JP3993289B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP3993289B2
JP3993289B2 JP36564497A JP36564497A JP3993289B2 JP 3993289 B2 JP3993289 B2 JP 3993289B2 JP 36564497 A JP36564497 A JP 36564497A JP 36564497 A JP36564497 A JP 36564497A JP 3993289 B2 JP3993289 B2 JP 3993289B2
Authority
JP
Japan
Prior art keywords
plating
piece
continuous casting
long piece
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36564497A
Other languages
Japanese (ja)
Other versions
JPH11179491A (en
Inventor
隆志 津沢
正昭 松尾
Original Assignee
三島光産株式会社
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三島光産株式会社, Jfeスチール株式会社 filed Critical 三島光産株式会社
Priority to JP36564497A priority Critical patent/JP3993289B2/en
Publication of JPH11179491A publication Critical patent/JPH11179491A/en
Application granted granted Critical
Publication of JP3993289B2 publication Critical patent/JP3993289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造設備に用いる連続鋳造用鋳型に係り、更に詳しくは、短片が摺動当接する部位に擦り疵や局部摩耗疵が発生するのを防止できると共に、溶鋼注入初期に浸漬ノズルから注湯される溶鋼を受ける受湯領域にヒートクラックが発生するのを防止できる連続鋳造用鋳型に関する。
【0002】
【従来の技術】
従来、溶鋼の連続鋳造が広汎に実施されており、最近では、2.0m/分以上の高速度で鋳造する高速鋳造も盛んになっている。このような連続鋳造では、溶鋼を鋳込む鋳型の耐摩耗性が重要課題となっている。
そこで、例えば、図9(a)、(b)に示すように、母材となる銅板50の内側下部、即ち、鋳片殻(又は鋳片)が当接する部位にNiめっき51を形成してなる長片52を有する鋳型が提案されている。
しかし、この鋳型でも、内側下部、特に、下端近傍に摩耗が生じる。また、短片をスライドさせる幅可変の鋳型の場合、この短片が摺動する部位に擦り疵が発生する。
そこで、▲1▼前記内側下部、特に、下端近傍の摩耗を防止するため、図10に示すように、Niめっき51aの下端近傍に、更に、Ni系合金めっき53を形成してなる長片54を有する鋳型が提案されている。
また、▲2▼前記短片が摺動する部位の摩耗を防止するため、図11に示すように、銅板50aの内側上部にも薄いNiめっき55を形成してなる長片56を有する鋳型が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記▲1▼の鋳型においては、前記内側下部、特に、下端近傍の耐摩耗性を向上させることはできるものの、短片が摺動する部位の擦り疵を防止することができない。また、前記▲2▼の鋳型においては、受湯領域の上方に位置する内側上部、特に、溶鋼を連続鋳造する際、この鋳型内に貯溜される溶鋼のメニスカス近傍のめっき層にヒートクラックが発生するという問題がある。
本発明はかかる事情に鑑みてなされたもので、短片が摺動当接する長片の両内側側部に擦り疵が発生するのを防止することができると共に、溶鋼を連続鋳造する際、鋳型内に貯溜される溶鋼のメニスカス近傍域にヒートクラックが発生するのを防止することができる連続鋳造用鋳型を提供することを目的とする。
【0004】
【課題を解決するための手段】
前記目的に沿う請求項1記載の連続鋳造用鋳型は、溶鋼注入初期に浸漬ノズルから注湯される溶鋼を受ける受湯領域を有する第1の長片、及び、該第1の長片に対向して平行に配置された第2の長片と、前記第1及び第2の長片の間に平行に配置された対となる短片を備えた枠状の連続鋳造用鋳型において、前記第1の長片の前記受湯領域に、Niめっきを形成すると共に、前記各短片が摺動当接する前記第1の長片の両内側側部、及び、凝固した鋳片殻が当接する前記第1の長片の内側下部であって、前記受湯領域を除く部分に、Niを0又は0を超え15wt%以下含有する第1のCo系めっきを形成し、更に、前記各短片が摺動当接する前記第2の長片の両内側側部、及び、前記鋳片殻が当接する前記第2の長片の内側下部に、Niを0又は0を超え15wt%以下含有する第2のCo系めっきを形成している。
請求項2記載の連続鋳造用鋳型は、請求項1記載の連続鋳造用鋳型において、前記Niめっき、及び、前記第1のCo系めっきの厚みは同一であって、0.1〜2mmの範囲にあり、しかも、前記第2のCo系めっきの厚みは0.1〜2mmの範囲にある。
【0005】
本発明者等は、連続鋳造用鋳型について鋭意検討と実験を重ねた結果、以下のような知見を得た。
即ち、図5、図6に示すように、Co系めっき中のNi含有量が約60wt%程度になるまでの範囲においては、このNi含有量が高くなるにつれ、Co系めっきの硬度は高くなるが、高温における摩耗減量は多くなる。これは、Co金属が有する特有の高温摩耗性がNiが混入することによって損なわれると考えられる。従って、前記Ni含有量が約15wt%以下、好ましくは10wt%以下のときでは、その摩耗減量は比較的軽微である。
また、たとえ、上述したCo系めっきであっても、長片の内面全面に施すと、溶鋼のメニスカス近傍のめっき層にヒートクラックが生じ、仮に、この部位の母材を露出するとヒートクラックを防止できることを知見し得た。
また、図7に示すように、溶鋼を連続鋳造する際、浸漬ノズル57から注湯される溶鋼を片方の長片52の内面に当てているため、溶鋼が当たる部位、即ち、受湯領域の熱衝撃が著しい。
従って、たとえ、上述したメニスカス近傍を避けて長片の内側下部にCo系めっきを形成しても、図8に示すように、母材となるCuの伸び率と、Co系めっき(Co−10wt%Ni)との伸び率が異なることに起因して、前記受湯領域にヒートクラックが生じる。なお、図中、符号58はダミーバーである。
【0006】
そこで、上述した受湯領域、即ち、長片の内側上部で露出される母材のCuと、長片の内側下部に皮膜されるCo系めっきとの境界部に、これらの中間の伸び率を有するNiをめっきすると、上述したCuとCo系めっきの伸び率の相違に依るヒートクラックの発生を防止することができることも知見し得た。
なお、上述した図5はCo系めっき中のNi含有量とCo系めっきの硬度との関係を示す特性図、図6は300℃におけるCo系めっき中のNi含有量とCo系めっきの摩耗減量との関係を示す特性図、図8は材料の温度と伸び率の関係を示す特性図である。また、図6は高温摩耗試験の結果であり、Co系めっきで作製されたテストピースにS45C製のリングを約10kg/cm2 の面圧をかけた状態で、恒温炉内にセットし、約300℃で、約30分間、50rpmのスピードで回転させた後の、テストピースの摩耗減量とリングの摩耗減量の総和を求めたものである。
【0007】
従って、請求項1、2記載の連続鋳造用鋳型においては、第1の長片の各短片が摺動当接する両内側側部、及び、鋳片殻が当接する内側下部で、しかも、受湯領域を除く部分、そして、第2の長片の各短片が摺動当接する両内側側部、及び、鋳片殻が当接する内側下部に、Niを0又は0を超え15wt%以下含有する硬い第1、第2のCo系めっきを形成したので、擦り疵の発生を防止できると共に、鋳片殻に対する耐摩耗性を向上することができ、長寿命の鋳型を提供できる。また、浸漬ノズルから注湯される溶鋼を受ける第1の長片の受湯領域に、Niめっきを形成したので、母材の銅板が露出される内側上部と、第1のCo系めっきを形成した内側下部との間で、伸び率の相違に依るヒートクラックの発生を防止することができる。
なお、Co系めっき中のNi含有量を、0又は0を超え15wt%以下(以下、0〜15wt%とする)、好ましくは0又は0を超え10wt%以下としたのは、上述した如く(図5、図6参照)、前記Ni含有量が10wt%を超えると、Co系めっきの硬度は高くなるものの、耐摩耗性が低下し、特に、15wt%を超えると、その傾向が著しくなるからである。
特に、請求項2記載の連続鋳造用鋳型においては、Co系めっきやNiめっきの厚みを上述した範囲とすることにより、鋳型の内側にCo系めっきやNiめっきを簡単に皮膜することができ、生産性を向上できると共に、鋳型が早期に使用できなくなるのを防止できる。
なお、ここで、Co系めっきやNiめっきの厚みを0.1mm未満にすると、短期間のうちに擦り減って、早期に鋳型の寿命が尽きてしまい、逆に、2mmを超えて皮膜することは製造上困難であるという欠点を有する。
【0008】
また、Co系めっきが形成される内側下部は、鋳造条件等にも依るが、長片の下端より、全高(L1 )の約1/5〜3/5程度、好ましくは約2/5〜3/5程度とする。これは、Co系めっきの形成範囲が、全高の3/5を超えると、最も高温となる溶鋼のメニスカスに近づき過ぎてヒートクラックが生じ、逆に、全高の2/5未満になると、摩耗防止効果が低下して、早期に使用できなくなり、特に、全高の1/5未満になると、その傾向が著しくなるからである。
また、第1の長片の受湯領域にNiめっきを形成する場合、このNiめっきの形成範囲は、特に、溶鋼注入初期に浸漬ノズルから注湯される溶鋼を受ける受湯領域であれば、特に、規定されるものではない。
また、溶鋼注入初期に浸漬ノズルから注湯される溶鋼を第2の長片にも当てる場合は、この第2の長片の受湯領域にNiめっきを形成してもよい。また、短片の内側下部にCo系めっきを形成してもよく、更に、溶鋼注入初期に溶鋼を短片に当てる場合は、この短片の受湯領域にNiめっきを形成してもよい。
更に、Co系めっきやNiめっきは、長片の下端側に向かって、その厚みを厚くすると、更に耐摩耗性を向上することもできる。また、本発明の連続鋳造用鋳型は、幅固定の鋳型、又は、幅可変の鋳型のいずれであってもよい。
【0009】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、図1〜図3を参照して、本発明の一実施の形態に係る連続鋳造用鋳型Aについて説明する。
図1に示すように、連続鋳造用鋳型Aは、適当間隔を開けて平行に配置した第1、第2の長片B、Cと、この第1、第2の長片B、Cの間に適当間隔を開けて平行に、しかも、第1、第2の長片B、Cと直交状に配置した一対の短片Dとを有している。なお、この連続鋳造用鋳型Aを用いて連続鋳造する場合、この鋳型Aの第1の長片Bの受湯領域に、溶鋼注入初期に浸漬ノズルから注湯される溶鋼を当てつつ、連続鋳造する。
従って、図2(a)、(b)に示すように、第1の長片Bにおいては、銅又は銅合金からなる母材11の両内側側部11a、受湯領域(本実施の形態では、母材11の内側下部11bで、しかも、内側上部11cとの境界部11dの一部11eとした)11e、更に、内側下部11bであって、受湯領域11eを除く部位11fに、それぞれ、第1のCo系めっきの一例であるNiを0〜15wt%含み厚さ(t2 )0.1〜2mmの第1のCo系合金めっき12、厚さ(t3 )0.1〜2mmのNiめっき13、第1のCo系めっきの一例であるNiを0〜15wt%含む厚さ(t2 )0.1〜2mmの第1のCo系合金めっき14が、それぞれ形成されている。
また、図3(a)、(b)に示すように、第2の長片Cにおいては、溶鋼注入初期に浸漬ノズルから注湯される溶鋼を当てないため、銅又は銅合金からなる母材15の両内側側部15a、及び、内側下部15bに、第2のCo系めっきの一例であるNiを0〜15wt%含む厚さ(t4 )0.1〜2mmの第2のCo系合金めっき16、17が、それぞれ形成されている。
【0010】
次に、本実施の形態に係る連続鋳造用鋳型Aの製造方法について説明する。
まず、母材11の両内側側部11a、及び、内側下部11bを、図示しない平面研削機で0.1〜2mm研削した後、この両内側側部11a、及び、内側下部11bに、それぞれ、母材11の内側上部11cと面一になるよう、厚さ0.1〜2mmのNiめっきを形成する。
そして、両内側側部11a、及び、内側下部11bでしかも受湯領域11eを除く部位11fを、前記と同様、図示しない平面研削機で研削して、Niめっき13を形成した後、この研削した両内側側部11a、及び、内側下部11bでしかも受湯領域11eを除く部位11fに、前記と同様、母材11の内側上部11cと面一になるよう、第1のCo系合金めっき12、14を形成し、第1の長片Bを完成する。なお、母材11の両内側側部11a、及び、内側下部11bを、図示しない平面研削機で0.1〜2mm研削した後、両内側側部11a、及び、内側下部11bに、それぞれ、母材11の内側上部11cと面一になるよう、厚さ0.1〜2mmの第1のCo系合金めっきを形成した後、受湯領域11eを研削し、その部分にNiめっき13を形成してもよい。
一方、第2の長片Cを製造する場合は、母材15の両内側側部15a、及び、内側下部15bを、前記と同様、図示しない平面研削機を用いて0.1〜2mm研削した後、この研削した両内側側部15a、及び、内側下部15bに、それぞれ、母材15の内側上部15cと面一になるよう、第2のCo系合金めっき16、17を形成する。
【0011】
以上のように本実施の形態に係る連続鋳造用鋳型によれば、第1、第2の長片B、Cの両内側側部11a、15aにそれぞれ、第1、第2のCo系合金めっき12、16が形成されているので、たとえ、短片Dをスライドして鋳片の幅換えを行っても、この短片Dの摺動部である両内側側部11a、15aに擦り疵が発生するのを防止できる。
また、第1の長片Bの内側下部11bの受湯領域11eを除く部位11f、第2の長片Cの内側下部15bに、それぞれ、第1、第2のCo系合金めっき14、17が形成されているので、溶鋼を連続鋳造する際、鋳片殻が接しても、摩耗して早期に寿命が尽きるのを防止することができる。
更に、溶鋼を連続鋳造する際、図示しない浸漬ノズルから注湯される溶鋼を受ける受湯領域11eに、Niめっき13を形成したので、高温の溶鋼によって母材11と第1のCo系合金めっき14の伸び率の相違に依ってヒートクラックが発生するのを防止することができる。
【0012】
【実施例】
次に、本実施の形態に係る連続鋳造用鋳型Aの確認試験を行った結果について説明する。
まず、図1〜図3に示すような第1、第2の長片B、Cを有する連続鋳造用鋳型Aを用意する。なお、第1、第2の長片B、Cの縦幅(L1 )は945mm、横幅(L2 )は2480mm、厚さ(t1 )は45mmとした。
また、第1、第2のCo系合金めっき12、16の横幅(L5 )はそれぞれ200mm、第1、第2のCo系合金めっき14、17の縦幅(L3 )は500mm、その横幅(L4 )は2080mm、非めっき面である内側上部11c、15cの縦幅(L8 )は445mmとした。
また、Niめっき13の縦幅(L6 )は200mm、その横幅(L7 )は1400mm、各めっき12〜14、16、17の厚さ(t2 〜t4 )は1mmとした。また、母材11、15にはCu−Cr−Zrを使用した。
また、第1、第2のCo系合金めっき12、14、16、17は、Niを10wt%含有するCo系合金めっきとした。また、図示しないが、短片Dには、Cu−Cr−Zrからなる母材の内側下部に、Niを10wt%含有するCo系合金めっきを形成したものを使用した。
【0013】
また、比較例として、図9に示すような内側下部にNiめっき51を形成した長片52を準備する。なお、前記と同様、長片52の縦幅(L1 )は945mm、横幅(L2 )は2480mm、厚さ(t1 )は45mm、Niめっき51の縦幅(L3 )は500mm、厚さ(t5 )は1mmとした。また、母材にはCu−Cr−Zrを使用した。また、短片には、Cu−Cr−Zrからなる母材の内側下部にNiめっきを形成したものを使用した。
この仕様で実機に使用したところ、比較例である長片52を有する連続鋳造用鋳型は、800チャージで交換する必要があったが、本実施の形態に係る連続鋳造用鋳型Aでは、1300チャージも連続して使用することができ、約1.6倍も寿命延長できた。
また、比較例において、短片をスライドさせて連続鋳造を行うと、鋳片のサイズやチャージ数等にもよるが、両サイドより195mm位置に局部摩耗が発生し、この局部摩耗減量が2mm以上にも達していたが、本実施の形態に係る連続鋳造用鋳型Aでは、同じ鋳造条件で使用しても、この局部摩耗量を1mm以下に抑えることができた。
また、同じチャージ数連続鋳造した後で、第1、第2のCo系合金めっきの摩耗減量を測定したところ、比較例の長片52のNiめっきの摩耗量(例えば、1.5mm)に比較して、1/2以下(0.5mm程度)となった。
【0014】
以上、本発明の実施の形態を説明したが、本発明は上記した実施の形態に限定されるものではなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、本実施の形態では、第1の長片Bの母材11の内側下部11bで、しかも、内側上部11cとの境界部11dの一部を受湯領域11eとしたが、例えば、図4に示すように、第1の長片Kの母材19の両内側側部19aを除く内側下部19bで、しかも、内側上部19cとの境界部を受湯領域19dとしてもよい。
なお、図4中、符号18は受湯領域19dに形成されたNiめっき、符号20は母材19の内側下部19bで、受湯領域19dを除く部位19eに形成された第1のCo系めっきの一例であるNiを0を超え15wt%以下含有する第1のCo系合金めっきである。
また、本実施の形態では、幅可変の鋳型Aについて説明したが、幅固定の鋳型であってもよい。また、本実施の形態では、垂直型連続鋳造機に適用される鋳型Aについて説明したが、湾曲型連続鋳造機に適用されるものであってもよい。
この場合、長片の内面を、鋳片が引き抜かれるストランドの曲率半径に応じた曲面状にすると共に、短片の両側面を、長片の内面形状に応じた曲面状にすればよい。
また、本実施の形態では、スラブを連続鋳造する鋳型Aについて説明したが、ブルームを連続鋳造するものであってもよい。また、本実施の形態では、冷却水を通すスリットを省略したが、このスリットを設けたものであってもよい。
また、本実施の形態では、第1、第2の長片B、Cの両内側側部11a、15aに、それぞれ第1、第2のCo系合金めっき12、16を設けたが、この両内側側部11a、15aの横幅(L5 )を、若干広め(例えば10〜20mm余分)に設けてもよい。
【0015】
【発明の効果】
以上の説明から明らかなように、請求項1、2記載の連続鋳造用鋳型においては、擦り疵の発生を防止できると共に、鋳片殻に対する耐摩耗性を向上することができ、長寿命の連続鋳造用鋳型を提供できる。
また、浸漬ノズルから注湯される溶鋼を受ける受湯領域にNiめっきを形成したので、ヒートクラックの発生を防止することができる。
特に、請求項2記載の連続鋳造用鋳型においては、鋳型の内側に第1、第2のCo系めっきを簡単に皮膜することができ、この結果、生産性を向上できると共に、短期間で鋳型の寿命が尽きてしまうのを防止できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る連続鋳造用鋳型の斜視図である。
【図2】(a)は同連続鋳造用鋳型の第1の長片の斜視図である。
(b)は図2(a)の矢視G−G図である。
【図3】(a)は同連続鋳造用鋳型の第2の長片の斜視図である。
(b)は図3(a)の矢視H−H図である。
【図4】同連続鋳造用鋳型の変形例の第1の長片の斜視図である。
【図5】Co系めっき中のNi含有量とCo系めっきの硬度との関係を示す特性図である。
【図6】300℃におけるCo系めっき中のNi含有量とCo系めっきの摩耗減量との関係を示す特性図である。
【図7】連続鋳造の説明図である。
【図8】材料の温度と伸び率の関係を示す特性図である。
【図9】(a)は従来の連続鋳造用鋳型の長片の斜視図である。
(b)は図9(a)の矢視J−J図である。
【図10】従来の連続鋳造用鋳型の長片の斜視図である。
【図11】従来の連続鋳造用鋳型の長片の斜視図である。
【符号の説明】
A 連続鋳造用鋳型 B 第1の長片
C 第2の長片 D 短片
K 第1の長片 11 母材
11a 内側側部 11b 内側下部
11c 内側上部 11d 境界部
11e 受湯領域 11f 部位
12 第1のCo系合金めっき(第1のCo系めっき)
13 Niめっき
14 第1のCo系合金めっき(第1のCo系めっき)
15 母材 15a 内側側部
15b 内側下部 15c 内側上部
16 第2のCo系合金めっき(第2のCo系めっき)
17 第2のCo系合金めっき(第2のCo系めっき)
18 Niめっき 19 母材
19a 内側側部 19b 内側下部
19c 内側上部 19d 境界部(受湯領域)
19e 部位
20 第1のCo系合金めっき(第1のCo系めっき)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting mold used for continuous casting equipment. More specifically, the present invention can prevent generation of rubbing and local wear flaws at a portion where a short piece is slidably contacted, and also from an immersion nozzle at the beginning of molten steel injection. The present invention relates to a continuous casting mold that can prevent heat cracks from occurring in a hot water receiving region that receives molten steel to be poured.
[0002]
[Prior art]
Conventionally, continuous casting of molten steel has been widely carried out, and recently, high-speed casting in which casting is performed at a high speed of 2.0 m / min or more has become popular. In such continuous casting, the wear resistance of a mold into which molten steel is cast is an important issue.
Therefore, for example, as shown in FIGS. 9A and 9B, Ni plating 51 is formed on the inner lower portion of the copper plate 50 that is the base material, that is, the portion where the cast shell (or cast piece) contacts. A mold having a long piece 52 is proposed.
However, even in this mold, wear occurs in the inner lower part, particularly in the vicinity of the lower end. Further, in the case of a mold having a variable width for sliding the short piece, a rubbing crease is generated at a portion where the short piece slides.
Therefore, (1) in order to prevent wear in the inner lower part, particularly in the vicinity of the lower end, as shown in FIG. 10, a long piece 54 formed by further forming a Ni-based alloy plating 53 in the vicinity of the lower end of the Ni plating 51a. A mold has been proposed.
(2) In order to prevent wear of the portion where the short piece slides, as shown in FIG. 11, a mold having a long piece 56 formed by forming a thin Ni plating 55 on the inner upper portion of the copper plate 50a is proposed. Has been.
[0003]
[Problems to be solved by the invention]
However, in the mold of (1), although it is possible to improve the wear resistance of the inner lower part, particularly in the vicinity of the lower end, it is not possible to prevent scuffing at the site where the short piece slides. Further, in the mold of the above (2), when the molten steel is continuously cast, especially in the upper part located above the hot water receiving region, a heat crack is generated in the plating layer near the meniscus of the molten steel stored in the mold. There is a problem of doing.
The present invention has been made in view of such circumstances, and it is possible to prevent the occurrence of rubbing flaws on both inner side portions of the long piece with which the short piece comes into sliding contact. It is an object of the present invention to provide a continuous casting mold capable of preventing heat cracks from occurring in the vicinity of the meniscus of molten steel stored in the steel.
[0004]
[Means for Solving the Problems]
The continuous casting mold according to claim 1, which meets the above object, has a first long piece having a hot water receiving region for receiving molten steel poured from an immersion nozzle in the initial stage of pouring of the molten steel, and is opposed to the first long piece. In the frame-like continuous casting mold comprising the second long piece arranged in parallel and the pair of short pieces arranged in parallel between the first and second long pieces, In the hot water receiving area of the long piece, Ni plating is formed, both inner side portions of the first long piece that the short pieces slide and come into contact with, and the solidified cast piece shell that comes into contact with the first piece. A first Co-based plating containing Ni or more than 0 and not more than 15 wt% is formed on the inner lower part of the long piece except for the hot water receiving region, and each of the short pieces is slid Ni is applied to both inner side portions of the second long piece in contact with each other and to an inner lower portion of the second long piece in contact with the cast shell. Or forming a second Co-based plating containing less 15 wt% greater than 0.
The continuous casting mold according to claim 2 is the continuous casting mold according to claim 1, wherein the Ni plating and the first Co-based plating have the same thickness and are in a range of 0.1 to 2 mm. In addition, the thickness of the second Co plating is in the range of 0.1 to 2 mm.
[0005]
As a result of intensive studies and experiments on the continuous casting mold, the present inventors have obtained the following knowledge.
That is, as shown in FIG. 5 and FIG. 6, in the range until the Ni content in the Co-based plating reaches about 60 wt%, the hardness of the Co-based plating increases as the Ni content increases. However, wear loss at high temperatures increases. This is considered that the characteristic high temperature abrasion property which Co metal has is impaired by Ni mixing. Therefore, when the Ni content is about 15 wt% or less, preferably 10 wt% or less, the wear loss is relatively small.
Moreover, even if it is the Co-based plating described above, if it is applied to the entire inner surface of the long piece, a heat crack occurs in the plating layer near the meniscus of the molten steel, and if the base material in this part is exposed, the heat crack is prevented. I have learned that I can do it.
Further, as shown in FIG. 7, when continuously casting the molten steel, the molten steel poured from the immersion nozzle 57 is applied to the inner surface of one of the long pieces 52. Thermal shock is remarkable.
Therefore, even if Co-based plating is formed on the inner lower portion of the long piece while avoiding the vicinity of the meniscus described above, as shown in FIG. 8, the elongation percentage of Cu as a base material and Co-based plating (Co-10 wt. % Ni), the heat cracking occurs in the hot water receiving region. In the figure, reference numeral 58 denotes a dummy bar.
[0006]
Therefore, at the boundary between the hot water receiving region described above, that is, the base material Cu exposed at the inner upper portion of the long piece and the Co-based plating filmed at the inner lower portion of the long piece, an intermediate elongation ratio between them is set. It has also been found that when the Ni containing is plated, it is possible to prevent the occurrence of heat cracks due to the difference in elongation between Cu and Co-based plating described above.
5 is a characteristic diagram showing the relationship between the Ni content in the Co-based plating and the hardness of the Co-based plating, and FIG. 6 is the Ni content in the Co-based plating at 300 ° C. and the wear loss of the Co-based plating. FIG. 8 is a characteristic diagram showing the relationship between material temperature and elongation. FIG. 6 shows the result of the high temperature wear test. An S45C ring is applied to a test piece made of Co-based plating with a surface pressure of about 10 kg / cm 2 and set in a constant temperature furnace. This is the sum of the wear loss of the test piece and the wear loss of the ring after rotating at 300 ° C. for about 30 minutes at a speed of 50 rpm.
[0007]
Therefore, in the casting mold for continuous casting according to claims 1 and 2, both the inner side portions where the short pieces of the first long piece are in sliding contact and the inner lower portion where the cast piece shell is in contact, Hardness containing Ni in excess of 0 or 0 and not more than 15 wt% in the portion excluding the region, both inner side portions where each short piece of the second long piece comes into sliding contact, and the inner lower portion where the cast piece shell comes into contact Since the first and second Co-based platings are formed, it is possible to prevent generation of scratches, improve wear resistance against the cast shell, and provide a long-life mold. Moreover, since Ni plating was formed in the hot water receiving area | region of the 1st long piece which receives the molten steel poured from the immersion nozzle, the inner upper part where the copper plate of a base material is exposed, and 1st Co type plating are formed. It is possible to prevent the occurrence of heat cracks due to the difference in elongation rate between the lower part and the inner lower part.
Note that the Ni content in the Co-based plating is 0 or more than 0 and 15 wt% or less (hereinafter referred to as 0 to 15 wt%), preferably 0 or more than 0 and 10 wt% or less as described above ( 5 and 6), when the Ni content exceeds 10 wt%, the hardness of the Co-based plating increases, but the wear resistance decreases. Particularly, when the Ni content exceeds 15 wt%, the tendency becomes remarkable. It is.
In particular, in the continuous casting mold according to claim 2, by setting the thickness of the Co plating or Ni plating in the above-described range, the Co plating or Ni plating can be easily coated on the inside of the mold, Productivity can be improved, and the mold can be prevented from becoming unusable early.
Here, if the thickness of the Co plating or Ni plating is less than 0.1 mm, it will be worn out in a short period of time, and the mold life will be exhausted at an early stage, and conversely, the coating will exceed 2 mm. Has the disadvantage of being difficult to manufacture.
[0008]
The inner lower portion where the Co-based plating is formed depends on casting conditions and the like, but is about 1/5 to 3/5 of the total height (L 1 ) from the lower end of the long piece, preferably about 2/5 to 5/5. About 3/5. This is because if the formation range of Co plating exceeds 3/5 of the total height, it will be too close to the meniscus of the molten steel, which will be the hottest, and heat cracks will occur. This is because the effect is reduced and the device cannot be used at an early stage. In particular, when the total height is less than 1/5, the tendency becomes remarkable.
Moreover, when forming Ni plating in the hot water receiving region of the first long piece, the formation range of this Ni plating is particularly a hot water receiving region that receives molten steel poured from an immersion nozzle in the initial stage of molten steel injection. In particular, it is not specified.
Further, when the molten steel poured from the immersion nozzle is applied to the second long piece at the initial stage of the molten steel injection, Ni plating may be formed in the hot water receiving region of the second long piece. Further, Co-based plating may be formed on the inner lower portion of the short piece, and when the molten steel is applied to the short piece at the initial stage of molten steel injection, Ni plating may be formed in the hot water receiving region of the short piece.
Further, the wear resistance can be further improved by increasing the thickness of the Co plating or Ni plating toward the lower end side of the long piece. Further, the continuous casting mold of the present invention may be either a fixed width mold or a variable width mold.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, with reference to FIGS. 1-3, the casting mold A for continuous casting which concerns on one embodiment of this invention is demonstrated.
As shown in FIG. 1, the continuous casting mold A includes a first and second long pieces B and C arranged in parallel at an appropriate interval, and the first and second long pieces B and C. The first and second long pieces B and C are paired with a pair of short pieces D arranged at an appropriate interval in parallel with each other. In the case of continuous casting using this continuous casting mold A, continuous casting is performed while the molten steel poured from the immersion nozzle is applied to the hot water receiving region of the first long piece B of the casting mold A at the initial stage of molten steel injection. To do.
Accordingly, as shown in FIGS. 2A and 2B, in the first long piece B, both inner side portions 11a of the base material 11 made of copper or a copper alloy, a hot water receiving region (in this embodiment) In addition, the inner lower portion 11b of the base material 11 and a part 11e of the boundary portion 11d with the inner upper portion 11c), and the inner lower portion 11b, which is a portion 11f excluding the hot water receiving region 11e, respectively, An example of the first Co-based plating is a first Co-based alloy plating 12 containing 0 to 15 wt% of Ni and having a thickness (t 2 ) of 0.1 to 2 mm, and a thickness (t 3 ) of 0.1 to 2 mm. An Ni plating 13 and a first Co alloy plating 14 having a thickness (t 2 ) of 0.1 to 2 mm containing 0 to 15 wt% of Ni, which is an example of the first Co plating, are formed.
Further, as shown in FIGS. 3 (a) and 3 (b), in the second long piece C, the molten steel poured from the immersion nozzle at the initial stage of molten steel injection is not applied, so that the base material made of copper or a copper alloy is used. The second Co-based alloy having a thickness (t 4 ) of 0.1 to 2 mm containing Ni, which is an example of the second Co-based plating, on both the inner side portions 15a and the inner lower portion 15b. Plating 16 and 17 are formed respectively.
[0010]
Next, a method for manufacturing the continuous casting mold A according to the present embodiment will be described.
First, after both inner side parts 11a and inner lower part 11b of base material 11 were ground by 0.1-2 mm with a surface grinder (not shown), both inner side parts 11a and inner lower part 11b were respectively Ni plating with a thickness of 0.1 to 2 mm is formed so as to be flush with the inner upper portion 11 c of the base material 11.
Then, both the inner side portion 11a and the inner lower portion 11b and the portion 11f excluding the hot water receiving region 11e were ground with a surface grinder (not shown) to form the Ni plating 13 and then ground. Both the inner side portion 11a and the inner lower portion 11b, and the portion 11f excluding the hot water receiving region 11e, the first Co-based alloy plating 12, so as to be flush with the inner upper portion 11c of the base material 11, as described above. 14 is formed, and the first long piece B is completed. In addition, after both inner side parts 11a and inner lower parts 11b of the base material 11 are ground by 0.1 to 2 mm using a surface grinder (not shown), both inner side parts 11a and inner lower parts 11b are respectively formed on the mother parts 11a and 11b. After forming the first Co-based alloy plating having a thickness of 0.1 to 2 mm so as to be flush with the inner upper portion 11c of the material 11, the hot water receiving region 11e is ground, and the Ni plating 13 is formed in that portion. May be.
On the other hand, when manufacturing the 2nd long piece C, both the inner side part 15a and the inner lower part 15b of the base material 15 were ground 0.1-2 mm using the surface grinder which is not illustrated like the above. Thereafter, second Co-based alloy platings 16 and 17 are formed on the ground inner side portions 15a and the inner lower portion 15b so as to be flush with the inner upper portion 15c of the base material 15, respectively.
[0011]
As described above, according to the continuous casting mold according to the present embodiment, the first and second Co-based alloy platings are provided on the inner side portions 11a and 15a of the first and second long pieces B and C, respectively. 12 and 16 are formed, even if the short piece D is slid to change the width of the cast piece, scuffing occurs on both inner side portions 11a and 15a which are sliding portions of the short piece D. Can be prevented.
Further, the first and second Co-based alloy platings 14 and 17 are provided on the portion 11f of the inner lower portion 11b of the first long piece B excluding the hot water receiving region 11e and the inner lower portion 15b of the second long piece C, respectively. Since it is formed, even when the slab shell comes into contact with the continuous casting of the molten steel, it can be prevented from being worn out and having an end of its life at an early stage.
Furthermore, when continuously casting the molten steel, since the Ni plating 13 is formed in the hot water receiving region 11e that receives the molten steel poured from an immersion nozzle (not shown), the base material 11 and the first Co-based alloy plating are formed by the hot molten steel. Heat cracks can be prevented from occurring due to the difference in the elongation ratio of 14.
[0012]
【Example】
Next, the result of the confirmation test of the continuous casting mold A according to the present embodiment will be described.
First, a continuous casting mold A having first and second long pieces B and C as shown in FIGS. 1 to 3 is prepared. The vertical width (L 1 ) of the first and second long pieces B and C was 945 mm, the horizontal width (L 2 ) was 2480 mm, and the thickness (t 1 ) was 45 mm.
The first and second Co-based alloy platings 12 and 16 have a lateral width (L 5 ) of 200 mm, and the first and second Co-based alloy platings 14 and 17 have a vertical width (L 3 ) of 500 mm. (L 4 ) was 2080 mm, and the vertical widths (L 8 ) of the inner upper portions 11c and 15c, which are non-plated surfaces, were 445 mm.
Moreover, the vertical width (L 6 ) of the Ni plating 13 was 200 mm, the horizontal width (L 7 ) was 1400 mm, and the thicknesses (t 2 to t 4 ) of the platings 12 to 14, 16 and 17 were 1 mm. Further, Cu—Cr—Zr was used for the base materials 11 and 15.
The first and second Co-based alloy platings 12, 14, 16, and 17 were Co-based alloy platings containing 10 wt% Ni. Moreover, although not shown in figure, the short piece D used what formed Co type alloy plating containing 10 wt% of Ni in the inner lower part of the base material which consists of Cu-Cr-Zr.
[0013]
Further, as a comparative example, a long piece 52 having Ni plating 51 formed on the inner lower portion as shown in FIG. 9 is prepared. As described above, the longitudinal width (L 1 ) of the long piece 52 is 945 mm, the lateral width (L 2 ) is 2480 mm, the thickness (t 1 ) is 45 mm, and the vertical width (L 3 ) of the Ni plating 51 is 500 mm, thick. The thickness (t 5 ) was 1 mm. Further, Cu—Cr—Zr was used as a base material. Moreover, what used Ni plating in the inner lower part of the base material which consists of Cu-Cr-Zr was used for the short piece.
When this specification was used in an actual machine, the continuous casting mold having the long piece 52 as a comparative example had to be replaced with 800 charges. However, with the continuous casting mold A according to the present embodiment, 1300 charges were used. Can also be used continuously, extending the life by about 1.6 times.
In the comparative example, when continuous casting is performed by sliding a short piece, local wear occurs at a position of 195 mm from both sides, depending on the size of the slab and the number of charges, and the local wear loss is 2 mm or more. However, in the continuous casting mold A according to the present embodiment, the amount of local wear could be suppressed to 1 mm or less even when used under the same casting conditions.
Moreover, after the same number of charges were continuously cast, the wear loss of the first and second Co-based alloy plating was measured, and compared with the wear amount (for example, 1.5 mm) of the Ni plating of the long piece 52 of the comparative example. And it became 1/2 or less (about 0.5 mm).
[0014]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, in the present embodiment, a part 11d of the boundary portion 11d with the inner lower portion 11b of the base material 11 of the first long piece B and the inner upper portion 11c is used as the hot water receiving region 11e. As shown in FIG. 5, the inner lower portion 19b excluding both inner side portions 19a of the base material 19 of the first long piece K, and the boundary portion with the inner upper portion 19c may be used as a hot water receiving region 19d.
In FIG. 4, reference numeral 18 denotes Ni plating formed in the hot water receiving area 19 d, and reference numeral 20 denotes an inner lower part 19 b of the base material 19, and the first Co-based plating formed in the portion 19 e excluding the hot water receiving area 19 d. 1 is a first Co-based alloy plating containing more than 0 and not more than 15 wt%.
In the present embodiment, the variable width mold A has been described, but a fixed width mold may be used. Moreover, although this Embodiment demonstrated the casting_mold | template A applied to a vertical type continuous casting machine, you may apply to a curved type continuous casting machine.
In this case, the inner surface of the long piece may be curved according to the radius of curvature of the strand from which the cast piece is drawn, and both side surfaces of the short piece may be curved according to the inner surface shape of the long piece.
In the present embodiment, the mold A for continuously casting a slab has been described. However, the bloom may be continuously cast. Moreover, in this Embodiment, although the slit which lets cooling water pass was abbreviate | omitted, what provided this slit may be used.
In the present embodiment, the first and second Co-based alloy platings 12 and 16 are provided on the inner side portions 11a and 15a of the first and second long pieces B and C, respectively. The lateral width (L 5 ) of the inner side portions 11a and 15a may be provided slightly wider (for example, an extra 10 to 20 mm).
[0015]
【The invention's effect】
As is apparent from the above description, in the continuous casting mold according to claims 1 and 2, it is possible to prevent the occurrence of rubbing and to improve the wear resistance against the slab shell, and to have a long service life. A casting mold can be provided.
Moreover, since Ni plating was formed in the hot water receiving area | region which receives the molten steel poured from the immersion nozzle, generation | occurrence | production of a heat crack can be prevented.
In particular, in the continuous casting mold according to claim 2, the first and second Co platings can be easily coated on the inside of the mold. As a result, the productivity can be improved and the mold can be formed in a short period of time. It is possible to prevent the end of the service life.
[Brief description of the drawings]
FIG. 1 is a perspective view of a continuous casting mold according to an embodiment of the present invention.
FIG. 2A is a perspective view of a first long piece of the continuous casting mold.
(B) is an arrow GG figure of Fig.2 (a).
FIG. 3A is a perspective view of a second long piece of the continuous casting mold.
(B) is a HH figure of the arrow of FIG. 3 (a).
FIG. 4 is a perspective view of a first long piece of a variation of the continuous casting mold.
FIG. 5 is a characteristic diagram showing the relationship between the Ni content in Co-based plating and the hardness of Co-based plating.
FIG. 6 is a characteristic diagram showing the relationship between the Ni content in Co-based plating at 300 ° C. and the wear loss of Co-based plating.
FIG. 7 is an explanatory diagram of continuous casting.
FIG. 8 is a characteristic diagram showing the relationship between the temperature and elongation rate of a material.
FIG. 9A is a perspective view of a long piece of a conventional continuous casting mold.
(B) is an arrow JJ figure of Fig.9 (a).
FIG. 10 is a perspective view of a long piece of a conventional continuous casting mold.
FIG. 11 is a perspective view of a long piece of a conventional continuous casting mold.
[Explanation of symbols]
A continuous casting mold B first long piece C second long piece D short piece K first long piece 11 base material 11a inner side part 11b inner lower part 11c inner upper part 11d boundary part 11e hot water receiving area 11f part 12 first Co-based alloy plating (first Co-based plating)
13 Ni plating 14 First Co-based alloy plating (first Co-based plating)
15 Base material 15a Inner side portion 15b Inner lower portion 15c Inner upper portion 16 Second Co-based alloy plating (second Co-based plating)
17 Second Co-based alloy plating (second Co-based plating)
18 Ni plating 19 Base material 19a Inner side part 19b Inner lower part 19c Inner upper part 19d Boundary part (hot water receiving area)
19e part 20 1st Co system alloy plating (1st Co system plating)

Claims (2)

溶鋼注入初期に浸漬ノズルから注湯される溶鋼を受ける受湯領域を有する第1の長片、及び、該第1の長片に対向して平行に配置された第2の長片と、前記第1及び第2の長片の間に平行に配置された対となる短片を備えた枠状の連続鋳造用鋳型において、
前記第1の長片の前記受湯領域に、Niめっきを形成すると共に、前記各短片が摺動当接する前記第1の長片の両内側側部、及び、凝固した鋳片殻が当接する前記第1の長片の内側下部であって、前記受湯領域を除く部分に、Niを0又は0を超え15wt%以下含有する第1のCo系めっきを形成し、
更に、前記各短片が摺動当接する前記第2の長片の両内側側部、及び、前記鋳片殻が当接する前記第2の長片の内側下部に、Niを0又は0を超え15wt%以下含有する第2のCo系めっきを形成したことを特徴とする連続鋳造用鋳型。
A first long piece having a hot water receiving region for receiving molten steel poured from an immersion nozzle at an initial stage of molten steel injection, and a second long piece arranged in parallel to face the first long piece, In a frame-shaped continuous casting mold provided with a pair of short pieces arranged in parallel between the first and second long pieces,
In the hot water receiving area of the first long piece, Ni plating is formed, both inner side portions of the first long piece, which the short pieces slide and abut, and solidified cast piece shells abut. Forming a first Co-based plating containing Ni in a lower portion of the first long piece, excluding the hot water receiving region, containing 0 or more than 0 and 15 wt% or less;
Further, Ni is 0 or more than 0 and exceeds 15 wt. On both inner side portions of the second long piece with which each short piece comes into sliding contact and with the inner lower portion of the second long piece with which the cast shell comes into contact. A casting mold for continuous casting, characterized in that a second Co-based plating containing not more than 50% is formed.
前記Niめっき、及び、前記第1のCo系めっきの厚みは同一であって、0.1〜2mmの範囲にあり、しかも、前記第2のCoめっき系の厚みは0.1〜2mmの範囲にある請求項1記載の連続鋳造用鋳型。The thickness of the Ni plating and the first Co plating is in the range of 0.1 to 2 mm, and the thickness of the second Co plating is in the range of 0.1 to 2 mm. The continuous casting mold according to claim 1.
JP36564497A 1997-12-22 1997-12-22 Continuous casting mold Expired - Lifetime JP3993289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36564497A JP3993289B2 (en) 1997-12-22 1997-12-22 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36564497A JP3993289B2 (en) 1997-12-22 1997-12-22 Continuous casting mold

Publications (2)

Publication Number Publication Date
JPH11179491A JPH11179491A (en) 1999-07-06
JP3993289B2 true JP3993289B2 (en) 2007-10-17

Family

ID=18484768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36564497A Expired - Lifetime JP3993289B2 (en) 1997-12-22 1997-12-22 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP3993289B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759326B2 (en) * 2005-06-20 2011-08-31 三島光産株式会社 Continuous casting mold
BR112014015904A8 (en) * 2011-12-26 2017-07-04 Posco variable size casting mold

Also Published As

Publication number Publication date
JPH11179491A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
US20080032150A1 (en) Casting steel strip with low surface roughness and low porosity
EP1100638A1 (en) Casting steel strip
JP6044614B2 (en) Steel continuous casting method
CA1220606A (en) Refractory coating of edge-dam blocks for the purpose of preventing longitudinal bands of sinkage in the product of a continuous casting machine
JP5458019B2 (en) Cast roll of twin roll type thin plate casting machine and surface treatment method thereof
JP3993289B2 (en) Continuous casting mold
JPH08294751A (en) Casting drum of twin drum type continuous casting machine
KR101195219B1 (en) Method for making surface of casting roll of strip casting process
JPH08150442A (en) Roll for continuously casting metallic strip
JP4055522B2 (en) Molded copper plate for continuous casting mold and manufacturing method thereof
JP4093688B2 (en) Continuous casting mold
JP3145766B2 (en) Continuous casting of duplex stainless steel sheet
KR100711793B1 (en) Casting roll for twin-roll strip caster and cast strip manufactured using the same
JP3380425B2 (en) Twin drum type continuous casting drum
KR100388031B1 (en) Casting roll coating method of twin roll sheet casting machine
JP6787359B2 (en) Continuous steel casting method
JPH09239497A (en) Formation of surface recessed parts on casting roll for roll type continuous caster and device for forming surface recessed parts thereof
JP3908902B2 (en) Cooling drum for continuous casting of thin-walled slab and continuous casting method of thin-walled slab
JP3622437B2 (en) Continuous casting mold and continuous casting method using the same
JP4303670B2 (en) Steel continuous casting method
JP3346089B2 (en) Continuous casting mold
KR100530103B1 (en) Mold without Surface Crack in Thin Slab Continuous Caster
JP2963428B1 (en) Billet continuous casting mold
JPH09164454A (en) Continuous casting equipment of sheet metal
JP3649870B2 (en) Continuous casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term