましい実施態様である。
【0008】
【発明の実施の形態】
本発明者らは、通常用途においては非常に良好な性能を与えている従来のソルダーレジスト用インキ組成物をそのまま用い、他成分の働きによって前記課題を解決する方法を検討し、本発明を見出したものである。
【0009】
本発明の最大のポイントは、インキ組成物中にポリマー微粒子が分散していることである。光照射→現像等の工程を経てレジストが形成された後、高温条件下にさらされてレジスト層中で熱硬化が進んだとしても、Tgが20℃以下の柔らかいポリマー微粒子の存在によって、クラックの発生や体積収縮が抑えられ、レジスト層の密着性の低下を防止するのである。
【0010】
本発明の光硬化性液状ソルダーレジスト用インキ組成物は、光硬化性樹脂とポリマー微粒子を必須構成成分とするものであるが、本発明のポイントであるポリマー微粒子についてまず説明する。
【0011】
本発明では、ポリマー微粒子を構成するポリマーのTgが20℃以下でなければならない。Tgが20℃を超えると、ポリマー微粒子自体が硬くなるので、光硬化後のレジスト層中での体積収縮やクラックの発生を抑制する効果が発現しないためである。なお、本発明でいうポリマー微粒子とは、ポリマーがソルダーレジスト用インキ組成物中で微粒子状態で分散しているときの微粒子を指し、非相溶系での相分離による海島構造における島や、いわゆるミクロドメインも本発明の「ポリマー微粒子」に含まれる。
【0012】
ポリマー微粒子を構成するポリマー種類としては、上記Tg条件を満足するものであれば特に限定されず、天然ゴム;ブタジエン系ゴム(ポリブタジエン、NBR、SBR等)、イソプレン系ゴム(IR、ブチルゴム等)、クロロプレン系ゴム等の合成ゴム、あるいはこれらの加硫物;ポリオルガノシロキサン;炭素数1〜18の直鎖状・分岐状脂肪族または脂環式アルコールと(メタ)アクリル酸のエステル化物である(メタ)アクリル酸エステルを主体とする(メタ)アクリル酸エステル系ポリマー[(メタ)アクリル酸エステルと「他のモノマー」との共重合体も含む]等が挙げられる。また、カルボキシル基等の酸基変性ゴムや、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸等の公知の不飽和カルボン酸や、(メタ)アクリル酸2−スルホン酸エチル、スチレンスルホン酸、ビニルスルホン酸等の酸基含有モノマーを、(メタ)アクリル酸エステルと共重合した(メタ)アクリル酸エステル系ポリマー微粒子も利用可能である。
【0013】
(メタ)アクリル酸エステル系ポリマー微粒子を構成するための「他のモノマー」としては、例えば、スチレン、ビニルトルエン、α−メチルスチレン等のスチレン系モノマー、(メタ)アクリルアミド、N−モノアルキル(メタ)アクリルアミド、N,N−ジアルキル(メタ)アクリルアミド等の(メタ)アクリルアミド系モノマー、(メタ)アクリル酸ヒドロキシアルキル、(メタ)アクリル酸とポリプロピレングリコールもしくはポリエチレングリコールとのモノエステル等のヒドロキシル基含有(メタ)アクリル酸エステル系モノマー、酢酸ビニル、(メタ)アクリロニトリル等を利用することができる。これらのモノマーは、いずれも微粒子を構成するポリマーのTgが20℃以下になる様に調整して利用される。
【0014】
本発明のポリマー微粒子は、架橋構造を有していることが好ましい。ポリマー微粒子への架橋構造の導入は、Tgが比較的低いため粘着凝集し易いポリマー微粒子の取扱いを簡便にし、またレジスト層の耐湿性、耐薬品性の向上に効果的である。さらに必要に応じてインキ組成物中に加えられる光硬化性希釈性モノマーや希釈溶剤によって、ポリマー微粒子が膨潤してしまうのを防止する効果もある。
【0015】
(メタ)アクリル酸エステル系ポリマー微粒子の場合は、架橋構造を導入するには、グリコール等のポリヒドロキシ化合物と2個以上の(メタ)アクリル酸とのエステルである多官能(メタ)アクリル酸エステル、(メタ)アクリル酸アリル、ジビニルベンゼン、ジアリルフタレート等の多官能モノマーを共重合させたり、(メタ)アクリル酸グリシジル等のエポキシ基含有モノマー、(メタ)アクリロイルアジリジン、(メタ)アクリロイルオキシエチルアジリジン等のアジリジニル基含有モノマー、2−イソプロペニル−2−オキサゾリン等のオキサゾリニル基含有モノマー等の酸基との反応性を有するモノマーを共重合させて、ポリマー微粒子中の酸基と架橋反応を起こさせる方法等が採用できる。
【0016】
これらの架橋構造導入用モノマーは全モノマー成分中10重量%以下で共重合させると良い。本発明のポリマー微粒子はTgが20℃以下であることが必須要件であり、あまり密な架橋構造の微粒子では、Tgが20℃を超えるか、または実質的にTgを示さなくなると共に、レジスト層におけるクラック防止や体積収縮防止効果が発現しないため好ましくない。
【0017】
ポリマー微粒子の製造方法としては、特に限定されないが、エマルション重合法が微粒子状のポリマーが簡単に得られるため推奨される。エマルジョン重合方法としては特に限定されず、一括混合重合法、モノマー滴下法、プレエマルション法、シード重合法、多段階重合法(コアシェル)等いずれも採用可能である。(メタ)アクリル酸エステル系ポリマーをエマルション重合で製造する場合、公知の乳化剤を用いても良いが、特開平5−25366号に開示された様なポリマー乳化剤を利用することもできる。このポリマー乳化剤は、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸等の不飽和カルボン酸と炭素数が6〜18のアルキルメルカプタンを主成分とする酸価200以上の水溶性もしくは水分散性の末端アルキル基含有重合体またはその塩である。不飽和カルボン酸とアルキルメルカプタン以外には、ポリマー微粒子を構成するために使用できるモノマーとして例示した、(メタ)アクリル酸エステル系モノマー、スチレン系モノマー、(メタ)アクリルアミド系モノマー等が利用でき、アルキルメルカプタン量を適宜選択して分子量300〜7000にすることが乳化能の点から好ましい。
【0018】
この乳化剤を用いるときには、ポリマー微粒子構成モノマーの一部に、乳化剤中の不飽和カルボン酸との反応性を有するモノマーを使用すれば、乳化剤による悪影響(レジスト層における耐湿性の低下や耐薬品性の低下)を可及的に防止することができ、この様なモノマーとしては前述の酸基との反応性を有するモノマー、すなわち(メタ)アクリル酸グリシジル等のエポキシ基含有モノマー、(メタ)アクリロイルアジリジン、(メタ)アクリロイルオキシエチルアジリジン等のアジリジニル基含有モノマー、2−イソプロペニル−2−オキサゾリン等のオキサゾリニル基含有モノマー等が挙げられる。
【0019】
本発明で用いられるポリマー微粒子の平均粒子径は、0.1〜100μmであることが好ましい。0.1μmより小さいと充填効果が発現せず、100μmを超える大径のものは、レジストパターンの精度を低下させるため好ましくない。
【0020】
ソルダーレジスト用インキ組成物中のポリマー微粒子の量は、後述の光硬化性樹脂100重量部に対して1〜50重量部の範囲が好ましい。1重量部より少ないと、レジスト層形成後の熱履歴によるクラック発生や体積収縮の防止効果が発現しない。また50重量部より多く配合すると、アルカリ現像性、解像度、硬化塗膜の耐熱性等の特性が悪化するため好ましくない。
【0021】
ポリマー微粒子のソルダーレジスト用インキ組成物への配合方法は、特に限定されないが、後述の光硬化性樹脂あるいは該光硬化性樹脂の出発原料であるエポキシ樹脂と、希釈剤を混合した中に、エマルションを直接そのまま加え、常圧下または減圧下で水を除去する方法が推奨される。水と共沸し得る希釈剤を用いてもよい。
【0022】
次に、ソルダーレジスト用インキ組成物中のポリマー微粒子以外の成分について説明する。光硬化性樹脂の種類は特に限定されないが、1分子中に2個以上のエポキシ基を有するエポキシ樹脂に不飽和一塩基酸を反応させて得られる、いわゆるエポキシアクリレートと呼ばれる光ラジカル重合性のオリゴマーの使用が推奨される。エポキシ樹脂の種類、例えば分子量やエポキシ当量、反応させる不飽和一塩基酸の量によって決まる(メタ)アクリロイル基の量等、様々な種類のエポキシアクリレートが知られており、本発明ではいずれのエポキシアクリレートも使用することができる。
【0023】
出発原料のエポキシ樹脂としては、ビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂;脂環式エポキシ樹脂;テトラグリシジルアミノジフェニルメタン等の多官能性グリシジルアミン樹脂;テトラフェニルグリシジルエーテルエタン等の多官能性グリシジルエーテル樹脂;フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂;フェノール、o−クレゾール、m−クレゾール等のフェノール類やナフトール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合反応により得られる多価フェノール化合物とエピクロルヒドリンとの反応物;フェノール類とジビニルベンゼンやジシクロペンタジエン等のジオレフィン化合物との付加反応により得られる多価フェノール類とエピクロルヒドリンとの反応物;4−ビニルシクロヘキセン−1−オキサイドの開環重合物を過酸でエポキシ化したもの;等が挙げられる。また、これらの各エポキシ樹脂と、多塩基酸、多価フェノール化合物、多官能アミノ化合物あるいは多価チオール等の鎖延長剤との反応によって鎖延長したものも使用できる。
【0024】
上記エポキシ樹脂に反応させ、光硬化性樹脂中に光重合性の(メタ)アクリロイル基を導入するための不飽和一塩基酸とは、1個のカルボキシル基と1個以上の(メタ)アクリロイル基を有する一塩基酸のことであり、具体的にはアクリル酸、メタクリル酸、1分子中に1個のヒドロキシル基と2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートと後述の多塩基酸無水物のうちの二塩基酸無水物の反応物であるカルボキシル基含有多官能(メタ)アクリレート等が挙げられる。
【0025】
エポキシ樹脂と不飽和一塩基酸との反応は、公知の方法に従い、通常、エポキシ樹脂中のエポキシ基1化学当量に対して、不飽和一塩基酸中のカルボキシル基が0.9〜1.1化学当量となる様に原料を仕込み、エステル化触媒として、例えば、トリエチルアミン等の三級アミン、トリエチルベンジルアンモニウムクロライド等の4級アンモニウム塩、2−エチル−4メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン等のリン化合物、金属の有機酸または無機塩あるいはキレート化合物等を用い、後述の希釈剤の存在下あるいは非存在下で、ハイドロキノンや酸素等の重合禁止剤の存在下、80〜130℃で行うことによって、光硬化性樹脂であるエポキシ(メタ)アクリレートが得られる。
【0026】
さらに、上記エポキシ(メタ)アクリレート中のヒドロキシル基と多塩基酸無水物を反応させれば、アルカリ現像可能な光硬化性樹脂を得ることができる。多塩基酸無水物としては、無水フタル酸、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3,6−エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、テトラブロモ無水フタル酸、トリメリット酸等の二塩基酸無水物や、脂肪族あるいは芳香族四塩基酸二無水物等が挙げられ、これらのうち1種または2種以上を用いることができる。
【0027】
多塩基酸無水物の使用量は、エポキシ(メタ)アクリレート中のヒドロキシル基1化学当量に対し、0.1〜1.1化学当量が適しており、反応条件は、希釈剤の存在下または非存在下でハイドロキノンや酸素等の重合禁止剤の存在下50〜130℃で行う。このとき必要に応じて、トリエチルアミン等の三級アミン、トリエチルベンジルアンモニウムクロライド等の4級アンモニウム塩、リチウム、ジルコニウム、カリウム、ナトリウム、錫、亜鉛、鉛等の金属の塩化物塩、臭化物塩、あるいはこれらの水和物等を触媒として添加してもよい。
【0028】
以上の反応によって、(メタ)アクリロイル基とカルボキシル基を有するアルカリ現像タイプの光硬化性樹脂が得られる。この樹脂はそれ自体でも本発明組成物の必須成分である光硬化性樹脂として利用できるが、光照射前のタックフリー性や、密着性等の塗膜特性向上のためには、鎖延長剤を反応させて、より高分子量化した形の光硬化性樹脂とすることが好ましい。
【0029】
特に、本発明の光硬化性樹脂は、耐熱性、耐薬品性、電気特性等の物性に優れた硬化塗膜を形成する点で、1分子中に3個以上の(メタ)アクリロイル基を有する樹脂であることが好ましい。この様な樹脂は、出発原料のエポキシ樹脂としてノボラック型エポキシ樹脂の様な3官能以上のエポキシ樹脂を用いるか、不飽和一塩基酸として2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートを用いることによって得ることができる。また、ビスフェノール型エポキシ樹脂等の2官能のエポキシ樹脂であっても、不飽和一塩基酸と反応させた後に生成するヒドロキシル基に対してジイソシアネート化合物を反応させることによって(鎖延長して)4官能以上の樹脂を得ることができる。さらに、エポキシ(メタ)アクリレートと多塩基酸無水物の反応によって導入されるカルボキシル基を用いて、これに2官能のエポキシ樹脂を反応させて鎖延長することによっても同様に、1分子中に3個以上の(メタ)アクリロイル基を有する樹脂を得ることができる。
【0030】
本発明のソルダーレジスト用インキ組成物には、上記必須構成成分の他に、光重合開始剤と希釈剤を含有させることが好ましい。光重合開始剤としては公知のものを使用でき、具体的にはベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾインとそのアルキルエーテル類;アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、4−(1−t−ブチルジオキシ−1−メチルエチル)アセトフェノン等のアセトフェノン類;2−メチルアントラキノン、2−アミルアントラキノン、2−t−ブチルアントラキノン、l−クロロアントラキノン等のアントラキノン類;2,4−ジメチルチオキサントン、2,4−ジイソプロピルチオキサントン、2−クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4−(1−t−ブチルジオキシ−1−メチルエチル)ベンゾフェノン、3,3’,4,4’−テトラキス(t−ブチルジオキシカルボニル)ベンゾフェノン等のベンゾフェノン類;2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オンや2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1;アシルホスフィンオキサイド類およびキサントン類等が挙げられる。
【0031】
これらの光重合開始剤は1種または2種以上の混合物として使用され、光硬化性樹脂100重量部に対し0.5〜30重量部含まれていることが好ましい。光重合開始剤の量が0.5重量部より少ない場合には、光照射時間を増やさなければならなかったり、光照射を行っても重合が起こりにくかったりするため、適切な表面硬度が得られなくなる。また光重合開始剤の量が30重量部を超えても、多量に使用するメリットはない。
【0032】
ソルダーレジスト用インキ組成物に利用できる希釈剤としては、溶媒または光重合反応に参加できる希釈性モノマーを、1種または2種以上混合して使用することができ、光硬化性樹脂100重量部に対し、5〜500重量部を各塗布方法の最適粘度に合わせて配合することが好ましい。特に希釈剤として希釈性モノマーを単独あるいは混合で用いる場合は、希釈性モノマーを感光性樹脂100重量部に対して5〜100重量部配合することが物性上好ましい。
【0033】
溶媒としてはトルエン、キシレン等の炭化水素類;セロソルブ、ブチルセロソルブ等のセロソルブ類;カルビトール、ブチルカルビトール等のカルビトール類;セロソルブアセテート、カルビトールアセテート等のエステル類;メチルイソブチルケトン、メチルエチルケトン等のケトン類;ジエチレングリコールジメチルエーテル等のエーテル類等が挙げられる。希釈性モノマーとしては、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、β−ヒドロキシエチル(メタ)アクリレート、(2−オキソ−1,3−ジオキソラン−4−イル)−メチル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートのトリ(メタ)アクリレート等が挙げられる。
【0034】
本発明のソルダーレジスト用インキ組成物は、以上説明した光硬化性樹脂、およびポリマー微粒子を必須成分とし、好ましくは光重合開始剤と希釈剤を含有するものであるが、さらに必要に応じて、タルク、クレー、硫酸バリウム等の充填材、着色用顔料、消泡剤、カップリング剤、レベリング剤等や、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレート等のエポキシ樹脂およびジシアンジアミド、イミダゾール化合物などのエポキシ硬化剤等を添加することもできる。
【0035】
本発明で使用できる光硬化性樹脂は、アルカリ現像可能なものは光が照射されていない部分がアルカリ水溶液に溶解するので、アルカリ現像ができる。現像に使用できるアルカリとしては、例えば炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属化合物;水酸化カルシウム等のアルカリ土類金属化合物;アンモニア;モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノプロピルアミン、ジメチルプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン、ジメチルアミノエチルメタクリレート、ポリエチレンイミン等の水溶性有機アミン類が挙げられ、これらの1種または2種以上を使用することができる。
【0036】
【実施例】
以下実施例によって本発明を更に詳述するが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。なお実施例中の部および%は重量基準である。
【0037】
実施例1
〈(メタ)アクリル酸エステル系ポリマー微粒子[1]の合成〉
撹拌機、還流冷却器、窒素導入管、温度計、滴下ロートを備えたフラスコに、イソプロピルアルコール180部を仕込み、窒素を吹込みながら81℃まで昇温して10分間還流させた。このフラスコに、アクリル酸53.6部、メタクリル酸ラウリル16.5部、ブレンマーPE−200(日本油脂社製、ポリエチレングリコールモノメタクリル酸エステル)91部、n−ドデシルメルカプタン13.7部および2,2’−アゾビスイソブチロニトリル0.4部の混合物を2時間かけて滴下した。滴下終了後、さらに還流状態で1時間熟成を行い、不揮発分49.1%のポリマー乳化剤▲1▼の溶液を得た。
【0038】
次に、撹拌機、還流冷却器、窒素導入管、温度計、滴下ロートを備えた別のフラスコに、イオン交換水63部を仕込み、窒素ガスを吹込みながら70℃に昇温した。アクリル酸エチル85部、メタクリル酸メチル10部、メタクリル酸グリシジル5部、ポリマー乳化剤▲1▼の溶液4.1部と28%アンモニア水0.5部、イオン交換水36部を混合してよく撹拌し、完全に乳化したプレエマルションを作成して上記フラスコの滴下ロートに仕込んだ。
【0039】
4,4’−アゾビス(4−シアノペンタン酸)のアンモニア中和塩の5%水溶液8部をフラスコに注入した後、滴下ロートから上記プレエマルションを3.5時間かけて滴下した。滴下中は70〜75℃に保持した。滴下終了後、ロート内に残ったプレエマルジョンをイオン交換水10部で洗浄して、その洗浄液をフラスコに入れ、さらに2時間撹拌を続けて重合を終了させた。不揮発分46.0%の(メタ)アクリル酸エステル系ポリマー微粒子[1]のエマルションが得られた。エマルションの一部を採取して水を蒸発させ、ポリマーのTgを示差走査型熱量計で測定したところ、−8℃であった。
【0040】
〈ソルダーレジスト用インキ組成物の製造〉
クレゾールノボラック型エポキシ樹脂YDCN−703(東都化成製、エポキシ当量200)100部に、エチルカルビトールアセテート80部を加え、撹拌下120℃で加熱溶解させた。60℃まで冷却した後、上記ポリマー微粒子[1]のエマルション43.48部を加え、撹拌下で130℃まで昇温し、水を完全に除去した。次いで、アクリル酸36.9部、塩化第二クロム六水和物0.14部およびメチルハイドロキノン0.11部を加え、110℃で3時間反応させた。反応物の酸価が3.0になり、アクリロイル基の導入が確認された。次に、テトラヒドロ無水フタル酸45.6部、エチルカルビトールアセテート29部および無水塩化リチウム0.14部を加え、100℃で3時間反応させた。ポリマー微粒子[1]と、酸価90の光硬化性樹脂を65%含むエチルカルビトールアセテートとの混合組成物(A−1)が得られた。
【0041】
実施例2
実施例1と同じエポキシ樹脂(クレゾールノボラック型エポキシ樹脂YDCN−703)100部に、エチルカルビトールアセテート80部を加え、撹拌下、120℃で加熱溶解させた。次いで、アクリル酸36.9部、塩化第二クロム六水和物0.14部およびメチルハイドロキノン0.11部を加え、110℃で3時間反応させた。反応物の酸価は3.3になり、アクリロイル基の導入が確認された。60℃まで冷却した後、実施例1で合成したポリマー微粒子[1]のエマルション43.48部を加え、撹拌下で115℃まで昇温し、水を完全に除去した。
【0042】
続いて、テトラヒドロ無水フタル酸45.6部、エチルカルビトールアセテート29部および無水塩化リチウム0.14部を加え、100℃で3時間反応させた。ポリマー微粒子[1]と、酸価90の光硬化性樹脂を65%含むエチルカルビトールアセテートとの混合組成物(A−2)を得た。
【0043】
実施例3
実施例1と同じエポキシ樹脂100部に、エチルカルビトールアセテート80部を加え、撹拌下、120℃で加熱溶解させた。次いで、アクリル酸36.9部、塩化第二クロム六水和物0.14部およびメチルハイドロキノン0.11部を加え、110℃で3時間反応させた。反応物の酸価は3.3になり、アクリロイル基の導入が確認された。次に、テトラヒドロ無水フタル酸45.6部、エチルカルビトールアセテート29部および無水塩化リチウム0.14部を加え、100℃で3時間反応させた。60℃まで冷却した後、実施例1で合成したポリマー微粒子[1]のエマルション43.48部を加え、撹拌下で115℃まで昇温し、水を完全に除去し、ポリマー微粒子[1]と、酸価91の光硬化性樹脂を65%含むエチルカルビトールアセテートとの混合組成物(A−3)を得た。
【0044】
実施例4
〈(メタ)アクリル酸エステル系ポリマー微粒子[2]の合成〉
実施例1のポリマー微粒子の合成工程において、ポリマー乳化剤▲1▼に代えて、ハイテノールN08(第一工業製薬社製、アルキルフェニルポリエチレンオキシドスルホン酸アンモニウム)を用いた以外は、実施例1と同様にしてエマルション重合を行い、不揮発分46.5%の(メタ)アクリル酸エステル系ポリマー微粒子[2]のエマルションを得た。エマルションの一部を採取して水を蒸発させ、ポリマーのTgを示差走査型熱量計で測定したところ、−10℃であった。
【0045】
実施例1と同じエポキシ樹脂100部に、エチルカルビトールアセテート80部を加え、撹拌下120℃で加熱溶解させた。60℃まで冷却した後、上記ポリマー微粒子[2]のエマルション43.01部を加え、撹拌下で130℃まで昇温し、水を完全に除去した。次いで、アクリル酸36.9部、塩化第二クロム六水和物0.14部およびメチルハイドロキノン0.11部を加え、110℃で3時間反応させた。反応物の酸価が3.0になり、アクリロイル基の導入が確認された。次に、テトラヒドロ無水フタル酸45.6部、エチルカルビトールアセテート29部および無水塩化リチウム0.14部を加え、100℃で3時間反応させた。ポリマー微粒子[2]と、酸価89の光硬化性樹脂を65%含むエチルカルビトールアセテートとの混合組成物(A−4)が得られた。
【0046】
実施例5
ビスフェノールA型エポキシ樹脂GY−250(チバガイギー社製、エポキシ当量185)100部に、エチルカルビトールアセテート80部を加え、撹拌下、60℃まで昇温して均一溶液とした。実施例1で合成したポリマー微粒子[1]のエマルション43.48部を加えた後、撹拌下で130℃まで昇温し、水を完全に除去した。次いで、アクリル酸38.9部、塩化第二クロム六水和物0.14部およびメチルハイドロキノン0.12部を加え、110℃で3時間反応させた。この反応物を100℃まで冷却し、テトラヒドロ無水フタル酸82.2部および無水塩化リチウム0.14部を加えて100℃で10時間反応させた。エポキシ樹脂GY−250を50部添加して、110℃で5時間反応させ、さらに、テトラヒドロ無水フタル酸39.6部とエチルカルビトールアセテート98.1部を加え、100℃で3時間反応させた。ポリマー微粒子[1]と、酸価93の光硬化性樹脂を65%含むエチルカルビトールアセテートとの混合組成物(A−5)が得られた。
【0047】
比較例1
実施例1と同じエポキシ樹脂(クレゾールノボラック型エポキシ樹脂YDCN−703)100部に、エチルカルビトールアセテート80部を加え、撹拌下120℃で加熱溶解させた。次いで、アクリル酸36.9部、塩化第二クロム六水和物0.14部およびメチルハイドロキノン0.11部を加え、110℃で3時間反応させ、反応物の酸価が3.3になったことを確認した。次にテトラヒドロ無水フタル酸45.6部、エチルカルビトールアセテート18.3部および無水塩化リチウム0.14部を加え、100℃で3時間反応させた。ポリマー微粒子を含まない、酸価95の光硬化性樹脂を65%含むエチルカルビトールアセテートとの混合組成物(A−6)が得られた。
【0048】
比較例2
実施例5と同じエポキシ樹脂(ビスフェノールA型エポキシ樹脂GY−250)100部に、エチルカルビトールアセテート80部を加え、撹拌下、110℃まで昇温し、アクリル酸38.9部、塩化第二クロム六水和物0.14部およびメチルハイドロキノン0.12部を加え、3時間反応させた。この反応物を100℃まで冷却し、テトラヒドロ無水フタル酸82.2部および無水塩化リチウム0.14部を加えて100℃で10時間反応させた。次にエポキシ樹脂GY−250を50部添加して、110℃で5時間反応させ、さらに、テトラヒドロ無水フタル酸33.1部とエチルカルビトールアセテート83.8部を加え、100℃で3時間反応させた。ポリマー微粒子を含まない、酸価92の光硬化性樹脂を65%含むエチルカルビトールアセテートとの混合組成物(A−7)が得られた。
【0049】
実施例6〜10および比較例3〜5
実施例1〜5および比較例1〜2で得られた混合組成物(A−1)〜(A−7)について、表1に示した配合で調整し、ソルダーレジスト用インキ組成物を得た。以下の方法で評価した結果を表2に示す。
【0050】
〔現像性の評価〕
脱脂洗浄した厚さ1.6mmの銅張積層板上に、20〜30μmの厚さにソルダーレジスト用インキ組成物を塗布し、熱風循環式乾燥炉中において80℃で所定時間(30、40、50、60分)乾燥し塗膜を得た。次いで、1%Na2 CO3 水溶液を使用して30℃で各々2.1kg/cm2 の圧力下、80秒間現像を行い、残存する樹脂を目視で評価した。
良好:銅面上にレジストが全く残らない
不良:銅面上にレジストがかなり残る
【0051】
〔耐アルカリ性評価〕
現像性評価の時と同様に塗膜を形成し、1Kwの超高圧水銀灯を用いて500mJ/cm2 の光量を照射し、さらに150℃で30分加熱した。その後20℃の10%水酸化ナトリウム水溶液に20分間浸漬し、浸漬後の塗膜状態を目視で評価した。
○:塗膜の外観に異常なし
×:塗膜が膨潤または剥離した
【0052】
〔密着性の評価〕
現像性評価のときと同様に塗膜を形成し、1Kwの超高圧水銀ランプを用いて500mJ/cm2 の光量を照射して、次いで150℃で30分間加熱した後、JIS D−0202の試験法に準じて1mm×1mmの100個の碁盤目を刻んだ。さらに175℃または200℃で30分加熱を行い、それぞれの試料に対して粘着テープによるピーリング試験を行い、塗膜の剥離状態を目視で判定した。
○:100/100で全く変化なし
△:80/100〜99/100
×:0/100〜79/100
【0053】
【表1】

Figure 0004030025
【0054】
【表2】
Figure 0004030025
【0055】
ポリマー微粒子が配合されたソルダーレジスト用インキ組成物を使用した本発明例(実施例6〜10)はいずれも、現像性、加熱工程後の耐アルカリ性・密着性に優れていることが明らかである。しかし、ポリマー微粒子の未配合の比較例では、加熱工程後の密着性において実施例と明らかに差が出ている。これは、光照射後の加熱工程において、レジスト層に微細なクラックや体積収縮が生じ、基板との密着性が低下したためであると考えられ、ポリマー微粒子の存在がこれらの不都合を防止し得ることが確認された。
【0056】
【発明の効果】
本発明のソルダーレジスト用インキ組成物は、Tgが20℃以下のポリマー微粒子を組成物中に分散させるだけで、パターン形成後に加熱工程が組み込まれるラインにおいても基板に対する優れた密着性を示すレジスト層を形成することができた。光硬化性樹脂の分子設計を、加熱工程のあるラインとないラインで変更する必要がないので、光照射前のタックフリー性に優れ、高解像度、優れたアルカリ現像性を有し、かつ密着性、耐熱性、耐薬品性等に優れた硬化塗膜を形成し得る高性能な光硬化性液状ソルダーレジスト用インキ組成物を提供できることになった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocurable liquid solder resist ink composition suitable for a solder resist for producing a printed wiring board, an electroless plating resist, an insulating layer of a build-up printed wiring board, and the like. The present invention relates to a photocurable liquid solder resist ink composition that can form a coating film that has photosensitivity and can retain excellent adhesion and chemical resistance even when subjected to a thermal history after pattern formation.
[0002]
[Prior art]
In recent years, with the increase in the density of ICs and VLSIs, printed wiring boards have become increasingly dense and fine patterns, and it has become necessary to reduce the circuit width and circuit interval. With the progress of higher density and fine patterning, the mainstream of solder resist on printed circuit boards has shifted to development resists that apply the principles of photographic methods, and liquid development resists that are not particularly limited in coating methods. Is in the limelight. Since the organic solvent development type is not preferred in terms of environmental measures, an alkali development type that can be developed with a dilute weak alkaline aqueous solution is exclusively used, and an epoxy (meta) obtained by reacting an epoxy resin with (meth) acrylic acid is used. ) A carboxyl group-containing epoxy (meth) acrylate or the like obtained by reacting an acrylate with an acid anhydride to introduce a carboxyl group is known as an alkali-developable photocurable resin (for example, JP-A 61-243869 and JP-A-63-258975).
[0003]
The pattern formation method using a liquid development type resist is to first apply a resist on a printed wiring board and heat dry to form a coating film. A series of processes is used. Moreover, in order to improve the chemical resistance and electrical properties of the coating film during or after the above process, the crosslinking reaction may be promoted by further irradiating with ultraviolet rays or heating.
[0004]
[Problems to be solved by the invention]
However, the demand for higher density of ICs and VLSI and miniaturization and fine patterning of printed wiring boards is not limited, and various considerations are added to mounting technology or solder resist. It has been. As for mounting technology, for example, surface mounting technology, multi-pin packaging technology, and the like have been put into practical use one after another. On the other hand, with regard to the solder resist, especially after resist coating formation, properties that do not change even when exposed to high temperatures for a long time are required, but satisfactory results have not yet been obtained, after pattern formation, for a long time, The resist coating film placed under a high temperature condition has a problem that volume shrinkage occurs due to thermal shock or the progress of the crosslinking reaction, and the coating film is cracked or peeled off from the substrate.
[0005]
Therefore, in the present invention, the resist layer is excellent in tackiness and developability with high photosensitivity, and even when a heating process under high temperature conditions is performed after forming the resist pattern, the occurrence of cracks and volume of the resist layer It is an object of the present invention to provide a high-performance photocurable liquid solder resist ink composition that does not cause a decrease in adhesion or peeling of the resist layer due to shrinkage.
[0006]
[Means for Solving the Problems]
The gist of the present invention is that polymer fine particles having a Tg of 20 ° C. or less are dispersed in a photocurable liquid solder resist ink composition containing a photocurable resin as an essential component.
[0007]
Even if the polymer fine particles have an average particle diameter of 0.1 to 100 μm, are (meth) acrylic acid ester polymer fine particles, and have a crosslinked structure, they may be exposed to high-temperature conditions after the coating film is formed. Each is a preferred embodiment of the present invention in that it provides a resist that does not cause defects. The photocurable resin is obtained by reacting an unsaturated monohydrochloric acid with an epoxy resin having two or more epoxy groups in one molecule, particularly three or more (meth) in one molecule. It is preferable to have an acryloyl group. The photo-curable resin having 3 or more (meth) acryloyl groups in one molecule may be synthesized using a novolac type epoxy resin as the raw material epoxy resin, and has heat resistance, chemical resistance, and electrical characteristics. A coating film satisfying various physical properties is formed. It is also a preferred embodiment from the same point of view that the photocurable resin is a polymer having a high molecular weight by reaction with a chain extender before or after the reaction between the epoxy resin and (meth) acrylic acid.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have used the conventional solder resist ink composition that gives very good performance in ordinary applications as it is, studied a method for solving the above problems by the action of other components, and found the present invention. It is a thing.
[0009]
The greatest point of the present invention is that polymer fine particles are dispersed in the ink composition. Even after the resist is formed through a process such as light irradiation → development and the like, even if it is exposed to a high temperature condition and thermosetting proceeds in the resist layer, the presence of soft polymer fine particles having a Tg of 20 ° C. or less causes cracks. Generation | occurrence | production and volume shrinkage | contraction are suppressed and the fall of the adhesiveness of a resist layer is prevented.
[0010]
The ink composition for a photocurable liquid solder resist of the present invention comprises a photocurable resin and polymer fine particles as essential components. First, the polymer fine particles that are the points of the present invention will be described.
[0011]
In the present invention, the Tg of the polymer constituting the polymer fine particles must be 20 ° C. or less. This is because when the Tg exceeds 20 ° C., the polymer fine particles themselves become hard, and thus the effect of suppressing the volume shrinkage and the generation of cracks in the resist layer after photocuring is not exhibited. The fine polymer particles referred to in the present invention refers to fine particles when the polymer is dispersed in the fine particle state in the solder resist ink composition, and is an island in a sea-island structure by phase separation in an incompatible system, or a so-called micro-particle. Domains are also included in the “polymer microparticle” of the present invention.
[0012]
The polymer type constituting the polymer fine particles is not particularly limited as long as the above Tg condition is satisfied, natural rubber; butadiene rubber (polybutadiene, NBR, SBR, etc.), isoprene rubber (IR, butyl rubber, etc.), Synthetic rubber such as chloroprene-based rubber, or vulcanized products thereof; polyorganosiloxane; esterified product of linear or branched aliphatic or alicyclic alcohol having 1 to 18 carbon atoms and (meth) acrylic acid ( And (meth) acrylic acid ester-based polymers (including copolymers of (meth) acrylic acid esters and “other monomers”), which are mainly composed of (meth) acrylic acid esters. Also, acid group-modified rubber such as carboxyl group, known unsaturated carboxylic acid such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, (meth) acrylic acid 2-ethyl sulfonate, styrene sulfonic acid (Meth) acrylic acid ester polymer fine particles obtained by copolymerizing an acid group-containing monomer such as vinyl sulfonic acid with (meth) acrylic acid ester can also be used.
[0013]
Examples of “other monomers” for constituting the (meth) acrylic acid ester polymer fine particles include styrene monomers such as styrene, vinyltoluene and α-methylstyrene, (meth) acrylamide, N-monoalkyl (meta ) Hydroxyl group-containing (meth) acrylamide monomers such as acrylamide, N, N-dialkyl (meth) acrylamide, hydroxyalkyl (meth) acrylate, monoester of (meth) acrylic acid and polypropylene glycol or polyethylene glycol ( A (meth) acrylic acid ester monomer, vinyl acetate, (meth) acrylonitrile and the like can be used. These monomers are used by adjusting so that the Tg of the polymer constituting the fine particles is 20 ° C. or less.
[0014]
The polymer fine particles of the present invention preferably have a crosslinked structure. The introduction of a crosslinked structure into the polymer fine particles simplifies the handling of the polymer fine particles that tend to adhere and aggregate due to a relatively low Tg, and is effective in improving the moisture resistance and chemical resistance of the resist layer. Further, there is an effect of preventing the polymer fine particles from being swollen by a photocurable diluting monomer or a diluent solvent added to the ink composition as necessary.
[0015]
In the case of (meth) acrylic acid ester polymer fine particles, a polyfunctional (meth) acrylic acid ester which is an ester of a polyhydroxy compound such as glycol and two or more (meth) acrylic acids is used to introduce a crosslinked structure. , Copolymerization of polyfunctional monomers such as allyl (meth) acrylate, divinylbenzene, diallyl phthalate, etc., epoxy group-containing monomers such as glycidyl (meth) acrylate, (meth) acryloylaziridine, (meth) acryloyloxyethylaziridine A monomer having reactivity with an acid group such as an aziridinyl group-containing monomer such as 2-isopropenyl-2-oxazoline is copolymerized to cause a crosslinking reaction with the acid group in the polymer fine particles. A method etc. can be adopted.
[0016]
These monomers for introducing a crosslinked structure may be copolymerized at 10% by weight or less based on the total monomer components. The polymer fine particles of the present invention must have a Tg of 20 ° C. or lower. If the fine particles have a crosslinked structure that is too dense, the Tg exceeds 20 ° C. or does not substantially exhibit Tg, and This is not preferable because the effect of preventing cracks and preventing volume shrinkage is not exhibited.
[0017]
The method for producing the polymer fine particles is not particularly limited, but an emulsion polymerization method is recommended because a fine particle polymer can be easily obtained. The emulsion polymerization method is not particularly limited, and any of a batch mixing polymerization method, a monomer dropping method, a pre-emulsion method, a seed polymerization method, a multistage polymerization method (core shell), and the like can be employed. When a (meth) acrylic acid ester-based polymer is produced by emulsion polymerization, a known emulsifier may be used, but a polymer emulsifier as disclosed in JP-A-5-25366 can also be used. This polymer emulsifier is water-soluble or water-dispersed with an acid value of 200 or more, mainly composed of an unsaturated carboxylic acid such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid and the like and an alkyl mercaptan having 6 to 18 carbon atoms. A terminal alkyl group-containing polymer or a salt thereof. In addition to unsaturated carboxylic acids and alkyl mercaptans, (meth) acrylic acid ester monomers, styrene monomers, (meth) acrylamide monomers, and the like exemplified as monomers that can be used to form polymer fine particles can be used. It is preferable from the viewpoint of emulsification ability that the amount of mercaptans is appropriately selected to be a molecular weight of 300 to 7000.
[0018]
When this emulsifier is used, if a monomer having reactivity with the unsaturated carboxylic acid in the emulsifier is used as a part of the polymer fine particle constituting monomer, adverse effects due to the emulsifier (decrease in moisture resistance in the resist layer or chemical resistance) Such monomers are reactive with the above-mentioned acid groups, that is, epoxy group-containing monomers such as glycidyl (meth) acrylate, (meth) acryloylaziridine And aziridinyl group-containing monomers such as (meth) acryloyloxyethylaziridine, and oxazolinyl group-containing monomers such as 2-isopropenyl-2-oxazoline.
[0019]
The average particle size of the polymer fine particles used in the present invention is preferably 0.1 to 100 μm. If it is smaller than 0.1 μm, the filling effect does not appear, and those having a large diameter exceeding 100 μm are not preferable because the accuracy of the resist pattern is lowered.
[0020]
The amount of the polymer fine particles in the solder resist ink composition is preferably in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the photocurable resin described later. When the amount is less than 1 part by weight, the effect of preventing crack generation and volume shrinkage due to the thermal history after the resist layer is formed is not exhibited. Moreover, when more than 50 weight part is mix | blended, since characteristics, such as alkali developability, resolution, and the heat resistance of a cured coating film, deteriorate, it is not preferable.
[0021]
The blending method of the polymer fine particles into the solder resist ink composition is not particularly limited, but the emulsion is mixed with the below-described photocurable resin or an epoxy resin which is a starting material of the photocurable resin and a diluent. It is recommended to add water directly and remove water under normal pressure or reduced pressure. A diluent capable of azeotroping with water may be used.
[0022]
Next, components other than the polymer fine particles in the solder resist ink composition will be described. Although the kind of photocurable resin is not particularly limited, a photo-radically polymerizable oligomer called an epoxy acrylate obtained by reacting an unsaturated monobasic acid with an epoxy resin having two or more epoxy groups in one molecule Is recommended. Various types of epoxy acrylates such as the amount of (meth) acryloyl groups determined by the type of epoxy resin, such as molecular weight, epoxy equivalent, and amount of unsaturated monobasic acid to be reacted are known. Can also be used.
[0023]
As the starting epoxy resin, bisphenol type epoxy resin; biphenyl type epoxy resin; alicyclic epoxy resin; polyfunctional glycidyl amine resin such as tetraglycidylaminodiphenylmethane; polyfunctional glycidyl ether resin such as tetraphenyl glycidyl ether ethane A phenol novolac-type epoxy resin or a cresol novolak-type epoxy resin; a polyhydric phenol compound obtained by a condensation reaction of phenols such as phenol, o-cresol, m-cresol and naphthols with an aromatic aldehyde having a phenolic hydroxyl group; Reaction product of epichlorohydrin; reaction product of polyphenols and epichlorohydrin obtained by addition reaction of phenols with diolefin compounds such as divinylbenzene and dicyclopentadiene Those that have been epoxidized ring-opening polymers of 4-vinylcyclohexene-1-oxide with peracid; and the like. Moreover, what extended | stretched the chain | strand by reaction of each of these epoxy resins and chain extenders, such as a polybasic acid, a polyhydric phenol compound, a polyfunctional amino compound, or a polyvalent thiol, can also be used.
[0024]
The unsaturated monobasic acid for reacting with the epoxy resin and introducing a photopolymerizable (meth) acryloyl group into the photocurable resin means one carboxyl group and one or more (meth) acryloyl groups. Specifically, acrylic acid, methacrylic acid, polyfunctional (meth) acrylate having one hydroxyl group and two or more (meth) acryloyl groups in one molecule, and the below-mentioned Examples include a carboxyl group-containing polyfunctional (meth) acrylate which is a reaction product of a dibasic acid anhydride among the polybasic acid anhydrides.
[0025]
The reaction between the epoxy resin and the unsaturated monobasic acid is in accordance with a known method, and usually the carboxyl group in the unsaturated monobasic acid is 0.9 to 1.1 with respect to 1 chemical equivalent of the epoxy group in the epoxy resin. Raw materials are charged so as to have chemical equivalents, and as esterification catalysts, for example, tertiary amines such as triethylamine, quaternary ammonium salts such as triethylbenzylammonium chloride, imidazole compounds such as 2-ethyl-4methylimidazole, triphenylphosphine Using a phosphorus compound such as a metal, an organic acid or inorganic salt of a metal, or a chelate compound, and in the presence or absence of a diluent described below, in the presence of a polymerization inhibitor such as hydroquinone or oxygen, at 80 to 130 ° C. By this, epoxy (meth) acrylate which is a photocurable resin is obtained.
[0026]
Furthermore, if the hydroxyl group in the said epoxy (meth) acrylate and a polybasic acid anhydride are made to react, the photocurable resin which can be alkali developed can be obtained. Polybasic acid anhydrides include phthalic anhydride, succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3,6-endomethylenetetrahydrophthalic anhydride, methylendomethylene Dibasic acid anhydrides such as tetrahydrophthalic anhydride, tetrabromophthalic anhydride, trimellitic acid, aliphatic or aromatic tetrabasic acid dianhydrides, etc. may be mentioned, and one or more of these should be used Can do.
[0027]
The amount of polybasic acid anhydride used is suitably 0.1 to 1.1 chemical equivalents relative to one chemical equivalent of hydroxyl group in the epoxy (meth) acrylate, and the reaction conditions are the presence or absence of diluent. The reaction is carried out at 50 to 130 ° C. in the presence of a polymerization inhibitor such as hydroquinone or oxygen. At this time, if necessary, a tertiary amine such as triethylamine, a quaternary ammonium salt such as triethylbenzylammonium chloride, a chloride salt, bromide salt of a metal such as lithium, zirconium, potassium, sodium, tin, zinc, lead, or These hydrates and the like may be added as a catalyst.
[0028]
By the above reaction, an alkali development type photocurable resin having a (meth) acryloyl group and a carboxyl group is obtained. This resin itself can be used as a photocurable resin which is an essential component of the composition of the present invention. However, in order to improve the coating properties such as tack-free property and adhesion before light irradiation, a chain extender is used. It is preferable to make a photocurable resin having a higher molecular weight by reaction.
[0029]
In particular, the photocurable resin of the present invention has three or more (meth) acryloyl groups in one molecule in terms of forming a cured coating film having excellent physical properties such as heat resistance, chemical resistance, and electrical properties. A resin is preferred. Such a resin uses a tri- or higher functional epoxy resin such as a novolak type epoxy resin as an epoxy resin as a starting material, or a polyfunctional (meta) having two or more (meth) acryloyl groups as an unsaturated monobasic acid. ) Can be obtained by using acrylates. In addition, even bifunctional epoxy resins such as bisphenol type epoxy resins can be made tetrafunctional by reacting a diisocyanate compound with a hydroxyl group generated after reacting with an unsaturated monobasic acid (by chain extension). The above resin can be obtained. Furthermore, by using a carboxyl group introduced by the reaction of an epoxy (meth) acrylate and a polybasic acid anhydride and reacting this with a bifunctional epoxy resin to extend the chain, 3 per molecule is similarly produced. A resin having at least one (meth) acryloyl group can be obtained.
[0030]
In addition to the above essential components, the solder resist ink composition of the present invention preferably contains a photopolymerization initiator and a diluent. Known photopolymerization initiators can be used. Specifically, benzoin such as benzoin, benzoin methyl ether, benzoin ethyl ether and alkyl ethers thereof; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1, Acetophenones such as 1-dichloroacetophenone and 4- (1-t-butyldioxy-1-methylethyl) acetophenone; anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone and l-chloroanthraquinone Thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; benzophenone, Benzophenones such as-(1-t-butyldioxy-1-methylethyl) benzophenone and 3,3 ', 4,4'-tetrakis (t-butyldioxycarbonyl) benzophenone; 2-methyl-1- [4- ( Methylthio) phenyl] -2-morpholino-propan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; acylphosphine oxides and xanthones.
[0031]
These photopolymerization initiators are used as one or a mixture of two or more, and are preferably contained in an amount of 0.5 to 30 parts by weight with respect to 100 parts by weight of the photocurable resin. When the amount of the photopolymerization initiator is less than 0.5 parts by weight, it is necessary to increase the light irradiation time or it is difficult for polymerization to occur even if light irradiation is performed, so that an appropriate surface hardness can be obtained. Disappear. Even if the amount of the photopolymerization initiator exceeds 30 parts by weight, there is no merit of using a large amount.
[0032]
As a diluent that can be used in the solder resist ink composition, a solvent or a dilutable monomer that can participate in a photopolymerization reaction can be used alone or in combination of two or more. On the other hand, it is preferable to blend 5 to 500 parts by weight in accordance with the optimum viscosity of each coating method. In particular, when a diluting monomer is used alone or in combination as a diluent, it is preferable from the standpoint of physical properties to blend the diluting monomer with respect to 100 parts by weight of the photosensitive resin.
[0033]
Solvents include hydrocarbons such as toluene and xylene; cellosolves such as cellosolve and butylcellosolve; carbitols such as carbitol and butylcarbitol; esters such as cellosolve acetate and carbitol acetate; methyl isobutyl ketone and methyl ethyl ketone Ketones; and ethers such as diethylene glycol dimethyl ether. Dilutable monomers include diethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, β-hydroxyethyl (meth) acrylate, (2-oxo-1,3-dioxolan-4-yl) -methyl (meth) Acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tris (hydroxyethyl) isocyanurate tri (meth) acrylate Etc.
[0034]
The ink composition for a solder resist of the present invention comprises the above-described photocurable resin and polymer fine particles as essential components, and preferably contains a photopolymerization initiator and a diluent, but if necessary, Fillers such as talc, clay, barium sulfate, coloring pigments, antifoaming agents, coupling agents, leveling agents, novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, alicyclic epoxy resins An epoxy resin such as triglycidyl isocyanurate and an epoxy curing agent such as dicyandiamide and an imidazole compound can also be added.
[0035]
As for the photocurable resin that can be used in the present invention, those that can be alkali-developed can be alkali-developed because the portion that is not irradiated with light dissolves in the aqueous alkali solution. Examples of alkalis that can be used for development include alkali metal compounds such as sodium carbonate, potassium carbonate, sodium hydroxide, and potassium hydroxide; alkaline earth metal compounds such as calcium hydroxide; ammonia; monomethylamine, dimethylamine, trimethylamine, and mono Water-soluble organic amines such as ethylamine, diethylamine, triethylamine, monopropylamine, dimethylpropylamine, monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, diethylenetriamine, dimethylaminoethyl methacrylate, polyethyleneimine, and the like, are included. Or 2 or more types can be used.
[0036]
【Example】
The present invention will be described in further detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and all modifications that are made without departing from the spirit of the preceding and following description are all included in the technical scope of the present invention. The In the examples, parts and% are based on weight.
[0037]
Example 1
<Synthesis of (meth) acrylate polymer fine particles [1]>
A flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel was charged with 180 parts of isopropyl alcohol, heated to 81 ° C. while blowing nitrogen, and refluxed for 10 minutes. To this flask, 53.6 parts of acrylic acid, 16.5 parts of lauryl methacrylate, 91 parts of Blemmer PE-200 (manufactured by NOF Corporation, polyethylene glycol monomethacrylate), 13.7 parts of n-dodecyl mercaptan and 2, A mixture of 0.4 parts of 2′-azobisisobutyronitrile was added dropwise over 2 hours. After completion of the dropwise addition, the mixture was further aged for 1 hour under reflux to obtain a polymer emulsifier (1) having a nonvolatile content of 49.1%.
[0038]
Next, 63 parts of ion-exchanged water was charged into another flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel, and the temperature was raised to 70 ° C. while blowing nitrogen gas. Mix 85 parts of ethyl acrylate, 10 parts of methyl methacrylate, 5 parts of glycidyl methacrylate, 4.1 parts of polymer emulsifier (1), 0.5 part of 28% ammonia water, and 36 parts of ion-exchanged water and stir well. Then, a fully emulsified pre-emulsion was prepared and charged into the dropping funnel of the flask.
[0039]
After pouring 8 parts of a 5% aqueous solution of an ammonia neutralized salt of 4,4′-azobis (4-cyanopentanoic acid) into the flask, the pre-emulsion was dropped from a dropping funnel over 3.5 hours. During the dropping, the temperature was maintained at 70 to 75 ° C. After completion of the dropping, the pre-emulsion remaining in the funnel was washed with 10 parts of ion-exchanged water, the washing solution was put into a flask, and stirring was further continued for 2 hours to complete the polymerization. An emulsion of (meth) acrylic acid ester polymer fine particles [1] having a nonvolatile content of 46.0% was obtained. A part of the emulsion was collected to evaporate water, and the Tg of the polymer was measured with a differential scanning calorimeter.
[0040]
<Manufacture of ink composition for solder resist>
80 parts of ethyl carbitol acetate was added to 100 parts of cresol novolac type epoxy resin YDCN-703 (manufactured by Tohto Kasei Co., Ltd., epoxy equivalent 200), and heated and dissolved at 120 ° C. with stirring. After cooling to 60 ° C., 43.48 parts of the polymer fine particle [1] emulsion was added, and the temperature was raised to 130 ° C. with stirring to completely remove water. Next, 36.9 parts of acrylic acid, 0.14 part of chromium chloride hexahydrate and 0.11 part of methylhydroquinone were added and reacted at 110 ° C. for 3 hours. The acid value of the reaction product was 3.0, and introduction of an acryloyl group was confirmed. Next, 45.6 parts of tetrahydrophthalic anhydride, 29 parts of ethyl carbitol acetate and 0.14 parts of anhydrous lithium chloride were added and reacted at 100 ° C. for 3 hours. A mixed composition (A-1) of polymer fine particles [1] and ethyl carbitol acetate containing 65% of a photocurable resin having an acid value of 90 was obtained.
[0041]
Example 2
To 100 parts of the same epoxy resin (cresol novolak type epoxy resin YDCN-703) as in Example 1, 80 parts of ethyl carbitol acetate was added and dissolved by heating at 120 ° C. with stirring. Next, 36.9 parts of acrylic acid, 0.14 part of chromium chloride hexahydrate and 0.11 part of methylhydroquinone were added and reacted at 110 ° C. for 3 hours. The acid value of the reaction product was 3.3, and introduction of an acryloyl group was confirmed. After cooling to 60 ° C., 43.48 parts of an emulsion of polymer fine particles [1] synthesized in Example 1 was added, the temperature was raised to 115 ° C. with stirring, and water was completely removed.
[0042]
Subsequently, 45.6 parts of tetrahydrophthalic anhydride, 29 parts of ethyl carbitol acetate and 0.14 parts of anhydrous lithium chloride were added and reacted at 100 ° C. for 3 hours. A mixed composition (A-2) of polymer fine particles [1] and ethyl carbitol acetate containing 65% of a photocurable resin having an acid value of 90 was obtained.
[0043]
Example 3
To 100 parts of the same epoxy resin as in Example 1, 80 parts of ethyl carbitol acetate was added and dissolved by heating at 120 ° C. with stirring. Next, 36.9 parts of acrylic acid, 0.14 part of chromium chloride hexahydrate and 0.11 part of methylhydroquinone were added and reacted at 110 ° C. for 3 hours. The acid value of the reaction product was 3.3, and introduction of an acryloyl group was confirmed. Next, 45.6 parts of tetrahydrophthalic anhydride, 29 parts of ethyl carbitol acetate and 0.14 parts of anhydrous lithium chloride were added and reacted at 100 ° C. for 3 hours. After cooling to 60 ° C., 43.48 parts of the emulsion of polymer fine particles [1] synthesized in Example 1 was added, the temperature was raised to 115 ° C. with stirring, water was completely removed, and polymer fine particles [1] and A mixed composition (A-3) with ethyl carbitol acetate containing 65% of a photocurable resin having an acid value of 91 was obtained.
[0044]
Example 4
<Synthesis of (meth) acrylate polymer fine particles [2]>
The same procedure as in Example 1 except that instead of the polymer emulsifier (1), Haitenol N08 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., ammonium alkylphenyl polyethylene oxide sulfonate) was used in the polymer fine particle synthesis process of Example 1. Emulsion polymerization was performed to obtain an emulsion of (meth) acrylate polymer fine particles [2] having a nonvolatile content of 46.5%. A part of the emulsion was collected to evaporate water, and the Tg of the polymer was measured with a differential scanning calorimeter.
[0045]
To 100 parts of the same epoxy resin as in Example 1, 80 parts of ethyl carbitol acetate was added and dissolved by heating at 120 ° C. with stirring. After cooling to 60 ° C., 43.01 parts of the polymer fine particle [2] emulsion was added, and the temperature was raised to 130 ° C. with stirring to completely remove water. Next, 36.9 parts of acrylic acid, 0.14 part of chromium chloride hexahydrate and 0.11 part of methylhydroquinone were added and reacted at 110 ° C. for 3 hours. The acid value of the reaction product was 3.0, and introduction of an acryloyl group was confirmed. Next, 45.6 parts of tetrahydrophthalic anhydride, 29 parts of ethyl carbitol acetate and 0.14 parts of anhydrous lithium chloride were added and reacted at 100 ° C. for 3 hours. A mixed composition (A-4) of polymer fine particles [2] and ethyl carbitol acetate containing 65% of a photocurable resin having an acid value of 89 was obtained.
[0046]
Example 5
80 parts of ethyl carbitol acetate was added to 100 parts of bisphenol A type epoxy resin GY-250 (Ciba Geigy Corp., epoxy equivalent 185), and the temperature was raised to 60 ° C. with stirring to obtain a homogeneous solution. After adding 43.48 parts of the emulsion of polymer fine particles [1] synthesized in Example 1, the temperature was raised to 130 ° C. with stirring to completely remove water. Subsequently, 38.9 parts of acrylic acid, 0.14 part of chromium chloride hexahydrate and 0.12 part of methylhydroquinone were added and reacted at 110 ° C. for 3 hours. The reaction product was cooled to 100 ° C., 82.2 parts of tetrahydrophthalic anhydride and 0.14 part of anhydrous lithium chloride were added and reacted at 100 ° C. for 10 hours. 50 parts of epoxy resin GY-250 was added and reacted at 110 ° C. for 5 hours. Further, 39.6 parts of tetrahydrophthalic anhydride and 98.1 parts of ethyl carbitol acetate were added and reacted at 100 ° C. for 3 hours. . A mixed composition (A-5) of polymer fine particles [1] and ethyl carbitol acetate containing 65% of a photocurable resin having an acid value of 93 was obtained.
[0047]
Comparative Example 1
To 100 parts of the same epoxy resin (cresol novolak type epoxy resin YDCN-703) as in Example 1, 80 parts of ethyl carbitol acetate was added and dissolved by heating at 120 ° C. with stirring. Subsequently, 36.9 parts of acrylic acid, 0.14 part of chromium chloride hexahydrate and 0.11 part of methylhydroquinone were added and reacted at 110 ° C. for 3 hours. The acid value of the reaction product became 3.3. I confirmed that. Next, 45.6 parts of tetrahydrophthalic anhydride, 18.3 parts of ethyl carbitol acetate and 0.14 parts of anhydrous lithium chloride were added and reacted at 100 ° C. for 3 hours. A mixed composition (A-6) with ethyl carbitol acetate containing 65% of a photocurable resin having an acid value of 95 and containing no polymer fine particles was obtained.
[0048]
Comparative Example 2
To 100 parts of the same epoxy resin as in Example 5 (bisphenol A type epoxy resin GY-250), 80 parts of ethyl carbitol acetate was added, and the temperature was raised to 110 ° C. with stirring. 38.9 parts of acrylic acid, second chloride chloride 0.14 part of chromium hexahydrate and 0.12 part of methylhydroquinone were added and reacted for 3 hours. The reaction product was cooled to 100 ° C., 82.2 parts of tetrahydrophthalic anhydride and 0.14 part of anhydrous lithium chloride were added and reacted at 100 ° C. for 10 hours. Next, 50 parts of epoxy resin GY-250 was added and reacted at 110 ° C. for 5 hours. Further, 33.1 parts of tetrahydrophthalic anhydride and 83.8 parts of ethyl carbitol acetate were added and reacted at 100 ° C. for 3 hours. I let you. A mixed composition (A-7) with ethyl carbitol acetate containing 65% of a photocurable resin having an acid value of 92 and containing no polymer fine particles was obtained.
[0049]
Examples 6 to 10 and Comparative Examples 3 to 5
About the mixed composition (A-1)-(A-7) obtained in Examples 1-5 and Comparative Examples 1-2, it adjusted with the mixing | blending shown in Table 1, and obtained the ink composition for soldering resists. . The results evaluated by the following method are shown in Table 2.
[0050]
[Evaluation of developability]
A solder resist ink composition is applied to a thickness of 20 to 30 μm on a degreased and washed 1.6 mm thick copper clad laminate, and is heated at 80 ° C. for a predetermined time (30, 40, 50, 60 minutes) and dried to obtain a coating film. Then 1% Na 2 CO Three 2.1kg / cm each at 30 ° C using aqueous solution 2 Development was performed for 80 seconds under the pressure of, and the remaining resin was visually evaluated.
Good: No resist remains on the copper surface
Defect: Resist remains on copper surface
[0051]
[Evaluation of alkali resistance]
A coating film was formed in the same manner as in the evaluation of developability, and 500 mJ / cm using a 1 Kw ultra-high pressure mercury lamp. 2 Were further irradiated at 150 ° C. for 30 minutes. Thereafter, the film was immersed in a 10% aqueous sodium hydroxide solution at 20 ° C. for 20 minutes, and the state of the coating film after immersion was visually evaluated.
○: No abnormality in the appearance of the coating film
X: The coating film was swollen or peeled off
[0052]
[Evaluation of adhesion]
A coating film was formed in the same manner as in the evaluation of developability, and 500 mJ / cm using a 1 Kw ultra high pressure mercury lamp. 2 Then, after heating at 150 ° C. for 30 minutes, 100 grids of 1 mm × 1 mm were carved according to the test method of JIS D-0202. Furthermore, it heated at 175 degreeC or 200 degreeC for 30 minutes, the peeling test with an adhesive tape was performed with respect to each sample, and the peeling state of the coating film was determined visually.
○: No change at 100/100
Δ: 80/100 to 99/100
X: 0/100 to 79/100
[0053]
[Table 1]
Figure 0004030025
[0054]
[Table 2]
Figure 0004030025
[0055]
It is clear that all of the inventive examples (Examples 6 to 10) using the ink composition for solder resist in which polymer fine particles are blended are excellent in developability and alkali resistance and adhesion after the heating step. . However, the comparative example in which the polymer fine particles are not blended is clearly different from the examples in the adhesion after the heating step. This is thought to be because fine cracks and volume shrinkage occurred in the resist layer in the heating process after light irradiation, and the adhesion to the substrate was lowered, and the presence of polymer fine particles can prevent these disadvantages. Was confirmed.
[0056]
【The invention's effect】
The ink composition for a solder resist of the present invention is a resist layer that exhibits excellent adhesion to a substrate even in a line in which a heating step is incorporated after pattern formation by simply dispersing polymer fine particles having a Tg of 20 ° C. or less in the composition. Could be formed. Since there is no need to change the molecular design of the photocurable resin between the line with and without the heating process, it has excellent tack-free properties before light irradiation, high resolution, excellent alkali developability, and adhesion. Thus, a high-performance photocurable liquid solder resist ink composition capable of forming a cured coating film excellent in heat resistance, chemical resistance and the like can be provided.

Claims (8)

光硬化性樹脂を必須成分として含有するソルダーレジスト用インキ組成物において、該組成物中に、天然ゴム、合成ゴムあるいはこれらの加硫物、ポリオルガノシロキサン、(メタ)アクリル酸エステル系ポリマーおよび酸基変性ゴムよりなる群から選択されるTgが20℃以下のポリマー微粒子が分散していることを特徴とする光硬化性液状ソルダーレジスト用インキ組成物。In a solder resist ink composition containing a photocurable resin as an essential component, natural rubber, synthetic rubber or a vulcanized product thereof, polyorganosiloxane, (meth) acrylic acid ester polymer, and acid are contained in the composition. An ink composition for a photocurable liquid solder resist , wherein fine particles of a polymer having a Tg selected from the group consisting of a group-modified rubber and having a Tg of 20 ° C. or lower are dispersed. ポリマー微粒子が0.1〜100μmの平均粒子径を有するものである請求項1に記載のインキ組成物。  The ink composition according to claim 1, wherein the polymer fine particles have an average particle diameter of 0.1 to 100 μm. ポリマー微粒子が、(メタ)アクリル酸エステル系ポリマー微粒子である請求項1または2に記載のインキ組成物。  The ink composition according to claim 1 or 2, wherein the polymer fine particles are (meth) acrylic acid ester-based polymer fine particles. ポリマー微粒子が、架橋構造を有するものである請求項1〜3のいずれかに記載のインキ組成物。  The ink composition according to claim 1, wherein the polymer fine particles have a crosslinked structure. 光硬化性樹脂が、1分子中に2個以上のエポキシ基を有するエポキシ樹脂に不飽和一塩基酸を反応させて得られるものである請求項1〜4のいずれかに記載のインキ組成物。  The ink composition according to any one of claims 1 to 4, wherein the photocurable resin is obtained by reacting an unsaturated monobasic acid with an epoxy resin having two or more epoxy groups in one molecule. 光硬化性樹脂が、1分子中に3個以上の(メタ)アクリロイル基を有するものである請求項1〜5のいずれかに記載のインキ組成物。  The ink composition according to any one of claims 1 to 5, wherein the photocurable resin has three or more (meth) acryloyl groups in one molecule. 光硬化性樹脂の原料である前記エポキシ樹脂が、ノボラック型エポキシ樹脂である請求項6に記載のインキ組成物。  The ink composition according to claim 6, wherein the epoxy resin that is a raw material of the photocurable resin is a novolac type epoxy resin. ポリマー微粒子が、光硬化性樹脂100重量部に対し1〜50重量部含まれている請求項1〜7のいずれかに記載のインキ組成物。The ink composition according to any one of claims 1 to 7, wherein the polymer fine particles are contained in an amount of 1 to 50 parts by weight with respect to 100 parts by weight of the photocurable resin.
JP23952696A 1995-09-14 1996-09-10 Photocurable liquid solder resist ink composition Expired - Fee Related JP4030025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23952696A JP4030025B2 (en) 1995-09-14 1996-09-10 Photocurable liquid solder resist ink composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23728595 1995-09-14
JP7-237285 1995-09-14
JP23952696A JP4030025B2 (en) 1995-09-14 1996-09-10 Photocurable liquid solder resist ink composition

Publications (2)

Publication Number Publication Date
JPH09137109A JPH09137109A (en) 1997-05-27
JP4030025B2 true JP4030025B2 (en) 2008-01-09

Family

ID=26533150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23952696A Expired - Fee Related JP4030025B2 (en) 1995-09-14 1996-09-10 Photocurable liquid solder resist ink composition

Country Status (1)

Country Link
JP (1) JP4030025B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583198B2 (en) 1997-11-28 2003-06-24 Hitachi Chemical Company, Ltd. Photo curable resin composition and photosensitive element
JP2001013679A (en) * 1999-04-30 2001-01-19 Toagosei Co Ltd Resist composition
CN1378769A (en) 1999-08-12 2002-11-06 Ibiden股份有限公司 Multilayer printed wiring board, solder resist composition, method for manufacturing multilayer printed wiring board, and semiconductor device
JP2001188340A (en) * 2000-01-04 2001-07-10 Toagosei Co Ltd Curable composition and soldering resist
JP3416129B2 (en) * 2000-01-17 2003-06-16 昭和高分子株式会社 Photosensitive resin composition
TW200630447A (en) * 2004-11-19 2006-09-01 Showa Denko Kk Resin cured film for flexible printed wiring board and production process thereof
JP5042473B2 (en) * 2005-07-14 2012-10-03 互応化学工業株式会社 Granular organic filler for curable resin composition, curable resin composition and liquid resist ink to which the granular organic filler is added
JP5690490B2 (en) * 2010-02-18 2015-03-25 東京応化工業株式会社 Photosensitive composition
WO2012081295A1 (en) 2010-12-14 2012-06-21 株式会社カネカ Novel photosensitive resin composition and use thereof
JP6134264B2 (en) 2011-04-25 2017-05-24 株式会社カネカ Novel photosensitive resin composition and use thereof
US9957390B2 (en) 2012-01-25 2018-05-01 Kaneka Corporation Resin composition for pigment-containing insulating film, and use thereof
US9332653B2 (en) 2012-01-25 2016-05-03 Kaneka Corporation Resin composition for insulating film, and use thereof
JP6463242B2 (en) * 2015-09-14 2019-01-30 三菱製紙株式会社 Conductive pattern precursor and method for producing conductive pattern
KR102629472B1 (en) * 2018-08-01 2024-01-25 가부시키가이샤 아리사와 세이사쿠쇼 Resin composition for resist and use thereof

Also Published As

Publication number Publication date
JPH09137109A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP4030025B2 (en) Photocurable liquid solder resist ink composition
JP4774070B2 (en) Photosensitive resin composition for image formation and method for producing the same
JP2938808B2 (en) Polymer fine particle dispersed type radical polymerizable resin composition
JP4655362B2 (en) Method for producing photosensitive resin
JP2008020632A (en) Photocurable/heat curable one-liquid type solder resist composition and printed wiring board using same
EP0728788B1 (en) Process for producing photosensitive resin and liquid photosensitive resin composition
JP4785882B2 (en) Photosensitive resin composition for image formation
JP6557155B2 (en) Curable resin and method for producing the same
JP2009040899A (en) Photosensitive resin composition and new acid group-containing vinyl ester resin
JP3659639B2 (en) Vinyl ester resin, vinyl ester resin composition, and cured product thereof
JPH08272095A (en) Composition for soldering photoresist ink
JPH01203424A (en) Curable composition
JP2700933B2 (en) Resin composition for permanent protective film and method for producing permanent protective film
JP4175837B2 (en) Photosensitive resin composition for image formation
JP2000191737A (en) Curable resin composition
JP2835539B2 (en) Photosensitive thermosetting resin composition and pattern forming method
US6767678B2 (en) Photosolder resist composition
JP3810896B2 (en) Curable resin and resin composition
JPH0777800A (en) Photosensitive resin composition
JP2014181326A (en) Epoxy acrylate resin, epoxy acrylate acid anhydride adduct, curable resin composition, alkali development type photosensitive resin composition, and cured product of the same
JPH11327139A (en) Resin composition and its hardened material
JP4293483B2 (en) Modified copolymer and resin composition
JP3409279B2 (en) Curable resin and resin composition
JPH06192387A (en) Curable resin with activation energy
JP2000256428A (en) Hardening resin and composition thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071012

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees