JP3997659B2 - Manufacturing method of thin steel sheet with uniform mechanical properties - Google Patents

Manufacturing method of thin steel sheet with uniform mechanical properties Download PDF

Info

Publication number
JP3997659B2
JP3997659B2 JP21323499A JP21323499A JP3997659B2 JP 3997659 B2 JP3997659 B2 JP 3997659B2 JP 21323499 A JP21323499 A JP 21323499A JP 21323499 A JP21323499 A JP 21323499A JP 3997659 B2 JP3997659 B2 JP 3997659B2
Authority
JP
Japan
Prior art keywords
less
coil
rolling
finish rolling
mechanical properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21323499A
Other languages
Japanese (ja)
Other versions
JP2000104121A (en
Inventor
正 井上
洋一 本屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP21323499A priority Critical patent/JP3997659B2/en
Publication of JP2000104121A publication Critical patent/JP2000104121A/en
Application granted granted Critical
Publication of JP3997659B2 publication Critical patent/JP3997659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加工性に優れ、かつ機械的性質が均一な薄鋼板の製造方法に関する。
【0002】
【従来の技術】
熱延鋼板および冷延鋼板は、自動車、産業機械等に広く使用されている。そして、それらの用途にはプレス加工で成形される部材が多いため、その部材の形状に応じて様々な加工性が要求される。
【0003】
しかしながら、近年の自動車、産業機械等のメーカーからの合理化の要求が厳しく、特に同メーカーでの製品の製造時での歩留まりのさらなる向上が求められている。このような背景から、材質面では特に均一性の高いことが重要となっている。
【0004】
このような観点から、熱延連続化のプロセスを用いて、圧延鋼板の先端部および後端部での材質の向上を図るとともに、コイル内の材質のばらつきの解消を図る技術が提案されている(特開平9−241742号公報)。
【0005】
【発明が解決しようとする課題】
しかしながら、この技術において得られている材質特性(コイル幅中央での測定値)は、30K級〜70K級の鋼板での引張強度(TS)の変動幅でみて4.5〜6.3%と必ずしもユーザー側で満足のいくものではなかった。さらに、この技術ではコイルの幅方向については考慮されておらず、実際にこの技術を用いた場合にはコイルの幅方向の均一性に劣るといった問題が生じる。
【0006】
このように、コイルの幅方向で組織がばらつくと、に寸法精度の厳しいプレス加工品においては、プレス加工時にコイル内の製品採取位置により、スプリングバックの違いに起因してプレス加工後における加工部品の寸法精度に問題が生じるため、製品の歩留まりが低くなるといった問題が生じる。
【0007】
本発明は、かかる事情に鑑みてなされたものであって、寸法精度の厳しいプレス加工用途にも適合し得る、機械的性質が均一な薄鋼板の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者等は、上述した課題を解決すべく鋭意研究を重ねた。その結果、自動車、産業機械等のメーカーでの使用条件からみて、コイルからの製品採取を高歩留まりで行なうことができる、機械的性質が均一な薄鋼板を得るためには、組成を適正なものとした鋼の連続鋳造スラブを再加熱後または直接熱間圧延するに際して、
(1)コイル内の仕上げ圧延温度差を50℃以下とし、かつ、該仕上げ圧延温度範囲を圧延対象材の変態点に応じて、C≦0.80%の場合にはAr−20〜Ar+50℃、C>0.80%ではArcm−20〜Arcm+100℃の範囲内に制御すること
(2)続いて、ランナウト冷却における冷却速度のコイル内での変動を30℃/sec以下とし、その後の巻き取りにおけるコイル内の巻き取り温度差を50℃以内とすること
が必要であることを見出した。
【0009】
また、コイル内の仕上げ圧延温度差を50℃以下とするためには、仕上げ圧延において、コイル内の圧延速度差を400mpm以下とし、かつ前記鋼帯の全体の再加熱温度を加熱装置の前後に設置された温度計により検出することにより調整することが有効であること、および、再加熱の前工程、または後工程、または前後工程で鋼帯の幅方向エッジを鋼帯の温度を基準として100℃以下で加熱することが、機械的性質の均一性をより高める観点から好ましいことを見出した。
【0010】
一方、機械的性質が均一な冷延鋼板を得るためには、上記のようにして得られた熱延鋼板を素材として用いて、冷間圧延と再結晶焼鈍を施すことが必要であることを見出した。
本発明は、このような知見に基づいてなされたものである。
【0011】
すなわち、本発明は、以下の(1)〜(6)を提供するものである。
(1) 重量%にて、C:1%以下、Si:2.5%以下、Mn:3.0%以下を含有する鋼を連続鋳造した後、得られた鋼スラブを再加熱後または直接熱間圧延するに際して、粗圧延を施し、その後に該鋼帯の全体を再加熱し、仕上げ圧延を行う際に、コイル内の圧延速度差を400mPm以下とし、コイル内の仕上げ圧延温度差を50℃以下とし、さらに該仕上げ圧延温度範囲を圧延対象材の変態点に応じて、C≦0.80%の場合にはAr−20〜Ar+50℃、C>0.80%ではArcm−20〜Arcm+100℃の範囲内に制御し、引き続きランナウト冷却における冷却速度のコイル内での変動を30℃/sec以下とし、その後の巻き取りにおけるコイル内の巻き取り温度差を50℃以内とすることを特徴とする、機械的性質が均一な薄鋼板の製造方法。
【0012】
(2) 重量%にて、C:1%以下、Si:2.5%以下、Mn:3.0%以下を含有する鋼を連続鋳造した後、得られた鋼スラブを再加熱後または直接熱間圧延するに際して、粗圧延を施し、その後に該鋼帯の全体を再加熱し、仕上げ圧延を行う際に、コイル内の圧延速度差を400mPm以下とし、コイル内の仕上げ圧延温度差を50℃以下とし、さらに該仕上げ圧延温度範囲を圧延対象材の変態点に応じて、C≦0.80%の場合にはAr−20〜Ar+50℃、C>0.80%ではArcm−20〜Arcm+100℃の範囲内に制御し、引き続きランナウト冷却における冷却速度のコイル内での変動を30℃/sec以下とし、引き続き行われる巻き取りにおけるコイル内の巻き取り温度差を50℃以内とし、その後、冷間圧延および再結晶焼鈍することを特徴とする、機械的性質が均一な薄鋼板の製造方法。
【0013】
(3) 上記(1)、(2)において、仕上げ圧延の際におけるコイル内の圧延速度差を400mpm以下とし、かつ前記再加熱に用いられる加熱装置の前後に設置された温度計により前記再加熱温度を検出してその加熱温度を調整することにより、コイル内の仕上げ圧延温度差を50℃以下とすることを特徴とする、機械的性質が均一な薄鋼板の製造方法。
【0014】
(4) 上記(1)〜(3)において、前記再加熱の前工程、または後工程、または前後工程で鋼帯の幅方向エッジを鋼帯の温度を基準として100℃以下で加熱することを特徴とする、機械的性質が均一な薄鋼板の製造方法。
【0015】
(5) 上記(1)〜(4)において、さらにTi、Nb、V、Zrのうち1種または2種以上を0.01〜0.2%含有することを特徴とする、機械的性質が均一な薄鋼板の製造方法。
【0016】
(6) 上記(1)〜(5)において、さらにB:0.0001〜0.010%を含有することを特徴とする、機械的性質が均一な薄鋼板の製造方法。
【0017】
【発明の実施の形態】
上述したように、コイルからの製品採取を高歩留まりで行なうためには、まず、鋼中の成分を最適化することが必要である。
【0018】
このために本発明では、鋼の基本組成を、重量%にて、C:1%以下、Si:2.5%以下、Mn:3.0%以下としている。
以下、これらの限定理由について説明する。
【0019】
C:1%以下
Cは鋼板の加工性に悪影響を及ぼす元素であるため、その含有量は少ない方が好ましい。C量が1%を超えると、加工性の劣化が著しくなることから、その含有量を1%以下とした。加工性の向上のためのより好ましい範囲は0.2%であり、加工性をさらに高いレベルとする観点からは0.05%以下であることが一層好ましい。
【0020】
Si:2.5%以下
Siは鋼板を固溶強化する作用を有するが、加工性に悪影響を及ぼす元素であるため少ないほうが好ましい。Si量が2.5%を超えると、加工性の劣化が著しくなることから、その含有量を2.5%以下とした。加工性の向上のためのより好ましい範囲は0.5%以下である。加工性をさらに高いレベルとする観点からは0.1%以下であることが一層好ましい。
【0021】
Mn:3.0%以下
Mnは鋼板の靭性を改善し、鋼板を固溶強化する作用を有するが、加工性に悪影響を及ぼす元素である。Mn量が3.0%を超えると、強度が上昇し、加工性の劣化が著しくなることから、その含有量を3.0%以下とした。加工性の向上のためのより好ましい範囲は2.0%以下である。加工性をさらに高いレベルとする観点からは0.5%以下であることが一層好ましい。
【0022】
上記成分に加えて、P、S、Nを以下のように規定することが好ましい。
P:0.2%以下
Pは鋼板を固溶強化する作用を有するが、その含有量が0.2%を超えると粒界偏析による粒界脆化が生じやすくなる。したがって、Pの含有量は0.2%以下が好ましい。加工性の向上のためのより好ましい範囲は0.1%である。加工性をさらに高いレベルとする観点からは0.02%以下であることが一層好ましい。
【0023】
S:0.05%以下
Sは0.05%を超えると硫化物の析出量が多くなり、加工性が劣化する。したがって、Sの含有量は0.05%以下が好ましい。加工性の向上のためのより好ましい範囲は0.02%以下である。加工性をさらに高いレベルとする観点からは0.005%以下であることが一層好ましい。
【0024】
N:0.02%以下
Nはその含有量が少ないほど後述する炭窒化物形成元素の添加量が少なくなり経済的である。N量が0.02%を超えると炭窒化物形成元素を添加してNを固定しても鋼板の加工性の低下が避けられない。よって、N含有量は0.02%以下が好ましい。加工性の向上のためのより好ましい範囲は0.005%以下である。
【0025】
なお、素材鋼としては、上記した成分に加えて、さらにTi、Nb、V、Zrのうち1種または2種以上を0.01〜0.4%含有してもよい。これらの成分は炭窒化物や硫化物を形成し、鋼中のC、N、Sを減少させ、C量が0.01%未満の鋼において、加工性をより優れたものとすることができるので、必要に応じて単独または複合で添加することが好ましい。また、C量が0.01%超の鋼では、上記した炭窒化物により効率的に強度を上昇させることができ、結果として、性能の優れた高張力材を製造し得る。しかし、これらの合計含有量が0.01%未満では所望の効果が得られず、一方、0.4%を超えると強度が上昇しすぎて加工性が劣化するため、0.01〜0.4%の範囲とした。
【0026】
さらには、本発明においては、IF鋼の耐縦割れ性やほうろう材における耐爪とび性の向上を目的として、Bを0.0001〜0.01%の範囲で添加してもよい。B量が0.0001%未満では耐縦割れ性や耐爪とび性向上の効果が得られず、一方、0.01%を超えると、その効果が飽和する。よって、B量の範囲を0.0001〜0.01%とした。
【0027】
次に、本発明の製造条件について説明する。
自動車および産業機械等のメーカーでの使用条件からみて、コイルからの製品採取を高歩留まりで行うためには、上述のように鋼組成を適切に制御した上で、その鋼を連続鋳造した後、得られた鋼スラブを再加熱後または直接熱間圧延するに際して、(1)コイル内の仕上げ圧延温度差を50℃以下とし、かつ、該仕上げ圧延温度範囲を圧延対象材の変態点に応じて、C≦0.80%の場合にはAr−20〜Ar+50℃、C>0.80%ではArcm−20〜Arcm+100℃の範囲内に制御すること、(2)続いて、ランナウト冷却における冷却速度のコイル内での変動を30℃/sec以下とし、その後の巻き取りにおけるコイル内の巻き取り温度差を50℃以内とすることが必要であり、そのために本発明では、鋼スラブを再加熱後または直接熱間圧延するに際して、粗圧延を施し、その後に該鋼帯の全体を再加熱し、仕上げ圧延を行う際に、コイル内の仕上げ圧延温度差を50℃以下とし、さらに該仕上げ圧延温度範囲を圧延対象材の変態点に応じて、C≦0.80%の場合にはAr−20〜Ar+50℃、C>0.80%の場合にはArcm−20〜Arcm+100℃の範囲内にし、引き続きランナウト冷却における冷却速度のコイル内での変動を30℃/sec以下とし、その後の巻き取りにおけるコイル内の巻き取り温度差を50℃以内とする。
以下、製造条件の限定理由について説明する。
【0028】
(a)コイル内の仕上げ圧延温度差:50℃以下
(b)仕上げ圧延温度範囲:
C≦0.80%の場合 Ar−20〜Ar+50℃
C>0.80%の場合 Arcm−20〜Arcm+100℃
コイル内の仕上げ圧延温度差(仕上げ圧延の最終スタンドでの温度差)を50℃以下とし、かつ仕上げ圧延温度を範囲を圧延対象材の変態点に応じて、C≦0.80%の場合にはAr−20〜Ar+50℃、C>0.80%の場合にはArcm−20〜Arcm+100℃の範囲内にすることにより、コイル内の組織を均一にすることができ、本発明で意図する均一な機械的性質を得ることができる。
【0029】
上記仕上げ圧延温度差および仕上げ圧延温度範囲は、仕上げ圧延の際におけるコイル内の圧延速度差を400mpm以下とし、かつ再加熱に用いられる加熱装置の前後に設置された温度計により再加熱温度を検出してその加熱温度を調整することにより達成することができる。また、このように仕上げ圧延の際におけるコイル内の圧延速度差を400mpm以下とすることにより、ランナウト冷却における冷却速度、巻き取り温度のコイル内の温度差を本発明で規定する範囲とすることができる。
【0030】
(c)ランナウト冷却における冷却速度のコイル内での変動:30℃/sec以下
(d)巻き取りにおけるコイル内の巻き取り温度差:50℃以内
このように、粗圧延後の鋼帯全体の再加熱を最適に行う前提で、ランナウト冷却における冷却速度のコイル内での変動を30℃/sec以下とし、巻き取りにおけるコイル内の巻き取り温度差を50℃以内とすることにより、コイル内での変態を一様にすることができ、本発明で意図する均一な機械的性質を得ることができる。
【0031】
本発明においては、粗圧延後の鋼帯の全体加熱の前工程、または後工程、または前後工程で、鋼帯の幅方向エッジを、鋼帯の温度を基準として100℃以下で加熱することが好ましい。これにより、より好ましい、より均一な機械的性質を得ることができる。具体的には、このように鋼帯の幅方向エッジを加熱することにより、鋼帯の幅方向の機械的性質をより均一にすることができる。
【0032】
なお、本発明で特徴とする粗圧延バーの加熱はコイルBOX等を用いた連続熱延プロセスに対しても効果的に使用することができる。この際、粗圧延バーの加熱は、上記以外に、コイルBOXの前後や、粗圧延機の間または後に行ってもよい。また、コイルBOXの後で、溶接機の前後で粗圧延バーの加熱を行っても、本発明の効果は十分に発揮される。
【0033】
本発明における冷延鋼板を得る方法としては、上記方法によって得られた熱延鋼板を素材として、冷間圧延と再結晶焼鈍を施すことにより得られる。
冷間圧延は鋼板を所定の板厚にするとともに、圧延集合組織を発達させて、その後の再結晶焼鈍工程において加工性の向上に好ましい集合組織を発達させるために施される。冷間圧延の条件は特に限定されるものではないが、上記目的のためには、50%以上の圧下率で最終板厚に加工することが好ましい。
【0034】
再結晶焼鈍は通常採用される条件で行えばよい。具体的には550〜900℃の温度範囲で焼鈍を行なってフェライトを再結晶させる。550℃未満の温度では、長時間の箱焼鈍でも再結晶が十分に生じない。一方、900℃を超える温度ではオーステナイト化が進行して加工性が劣化する。
再結晶焼鈍を行なう方法としては、連続焼鈍、箱焼鈍、または溶融亜鉛めっき処理に先行する連続熱処理のいずれでもよい。
【0035】
以上のような鋼組成および製造条件を採用することにより、連続鋳造スラブを再加熱後または直接熱間圧延して熱延鋼板を得る場合でも、このような熱延鋼板を素材として冷延鋼板を得る場合でも、機械的性質が均一な薄鋼板を得ることができる。
【0036】
上述した組成の素材鋼は、例えば転炉、電気炉等により溶製される。鋼片の製造は造塊-分塊圧延法または連続鋳造法、薄スラブ鋳造法、ストリップ鋳造法のいずれでも構わない。なお、本発明においては、連続鋳造または造塊、分塊圧延により得られたスラブ加熱する製造方法においては、スラを室温以上の温度まで冷却した後、熱延加熱炉に装入する。その場合、熱延加熱炉への装入温度はAr点以下であることが組織を制御する上で好ましい。
【0037】
なお、本発明においては、粗圧延鋼帯を加熱する前工程、もしくは後工程でレベラー等の矯正装置によって形状矯正を行うことが好ましい。矯正を粗圧延鋼帯を加熱する前工程で行なう場合、粗圧延鋼帯の形状が良くなることにより粗圧延鋼帯の加熱時の均一性が良くなり、粗圧延鋼帯内の組織の均一性が高くなり、さらには仕上げ圧延機に挿入される粗圧延鋼帯の形状が良いため、仕上げ圧延における塑性変形時の均一性が高くなり、結果として得られる鋼板の組織も均一になる。また、矯正を粗圧延鋼帯を加熱する後工程で行う場合、少なくとも仕上げ圧延機に挿入される粗圧延鋼帯の形状が良いため、仕上げ圧延における塑性変形時の均一性が高くなり、結果として組織が均一となる。
【0038】
なお、本発明は、連続鋳造されたスラブを直送または再加熱する方法も含まれる。特に、スラブを室温まで冷却せずに再加熱する方法は、省エネルギーの観点からより好ましい。
【0039】
本発明方法によって得られた冷延鋼板は、適宣、表面処理(溶融亜鉛めっき、合金化溶融亜鉛めっき、電気めっき、有機被覆コーテングなど)やプレス加工を施した後、例えば、自動車、家電製品、鋼構造物などに使用されるが、特にこれらの用途において要求される高加工性と強度を有するものである。
【0040】
【実施例】
次に、本発明による具体的な実施例について、比較例と比較しながら以下に説明する。
表1に示す化学組成を有する鋼(材料No.1〜7)を、表2に示す条件で熱間圧延し、冷却して巻取り処理を行なった。材料No.1〜7の各材は、粗バー鋼帯の全体の再加熱の際の温度を加熱装置の前後に設置された温度計により検出することにより調整した材料である。また、材料No.4〜6の材料は、熱延板を酸洗後、冷間圧延と焼鈍とを行った。
【0041】
機械的性質の評価としては、上記熱延板および冷延板のコイル長手方向のうち5箇所(非定常部に対応する先後端および定常部に該当する中央部分から均等に距離をおいた3箇所)、および前記5箇所より採取したサンプルより幅方向の中央部および端部から等間隔で5箇所より試験片を採取し、引張試験を行い、コイル長手方向およびコイル幅方向の破断強さ(TS)を求めた。結果を表3に示した。なお、コイル幅方向については、変動が最も大きいデータを表3に記載した。
【0042】
表3から明らかなように、本発明に従って製造した鋼板においては、TSの変動(表2中のΔ)が比較例に比べて小さく、明らかに機械的性質の均一性に優れていることが確認された。
【0043】
なお、本発明例のNo.5、6の各材は、エッジヒーターを使用した場合であり、コイル幅方向でのTSの変動がさらに小さくなっていることが確認された。
【0044】
【表1】

Figure 0003997659
【0045】
【表2】
Figure 0003997659
【0046】
【表3】
Figure 0003997659
【0047】
【発明の効果】
以上説明したように、本発明によれば、加工性に優れ、かつ機械的性質が均一な薄鋼板の製造方法を提供することができ、工業上有用な効果がもたらされる。本発明による鋼板は自動車用、産業機器用、家電用(テレビ用のフレーム材、シャドウマスク材およびインナーシールド材、各種容器材など)、ほうろう用等に供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thin steel plate having excellent workability and uniform mechanical properties.
[0002]
[Prior art]
Hot-rolled steel sheets and cold-rolled steel sheets are widely used in automobiles, industrial machines and the like. And since there are many members molded by press working for those uses, various workability is required according to the shape of the members.
[0003]
However, demands for rationalization from manufacturers of automobiles, industrial machines, etc. in recent years are severe, and further improvement in yield at the time of manufacture of products by the manufacturer is particularly demanded. From such a background, it is important for the material to have particularly high uniformity.
[0004]
From such a viewpoint, a technique for improving the material at the front end portion and the rear end portion of the rolled steel sheet and eliminating the variation in the material in the coil by using a process of continuous hot rolling has been proposed. (JP-A-9-241742).
[0005]
[Problems to be solved by the invention]
However, the material properties (measured value at the center of the coil width) obtained in this technique is 4.5 to 6.3% in terms of the fluctuation range of the tensile strength (TS) in 30K to 70K steel plates. It was not always satisfactory on the user side. Further, this technique does not consider the width direction of the coil, and when this technique is actually used, there arises a problem that the uniformity in the width direction of the coil is inferior.
[0006]
Thus, the tissue in the width direction of the coil varies, in severe stampings dimensional accuracy especially, the product sampling position in the coil during the press working, working after pressing due to the difference of springback Since a problem arises in the dimensional accuracy of the parts, there arises a problem that the yield of the product is lowered.
[0007]
This invention is made | formed in view of this situation, Comprising: It aims at providing the manufacturing method of a thin steel plate with a uniform mechanical property which can be adapted also for the press work use with severe dimensional accuracy.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied to solve the above-described problems. As a result, in order to obtain a thin steel plate with uniform mechanical properties, the product can be collected from the coil at a high yield in view of the use conditions in manufacturers such as automobiles and industrial machinery. When re-heating a continuous cast slab of steel made directly or hot rolling directly,
(1) Ar 3 -20 to Ar when the finish rolling temperature difference in the coil is 50 ° C. or less and the finish rolling temperature range is C ≦ 0.80% according to the transformation point of the material to be rolled. 3 + 50 ℃, C> be controlled within the range of the 0.80% Ar cm -20~Ar cm + 100 ℃ (2) Subsequently, a variation within the coils of the cooling rate in the run-out cooling 30 ° C. / sec or less And found that the difference in winding temperature in the coil in subsequent winding must be within 50 ° C.
[0009]
Moreover, in order to make the difference in finish rolling temperature in the coil 50 ° C. or less, in finish rolling, the difference in rolling speed in the coil is set to 400 mpm or less, and the reheating temperature of the entire steel strip is set before and after the heating device. It is effective to adjust by detecting with an installed thermometer, and the width direction edge of the steel strip in the pre-process, the post-process, or the front-and-rear process of reheating is 100 based on the temperature of the steel strip. It has been found that heating at a temperature not higher than ° C. is preferable from the viewpoint of further improving the uniformity of mechanical properties.
[0010]
On the other hand, in order to obtain a cold-rolled steel sheet having uniform mechanical properties, it is necessary to perform cold rolling and recrystallization annealing using the hot-rolled steel sheet obtained as described above as a material. I found it.
The present invention has been made based on such knowledge.
[0011]
That is, the present invention provides the following (1) to (6).
(1) After continuously casting steel containing C: 1% or less, Si: 2.5% or less, and Mn: 3.0% or less in weight%, the obtained steel slab is reheated or directly When hot rolling, rough rolling is performed, and then the entire steel strip is reheated, and when performing finish rolling, the difference in rolling speed in the coil is set to 400 mPm or less, and the difference in finish rolling temperature in the coil is 50 The finish rolling temperature range is Ar 3 -20 to Ar 3 + 50 ° C. in the case of C ≦ 0.80%, and Ar cm in the case of C> 0.80%, depending on the transformation point of the material to be rolled. Control within the range of −20 to Ar cm + 100 ° C., and subsequently change the cooling rate in the coil in the run-out cooling to 30 ° C./sec or less, and the winding temperature difference in the coil in the subsequent winding within 50 ° C. A machine characterized by Method of manufacturing properties uniform thin steel sheet.
[0012]
(2) After continuously casting steel containing C: 1% or less, Si: 2.5% or less, and Mn: 3.0% or less in weight%, the obtained steel slab is reheated or directly When hot rolling, rough rolling is performed, and then the entire steel strip is reheated, and when performing finish rolling, the difference in rolling speed in the coil is set to 400 mPm or less, and the difference in finish rolling temperature in the coil is 50 The finish rolling temperature range is Ar 3 -20 to Ar 3 + 50 ° C. in the case of C ≦ 0.80%, and Ar cm in the case of C> 0.80%, depending on the transformation point of the material to be rolled. The temperature is controlled within the range of -20 to Ar cm + 100 ° C, the variation in the cooling rate in the runout cooling in the coil is set to 30 ° C / sec or less, and the coiling temperature difference in the subsequent winding is 50 ° C. Within, then cold pressure And wherein the recrystallization annealing method for producing a uniform thin steel sheet mechanical properties.
[0013]
(3) In the above (1) and (2), the difference in rolling speed in the coil during finish rolling is set to 400 mpm or less, and the reheating is performed by thermometers installed before and after the heating device used for the reheating. A method for producing a thin steel sheet with uniform mechanical properties, characterized in that the temperature difference is detected and the heating temperature is adjusted so that the difference in finish rolling temperature in the coil is 50 ° C. or less.
[0014]
(4) In said (1)-(3), heating the width direction edge of a steel strip at 100 degrees C or less on the basis of the temperature of a steel strip by the pre-process of the said reheating, a post process, or a front-back process. A method for producing a thin steel sheet having uniform mechanical properties.
[0015]
(5) In the above (1) to (4), the mechanical properties characterized by further containing 0.01 to 0.2% of one or more of Ti, Nb, V and Zr. A method for producing uniform thin steel sheets.
[0016]
(6) A method for producing a thin steel sheet having uniform mechanical properties, characterized in that in (1) to (5) above, B: 0.0001 to 0.010% is further contained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
As described above, in order to collect a product from a coil with a high yield, it is first necessary to optimize the components in the steel.
[0018]
For this reason, in this invention, the basic composition of steel is made into C: 1% or less, Si: 2.5% or less, and Mn: 3.0% or less in weight%.
Hereinafter, these reasons for limitation will be described.
[0019]
C: 1% or less C is an element that adversely affects the workability of the steel sheet, so that the content is preferably small. When the amount of C exceeds 1%, workability deteriorates remarkably, so the content is made 1% or less. A more preferable range for improving the workability is 0.2%, and from the viewpoint of further improving the workability, it is more preferably 0.05% or less.
[0020]
Si: 2.5% or less Si has the effect of strengthening the steel sheet by solid solution, but it is preferable that the amount is less because it is an element that adversely affects workability. If the Si content exceeds 2.5%, the workability deteriorates remarkably, so the content is set to 2.5% or less. A more preferable range for improving workability is 0.5% or less. From the viewpoint of making the workability even higher, it is more preferably 0.1% or less.
[0021]
Mn: 3.0% or less Mn is an element that improves the toughness of the steel sheet and has the effect of solid-solution strengthening the steel sheet, but adversely affects the workability. If the amount of Mn exceeds 3.0%, the strength increases and the workability deteriorates remarkably, so the content is made 3.0% or less. A more preferable range for improving workability is 2.0% or less. From the viewpoint of making the workability even higher, it is more preferably 0.5% or less.
[0022]
In addition to the above components, it is preferable to define P, S, and N as follows.
P: 0.2% or less P has an effect of strengthening the steel sheet by solid solution strengthening, but if its content exceeds 0.2%, grain boundary embrittlement is likely to occur due to grain boundary segregation. Therefore, the P content is preferably 0.2% or less. A more preferable range for improving workability is 0.1%. From the viewpoint of making the workability even higher, it is more preferably 0.02% or less.
[0023]
S: 0.05% or less When S exceeds 0.05%, the precipitation amount of sulfide increases, and the workability deteriorates. Therefore, the content of S is preferably 0.05% or less. A more preferable range for improving workability is 0.02% or less. From the viewpoint of making the workability even higher, it is more preferably 0.005% or less.
[0024]
N: 0.02% or less The smaller the content of N, the lower the amount of carbonitride-forming elements to be described later and the more economical. If the amount of N exceeds 0.02%, the workability of the steel sheet is inevitably lowered even if a carbonitride-forming element is added to fix N. Therefore, the N content is preferably 0.02% or less. A more preferable range for improving workability is 0.005% or less.
[0025]
In addition to the above-described components, the raw steel may further contain 0.01-0.4% of one or more of Ti, Nb, V, and Zr. These components form carbonitrides and sulfides, reduce C, N, and S in the steel, and can make the workability more excellent in steel with a C content of less than 0.01%. Therefore, it is preferable to add them alone or in combination as necessary. Moreover, in steel with a C content exceeding 0.01%, the strength can be increased efficiently by the carbonitride described above, and as a result, a high-tensile material having excellent performance can be produced. However, if the total content of these is less than 0.01%, the desired effect cannot be obtained. On the other hand, if the total content exceeds 0.4%, the strength is excessively increased and the workability deteriorates, so that 0.01 to 0.00. The range was 4%.
[0026]
Furthermore, in the present invention, B may be added in a range of 0.0001 to 0.01% for the purpose of improving the longitudinal crack resistance of IF steel and the resistance to claw skipping in an enamel material. If the amount of B is less than 0.0001%, the effect of improving the vertical crack resistance and the nail resistance cannot be obtained, while if it exceeds 0.01%, the effect is saturated. Therefore, the range of the B amount is set to 0.0001 to 0.01%.
[0027]
Next, the manufacturing conditions of the present invention will be described.
From the viewpoint of use conditions in manufacturers such as automobiles and industrial machines, in order to collect products from coils at a high yield, after appropriately controlling the steel composition as described above, after continuously casting the steel, When the obtained steel slab is reheated or directly hot-rolled, (1) the finish rolling temperature difference in the coil is set to 50 ° C. or less, and the finish rolling temperature range depends on the transformation point of the material to be rolled. , in the case of C ≦ 0.80% is Ar 3 -20~Ar 3 + 50 ℃, C> 0.80% in can be controlled within the range of Ar cm -20~Ar cm + 100 ℃, (2) followed by In the present invention, it is necessary that the fluctuation in the cooling rate in the runout cooling within the coil is 30 ° C./sec or less, and that the winding temperature difference in the coil in the subsequent winding is within 50 ° C. Steel slab After heating or directly hot rolling, rough rolling is performed, and then the entire steel strip is reheated, and when finishing rolling is performed, the finish rolling temperature difference in the coil is set to 50 ° C. or less, and the finishing is further performed. Depending on the transformation temperature of the material to be rolled, Ar 3 -20 to Ar 3 + 50 ° C. when C ≦ 0.80%, and Ar cm −20 to Ar when C> 0.80%. Within the range of cm + 100 ° C., the variation of the cooling rate in the runout cooling in the coil is set to 30 ° C./sec or less, and the winding temperature difference in the coil in the subsequent winding is set to 50 ° C. or less.
Hereinafter, the reasons for limiting the manufacturing conditions will be described.
[0028]
(a) Finishing rolling temperature difference in the coil: 50 ° C or less
(b) Finish rolling temperature range:
When C ≦ 0.80% Ar 3 -20 to Ar 3 + 50 ° C
When C> 0.80% Ar cm -20 to Ar cm + 100 ° C
When the finish rolling temperature difference in the coil (temperature difference at the final stand of finish rolling) is 50 ° C. or less and the range of the finish rolling temperature is C ≦ 0.80% depending on the transformation point of the material to be rolled. the Ar 3 -20~Ar 3 + 50 ℃, C> by in the range of Ar cm -20~Ar cm + 100 ℃ when 0.80% can be made uniform tissue in the coil, The uniform mechanical properties intended by the present invention can be obtained.
[0029]
The above-mentioned finish rolling temperature difference and finish rolling temperature range are such that the difference in rolling speed in the coil during finish rolling is 400 mpm or less, and the reheating temperature is detected by thermometers installed before and after the heating device used for reheating. And it can achieve by adjusting the heating temperature. Further, by setting the difference in rolling speed in the coil during finish rolling to 400 mpm or less, the cooling speed in runout cooling and the temperature difference in the coil at the coiling temperature can be set within the ranges specified in the present invention. it can.
[0030]
(c) Fluctuation of the cooling rate in the runout cooling within the coil: 30 ° C / sec or less
(d) Winding temperature difference in the coil during winding: within 50 ° C. As described above, on the premise that the entire steel strip after rough rolling is optimally reheated, the cooling rate in the runout cooling is varied within the coil. By setting the temperature difference within 30 ° C./sec or less and the winding temperature difference in the coil during winding to be within 50 ° C., the transformation in the coil can be made uniform, and uniform mechanical properties intended by the present invention are achieved. Can be obtained.
[0031]
In the present invention, the widthwise edge of the steel strip may be heated at 100 ° C. or less based on the temperature of the steel strip in the pre-process, the post-process, or the front-rear process of the entire steel strip after rough rolling. preferable. Thereby, more preferable and more uniform mechanical properties can be obtained. Specifically, the mechanical properties in the width direction of the steel strip can be made more uniform by heating the width direction edge of the steel strip in this way.
[0032]
In addition, the heating of the rough rolling bar characterized by the present invention can be effectively used for a continuous hot rolling process using a coil BOX or the like. At this time, the heating of the rough rolling bar may be performed before or after the coil BOX, or between or after the rough rolling mill, in addition to the above. Moreover, even if it heats a rough rolling bar before and after a welding machine after coil BOX, the effect of this invention is fully exhibited.
[0033]
The method for obtaining a cold-rolled steel sheet in the present invention is obtained by subjecting the hot-rolled steel sheet obtained by the above method as a raw material to cold rolling and recrystallization annealing.
Cold rolling is performed in order to make the steel sheet have a predetermined thickness, develop a rolled texture, and develop a favorable texture for improving workability in the subsequent recrystallization annealing process. The conditions for the cold rolling are not particularly limited, but for the above purpose, it is preferable to process to the final thickness at a reduction rate of 50% or more.
[0034]
What is necessary is just to perform recrystallization annealing on the conditions normally employ | adopted. Specifically, the ferrite is recrystallized by annealing in a temperature range of 550 to 900 ° C. When the temperature is lower than 550 ° C., recrystallization does not occur sufficiently even during long-time box annealing. On the other hand, at temperatures exceeding 900 ° C., austenitization proceeds and workability deteriorates.
The method for performing recrystallization annealing may be any of continuous annealing, box annealing, or continuous heat treatment preceding hot dip galvanizing.
[0035]
By adopting the steel composition and production conditions as described above, even when a continuously cast slab is reheated or directly hot-rolled to obtain a hot-rolled steel sheet, such a hot-rolled steel sheet is used as a raw material. Even when it is obtained, a thin steel plate with uniform mechanical properties can be obtained.
[0036]
The material steel having the above composition is melted by, for example, a converter, an electric furnace or the like. The steel slab may be produced by any of the ingot-bundling rolling method, continuous casting method, thin slab casting method or strip casting method. In the present invention, continuous casting or ingot casting, in the production method of the slab heating obtained by slabbing, after cooling the slabs up to room temperature or higher, charged into hot rolling heating furnace. In that case, it is preferable for controlling the structure that the charging temperature to the hot-rolling heating furnace is Ar 3 point or less.
[0037]
In the present invention, it is preferable to perform shape correction by a correction device such as a leveler in a pre-process or a post-process for heating the roughly rolled steel strip. When straightening is performed in the previous process of heating the rough rolled steel strip, the shape of the rough rolled steel strip is improved to improve the uniformity during heating of the rough rolled steel strip, and the uniformity of the structure within the rough rolled steel strip. Furthermore, since the shape of the rough rolled steel strip inserted into the finish rolling mill is good, the uniformity during plastic deformation in finish rolling is increased, and the resulting steel sheet has a uniform structure. In addition, when straightening is performed in the subsequent process of heating the rough rolled steel strip, since the shape of the rough rolled steel strip inserted into the finish rolling mill is good, the uniformity at the time of plastic deformation in finish rolling is increased, and as a result The tissue becomes uniform.
[0038]
The present invention also includes a method of directly feeding or reheating a continuously cast slab. In particular, a method of reheating the slab without cooling to room temperature is more preferable from the viewpoint of energy saving.
[0039]
The cold-rolled steel sheet obtained by the method of the present invention is appropriately subjected to surface treatment (hot dip galvanizing, alloyed hot dip galvanizing, electroplating, organic coating, etc.) and press working, and then, for example, automobiles and home appliances. It is used for steel structures and the like, and has high workability and strength particularly required in these applications.
[0040]
【Example】
Next, specific examples according to the present invention will be described below in comparison with comparative examples.
Steel (material Nos. 1 to 7) having the chemical composition shown in Table 1 was hot-rolled under the conditions shown in Table 2, cooled, and wound up. Material No. Each material of 1-7 is the material adjusted by detecting the temperature in the case of the reheating of the whole coarse bar steel strip with the thermometer installed before and behind the heating apparatus. In addition, the material No. The materials of 4-6 performed cold rolling and annealing after pickling the hot-rolled sheet.
[0041]
The evaluation of the mechanical properties, three places spaced equally distance from the central portion corresponding to the leading and trailing and constant regions corresponding to five positions (unsteady portion of the coil longitudinal direction of the hot rolled plates and cold rolled plate ), And specimens taken from the five places at equal intervals from the center and end in the width direction, specimens are taken from five places at equal intervals, a tensile test is performed, and the breaking strength (TS in the coil longitudinal direction and the coil width direction) ) The results are shown in Table 3. In addition, about the coil width direction, the data with the largest fluctuation | variation are described in Table 3.
[0042]
As is clear from Table 3, in the steel sheet produced according to the present invention, the TS variation (Δ in Table 2) was smaller than that of the comparative example, and it was confirmed that the uniformity of the mechanical properties was clearly excellent. It was done.
[0043]
In addition, No. of the present invention example. Each material of 5 and 6 is a case where an edge heater is used, and it was confirmed that the fluctuation of TS in the coil width direction was further reduced.
[0044]
[Table 1]
Figure 0003997659
[0045]
[Table 2]
Figure 0003997659
[0046]
[Table 3]
Figure 0003997659
[0047]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for producing a thin steel plate having excellent workability and uniform mechanical properties, and an industrially useful effect is brought about. The steel sheet according to the present invention can be used for automobiles, industrial equipment, household appliances (television frame materials, shadow mask materials and inner shield materials, various container materials, etc.), enamels, and the like.

Claims (6)

重量%にて、C:1%以下、Si:2.5%以下、Mn:3.0%以下を含有する鋼を連続鋳造した後、得られた鋼スラブを再加熱後または直接熱間圧延するに際して、粗圧延を施し、その後に該鋼帯の全体を再加熱し、仕上げ圧延を行う際に、コイル内の圧延速度差を400mPm以下とし、コイル内の仕上げ圧延温度差を50℃以下とし、さらに該仕上げ圧延温度範囲を圧延対象材の変態点に応じて、C≦0.80%の場合にはAr−20〜Ar+50℃、C>0.80%ではArcm−20〜Arcm+100℃の範囲内に制御し、引き続きランナウト冷却における冷却速度のコイル内での変動を30℃/sec以下とし、その後の巻き取りにおけるコイル内の巻き取り温度差を50℃以内とすることを特徴とする、機械的性質が均一な薄鋼板の製造方法。After continuous casting of steel containing C: 1% or less, Si: 2.5% or less, and Mn: 3.0% or less by weight%, the obtained steel slab is reheated or directly hot-rolled. When carrying out rough rolling, the entire steel strip is then reheated and finish rolling is performed, so that the rolling speed difference in the coil is 400 mPm or less and the finish rolling temperature difference in the coil is 50 ° C. or less. Further, when the finish rolling temperature range is C ≦ 0.80% according to the transformation point of the rolling target material, Ar 3 -20 to Ar 3 + 50 ° C., and C> 0.80%, Ar cm -20 Control within the range of Ar cm + 100 ° C., and subsequently change the cooling rate in the coil in the run-out cooling to 30 ° C./sec or less, and the winding temperature difference in the coil in the subsequent winding to within 50 ° C. Characteristic of mechanical properties Method for producing a uniform thin steel sheet. 重量%にて、C:1%以下、Si:2.5%以下、Mn:3.0%以下を含有する鋼を連続鋳造した後、得られた鋼スラブを再加熱後または直接熱間圧延するに際して、粗圧延を施し、その後に該鋼帯の全体を再加熱し、仕上げ圧延を行う際に、コイル内の圧延速度差を400mPm以下とし、コイル内の仕上げ圧延温度差を50℃以下とし、さらに該仕上げ圧延温度範囲を圧延対象材の変態点に応じて、C≦0.80%の場合にはAr−20〜Ar+50℃、C>0.80%ではArcm−20〜Arcm+100℃の範囲内に制御し、引き続きランナウト冷却における冷却速度のコイル内での変動を30℃/sec以下とし、引き続き行われる巻き取りにおけるコイル内の巻き取り温度差を50℃以内とし、その後、冷間圧延および再結晶焼鈍することを特徴とする、機械的性質が均一な薄鋼板の製造方法。After continuous casting of steel containing C: 1% or less, Si: 2.5% or less, and Mn: 3.0% or less by weight%, the obtained steel slab is reheated or directly hot-rolled. When carrying out rough rolling, the entire steel strip is then reheated and finish rolling is performed, so that the rolling speed difference in the coil is 400 mPm or less and the finish rolling temperature difference in the coil is 50 ° C. or less. Further, when the finish rolling temperature range is C ≦ 0.80% according to the transformation point of the rolling target material, Ar 3 -20 to Ar 3 + 50 ° C., and C> 0.80%, Ar cm -20 Control within the range of Ar cm + 100 ° C., continuously change the cooling rate in the coil in the run out cooling to 30 ° C./sec or less, and set the winding temperature difference in the coil in the subsequent winding to be within 50 ° C., Then cold rolling and Characterized by recrystallization annealing method for producing a uniform thin steel sheet mechanical properties. 仕上げ圧延の際におけるコイル内の圧延速度差を400mpm以下とし、かつ前記再加熱に用いられる加熱装置の前後に設置された温度計により前記再加熱温度を検出してその加熱温度を調整することにより、コイル内の仕上げ圧延温度差を50℃以下とすることを特徴とする、請求項1または請求項2に記載の、機械的性質が均一な薄鋼板の製造方法。  By adjusting the heating temperature by detecting the reheating temperature with thermometers installed before and after the heating device used for the reheating, with the rolling speed difference in the coil at the time of finish rolling being 400 mpm or less The method for producing a thin steel sheet having uniform mechanical properties according to claim 1 or 2, wherein a difference in finish rolling temperature in the coil is 50 ° C or less. 前記再加熱の前工程、または後工程、または前後工程で鋼帯の幅方向エッジを鋼帯の温度を基準として100℃以下で加熱することを特徴とする、請求項1から請求項3のいずれか1項に記載の、機械的性質が均一な薄鋼板の製造方法。  Either of the Claims 1 to 3 characterized by heating the width direction edge of a steel strip at 100 degrees C or less on the basis of the temperature of a steel strip by the pre-process of the said reheating, a post process, or a front-back process. 2. A method for producing a thin steel sheet having uniform mechanical properties according to claim 1. さらにTi、Nb、V、Zrのうち1種または2種以上を0.01〜0.2%含有することを特徴とする、請求項1から請求項4のいずれか1項に記載の、機械的性質が均一な薄鋼板の製造方法。  The machine according to any one of claims 1 to 4, further comprising 0.01 to 0.2% of one or more of Ti, Nb, V, and Zr. Of thin steel sheet with uniform mechanical properties. さらにB:0.0001〜0.010%を含有することを特徴とする、請求項1から請求項5のいずれか1項に記載の、機械的性質が均一な薄鋼板の製造方法。  Furthermore, B: 0.0001-0.010% is contained, The manufacturing method of the thin steel plate with a uniform mechanical property of any one of Claims 1-5 characterized by the above-mentioned.
JP21323499A 1998-07-31 1999-07-28 Manufacturing method of thin steel sheet with uniform mechanical properties Expired - Fee Related JP3997659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21323499A JP3997659B2 (en) 1998-07-31 1999-07-28 Manufacturing method of thin steel sheet with uniform mechanical properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-230185 1998-07-31
JP23018598 1998-07-31
JP21323499A JP3997659B2 (en) 1998-07-31 1999-07-28 Manufacturing method of thin steel sheet with uniform mechanical properties

Publications (2)

Publication Number Publication Date
JP2000104121A JP2000104121A (en) 2000-04-11
JP3997659B2 true JP3997659B2 (en) 2007-10-24

Family

ID=26519675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21323499A Expired - Fee Related JP3997659B2 (en) 1998-07-31 1999-07-28 Manufacturing method of thin steel sheet with uniform mechanical properties

Country Status (1)

Country Link
JP (1) JP3997659B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023625A1 (en) * 1999-09-29 2001-04-05 Nkk Corporation Sheet steel and method for producing sheet steel
JP4496995B2 (en) * 2005-03-10 2010-07-07 Jfeスチール株式会社 Method for producing hot-rolled sheet steel for hot-dip galvanized steel sheets with excellent cold-rollability and corrugation workability

Also Published As

Publication number Publication date
JP2000104121A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
EP0101740B2 (en) Process for manufacturing cold-rolled steel having excellent press moldability
CN104593674B (en) Galvanizing ultra-low carbon baking hardening steel and its production method
JP5350252B2 (en) Process for producing flat steel products from steel forming a martensitic microstructure
CN103103328B (en) Production method of low carbon steel plate and low carbon steel plate
WO2001023624A1 (en) Sheet steel and method for producing sheet steel
CN112538593A (en) Hot dip galvanizing IF steel plate production method capable of controlling surface waviness
CN103510005A (en) Method for manufacturing middle-grade cold-rolled non-oriented electrical steel
EP0064552B1 (en) Thin steel plate for draw working excellent in bake-hardening properties and process for manufacturing same
JP2010508437A (en) Process for producing flat steel products from silicon alloyed multiphase steels
JP3879381B2 (en) Thin steel plate and method for producing thin steel plate
JP3997659B2 (en) Manufacturing method of thin steel sheet with uniform mechanical properties
JP3582369B2 (en) Method for producing thin steel sheet with excellent workability and little variation in the width direction of workability
JP3287257B2 (en) Steel sheet excellent in workability and less fluctuating in the width direction of workability and method for producing the same
JP3997692B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent press-formability and less fluctuation of press-formability in the coil
CN107541667A (en) A kind of anti-theft door plate carbon aluminium-killed steel hot dip Zn-Fe alloying steel plate
JP3613021B2 (en) Method for producing cold-rolled steel sheet with excellent press formability and little variation in press formability in the coil
JP4189209B2 (en) Steel plate with excellent shape freezing property and method for producing the same
JP4273646B2 (en) High-strength thin steel sheet with excellent workability and manufacturing method thereof
JPS6234804B2 (en)
JP3951512B2 (en) Method for producing a high workability cold-rolled steel sheet that has excellent press formability and little variation in press formability
CN104060072A (en) Cold-rolled steel sheet and preparation method thereof, as well as hot-galvanized steel sheet and preparation method thereof
JP4818879B2 (en) Method for producing cold-rolled steel sheet with excellent ductility and room temperature aging resistance
JP3060860B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with different anisotropy
JP3933006B2 (en) Cold-rolled steel sheet with small in-plane anisotropy and method for producing the same
JPH05339643A (en) Production of high strength cold rolled steel sheet excellent in deep drawability and galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees