JP4008931B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4008931B2
JP4008931B2 JP2005086815A JP2005086815A JP4008931B2 JP 4008931 B2 JP4008931 B2 JP 4008931B2 JP 2005086815 A JP2005086815 A JP 2005086815A JP 2005086815 A JP2005086815 A JP 2005086815A JP 4008931 B2 JP4008931 B2 JP 4008931B2
Authority
JP
Japan
Prior art keywords
semiconductor element
substrate
film
laminated film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005086815A
Other languages
Japanese (ja)
Other versions
JP2005311345A (en
Inventor
孝志 井本
隆治 細川
知章 田窪
義久 井守
隆夫 佐藤
哲也 黒澤
美佳 桐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005086815A priority Critical patent/JP4008931B2/en
Publication of JP2005311345A publication Critical patent/JP2005311345A/en
Application granted granted Critical
Publication of JP4008931B2 publication Critical patent/JP4008931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、半導体素子のパッケージング技術に係わり、特に半導体素子を樹脂封止してパッケージングした半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor element packaging technique, and more particularly to a semiconductor device in which a semiconductor element is packaged by resin sealing and a manufacturing method thereof.

近年、半導体素子中の配線間寄生容量による信号遅延や素子のリーク電流を低減するために、半導体素子の多層配線層間絶縁体として比誘電率が3以下の低誘電体層が用いられている。また、より低い比誘電率2以下を実現するために、誘電体層内部に0.1から100nm程度の微細な空孔を形成し、比誘電率の小さい空気の多孔質の絶縁体としている。このような低誘電体膜は、材料そのものの強度が低く、同時に微細な空気を含むため非常に脆弱である。   In recent years, a low dielectric layer having a relative dielectric constant of 3 or less has been used as a multilayer wiring interlayer insulator of a semiconductor element in order to reduce signal delay due to inter-wiring parasitic capacitance in the semiconductor element and leakage current of the element. Further, in order to realize a lower relative dielectric constant of 2 or less, fine pores of about 0.1 to 100 nm are formed inside the dielectric layer to form a porous insulator of air having a small relative dielectric constant. Such a low dielectric film is very fragile because the strength of the material itself is low and at the same time contains fine air.

一方、半導体素子はウェハから砥石で機械的に切断され、エポキシ系若しくはシリコーン系の樹脂で封止されて半導体パッケージとなる。このとき、半導体素子の端部は砥石で切断されるため、素子の端部はほぼ90度で切り立った形状で、素子上の多層絶縁層も露出することになる。また、半導体素子の切り立った側面は、純粋なシリコンの結晶方位が揃った劈開状となり、封止樹脂との密着強度が低い。   On the other hand, the semiconductor element is mechanically cut from the wafer with a grindstone and sealed with an epoxy or silicone resin to form a semiconductor package. At this time, since the end portion of the semiconductor element is cut with a grindstone, the end portion of the element has a shape that stands up at approximately 90 degrees, and the multilayer insulating layer on the element is also exposed. In addition, the sharp side surface of the semiconductor element has a cleavage shape in which pure silicon crystal orientations are aligned, and the adhesion strength with the sealing resin is low.

半導体パッケージを形成した際、封止樹脂,基板,半導体素子の熱膨張係数差により、半導体素子の表面,側面,裏面に応力が発生する。構造体としての半導体パッケージにおいては、中心から周辺に離れるに従ってより高い応力が加わり、特に半導体素子の周端部や側面といった半導体素子周辺に高い応力が発生する。その応力が原因となり、低誘電体膜を内蔵する半導体素子表面上の多層配線膜内部にて、低誘電体膜内部若しくは多層配線層界面にて剥離が生じるという問題がある。半導体素子表面は素子端ほど熱応力が大きく、また多層絶縁膜端部が僅かでも剥離すると、ここを起点として層間剥離が進展する。   When a semiconductor package is formed, stress is generated on the front surface, side surface, and back surface of the semiconductor element due to differences in thermal expansion coefficients of the sealing resin, the substrate, and the semiconductor element. In a semiconductor package as a structure, a higher stress is applied as the distance from the center to the periphery is increased, and particularly, a high stress is generated around the semiconductor element such as a peripheral edge or a side surface of the semiconductor element. Due to the stress, there is a problem that peeling occurs inside the low dielectric film or at the interface of the multilayer wiring layer inside the multilayer wiring film on the surface of the semiconductor element incorporating the low dielectric film. The surface of the semiconductor element has a greater thermal stress toward the end of the element, and when the end of the multilayer insulating film is peeled off even slightly, delamination progresses from this point.

また、半導体素子の側面や半導体素子が切断された近傍は、上述のように封止樹脂と高い接着強度が得られないため、熱応力が高い半導体素子側面の封止樹脂は容易に剥離し、前述の半導体素子周端付近の多層配線を含む代表面の応力は極端に大きくなり、脆弱な低誘電体層の剥離が加速されるという問題がある。
特開2003−197564号公報
Also, since the side surface of the semiconductor element and the vicinity where the semiconductor element is cut cannot obtain high adhesive strength with the sealing resin as described above, the sealing resin on the side surface of the semiconductor element with high thermal stress is easily peeled off, The stress on the representative surface including the multilayer wiring near the peripheral edge of the semiconductor element described above becomes extremely large, and there is a problem that the peeling of the fragile low dielectric layer is accelerated.
JP 2003-197564 A

このように従来、脆弱な低比誘電率の層間絶縁膜を備えた半導体素子を樹脂封止し、半導体パッケージを構成すると、半導体素子の周辺に加わる応力によって低比誘電率の層間絶縁膜の剥離が生じ、素子の信頼性を低下させるという問題があった。   As described above, when a semiconductor element having a fragile low dielectric constant interlayer insulating film is sealed with a resin and a semiconductor package is formed, the low dielectric constant interlayer insulating film is peeled off by stress applied to the periphery of the semiconductor element. As a result, the reliability of the device is lowered.

本発明は、上記事情を考慮してなされたもので、その目的とするところは、脆弱な低比誘電率層間絶縁膜を備えた半導体素子を樹脂封止した構造において、素子周辺部に加わる応力に起因する層間隔離を防止することができ、素子信頼性の向上をはかり得る半導体装置及びその製造方法を提供することにある。   The present invention has been made in consideration of the above-mentioned circumstances, and the object of the present invention is to apply stress applied to the periphery of the element in a structure in which a semiconductor element having a fragile low dielectric constant interlayer insulating film is sealed with resin. It is an object of the present invention to provide a semiconductor device and a method of manufacturing the same that can prevent interlayer separation caused by the above-described problem and can improve element reliability.

上記課題を解決するために本発明は、次のような構成を採用している。   In order to solve the above problems, the present invention adopts the following configuration.

即ち本発明の一態様は、半導体素子を樹脂封止してパッケージングした半導体装置において、半導体基板の表面上に比誘電率が2以下の低比誘電率の層間絶縁膜を含む複数の層からなる積層膜が形成され、前記基板の周端部に沿って該周端部から一定距離おいた内側の一部において前記積層膜が除去されかつ前記基板が基板表面から所定の深さまで除去されている半導体素子と、前記半導体素子がマウントされるマウント基板と、前記半導体素子の少なくとも表面側を樹脂封止するための樹脂層と、を具備してなることを特徴とする。 That is, according to one embodiment of the present invention, in a semiconductor device in which a semiconductor element is packaged by resin sealing, a plurality of layers including a low dielectric constant interlayer insulating film having a relative dielectric constant of 2 or less on a surface of a semiconductor substrate. A laminated film is formed, the laminated film is removed along a peripheral edge of the substrate at a certain distance from the peripheral edge, and the substrate is removed from the substrate surface to a predetermined depth. And a mounting substrate on which the semiconductor element is mounted, and a resin layer for resin-sealing at least the surface side of the semiconductor element.

また、本発明の別の態様は、半導体素子を樹脂封止してパッケージングした半導体装置の製造方法において、半導体基板の表面上に比誘電率が2以下の低比誘電率の層間絶縁膜を含む複数の層からなる積層膜が形成された半導体素子に対し、前記基板の周端部に沿って該周端部から一定距離おいた内側の一部において前記積層膜を基板表面が露出する深さまでさらに前記基板を基板表面から所定の深さまでRIEまたはレーザビームにより除去する工程と、前記半導体素子をマウント基板上にマウントする工程と、前記半導体素子の少なくとも表面側を樹脂材料により樹脂封止する工程と、を含むことを特徴とする。 According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor device in which a semiconductor element is packaged by sealing a semiconductor element, and a low dielectric constant interlayer insulating film having a relative dielectric constant of 2 or less is formed on a surface of a semiconductor substrate. A depth at which the substrate surface is exposed at a part of the inner side of the semiconductor element formed with a plurality of layers including a plurality of layers along the peripheral edge of the substrate at a predetermined distance from the peripheral edge. Further, the step of removing the substrate from the substrate surface to a predetermined depth by RIE or a laser beam, the step of mounting the semiconductor element on a mount substrate, and at least the surface side of the semiconductor element are resin-sealed with a resin material And a process.

本発明によれば、半導体素子の周辺部の積層膜を除去して素子周辺部の基板表面を露出させることにより、素子周辺部をシリコン等の半導体若しくはその酸化膜とすることができ、封止樹脂との接着強度を飛躍的に高めることができる。従って、樹脂により半導体素子の表面側を封止した際に素子表面の周辺部に応力が発生しても樹脂の剥離が生じることが無く、内部の絶縁層が剥がれるのを未然に防止できる。このため、半導体素子の信頼性の向上をはかることができる。   According to the present invention, by removing the laminated film in the peripheral part of the semiconductor element and exposing the substrate surface in the peripheral part of the element, the peripheral part of the element can be made of a semiconductor such as silicon or an oxide film thereof. The adhesive strength with the resin can be dramatically increased. Therefore, when the surface side of the semiconductor element is sealed with resin, even if stress is generated in the peripheral portion of the element surface, the resin does not peel off, and the internal insulating layer can be prevented from peeling off. For this reason, the reliability of the semiconductor element can be improved.

以下、本発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係わる半導体装置の概略構成を示す断面図である。
(First embodiment)
FIG. 1 is a sectional view showing a schematic configuration of a semiconductor device according to the first embodiment of the present invention.

マウント基板11上に半導体チップ(半導体素子)12が接着剤13によりマウントされ、半導体素子12の電極パッド(図示せず)はボンディングワイヤ14を介してマウント基板11上の配線(図示せず)に接続されている。マウント基板11の下面には半田ボール15が設けられている。そして、半導体素子12はエポキシ系やシリコーン系の樹脂16により封止されている。   A semiconductor chip (semiconductor element) 12 is mounted on the mount substrate 11 with an adhesive 13, and electrode pads (not shown) of the semiconductor element 12 are connected to wiring (not shown) on the mount substrate 11 via bonding wires 14. It is connected. Solder balls 15 are provided on the lower surface of the mount substrate 11. The semiconductor element 12 is sealed with an epoxy or silicone resin 16.

上記のパッケージングされた構造、即ちP−BGAパッケージの基本構造は従来と同じであるが、本実施形態では次に述べるように、半導体素子12の周辺部の構造が従来とは異なっている。   The packaged structure described above, that is, the basic structure of the P-BGA package is the same as the conventional one, but in this embodiment, the structure of the peripheral portion of the semiconductor element 12 is different from the conventional one as described below.

図2は、本実施形態に使用した半導体素子12の周辺部構造を拡大して示す断面図である。なお、図2において説明を簡単にするために、接着剤13や半田ボール15などは省略している。   FIG. 2 is an enlarged cross-sectional view showing the peripheral structure of the semiconductor element 12 used in this embodiment. In FIG. 2, the adhesive 13 and the solder balls 15 are omitted for the sake of simplicity.

半導体素子12は、半導体基板21上に各種の層間絶縁膜22を積層し、これらの絶縁膜22の間にそれぞれ配線層23を形成して構成される。ここで、絶縁膜22のうちの少なくとも1層は、比誘電率2以下の低誘電体膜を含むものである。   The semiconductor element 12 is configured by laminating various interlayer insulating films 22 on a semiconductor substrate 21 and forming wiring layers 23 between the insulating films 22. Here, at least one layer of the insulating film 22 includes a low dielectric film having a relative dielectric constant of 2 or less.

この半導体素子12は、ウェハの状態で積層膜24(22,23)が形成され、最終的にダイシングにより複数のチップに分離される。本実施形態では、ウェハから半導体素子を切り出すダイシングの前若しくは後に、ダイシングライン周辺の表面に形成されている絶縁膜である低誘電体層を含む積層膜24を、例えばRIE(Reactive Ion Etching),FIB(Focus Ion Beam Etching),レーザビーム等の非接触高エネルギー加工を用いて除去し、下地のシリコン表面を露出させている。図2中の25が積層膜24の除去部分である。   The semiconductor element 12 is formed with a laminated film 24 (22, 23) in a wafer state, and finally separated into a plurality of chips by dicing. In this embodiment, before or after dicing for cutting out a semiconductor element from a wafer, a laminated film 24 including a low dielectric layer, which is an insulating film formed on the surface around the dicing line, is formed by, for example, RIE (Reactive Ion Etching), It is removed using non-contact high energy processing such as FIB (Focus Ion Beam Etching) or laser beam to expose the underlying silicon surface. Reference numeral 25 in FIG. 2 denotes a removed portion of the laminated film 24.

このような構造であれば、半導体素子12の端部は階段状となり、素子端部に基板シリコンの露出面を形成することができる。このシリコン面は、エポキシ系やシリコーン系の封止樹脂16との密着性が極めて高く、樹脂16はシリコンから容易に剥離しない。同時に剥離の起点となる脆弱な低誘電体層がない領域を確保でき、半導体素子周辺部分の積層膜24に加わる応力はこのシリコン面に接着した封止樹脂16が担うこととなり、積層膜24が素子内部に移動した距離の分、脆弱な積層膜端の応力を低減することができる。   With such a structure, the end portion of the semiconductor element 12 is stepped, and an exposed surface of the substrate silicon can be formed at the element end portion. This silicon surface has extremely high adhesion to the epoxy-based or silicone-based sealing resin 16, and the resin 16 does not easily peel off from the silicon. At the same time, a region without a fragile low dielectric layer serving as a starting point of peeling can be secured, and the stress applied to the laminated film 24 around the semiconductor element is borne by the sealing resin 16 adhered to the silicon surface. The stress at the fragile laminated film edge can be reduced by the distance moved into the element.

積層膜24を除去する領域として半導体素子周端からの幅を広く取ることで、低誘電体層に加わる剥離応力をより低くすることができる。積層膜24を除去する幅は広いほど効果的であるが、広くするに従ってウェハ収率を低くしてしまうため、この積層膜24を除去する際、熱応力が高い端部分の積層膜24を除去すると効果的である。本発明者らの実験によれば、半導体素子周端部から300μm内方までの範囲が効果的であった。より好ましくは、半導体素子周端部から5ないし10μm内方までの範囲であった
比較のために、従来素子をパッケージングした例を図3に示す。半導体素子12の周辺部は垂直に切断されており、シリコン基板21の側面以外が露出することはなく、基板シリコンと樹脂層16との接触面積は小さいものとなり、強固な密着強度は得られない。
By taking a wide width from the peripheral edge of the semiconductor element as a region for removing the laminated film 24, the peeling stress applied to the low dielectric layer can be further reduced. The wider the width for removing the laminated film 24, the more effective. However, the wafer yield decreases as the width is increased. Therefore, when the laminated film 24 is removed, the laminated film 24 at the end portion where the thermal stress is high is removed. It is effective. According to the experiments by the present inventors, the range from the peripheral edge of the semiconductor element to the inner side of 300 μm was effective. More preferably, an example in which a conventional element is packaged is shown in FIG. 3 for comparison, which was in the range of 5 to 10 μm inward from the peripheral edge of the semiconductor element. The peripheral portion of the semiconductor element 12 is cut vertically, and the side other than the side surface of the silicon substrate 21 is not exposed, the contact area between the substrate silicon and the resin layer 16 is small, and strong adhesion strength cannot be obtained. .

図4は、図3の従来技術を説明するためのもので、積層膜に加わる最大主応力を半導体素子周端部からの距離でプロットして示す図であり、図5は、図1の第1の実施形態を説明するためのもので、積層膜に加わる最大主応力を半導体素子周端部からの距離でプロットして示す図である。前記図3に示す従来構造では、図4に示すように、半導体素子周端部近傍において、応力が極めて大きくなり、これが膜剥がれの要因となる。これに対し、前記図1に示す本実施形態構造においては、半導体素子周端部を含む周辺部分の積層膜を除去したことにより、図5に示すように、積層膜に加わる応力が極めて小さくなる。このことからも、本実施形態により積層膜端部における膜剥がれがなくなり、素子信頼性の向上をはかり得るのが分かる。   FIG. 4 is a diagram for explaining the prior art of FIG. 3, in which the maximum principal stress applied to the laminated film is plotted by the distance from the peripheral edge of the semiconductor element, and FIG. 5 is a diagram of FIG. FIG. 2 is a diagram for explaining the first embodiment, and plots and shows the maximum principal stress applied to a laminated film by the distance from the peripheral edge of the semiconductor element. In the conventional structure shown in FIG. 3, as shown in FIG. 4, the stress becomes extremely large in the vicinity of the peripheral edge portion of the semiconductor element, and this causes peeling of the film. On the other hand, in the structure of this embodiment shown in FIG. 1, the stress applied to the laminated film becomes extremely small as shown in FIG. 5 by removing the laminated film in the peripheral portion including the peripheral edge portion of the semiconductor element. . Also from this, it can be understood that film peeling at the end of the laminated film is eliminated by the present embodiment, and device reliability can be improved.

ここで、半導体素子12上の積層膜24の除去にRIEを用いた場合、積層膜24を含む壁面及びシリコン部分共にRmax =1μm以下の表面粗さで仕上げることができる。さらに、積層膜24の端部においても、いわゆる膜の捲れが生じることはなかった。これに対し、従来のように砥石を用いたブレード加工では、積層膜24を含む壁面はRmax =10から100μm程度、シリコン部分はRmax =5μm程度の表面粗さとなり、積層膜24の端部において膜の捲れが生じていた。   Here, when RIE is used to remove the laminated film 24 on the semiconductor element 12, both the wall surface and the silicon portion including the laminated film 24 can be finished with a surface roughness of Rmax = 1 μm or less. Furthermore, no so-called film sag occurred at the end of the laminated film 24. On the other hand, in the conventional blade processing using a grindstone, the wall surface including the laminated film 24 has a surface roughness of Rmax = 10 to 100 μm, and the silicon portion has a surface roughness of Rmax = 5 μm. Film dripping occurred.

このことからも、RIEにおける有用性が確認される。即ち、上述した本実施形態による効果は、積層膜の除去をRIEで行うことにより得られるものであり、半導体素子周端部における積層膜24の除去をブレード加工で行った場合は上記の効果は得られないのである。また、FIBにおいても、RIEと同様の効果が期待できる。さらに、表面粗さが小さいと云うことは、粗さ分だけダメージ余白として素子の面積を無駄にすることなく、素子の収率を上げることができる効果につながる。   This also confirms the usefulness in RIE. That is, the above-described effect according to the present embodiment is obtained by removing the laminated film by RIE. When the laminated film 24 is removed from the peripheral edge portion of the semiconductor element by blade processing, the above effect is obtained. It cannot be obtained. Also, in FIB, the same effect as RIE can be expected. Further, the fact that the surface roughness is small leads to an effect that the yield of the device can be increased without wasting the area of the device as a damage margin corresponding to the roughness.

また、半導体素子12上の積層膜24の除去に、例えば炭酸ガスレーザやYAGレーザを用いることで、基板シリコンを露出させると同時にシリコン表面を酸化することにより、素子周辺部分に厚さ1μm以下の酸化シリコン膜を形成することができる。主としてエポキシからなる封止樹脂で、例えばインジェクションモールドや液状のエポキシ若しくはシリコーン樹脂で封止すると、被着体が酸化シリコン膜のため密着強度が向上する。つまり、レーザを用いて加工すると共に基板21の露出表面に酸化シリコン膜を形成することにより、樹脂16との密着を更に高めることができる。   Further, for example, by using a carbon dioxide laser or a YAG laser to remove the laminated film 24 on the semiconductor element 12, the substrate silicon is exposed and the silicon surface is oxidized at the same time to oxidize the peripheral portion of the element to a thickness of 1 μm or less. A silicon film can be formed. Sealing resin mainly composed of epoxy, for example, sealing with injection mold, liquid epoxy, or silicone resin improves adhesion strength because the adherend is a silicon oxide film. That is, by processing with a laser and forming a silicon oxide film on the exposed surface of the substrate 21, the adhesion with the resin 16 can be further enhanced.

さらに、積層膜24の加工にレーザを使用することで、通常の機械研磨では得ることができない微細な凹凸を基板表面に形成することができ、被着体となる半導体素子12の周辺部と封止樹脂16との密着強度がより一層向上する。素子周辺部と封止樹脂間の密着強度を高くせしめることで、脆弱な膜の剥離応力を低減できる。このような効果で脆弱な低誘電体多層膜のパッケージ内部剥離をより確実に防止することができる。   Furthermore, by using a laser for processing the laminated film 24, fine irregularities that cannot be obtained by normal mechanical polishing can be formed on the substrate surface, and the peripheral portion of the semiconductor element 12 to be adhered can be sealed. The adhesion strength with the stop resin 16 is further improved. By increasing the adhesion strength between the peripheral portion of the element and the sealing resin, the peeling stress of the fragile film can be reduced. Such an effect can more reliably prevent fragile low dielectric multilayer film from peeling inside the package.

なお、機械加工のシリコンと封止樹脂との剪断密着強度は平均32MPaで、剥離界面がシリコンと樹脂の界面となる。これに対し、シリコン表面にレーザで加工した際に生じるシリコン酸化膜と樹脂とを密着させた場合、これらを剥離しようとしてもシリコン酸化膜と樹脂との界面では剥離が生じず、バルクシリコンが破壊することになる。即ち、シリコン酸化膜と樹脂との密着強度は、バルクシリコン破壊強度37MPa以上の測定できない密着強度に至る。   Note that the shear adhesion strength between the machined silicon and the sealing resin is an average of 32 MPa, and the peeling interface is an interface between the silicon and the resin. On the other hand, when the silicon oxide film and resin produced when laser processing is performed on the silicon surface, peeling does not occur at the interface between the silicon oxide film and the resin, and bulk silicon is destroyed. Will do. That is, the adhesion strength between the silicon oxide film and the resin reaches an unmeasurable adhesion strength of bulk silicon breakdown strength of 37 MPa or more.

このように本実施形態によれば、Si基板21の表面上に絶縁膜を含む複数の層からなる積層膜24が形成された半導体素子12に対し、基板の周辺部において積層膜24をRIE,FIB,或いはレーザにより除去することにより、素子周辺部に基板シリコンを露出させることができる。このため、素子の表面側を樹脂封止した場合に、樹脂16と基板シリコンとの密着性が高いことから、素子周辺部において樹脂16の密着性を高めることができる。従って、例えば脆弱な低比誘電率層間絶縁膜を備えた半導体素子12において、素子周辺部に加わる応力に起因する層間隔離を防止することができ、信頼性の向上をはかることが可能となる。   As described above, according to the present embodiment, with respect to the semiconductor element 12 in which the laminated film 24 including a plurality of layers including the insulating film is formed on the surface of the Si substrate 21, the laminated film 24 is formed in the peripheral portion of the substrate by RIE, By removing it with FIB or laser, the substrate silicon can be exposed at the periphery of the element. For this reason, when the surface side of the element is resin-sealed, the adhesiveness between the resin 16 and the substrate silicon is high, so that the adhesiveness of the resin 16 can be enhanced at the periphery of the element. Therefore, for example, in the semiconductor element 12 having a fragile low dielectric constant interlayer insulating film, interlayer isolation due to stress applied to the periphery of the element can be prevented, and reliability can be improved.

特に、素子周辺部の積層膜24をYAGレーザや炭酸ガスレーザを用いたレーザ加工により除去することにより、露出する基板シリコン面にSi酸化膜を形成することができ、これにより樹脂との密着性を更に高めることができ、更なる信頼性の向上をはかることができる。   In particular, by removing the laminated film 24 around the element by laser processing using a YAG laser or a carbon dioxide gas laser, an Si oxide film can be formed on the exposed substrate silicon surface, thereby improving the adhesion to the resin. It can be further increased, and the reliability can be further improved.

(第2の実施形態)
図7は、本発明の第2の実施形態に使用した半導体素子の周辺部構造を拡大して示す断面図である。なお、図2と同一部分には同一符号を付して、その詳しい説明は省略する。
(Second Embodiment)
FIG. 7 is an enlarged cross-sectional view showing the peripheral structure of the semiconductor element used in the second embodiment of the present invention. The same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態が、先に説明した第1の実施形態と異なる点は、半導体素子12の周端部を含む周辺部分ではなく、素子周端部から一定距離おいた内側で周端部に沿って基板シリコンを露出させるように溝25を形成したことにある。   The difference between the present embodiment and the first embodiment described above is not the peripheral portion including the peripheral end portion of the semiconductor element 12, but along the peripheral end portion inside a certain distance from the peripheral end portion of the element. The groove 25 is formed so as to expose the substrate silicon.

溝25の加工手段としては、先に説明したRIE,FIB,或いはレーザビームを用いればよい。溝25の形成位置は半導体素子周端部より例えば10から300μm内側を中心とし、溝の幅は例えば5から295μmとすればよい。   As the processing means for the groove 25, the RIE, FIB, or laser beam described above may be used. The position where the groove 25 is formed is centered on the inside of the semiconductor element, for example, 10 to 300 μm, and the width of the groove may be 5 to 295 μm, for example.

このように、半導体素子周端部から一定距離おいた内側に溝25を掘ることで、剥離の起点となる積層膜の端部は素子周端部の高応力範囲から離れ、同時に溝25内の樹脂16は前述と同様、密着強度が高く、樹脂16が積層膜端部の応力を緩和する。本実施形態における積層膜24に加わる応力は、図6に示すように、素子周端部に応力の大きい点は残るものの、素子周端部から一定距離おいた内側に溝25を形成することにより、溝25よりも内側では応力を極めて小さくすることができる。   In this way, by digging the groove 25 inside a certain distance from the peripheral edge of the semiconductor element, the end of the laminated film that becomes the starting point of the separation is separated from the high stress range of the peripheral edge of the element, and at the same time in the groove 25 As described above, the resin 16 has high adhesion strength, and the resin 16 relieves stress at the end of the laminated film. As shown in FIG. 6, the stress applied to the laminated film 24 in the present embodiment is formed by forming a groove 25 on the inner side at a certain distance from the element peripheral end portion, although a point having a large stress remains at the element peripheral end portion. The stress can be made extremely small inside the groove 25.

従って、本実施形態においても半導体素子12の周辺部分に加わる応力に起因する層間隔離を防止することができ、先の第1の実施形態と同様の効果が得られる。また、溝25の加工にレーザを用いることによって更なる効果が得られるのも第1の実施形態と同じである。   Therefore, also in the present embodiment, interlayer isolation due to stress applied to the peripheral portion of the semiconductor element 12 can be prevented, and the same effect as in the first embodiment can be obtained. Further, it is the same as in the first embodiment that a further effect can be obtained by using a laser for processing the groove 25.

(第3の実施形態)
図8は、この発明の第3の実施形態に係る、レーザを用いて半導体素子の周辺部構造を加工した場合の断面を示している。
(Third embodiment)
FIG. 8 shows a cross section when the peripheral structure of the semiconductor element is processed using a laser according to the third embodiment of the present invention.

この実施形態では、レーザを用いて半導体素子12の周端部を含む周辺部分上の低誘電体膜を含む積層膜24に除去およびシリコン基板を露出させて溝を形成する場合、図7に示すように、低誘電体膜を含む積層膜24の除去のみにととまらずシリコン基板もその表面から1μm以上深く除去してシリコン基板11の露出面をその表面から1μm以上深く形成している。このように、シリコン基板11の露出底面をその表面から1μm以上深くすることにより、封止樹脂がシリコン基板11の露出底面とのみばかりでなくシリコン基板11の露出側面とも密着することになり封止樹脂とシリコン基板11との実効露出側面積が増大するので、封止樹脂との密着強度が向上し、低誘電体膜の剥離および低誘電体膜を含む積層膜24の剥離が防止される。さらに、シリコン基板11の露出底面の粗さすなわちシリコン基板11の露出底面の凸凹の深さを3μm以上深く形成している。このように、シリコン基板11の露出底面に深さ3μm以上の凸凹を形成することにより凹部に封止樹脂が密着効果を奏するに足りる量入り込み、それにより、シリコン基板11と封止樹脂との密着強度が向上し、低誘電体膜の剥離および低誘電体膜を含む積層膜24の剥離が防止される。レーザを用いてのこれらの処理には、たとえば、YAGレーザの3倍高調波(355nm)を用いることができる。使用するレーザのレーザ出力値、出力パルス数等の出力条件は除去対象層に応じて適宜設定する。また、低誘電体膜を含む積層膜24の除去およびシリコン基板の除去の範囲は、半導体ウエハの有功利用すなわち1枚の半導体ウエハから最大数の半導体チップを切出そうとする半導体ウエハ有功利用の観点と、各半導体チップでの半導体素子と封止樹脂との所望密着強度を得るために求められる基板露出範囲の観点との兼ね合いで決定される。しかしながら、この除去範囲は、少なくとも、半導体素子12の周端部から300μm内方までの範囲である。好ましくは、半導体素子12の周端部から5乃至10μmの範囲である。   In this embodiment, the case where the groove is formed by removing the silicon film from the laminated film 24 including the low dielectric film on the peripheral portion including the peripheral edge portion of the semiconductor element 12 and exposing the silicon substrate is shown in FIG. As described above, not only the removal of the laminated film 24 including the low dielectric film, but also the silicon substrate is removed deeply by 1 μm or more from the surface, and the exposed surface of the silicon substrate 11 is formed deeply by 1 μm or more from the surface. As described above, when the exposed bottom surface of the silicon substrate 11 is deepened by 1 μm or more from the surface, the sealing resin is in close contact with not only the exposed bottom surface of the silicon substrate 11 but also the exposed side surface of the silicon substrate 11. Since the effective exposed-side area between the resin and the silicon substrate 11 is increased, the adhesion strength with the sealing resin is improved, and the peeling of the low dielectric film and the peeling of the laminated film 24 including the low dielectric film are prevented. Further, the roughness of the exposed bottom surface of the silicon substrate 11, that is, the depth of the unevenness of the exposed bottom surface of the silicon substrate 11, is formed to be 3 μm or more deep. In this way, by forming an unevenness having a depth of 3 μm or more on the exposed bottom surface of the silicon substrate 11, an amount sufficient for the sealing resin to have a close contact effect enters the recess, and thereby the close contact between the silicon substrate 11 and the sealing resin. The strength is improved, and the peeling of the low dielectric film and the peeling of the laminated film 24 including the low dielectric film are prevented. For these treatments using a laser, for example, a third harmonic (355 nm) of a YAG laser can be used. The output conditions such as the laser output value and the number of output pulses of the laser to be used are appropriately set according to the removal target layer. Further, the range of removal of the laminated film 24 including the low dielectric film and the removal of the silicon substrate is limited to the effective use of the semiconductor wafer, that is, the effective use of the semiconductor wafer for cutting out the maximum number of semiconductor chips from one semiconductor wafer. This is determined in consideration of the viewpoint and the viewpoint of the substrate exposure range required to obtain the desired adhesion strength between the semiconductor element and the sealing resin in each semiconductor chip. However, this removal range is at least a range from the peripheral end of the semiconductor element 12 to the inside of 300 μm. Preferably, it is in the range of 5 to 10 μm from the peripheral edge of the semiconductor element 12.

また、半導体チップの周側部上の低誘電体膜を含む積層膜24およびシリコン基板を除去する時のレーザ出力とシリコン基板を除去する時のレーザ出力とを異ならせることが好ましい。すなわち、低誘電体膜を含む積層膜24は機械的強度がそれほど大きくないので、低出力のレーザたとえば1W以下の出力のレーザで除去し、低誘電体膜を含む積層膜24の露出面が受けるダメージを最小限にする。一方、シリコン基板は機械的強度が大きいので、高出力エネルギーのレーザたとえば1W以上の出力のレーザで除去してもダメージは少ない一方、短時間で所定の深さまで除去可能である。このように、使用するレーザのレーザ出力値、出力パルス数等の出力条件を適宜変更することにより、レーザ処理効率が向上する。   Further, it is preferable that the laser output when removing the laminated film 24 including the low dielectric film and the silicon substrate on the peripheral side portion of the semiconductor chip and the laser output when removing the silicon substrate are different. That is, since the laminated film 24 including the low dielectric film is not so strong in mechanical strength, it is removed by a low output laser, for example, a laser having an output of 1 W or less, and the exposed surface of the laminated film 24 including the low dielectric film is received. Minimize damage. On the other hand, since the silicon substrate has high mechanical strength, even if it is removed by a laser having a high output energy, for example, a laser having an output of 1 W or more, the damage is small, but the silicon substrate can be removed to a predetermined depth in a short time. As described above, the laser processing efficiency is improved by appropriately changing the output conditions such as the laser output value and the number of output pulses of the laser to be used.

図9は、樹脂封止後の、図8の半導体素子の周辺部構造の断面を示す図である。図9に示される半導体素子の周辺部構造は、樹脂16により密封されていることを除き、図8に示される半導体素子の周辺部構造と同じであるので、同一部分には同一番号を付して説明は省略する。   FIG. 9 is a view showing a cross section of the peripheral structure of the semiconductor element of FIG. 8 after resin sealing. The peripheral structure of the semiconductor element shown in FIG. 9 is the same as the peripheral structure of the semiconductor element shown in FIG. 8 except that the peripheral structure is sealed by the resin 16. Description is omitted.

(第4の実施形態)
図10は、この発明の第4の実施形態に係る、レーザを用いて半導体素子の周辺部構造を加工した場合の他の例の断面を示している。なお、図8と同一部分には同一符号を付して、その詳しい説明は省略する。
(Fourth embodiment)
FIG. 10 shows a cross section of another example of processing a peripheral structure of a semiconductor element using a laser according to the fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to FIG. 8 and an identical part, and the detailed description is abbreviate | omitted.

本実施形態が、図8の実施形態と異なる点は、半導体素子12の周端部を含む周辺部分ではなく、周端部から一定距離おいた内側で周端部に沿って基板シリコンを露出させるように溝25を形成したことにある。   This embodiment is different from the embodiment of FIG. 8 in that the substrate silicon is exposed along the peripheral end portion not inside the peripheral portion including the peripheral end portion of the semiconductor element 12 but inside a certain distance from the peripheral end portion. Thus, the groove 25 is formed.

溝25の形成位置は、溝25の形成位置は半導体素子周端部から例えば10から300μm内側を中心とし、溝の幅は例えば5から295μmとすればよい。   The groove 25 may be formed at a center of, for example, 10 to 300 μm from the peripheral edge of the semiconductor element, and the groove width may be, for example, 5 to 295 μm.

このように、半導体素子周端部から一定距離おいた内側に溝25を掘ることで、剥離の起点となる積層膜の端部は素子周端部の高応力範囲から離れ、同時に溝25内の樹脂16は前述と同様、密着強度が高く、樹脂16が積層膜端部の応力を緩和する。本実施形態における積層膜24に加わる応力は、素子周端部に応力の大きい点は残るものの、素子終端部から一定距離おいた内側に溝25を形成することにより、溝25よりも内側では応力を極めて小さくすることができる。   In this way, by digging the groove 25 inside a certain distance from the peripheral edge of the semiconductor element, the end of the laminated film that becomes the starting point of the separation is separated from the high stress range of the peripheral edge of the element, and at the same time in the groove 25 As described above, the resin 16 has high adhesion strength, and the resin 16 relieves stress at the end of the laminated film. In the present embodiment, the stress applied to the laminated film 24 remains at the inner side of the groove 25 by forming the groove 25 on the inner side at a constant distance from the terminal end of the element, although a point having a large stress remains at the peripheral edge of the element. Can be made extremely small.

従って、本実施形態においても半導体素子12の周辺部分に加わる応力に起因する層間隔離を防止することができ、図8の実施形態と同様の効果が得られる。また、溝25の加工にレーザを用いることによって更なる効果が得られるのも図8の実施形態と同じである。   Therefore, also in this embodiment, interlayer separation due to stress applied to the peripheral portion of the semiconductor element 12 can be prevented, and the same effect as that of the embodiment of FIG. 8 can be obtained. Further, the use of a laser for the processing of the groove 25 can provide further effects as in the embodiment of FIG.

図11は、樹脂封止後の、図10の半導体素子の周辺部構造の断面を示す図である。図11に示される半導体素子の周辺部構造は、樹脂16により密封されていることを除き、図10に示される半導体素子の周辺部構造と同じであるので、同一部分には同一番号を付して説明は省略する。   11 is a view showing a cross section of the peripheral structure of the semiconductor element of FIG. 10 after resin sealing. The peripheral structure of the semiconductor element shown in FIG. 11 is the same as the peripheral structure of the semiconductor element shown in FIG. 10 except that the peripheral structure is sealed with resin 16. Description is omitted.

(第5の実施形態)
図12は、この発明の第5の実施形態に係る、レーザを用いて半導体素子の周辺部構造を加工した場合の断面を示している。
(Fifth embodiment)
FIG. 12 shows a cross section when the peripheral structure of the semiconductor element is processed using a laser according to the fifth embodiment of the present invention.

レーザを用いて半導体素子12の周端部を含む周辺部分上の低誘電体膜を含む積層膜24の除去およびシリコン基板を除去してシリコン基板21を露出する場合、レーザの照射によって低誘電体膜を含む積層膜24およびシリコン基板のシリコン成分が飛散する。飛散したシリコン成分がシリコン基板上に形成されているパターン配線部に付着すると配線間に短絡回路が生じ、不良素子となってしまう。したがって、図12に示すように、飛散したシリコン成分がシリコン基板上に形成されているパターン配線部に付着して配線間に短絡回路が生じるのを防止するために、素子上に表面保護膜(付着防止膜)31を設けている。この表面保護膜は、YAGレーザの3倍高調波(355nm)を用いて溝形成する場合、その屈折率nを、波長365nmの光ビームを用いてエリプソメータで測定した時に、1.5より大きい(n>1.5)である表面保護膜、たとえば、PVA(polyvinyl alcohol)である。   When the laser is used to remove the laminated film 24 including the low dielectric film on the peripheral portion including the peripheral edge of the semiconductor element 12 and to remove the silicon substrate to expose the silicon substrate 21, the low dielectric material is irradiated by laser irradiation. The laminated film 24 including the film and the silicon component of the silicon substrate are scattered. If the scattered silicon component adheres to the pattern wiring portion formed on the silicon substrate, a short circuit is generated between the wirings, resulting in a defective element. Therefore, as shown in FIG. 12, in order to prevent the scattered silicon component from adhering to the pattern wiring portion formed on the silicon substrate and causing a short circuit between the wirings, a surface protection film ( An anti-adhesion film) 31 is provided. In the case where the surface protective film is formed using a third harmonic (355 nm) of a YAG laser, its refractive index n is larger than 1.5 when measured with an ellipsometer using a light beam having a wavelength of 365 nm ( n> 1.5) a surface protective film, for example, PVA (polyvinyl alcohol).

低誘電体膜を含む積層膜24上に表面保護膜を設けておくことにより、レーザを用いて半導体素子12の周端部を含む周辺部分上の低誘電体膜を含む積層膜24およびシリコン基板を除去する際に生じる飛散シリコン成分は表面保護膜31に付着し、それによりパターン配線部に付着するのが防止される。PVAはレーザの照射を受けた場合の吸収性が良いため発熱効率が高く、そのため、レーザ照射時に、低誘電体膜を含む積層膜24およびシリコン基板の温度も上昇させるので、低誘電体膜を含む積層膜24およびシリコン基板の除去を促進させる効果も有する。通常、この表面保護膜31はレーザを用いて溝加工した後、飛散シリコン成分ともに除去する。この除去には、通常、水洗浄あるいは溶剤洗浄が用いられる。   By providing a surface protective film on the laminated film 24 including the low dielectric film, the laminated film 24 including the low dielectric film on the peripheral portion including the peripheral edge portion of the semiconductor element 12 using a laser and the silicon substrate Scattered silicon components generated when removing are adhered to the surface protective film 31, thereby preventing them from adhering to the pattern wiring portion. PVA has high absorption efficiency when irradiated with laser, and therefore has high heat generation efficiency. Therefore, the temperature of the laminated film 24 including the low dielectric film and the silicon substrate is also increased during laser irradiation. It also has an effect of promoting the removal of the laminated film 24 and the silicon substrate. Usually, the surface protective film 31 is processed with a laser to remove the scattered silicon component. For this removal, water washing or solvent washing is usually used.

また、図12に示すように、低誘電体膜を含む積層膜24と表面保護膜31との間に、下層に屈折率1.5以下の絶縁膜32例えば屈折率1.49のTEOSを形成しておき、上層に屈折率が1.5より大きい絶縁膜33例えば屈折率1.5ないし1.8のポリイミドを形成しておくと、レーザにより低誘電体膜に溝を形成する際の加工性が促進される。その理由は、上層膜(表面保護膜および屈折率1.5より大きい絶縁膜)31、33の屈折率が下層膜(屈折率1.5以下の絶縁膜)32の屈折率より大きいと、レーザに対する上層膜31、33の吸収性が高まるばかりでなく、レーザにより加熱されることで低誘電体膜を含む積層膜24の熱加工が進むことが期待できるからである。さらに、他の理由は、上層膜(表面保護膜および屈折率1.5より大きい絶縁膜)31、33が加工されて削除部分が形成されると、削除部分が開放された蓋のような働きをして、下層膜の加工時に発生するガスを効果的に外部に排出させ、その圧力による積層膜のダメージを防止することができる。なお、上記低誘電体膜を含む積層膜24と表面保護膜31との間に形成された屈折率1.5より大きい絶縁膜33例えば屈折率1.5ないし1.8のポリイミドは、表面保護膜として機能するのみならず、上述したように、低誘電体膜を含む積層膜24の熱加工を促進する効果を有する。   Further, as shown in FIG. 12, an insulating film 32 having a refractive index of 1.5 or less, for example, TEOS having a refractive index of 1.49 is formed in the lower layer between the laminated film 24 including the low dielectric film and the surface protective film 31. If an insulating film 33 having a refractive index greater than 1.5, for example, polyimide having a refractive index of 1.5 to 1.8, is formed on the upper layer, processing for forming a groove in the low dielectric film with a laser. Sex is promoted. The reason is that if the refractive index of the upper layer films (surface protective film and insulating film having a refractive index of 1.5 or more) 31, 33 is larger than the refractive index of the lower layer film (insulating film having a refractive index of 1.5 or less) 32, the laser This is because not only the absorption of the upper layer films 31 and 33 with respect to the film can be increased, but also the thermal processing of the laminated film 24 including the low dielectric film can be expected by being heated by the laser. Another reason is that when the upper layer films (surface protective film and insulating film having a refractive index of greater than 1.5) 31 and 33 are processed to form a deletion portion, it works like a lid with the deletion portion opened. Thus, the gas generated during the processing of the lower layer film can be effectively discharged to the outside, and damage to the laminated film due to the pressure can be prevented. An insulating film 33 having a refractive index higher than 1.5, for example, a polyimide having a refractive index of 1.5 to 1.8, formed between the laminated film 24 including the low dielectric film and the surface protective film 31 is used for surface protection. In addition to functioning as a film, as described above, it has the effect of promoting thermal processing of the laminated film 24 including a low dielectric film.

図13は、表面保護膜除去および樹脂封止した後の、図12の半導体素子の周辺部構造の断面を示す図である。図13に示される半導体素子の周辺部構造は、表面保護膜の除去および樹脂16により密封されていることを除き、図12に示される半導体素子の周辺部構造と同じであるので、同一部分には同一番号を付して説明は省略する。   FIG. 13 is a view showing a cross section of the peripheral structure of the semiconductor element of FIG. 12 after removing the surface protective film and sealing with resin. The peripheral structure of the semiconductor element shown in FIG. 13 is the same as the peripheral structure of the semiconductor element shown in FIG. 12 except that the surface protective film is removed and the resin 16 is sealed. Are given the same numbers and their explanation is omitted.

(第6の実施形態)
図14は、この発明の第6の実施形態に係る、レーザを用いて半導体素子の周辺部構造を加工した場合の他の例の断面を示している。なお、図12と同一部分には同一符号を付して、その詳しい説明は省略する。
(Sixth embodiment)
FIG. 14 shows a cross section of another example of processing a peripheral structure of a semiconductor element using a laser according to the sixth embodiment of the present invention. The same parts as those in FIG. 12 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態が、図12の実施形態と異なる点は、半導体素子12の周端部を含む周辺部分ではなく、周端部から一定距離おいた内側で周端部に沿って基板シリコンを露出させるように溝25を形成したことにある。   The present embodiment is different from the embodiment of FIG. 12 in that the substrate silicon is exposed along the peripheral end portion not inside the peripheral portion including the peripheral end portion of the semiconductor element 12 but inside a certain distance from the peripheral end portion. Thus, the groove 25 is formed.

溝25の形成位置は、溝25の形成位置は半導体素子周端部から例えば10から300μm内側を中心とし、溝の幅は例えば5から295μmとすればよい。   The groove 25 may be formed at a center of, for example, 10 to 300 μm from the peripheral edge of the semiconductor element, and the groove width may be, for example, 5 to 295 μm.

このように、半導体素子周端部から一定距離おいた内側に溝25を掘ることで、剥離の起点となる積層膜の端部は素子周端部の高応力範囲から離れ、同時に溝25内の樹脂16は前述と同様、密着強度が高く、樹脂16が積層膜端部の応力を緩和する。本実施形態における積層膜24に加わる応力は、素子周端部に応力の大きい点は残るものの、素子周端部から一定距離おいた内側に溝25を形成することにより、溝25よりも内側では応力を極めて小さくすることができる。   In this way, by digging the groove 25 inside a certain distance from the peripheral edge of the semiconductor element, the end of the laminated film that becomes the starting point of the separation is separated from the high stress range of the peripheral edge of the element, and at the same time in the groove 25 As described above, the resin 16 has high adhesion strength, and the resin 16 relieves stress at the end of the laminated film. In the present embodiment, the stress applied to the laminated film 24 remains at the inner side of the groove 25 by forming the groove 25 inside a certain distance from the peripheral edge of the element, although a point having a large stress remains at the peripheral edge of the element. The stress can be made extremely small.

従って、本実施形態においても半導体素子12の周辺部分に加わる応力に起因する層間隔離を防止することができ、図12の実施形態と同様の効果が得られる。また、溝25の加工にレーザを用いることによって更なる効果が得られるのも図12の実施形態と同じである。   Therefore, also in the present embodiment, interlayer separation due to stress applied to the peripheral portion of the semiconductor element 12 can be prevented, and the same effect as that of the embodiment of FIG. 12 can be obtained. Further, the use of a laser for the processing of the groove 25 can provide further effects as in the embodiment of FIG.

図15は、樹脂封止後の、図14の半導体素子の周辺部構造の断面を示す図である。図15に示される半導体素子の周辺部構造は、樹脂16により密封されていることを除き、図14に示される半導体素子の周辺部構造と同じであるので、同一部分には同一番号を付して説明は省略する。   FIG. 15 is a view showing a cross section of the peripheral structure of the semiconductor element of FIG. 14 after resin sealing. The peripheral structure of the semiconductor element shown in FIG. 15 is the same as the peripheral structure of the semiconductor element shown in FIG. 14 except that the peripheral structure is sealed by the resin 16. Description is omitted.

(変形例)
なお、本発明は上述した各実施形態に限定されるものではない。実施形態では、P−BGAパッケージの例を説明したが、これに限らず図16に示すようなE−BGAパッケージ、図17示すようなFC−BGAパッケージ、図18示すようなT−BGAパッケージにおいても同様に適用することができる。なお、図16、17、18において、図1と同一部分には同一符号を付している。17はスティフナ、18はバンプを示している。その他のパッケージにおいても、半導体素子の表面側或いは全体を樹脂封止するパッケージであれば適用することが可能である。
(Modification)
In addition, this invention is not limited to each embodiment mentioned above. In the embodiment, the example of the P-BGA package has been described. However, the present invention is not limited to this. In the E-BGA package as shown in FIG. 16, the FC-BGA package as shown in FIG. 17, and the T-BGA package as shown in FIG. Can be applied similarly. 16, 17, and 18, the same parts as those in FIG. 1 are denoted by the same reference numerals. Reference numeral 17 denotes a stiffener, and 18 denotes a bump. Other packages can also be applied as long as the surface side or the whole of the semiconductor element is sealed with resin.

また、実施形態では積層膜の端部除去或いは溝加工を半導体素子の周囲の全周にわたって行ったが、必ずしも全周にわたって行う必要はなく、特にパッケージ内部の半導体素子に加わる熱応力が高い半導体素子の角部のみに施すことも効果的である。このように封止樹脂や基板とシリコン間の熱応力が高い領域には、積層膜はダイシングラインに沿って少なくとも500μm以上連続して除去されていればよい。   In the embodiment, the edge removal or groove processing of the laminated film is performed over the entire circumference of the semiconductor element. However, it is not always necessary to perform the entire circumference, and the semiconductor element in particular has a high thermal stress applied to the semiconductor element inside the package. It is also effective to apply only to the corners. In this way, in the region where the thermal stress between the sealing resin and the substrate and silicon is high, the laminated film only needs to be removed continuously by at least 500 μm or more along the dicing line.

また、基板は必ずしもシリコンに限るものではなく、GaAs、その他の半導体基板を用いることができる。さらに、封止樹脂はエポキシ系やシリコーン系に限るものではなく、下地半導体基板或いはその酸化膜と十分な密着性の得られるものであればよい。   Also, the substrate is not necessarily limited to silicon, and GaAs or other semiconductor substrates can be used. Further, the sealing resin is not limited to the epoxy type or the silicone type, and any sealing resin may be used as long as sufficient adhesion to the base semiconductor substrate or its oxide film can be obtained.

本発明は、請求項記載の内容に限らず、以下に記載するような構成上の特徴を持たせることによってそれぞれ前述したような固有の効果を得ることが可能である。   The present invention is not limited to the contents described in the claims, and it is possible to obtain the unique effects as described above by providing the structural features as described below.

請求項6において、前記積層膜の除去部分の幅は5ないし10μmである。   7. The width of the removed portion of the laminated film is 5 to 10 μm.

請求項1において、前記基板の前記一部は前記基板の表面から1μm以上深く除去されている。   In Claim 1, the said part of the said board | substrate is removed deeply 1 micrometer or more from the surface of the said board | substrate.

請求項1において、前記基板の露出表面が3μm以上の表面粗さを有する。   In Claim 1, the exposed surface of the said board | substrate has a surface roughness of 3 micrometers or more.

請求項7において、前記屈折率が1.5より大きい膜は前記積層膜の除去時に生じる飛散半導体成分の付着防止のための保護膜である。この場合、前記保護膜と前記積層膜との間に、波長365nmの光ビームを用いてエリプソメータで測定した時に、屈折率1.5以下の絶縁膜が下層に形成され、屈折率が1.5より大きい絶縁膜が上層に形成されている。   8. The protective film according to claim 7, wherein the film having a refractive index greater than 1.5 is a protective film for preventing adhesion of scattered semiconductor components generated when the laminated film is removed. In this case, when measured with an ellipsometer between the protective film and the laminated film using a light beam having a wavelength of 365 nm, an insulating film having a refractive index of 1.5 or less is formed in the lower layer, and the refractive index is 1.5. A larger insulating film is formed in the upper layer.

請求項8において、前記積層膜の除去による前記積層膜の露出表面および前記基板の露出表面が1μm以下の表面粗さを有するようにRIEの条件を設定する。   9. The RIE condition is set so that the exposed surface of the laminated film and the exposed surface of the substrate by removing the laminated film have a surface roughness of 1 μm or less.

請求項8において、前記半導体素子の前記露出表面に酸化膜を形成する。   9. The oxide film according to claim 8, wherein an oxide film is formed on the exposed surface of the semiconductor element.

請求項8において、前記基板の前記一部を前記基板の表面から1μm以上深く除去ようにレーザを印加する。この場合、前記レーザビームとして、YAGレーザの3倍高調波を用いる。   9. The laser according to claim 8, wherein the laser is applied so as to remove the part of the substrate deeply by 1 μm or more from the surface of the substrate. In this case, the third harmonic of the YAG laser is used as the laser beam.

請求項8において、前記基板の露出表面が3μm以下の表面粗さを有するようにレーザビームを印加する。この場合、前記レーザビームとして、YAGレーザの3倍高調波を用いる。   The laser beam is applied so that the exposed surface of the substrate has a surface roughness of 3 μm or less. In this case, the third harmonic of the YAG laser is used as the laser beam.

請求項8において、前記積層膜の除去部分の幅を1ないし300μmとする。この場合、前記レーザビームとして、YAGレーザの3倍高調波を用いる。   The width of the removed portion of the laminated film is 1 to 300 μm. In this case, the third harmonic of the YAG laser is used as the laser beam.

請求項8において、前記積層膜の除去部分の幅を5ないし10μmとする。この場合、前記レーザビームとして、YAGレーザの3倍高調波を用いる。   The width of the removed portion of the laminated film is 5 to 10 μm. In this case, the third harmonic of the YAG laser is used as the laser beam.

請求項8において、前記積層膜より上部に、波長365nmの光ビームを用いてエリプソメータで測定した時に、屈折率が1.5より大きい膜を設ける。この場合、前記屈折率が1.5より大きい膜は前記積層膜の除去時に生じる飛散半導体成分の付着防止のための保護膜である。この場合、前記保護膜と前記積層膜との間に、波長365nmの光ビームを用いてエリプソメータで測定した時に、屈折率1.5以下の絶縁膜を下層に形成し、屈折率が1.5より大きい絶縁膜を上層に形成する。   The film having a refractive index larger than 1.5 when measured with an ellipsometer using a light beam having a wavelength of 365 nm is provided above the laminated film. In this case, the film having a refractive index greater than 1.5 is a protective film for preventing adhesion of scattered semiconductor components generated when the laminated film is removed. In this case, when measured with an ellipsometer between the protective film and the laminated film using a light beam having a wavelength of 365 nm, an insulating film having a refractive index of 1.5 or less is formed in the lower layer, and the refractive index is 1.5. A larger insulating film is formed on the upper layer.

その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。   In addition, various modifications can be made without departing from the scope of the present invention.

第1の実施形態に係わる半導体装置の概略構成を示す断面図。1 is a cross-sectional view illustrating a schematic configuration of a semiconductor device according to a first embodiment. 図1の半導体装置に使用した半導体素子の周辺部構造を拡大して示す断面図。FIG. 2 is an enlarged cross-sectional view showing a peripheral structure of a semiconductor element used in the semiconductor device of FIG. 1. 従来の半導体素子の概略構成を示す断面図。Sectional drawing which shows schematic structure of the conventional semiconductor element. 図3の従来技術を説明するためのもので、積層膜に加わる最大主応力を素子端部からの距離でプロットして示す図。FIG. 4 is a diagram for explaining the prior art of FIG. 3 and plots the maximum principal stress applied to the laminated film by plotting the distance from the element end. 図1の第1の実施形態を説明するためのもので、積層膜に加わる最大主応力を素子周端部からの距離でプロットして示す図。FIG. 2 is a diagram for explaining the first embodiment of FIG. 1 and plotting the maximum principal stress applied to a laminated film by the distance from the peripheral edge of the element. 図7の第2の実施形態を説明するためのもので、積層膜に加わる最大主応力を素子周端部からの距離でプロットして示す図。FIG. 8 is a diagram for explaining the second embodiment of FIG. 7 and plots the maximum principal stress applied to the laminated film by plotting the distance from the peripheral edge of the element. 第2の実施形態に使用した半導体素子の周辺部構造を拡大して示す断面図。Sectional drawing which expands and shows the peripheral part structure of the semiconductor element used for 2nd Embodiment. 第3の実施形態に係る、レーザを用いて半導体素子の周辺部構造を加工した場合の断面を示す図。FIG. 6 is a view showing a cross section when a peripheral structure of a semiconductor element is processed using a laser according to a third embodiment. 樹脂封止した後の、図8の半導体素子の周辺部構造の断面を示す図。The figure which shows the cross section of the peripheral part structure of the semiconductor element of FIG. 8 after resin sealing. 第4の実施形態に係る、レーザを用いて半導体素子の周辺部構造を加工した場合の断面を示す図。The figure which shows the cross section at the time of processing the peripheral part structure of a semiconductor element based on 4th Embodiment using the laser. 樹脂封止した後の、図10の半導体素子の周辺部構造の断面を示す図。The figure which shows the cross section of the peripheral part structure of the semiconductor element of FIG. 10 after resin sealing. 第5の実施形態に係る、レーザを用いて半導体素子の周辺部構造を加工した場合の断面を示す図。The figure which shows the cross section at the time of processing the peripheral part structure of a semiconductor element using a laser based on 5th Embodiment. 表面保護膜除去および樹脂封止した後の、図12の半導体素子の周辺部構造の断面を示す図。The figure which shows the cross section of the peripheral part structure of the semiconductor element of FIG. 12 after surface protection film removal and resin sealing. 第6の実施形態に係る、レーザを用いて半導体素子の周辺部構造を加工した場合の断面を示す図。The figure which shows the cross section at the time of processing the peripheral part structure of a semiconductor element based on 6th Embodiment using the laser. 表面保護膜除去および樹脂封止した後の、図14の半導体素子の周辺部構造の断面を示す図。The figure which shows the cross section of the peripheral part structure of the semiconductor element of FIG. 14 after surface protection film removal and resin sealing. 本発明の変形例を説明するためのもので、半導体素子をE−BGA型のマウント構造とした時の断面図。Sectional drawing when a semiconductor element is made into the mount structure of an E-BGA type | mold for demonstrating the modification of this invention. 本発明の変形例を説明するためのもので、半導体素子をFC−BGA型のマウント構造とした時の断面図。Sectional drawing when it is for demonstrating the modification of this invention, and a semiconductor element is made into the mounting structure of FC-BGA type | mold. 本発明の変形例を説明するためのもので、半導体素子をT−BGA型のマウント構造とした時の断面図。Sectional drawing when a semiconductor element is made into the T-BGA type mount structure for demonstrating the modification of this invention.

符号の説明Explanation of symbols

11…マウント基板
12…半導体素子
13…接着剤
14…ボンディングワイヤ
15…半田ボール
16…封止樹脂
17…スティフナ
18…バンプ
21…Si基板(半導体)
22…層間絶縁層
23…配線層
24…積層膜
25…溝
31…表面保護膜
32…絶縁膜
33…絶縁膜
DESCRIPTION OF SYMBOLS 11 ... Mount substrate 12 ... Semiconductor element 13 ... Adhesive 14 ... Bonding wire 15 ... Solder ball 16 ... Sealing resin 17 ... Stiffener 18 ... Bump 21 ... Si substrate (semiconductor)
DESCRIPTION OF SYMBOLS 22 ... Interlayer insulating layer 23 ... Wiring layer 24 ... Laminated film 25 ... Groove 31 ... Surface protective film 32 ... Insulating film 33 ... Insulating film

Claims (5)

半導体基板の表面上に比誘電率が2以下の低比誘電率の層間絶縁膜を含む複数の層からなる積層膜が形成され、前記基板の周端部に沿って該周端部から一定距離おいた内側の一部において前記積層膜が除去されかつ前記基板が基板表面から所定の深さまで除去されている半導体素子と、
前記半導体素子がマウントされるマウント基板と、
前記半導体素子の少なくとも表面側を樹脂封止するための樹脂層と、
を具備してなることを特徴とする半導体装置。
A laminated film including a plurality of layers including a low dielectric constant interlayer insulating film having a relative dielectric constant of 2 or less is formed on the surface of the semiconductor substrate, and a certain distance from the peripheral edge along the peripheral edge of the substrate A semiconductor element in which the laminated film is removed in a part of the inner side and the substrate is removed from the substrate surface to a predetermined depth;
A mounting substrate on which the semiconductor element is mounted;
A resin layer for resin-sealing at least the surface side of the semiconductor element;
A semiconductor device comprising:
前記基板が除去されている前記所定の深さは1μm以上であることを特徴とする請求項1記載の半導体装置。 The semiconductor device according to claim 1, wherein the predetermined depth from which the substrate is removed is 1 μm or more . 前記半導体素子の前記露出表面には酸化膜が形成されていることを特徴とする請求項1記載の半導体装置。 The semiconductor device according to claim 1 , wherein an oxide film is formed on the exposed surface of the semiconductor element . 前記積層膜の除去部分の幅は1ないし300μmであることを特徴とする請求項1記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the width of the removed portion of the laminated film is 1 to 300 [mu] m . 半導体基板の表面上に比誘電率が2以下の低比誘電率の層間絶縁膜を含む複数の層からなる積層膜が形成された半導体素子に対し、前記基板の周端部に沿って該周端部から一定距離おいた内側の一部において前記積層膜を基板表面が露出する深さまでさらに前記基板を基板表面から所定の深さまでRIEまたはレーザビームにより除去する工程と、
前記半導体素子をマウント基板上にマウントする工程と、
前記半導体素子の少なくとも表面側を樹脂材料により樹脂封止する工程と、
を含むことを特徴とする半導体装置の製造方法
For a semiconductor element in which a laminated film including a plurality of layers including an interlayer insulating film having a low relative dielectric constant of 2 or less is formed on the surface of a semiconductor substrate, the periphery of the semiconductor element along the peripheral edge of the substrate Removing the substrate by a RIE or laser beam from the substrate surface to a predetermined depth to a depth at which the substrate surface is exposed in a part of the inner side at a certain distance from the end; and
Mounting the semiconductor element on a mounting substrate;
A step of resin-sealing at least a surface side of the semiconductor element with a resin material;
A method for manufacturing a semiconductor device, comprising:
JP2005086815A 2004-03-25 2005-03-24 Semiconductor device and manufacturing method thereof Active JP4008931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086815A JP4008931B2 (en) 2004-03-25 2005-03-24 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004089476 2004-03-25
JP2005086815A JP4008931B2 (en) 2004-03-25 2005-03-24 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005311345A JP2005311345A (en) 2005-11-04
JP4008931B2 true JP4008931B2 (en) 2007-11-14

Family

ID=35439692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086815A Active JP4008931B2 (en) 2004-03-25 2005-03-24 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4008931B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250429B2 (en) * 2014-02-13 2017-12-20 エスアイアイ・セミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
KR102548869B1 (en) * 2016-06-10 2023-06-28 삼성디스플레이 주식회사 Flexible display device and manufacturing method thereof
JPWO2020012810A1 (en) * 2018-07-11 2021-07-08 住友電気工業株式会社 Silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP2005311345A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US7405159B2 (en) Method of fabricating a semiconductor device package having a semiconductor element with a roughened surface
JP5608521B2 (en) Semiconductor wafer dividing method, semiconductor chip and semiconductor device
TWI801656B (en) Method of forming and packaging semiconductor die
JP6478913B2 (en) Laser peeling of carrier wafer from device wafer
CN105047612B (en) Method for processing wafer
US7880301B2 (en) Semiconductor device and method for manufacturing the same
KR0178134B1 (en) Manufacture of semiconductor device
JP2006253402A (en) Manufacturing method of semiconductor device
JP6100396B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2005167024A (en) Semiconductor device and its manufacturing method
KR20010096521A (en) Semiconductor device and method of producing the same and semiconductor chip and method of producing the same
TWI399817B (en) Method of manufacturing semiconductor device in which bottom surface and side surface of semiconductor substrate are covered with resin protective film
US11145515B2 (en) Manufacturing method of semiconductor device with attached film
US20020086137A1 (en) Method of reducing wafer stress by laser ablation of streets
KR20200137971A (en) Method for manufacturing wafer and method for manufacturing stacked device chip
JP4008931B2 (en) Semiconductor device and manufacturing method thereof
KR20130052721A (en) Manufacturing method of chip
JP5004907B2 (en) Manufacturing method of semiconductor device
KR20110017728A (en) Method for wafer sawing preventing a bond pad oxidation
KR100314277B1 (en) Wafer level package
US11551973B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2001308036A (en) Method for manufacturing semiconductor device
CN109920765B (en) Fan-out type packaging device
JP2010135565A (en) Semiconductor device and production process of the same
JP7479243B2 (en) How the chip is manufactured

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4008931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350