JP3978203B2 - Connection method of solar cell elements - Google Patents

Connection method of solar cell elements Download PDF

Info

Publication number
JP3978203B2
JP3978203B2 JP2004246310A JP2004246310A JP3978203B2 JP 3978203 B2 JP3978203 B2 JP 3978203B2 JP 2004246310 A JP2004246310 A JP 2004246310A JP 2004246310 A JP2004246310 A JP 2004246310A JP 3978203 B2 JP3978203 B2 JP 3978203B2
Authority
JP
Japan
Prior art keywords
solar cell
lead wire
tab lead
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004246310A
Other languages
Japanese (ja)
Other versions
JP2006066570A (en
JP2006066570A5 (en
Inventor
文夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO. & ENGINEERING CO., LTD.
Original Assignee
ECO. & ENGINEERING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO. & ENGINEERING CO., LTD. filed Critical ECO. & ENGINEERING CO., LTD.
Priority to JP2004246310A priority Critical patent/JP3978203B2/en
Priority to PCT/JP2005/015179 priority patent/WO2006022209A1/en
Priority to TW94128918A priority patent/TWI419340B/en
Publication of JP2006066570A publication Critical patent/JP2006066570A/en
Publication of JP2006066570A5 publication Critical patent/JP2006066570A5/ja
Application granted granted Critical
Publication of JP3978203B2 publication Critical patent/JP3978203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池素子を複数個、直列及び並列接続して太陽電池モジュールを形成するための太陽電池素子の接続方法に関し、更に詳しくは、極薄の太陽電池素子を使用しても該素子の破損や反りを減少させ歩留まりを向上させるとともに、安価な太陽電池素子を提供し得る接続方法に関する。   The present invention relates to a method for connecting solar cell elements to form a solar cell module by connecting a plurality of solar cell elements in series and in parallel, and more specifically, even if an ultrathin solar cell element is used, the element The present invention relates to a connection method that can reduce the damage and warpage of the substrate, improve the yield, and provide an inexpensive solar cell element.

太陽電池は、無尽蔵で環境汚染のないエネルギーとして存在する太陽光を直接電気エネルギーに変換する発電システムで、住宅用から、電卓、腕時計、玩具等の生活分野へとその用途や使用範囲を急速に拡大しつつある。   Solar cells are power generation systems that directly convert sunlight, which is inexhaustible and free of environmental pollution, into electrical energy. Rapidly expanding its usage and range of use from residential use to calculators, watches, toys, and other living areas. It is expanding.

かかる太陽電池は、太陽電池素子の製造工程を経た後、複数の太陽電池素子をタブリード線によって電気的に接続してモジュールを形成する工程と、該モジュールを透明なカバー材と保護材との間に挟んでラミネートする工程を経て製造されている。また、各種の太陽電池の中で、特に非晶質シリコン系太陽電池や多結晶シリコン系太陽電池等は、大面積で製造でき、製造コストも安価であることから、これまでに鋭意研究され、ここ数年の間にモジュール化形成並びにシステム化形成の生産技術の開発も一層促進され、3KW程度の家庭用小型発電装置から数百KWの大型発電装置が実用化されるまでに至っている。   Such a solar cell includes a step of electrically connecting a plurality of solar cell elements by tab lead wires after a solar cell element manufacturing process, and forming the module between a transparent cover material and a protective material. It is manufactured through a process of laminating and sandwiching. In addition, among various solar cells, especially amorphous silicon solar cells and polycrystalline silicon solar cells can be manufactured in a large area and are inexpensive to manufacture, In recent years, development of production technology for modularization and systemization has been further promoted, and from a small power generator of about 3 KW to a large power generator of several hundred KW has been put into practical use.

一方、このような背景のもと、市場の需要増と相まって、市場からは大幅なコストダウンの要請もあり、その一つの手段として太陽電池を構成する素子基板の厚みがこれまでの300〜500ミクロンよりも薄手の200ミクロン程度にしたものが対象となり、また、近い将来にはこれよりも更に薄い150ミクロン程度を対象とする可能性も出てきている。   On the other hand, under such a background, coupled with an increase in market demand, there is a demand for a significant cost reduction from the market. As one means, the thickness of the element substrate constituting the solar cell is 300 to 500 so far. The target is about 200 microns, which is thinner than micron. In the near future, there is a possibility of targeting about 150 microns, which is thinner than this.

かかる発電装置を形成する太陽電池モジュールは、太陽電池素子を複数個、直列及び並列に接続してなるものであり、該素子の接続のための半田付けによる一般的な接続方法としては、隣接する素子の一方の予備半田処理された表面側集電電極と他方の予備半田処理された裏面側の電極とに、半田付着のタブリード線を密着させた上、該タブリード線の加熱(溶着)、冷却の各過程を経て接続するものであるが、このとき溶着される部分はタブリード線全長に亘って一気に行われるので、主として素子基板とタブリード線との熱膨張率の差によって基板側に熱ストレス(応力)がかかり、場合によっては素子基板に割れが生じたり、反りが発生したりして、歩留まりを低下させる場合がある。また、この傾向は基板の厚みが薄いほど顕著に現れ易く、これらの課題を解決することが要請されている。   A solar cell module forming such a power generation device is formed by connecting a plurality of solar cell elements in series and in parallel, and a general connection method by soldering for connecting the elements is adjacent to each other. Solder-attached tab lead wires are brought into close contact with one of the pre-soldered surface-side current collecting electrodes and the other pre-solder-treated back side electrode, and the tab lead wires are heated (welded) and cooled. However, since the portion to be welded at this time is performed all at once over the entire length of the tab lead wire, thermal stress (on the substrate side is mainly caused by the difference in thermal expansion coefficient between the element substrate and the tab lead wire. Stress), and in some cases, the element substrate may be cracked or warped, thereby reducing the yield. In addition, this tendency is more likely to appear as the substrate is thinner, and it is required to solve these problems.

上記要請に応えようとして、例えば、透孔性を有する表面部材と、裏面部材との間に配設され、接続タブ(タブリード線)により互いに電気的に接続された複数の太陽電池素子が封止されてなる太陽電池モジュールにおいて、接続タブは、太陽電池素子との接続面を形成し互いに分離された複数の接続部と、太陽電池素子との接続面から離間し前記複数の接続部を互いに連結する連結部とを備えてなる太陽電池のモジュールが提案されている(例えば、特許文献1参照)。   In an attempt to meet the above requirements, for example, a plurality of solar cell elements disposed between a front surface member having permeability and a back surface member and electrically connected to each other by connection tabs (tab lead wires) are sealed. In the solar cell module, the connection tab forms a connection surface with the solar cell element and is separated from each other, and is separated from the connection surface with the solar cell element and connects the plurality of connection portions to each other. There has been proposed a solar cell module including a connecting portion (see, for example, Patent Document 1).

また、裏面に裏面電極を有し、表面に表面電極及び集電電極を有した太陽電池素子が複数並設され、一つの太陽電池素子と隣接する他の太陽電池素子を直列接続するために設けられ、一つの太陽電池素子の集電電極と隣接する他の太陽電池素子の裏面電極を接続する帯状の接続タブを有する太陽電池モジュールにおいて、上記接続タブには、半田付けが可能な半田付け可能領域と、半田付けが不可能な半田付け不可能領域とが長手方向に交互に複数設けてなる太陽電池のモジュールが提案されている(例えば、特許文献2参照)。
特開平11−312820号公報 特開2002−280591号公報
In addition, a plurality of solar cell elements having a back electrode on the back surface and a surface electrode and a collecting electrode on the front surface are provided in parallel, and provided to connect one solar cell element and another adjacent solar cell element in series. In a solar cell module having a strip-shaped connection tab for connecting a collecting electrode of one solar cell element and a back electrode of another adjacent solar cell element, the connection tab can be soldered. There has been proposed a solar cell module in which a plurality of regions and non-solderable regions that cannot be soldered are alternately provided in the longitudinal direction (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 11-312820 Japanese Patent Laid-Open No. 2002-280591

しかしながら、上記特許文献1に記載された技術における接続タブは、互いに分離され、且つ太陽電池素子との接続面を形成するための平坦面を有する複数の接続部と、これら接続部を太陽電池素子との接続面から離間して接続している連結部を有してなり、接続面の面積を小さくすることによって、接続タブと太陽電池素子との熱膨張率の差に起因して発生する素子の損傷を回避する技術ではあるが、接続タブの加熱及び冷却を、接続タブの全長に亘って同時に加熱し、また、接続タブの全長に亘って同時に冷却しているため、熱ストレスによる素子の破損や反りの発生が避けられず、モジュール化の各工程でのハンドリングや加圧により破損し歩留りが低下するという問題をはらんでいる。   However, the connection tabs in the technique described in Patent Document 1 are separated from each other and have a plurality of connection portions having a flat surface for forming a connection surface with the solar cell elements, and these connection portions are connected to the solar cell elements. An element generated due to a difference in the thermal expansion coefficient between the connection tab and the solar cell element by reducing the area of the connection surface by having a connecting portion connected away from the connection surface However, since the heating and cooling of the connection tab are simultaneously heated over the entire length of the connection tab and simultaneously cooled over the entire length of the connection tab, The occurrence of breakage and warping is unavoidable, and there is a problem that the yield is reduced due to breakage due to handling and pressurization in each process of modularization.

また、該接続タブは市販されているような、半田で被覆された単なる平角状のタブリード線ではなく、接続部間に挟設された複数の連結部には曲げ加工が施された特殊な構造からなるので、この曲げ加工の部位から断線しないように、あるいはこの部位の強度が維持されるように、高精度に形成する必要があり、いきおいコスト・アップとならざるを得ない。   Also, the connection tab is not a mere flat tab lead wire covered with solder, as is commercially available, but a special structure in which a plurality of connecting portions sandwiched between the connecting portions are bent. Therefore, it is necessary to form it with high accuracy so as not to be disconnected from the bending portion or to maintain the strength of this portion, and the cost is inevitably increased.

また、特許文献2に記載された技術は、特許文献1に記載された技術の改良であって、特許文献1における接続部と連結部を有する接続タブに代え、半田付けが可能な半田付け可能領域と、半田付けが不可能な半田付け不可能領域とが長手方向に複数設けられた接続タブを適用し、これによって、基板に生成する熱ストレスの発生を防止し、基板の損傷を防止しようとするものである。   Moreover, the technique described in Patent Document 2 is an improvement of the technique described in Patent Document 1, and can be soldered in place of the connection tab having the connection portion and the connection portion in Patent Document 1 so that soldering is possible. Apply connection tabs that have multiple areas and non-solderable areas that cannot be soldered in the longitudinal direction, thereby preventing the generation of thermal stress on the board and preventing damage to the board It is what.

すなわち、この特許文献2に記載された発明の接続タブは、ベースとなる薄板状の銅箔に部分的に複数箇所で半田が付着する場所をマスキングした上で、半田の付着しない耐熱性樹脂やクロムめっき等で表面処理を施した後、マスキングを取り除いて予備半田を施して作製したものであり、これによって接続面は予備半田の施されたところだけとなることで接続面積を容易に減少させることができ、また機械的加工が施されていないので機械強度が低下する箇所もなく、また、太陽電池素子に対し、接続タブを断続的に接続することで、半田付けの際生じる基板の熱ストレスを低減し基板の破損を抑制することができる。   In other words, the connection tab of the invention described in Patent Document 2 masks a place where the solder adheres to a thin copper foil serving as a base at a plurality of locations, and then heat resistant resin or the like to which the solder does not adhere. After surface treatment with chrome plating, etc., masking is removed and pre-solder is applied to make the connection surface only where the pre-solder is applied, thereby easily reducing the connection area. In addition, since no mechanical processing is performed, there is no portion where the mechanical strength is reduced, and by intermittently connecting the connection tab to the solar cell element, the heat of the substrate generated during soldering can be obtained. Stress can be reduced and damage to the substrate can be suppressed.

しかしながら、この特許文献2に記載された技術においても、接続タブの加熱、冷却をそれぞれ接続タブの全長に亘って同時に行なうため、破損や反りの発生は避けられず、また、該接続タブを作製するのにマスキングしたり、表面処理したりして多くの工数が必要な特別な接続タブを採用しており、コスト・アップとなるのを避けられない。   However, even in the technique described in Patent Document 2, since heating and cooling of the connection tab are performed simultaneously over the entire length of the connection tab, the occurrence of breakage and warpage is inevitable, and the connection tab is manufactured. However, a special connection tab that requires a lot of man-hours, such as masking or surface treatment, is used, which inevitably increases costs.

本発明は、かかる実情に鑑み、上記従来技術の課題を解決するもので、これまでのような高価で特殊な接続タブを使うことなく、市販されている安価な標準品である平角状の半田付きタブリード線を使用できるとともに、太陽電池素子に不要な熱ストレスを生起させず、該素子の割れや反りを防止し、太陽電池素子の歩留まりを向上させるとともに安価な太陽電池素子の接続方法を提供することを目的とする。   In view of such circumstances, the present invention solves the above-described problems of the prior art, and does not use expensive and special connection tabs as in the past, and is a flat standard solder that is an inexpensive standard product that is commercially available. A tab lead wire can be used, and unnecessary thermal stress is not generated in the solar cell element, cracking or warping of the element is prevented, the yield of the solar cell element is improved, and an inexpensive solar cell element connection method is provided. The purpose is to do.

上記目的を達成するために、本発明の請求項1は、表面に表面電極及び集電電極を備え、裏面に裏面電極を備えた太陽電池素子を電気銅の両面に半田がコーティングされたタブリード線の半田付けにより電気的に接続するに際し、前記タブリード線上を、加熱手段と冷却手段とが近接配置されてなる単位操作を移動させながら前記半田を局部的に溶融した後、速やかに局部的に固化することにより、タブリード線の全長に亘って連続的又は断続的に接続することを特徴とする太陽電池素子の接続方法を内容とする。 In order to achieve the above object, claim 1 of the present invention is a tab lead wire in which a front surface electrode and a collecting electrode are provided on the front surface, and a solar cell element having a back surface electrode on the back surface is coated with solder on both surfaces of electrolytic copper. When electrically connecting by soldering, the solder is locally melted while moving the unit operation in which the heating means and the cooling means are arranged close to each other on the tab lead wire, and then quickly solidified locally. Thus , the content of the connection method of the solar cell elements is characterized in that the connection is made continuously or intermittently over the entire length of the tab lead wire .

本発明の請求項2は、加熱手段が赤外線ランプ、加熱気体又は加熱ゴテである請求項1記載の太陽電池素子の接続方法を内容とする。   Claim 2 of the present invention includes the method for connecting solar cell elements according to claim 1, wherein the heating means is an infrared lamp, heated gas, or heated iron.

本発明の請求項3は、冷却手段が気体、液体又は固体である請求項1又は2記載の太陽電池素子の接続方法を内容とする。   Claim 3 of the present invention includes the method for connecting solar cell elements according to claim 1 or 2, wherein the cooling means is gas, liquid or solid.

本発明の請求項4は、気体が空気である請求項3記載の太陽電池素子の接続方法を内容とする。   A fourth aspect of the present invention includes the method for connecting solar cell elements according to the third aspect, wherein the gas is air.

本発明の請求項5は、液体がエタノールである請求項3記載の太陽電池素子の接続方法を内容とする。   Claim 5 of the present invention includes the method for connecting solar cell elements according to claim 3, wherein the liquid is ethanol.

本発明の請求項6は、タブリード線上に適宜間隔をおいてノズルを配設し、該ノズルに順次加熱気体を供給した後、順次冷却気体を供給する請求項1記載の太陽電池素子の接続方法を内容とする。 Claim 6 of the present invention, the nozzle disposed at appropriate intervals on the tab lead line, after supplying successively heated gas to the nozzle, the solar cell element of sequential Motomeko 1, wherein you supply cooling gas The connection method is the content.

本発明の請求項7は、タブリード線上に一組の加熱ノズルと冷却ノズルとを配設し、前記加熱ノズルには加熱気体を供給し、前記冷却ノズルには冷却気体を供給しながら加熱ノズルと冷却ノズルを前記タブリード線上を移動させる請求項1記載の太陽電池素子の接続方法を内容とする。 According to a seventh aspect of the present invention, a pair of heating nozzles and cooling nozzles are arranged on the tab lead wire, a heating gas is supplied to the heating nozzles, and a cooling nozzle is supplied to the heating nozzles while supplying a cooling gas. The method for connecting solar cell elements according to claim 1 , wherein a cooling nozzle is moved on the tab lead wire.

本発明の請求項8は、タブリード線上に加熱ゴテと冷却ノズルを配設し、前記加熱ゴテにより加熱し、前記冷却ノズルに冷却気体を供給しながら加熱ゴテと冷却ノズルを前記タブリード線上を移動させる請求項1記載の太陽電池素子の接続方法を内容とする。 According to an eighth aspect of the present invention, a heating iron and a cooling nozzle are arranged on the tab lead wire, heated by the heating iron, and the heating iron and the cooling nozzle are moved on the tab lead wire while supplying a cooling gas to the cooling nozzle . A method for connecting solar cell elements according to claim 1 is described.

本発明は、太陽電池のモジュールを形成するに際し、一方の太陽電池素子表面の集電電極と、これに隣接する他方の素子の裏面電極とを電気銅の両面に半田がコーティングされたタブリード線の半田付けにより、加熱手段と冷却手段とが近接配置されてなる単位操作を移動させ、前記タブリード線の半田局部的溶融した後速やかに化することにより溶着・接続することによって、素子に不要な熱ストレスの発生を防止し、素子の割れや反りを防止して歩留まりを大巾に向上させることができる In forming a solar cell module, the present invention provides a tab lead wire in which the collector electrode on the surface of one solar cell element and the back electrode of the other element adjacent thereto are coated with solder on both surfaces of electrolytic copper. by soldering, heating means and cooling means are arranged close to move the unit operation consisting, after the locally melt the solder of the tab lead wire, by welding and connection by Rukoto promptly turn into solid In addition, it is possible to prevent generation of unnecessary thermal stress on the element, prevent cracking and warping of the element, and greatly improve the yield .

本発明により、かかる効果が奏される理由については、従来技術のようにリード線全長に亘って同時に加熱、冷却するのではなく、半田を局部的に加熱溶融した後、速やかに局部的に冷却溶着する操作の結果、加熱によって一度膨張しかけたリード線部分が直ちに冷却されることで収縮に転じ局部的に膨張収縮がバランスを保ち、これがリード線全長に亘って連続的又は断続的に形成されるので、リード線が室温まで冷却されても熱ストレスが抑制又は緩和され、割れや反りが減少するものと考えられる。   The reason why such an effect is achieved by the present invention is that the solder is not heated and cooled simultaneously over the entire length of the lead wire as in the prior art, but after the solder is locally heated and melted, it is quickly cooled locally. As a result of the welding operation, the lead wire portion that has once expanded due to heating is immediately cooled, so that it contracts and locally expands and contracts to maintain a balance, which is formed continuously or intermittently over the entire length of the lead wire. Therefore, it is considered that even when the lead wire is cooled to room temperature, the thermal stress is suppressed or alleviated, and cracks and warpage are reduced.

また、本発明で使用するタブリード線は、市販されている安価な標準品である平角状の半田付きタブリード線を使用できるので、大巾なコストダウンを実現することが可能となる。   In addition, since the tab lead wire used in the present invention can be a flat standard solder tab lead wire that is a commercially available inexpensive standard product, it is possible to realize a large cost reduction.

本発明は、素子基板の表面に表面電極と該表面電極に直交し集電するために設けられた集電電極と、裏面に裏面電極を設けて一つの太陽電池素子とし、隣接する素子の一方の集電電極と、他方の裏面電極とを電気銅の両面に半田がコーティングされたタブリード線の半田付けにより電気的に接続して太陽電池のモジュールを形成するに際し、タブリード線全長に亘って同時に加熱及び冷却するのではなく、タブリード線上を、加熱手段と冷却手段とが近接配置されてなる単位操作を移動させながら前記半田を局部的に溶融した後、速やかに局部的に固化することにより、前記タブリード線の半田の局部的な溶融、固化を連続して形成することにより、連続的又は断続的に接続することを特徴とする。 The present invention provides a solar cell element by providing a surface electrode on a surface of an element substrate, a current collecting electrode provided to collect current perpendicular to the surface electrode, and a back electrode on the back surface, and one of adjacent elements. When the solar cell module is formed by electrically connecting the current collecting electrode and the other back electrode by soldering the tab lead wire coated with solder on both sides of the electric copper, the entire length of the tab lead wire is simultaneously Instead of heating and cooling, the solder is locally melted while moving the unit operation in which the heating means and the cooling means are arranged close to each other on the tab lead wire, and then quickly solidified locally . The tab lead wires are connected continuously or intermittently by continuously forming local melting and solidification of solder.

本発明に使用されるタブリード線は通常のものでよく、例えば、平角状で、幅1.5mm、厚み0.16mmの電気銅の両面に半田がコーティングされ、市販されている標準品を用いることができる。
本発明における加熱手段としては、赤外線ランプ、加熱気体、加熱ゴテ等のいずれでもよく、また、冷却手段としては、空気などの気体、水、エタノールなどの液体、熱伝導性の良い銅棒などの固体等のいずれでもよい。また、タブリード線は連続的に溶着されてもよく、また断続的(スポット的)に溶着されてもよい。断続的に溶着される場合は、タブリード線の長さが例えば125〜155mm程度の場合、通常3〜16箇所程度で溶着される。
The tab lead wire used in the present invention may be a normal one, for example, use a standard product that is commercially available and is coated with solder on both sides of electric copper having a flat shape and a width of 1.5 mm and a thickness of 0.16 mm. Can do.
The heating means in the present invention may be any of an infrared lamp, a heating gas, a heating iron, etc., and the cooling means is a gas such as air, a liquid such as water or ethanol, a copper rod having good thermal conductivity, or the like. Any of solid etc. may be sufficient. The tab lead wires may be welded continuously or intermittently (spot-like). In the case of intermittent welding, when the length of the tab lead wire is, for example, about 125 to 155 mm, it is usually welded at about 3 to 16 locations.

本発明の接続方法は、自動的な装置により行うことが望ましいが、太陽電池素子1枚づつへのタブリード線の接続は半自動的装置により行い、これらの素子同士の接続(通常8〜12枚程度)は手作業で行うことも可能である。   Although the connection method of the present invention is preferably performed by an automatic device, the tab lead wire is connected to each solar cell element by a semi-automatic device, and these elements are connected to each other (usually about 8 to 12 sheets). ) Can also be done manually.

尚、タブリード線上の加熱手段と冷却手段とが近接配置されてなる単位操作を連続的又は断続的に移動させる場合、その始点は、通常、タブリード線上を一端から他端へ移動させるのが作業性の面で好ましいが、これに限る必要はなく、タブリード線上の任意の箇所を始点としてもよい。 In the case of continuously or intermittently moving the unit operation and cooling means and the heating means tab lead line is arranged close, the starting point is usually that the tab lead line from one end of to move to the other end Although it is preferable in terms of workability, the present invention is not limited to this, and an arbitrary position on the tab lead wire may be used as a starting point.

以下、本発明の太陽電池素子の接続方法の好ましい実施態様を説明するが、それに先立ち、太陽電池素子とこの素子が複数枚接続されて形成される太陽電池モジュールについて図1(a)、(b)、及び図2に基ずいて説明する。   Hereinafter, a preferred embodiment of the solar cell element connection method of the present invention will be described. Prior to that, a solar cell module and a solar cell module formed by connecting a plurality of such elements are shown in FIGS. ) And FIG.

図1(a)、(b)において、太陽電池素子1として、略125ミリ角の厚み略200ミクロンの寸法を有する基板2の表面には表面電極3、裏面には裏面電極4が形成されると共に、表面電極3と同じ表面側に、表面電極3に接続して集電する集電電極5が2〜3列、通常2列形成される。   1 (a) and 1 (b), as a solar cell element 1, a surface electrode 3 is formed on the surface of a substrate 2 having a dimension of approximately 125 mm square and a thickness of approximately 200 microns, and a back electrode 4 is formed on the back surface. At the same time, two or three rows, usually two rows, of current collecting electrodes 5 connected to the surface electrode 3 and collecting current are formed on the same surface side as the surface electrode 3.

また、図2に示したように、太陽電池モジュール6としては、太陽電池素子1の隣接する一方の集電電極5と、他方の裏面電極4とを集電電極5の長手方向に沿いタブリード線7によって接続される。図2では素子2枚が接続された状態を示しているが一般的には8枚〜12枚程度が順次連続して接続される。   Further, as shown in FIG. 2, as the solar cell module 6, the tab lead wire along the longitudinal direction of the current collecting electrode 5 is connected to one current collecting electrode 5 adjacent to the solar cell element 1 and the other back surface electrode 4. 7 is connected. Although FIG. 2 shows a state in which two elements are connected, generally, about 8 to 12 elements are sequentially connected.

実施態様1
本発明の実施態様を図3に基ずいて説明する。なお、図3においては、図の煩雑をさけるため、素子1の輪郭と集電電極の位置だけを示し、表面電極等を省略している。また、下記に説明する装置のノズルについても2列形成されている集電電極の一方側だけを示し、他方側を省略して説明する。以下の実施態様においても同様である。
Embodiment 1
An embodiment of the present invention will be described with reference to FIG. In FIG. 3, only the outline of the element 1 and the position of the current collecting electrode are shown, and the surface electrode and the like are omitted in order to avoid the complexity of the drawing. In addition, the nozzles of the apparatus described below will be described by showing only one side of the collecting electrodes formed in two rows and omitting the other side. The same applies to the following embodiments.

図3に示したように、装置の搬送ベルト(図示せず)上に、図1で説明した表面電極3及び集電電極5と、裏面に裏面電極4を備えた太陽電池素子1がセットされた後、2列に形成された細長い集電電極5の上部にタブリード線7が配設される。続いて、これら集電電極5とタブリード線7の相対位置関係を保持するために、リード線押さえ機構部8のフィンガー部8Aが、タブリード線7(集電電極5)に直交する方向から延出され、タブリード線7の上から押さえ付けるように一時的に固定する。   As shown in FIG. 3, on the conveyor belt (not shown) of the apparatus, the surface electrode 3 and the current collecting electrode 5 described in FIG. 1 and the solar cell element 1 having the back electrode 4 on the back surface are set. After that, the tab lead wire 7 is disposed on the upper part of the elongated current collecting electrode 5 formed in two rows. Subsequently, in order to maintain the relative positional relationship between the current collecting electrode 5 and the tab lead wire 7, the finger portion 8A of the lead wire pressing mechanism portion 8 extends from a direction orthogonal to the tab lead wire 7 (current collecting electrode 5). Then, the tab lead wire 7 is temporarily fixed so as to be pressed from above.

この後、タブリード線7の上に、適宜間隔をおいて配設された装置の複数のノズル9にその一端から他端に向かって順次加熱気体(加熱空気)をタブリード線7に向かって噴射加熱して半田を溶融させ、次いで、順次冷却気体(冷却空気)に切り替え溶融した半田を固化し、連続的又は断続的に接続するか、又はタブリード線7に半田が溶融するまで加熱気体(加熱空気)を噴射加熱した後、タブリード線7上をその一端から順次冷却気体に切り替えてノズル9から冷却気体(空気)をタブリード線7に向かって噴射冷却し、半田を固化してタブリード線7と集電電極5とを溶着させる。続いて、タブリード線7の上から一時的に押さえ付けていたフィンガー部8Aが後退して、一連の接続動作が完了する。   Thereafter, a heating gas (heated air) is sequentially jetted and heated from one end to the other end of a plurality of nozzles 9 arranged on the tab lead wire 7 at appropriate intervals. Then, the solder is melted and then sequentially switched to a cooling gas (cooling air) to solidify the melted solder and connect continuously or intermittently or until the solder melts on the tab lead wire 7 (heating air) ) Is spray-heated on the tab lead wire 7 from one end to the cooling gas in order, and cooling gas (air) is jet-cooled from the nozzle 9 toward the tab lead wire 7 to solidify the solder and collect it with the tab lead wire 7. The electrode 5 is welded. Subsequently, the finger portion 8A temporarily pressed from above the tab lead wire 7 is retracted, and a series of connection operations is completed.

ノズル9は、その先端を半田で被覆されたタブリード線7の下側部分の半田を集中的に溶融するように工夫したものを用いることができる。また、上記ノズルを2列並設してそれぞれを加熱列と冷却列としこれらを切り替えることによりタブリード線を加熱冷却してもよい。尚、図3ではノズルのみを図示し、該ノズルに連結する加熱気体や冷却気体の供給チューブや供給源等は省略されている。 As the nozzle 9, a nozzle devised so as to intensively melt the solder of the lower portion of the tab lead wire 7 whose tip is covered with solder can be used . Also, it may be heated cooling tab lead lines by the respective heating column the nozzle 2 Retsunami設cooling column switch between them. In FIG. 3, only the nozzle is shown, and the supply tube and the supply source of the heating gas and the cooling gas connected to the nozzle are omitted.

実施態様2
図4に示したように、本実施態様において、装置の搬送ベルト(図示せず)上に太陽電池素子1がセットされる点、集電電極5の上部にタブリード線7が配設される点、及びリード線押さえ機構部8のフィンガー部8Aが延出され、タブリード線7の上から押さえ付ける状態で一時的に固定する点は、前述の実施態様1の場合と同じである。
Embodiment 2
As shown in FIG. 4, in this embodiment, the solar cell element 1 is set on the conveyor belt (not shown) of the apparatus, and the tab lead wire 7 is disposed on the upper side of the collecting electrode 5. And the finger part 8A of the lead wire pressing mechanism 8 is extended and temporarily fixed in a state where it is pressed from above the tab lead wire 7, as in the case of the first embodiment.

本実施態様2では、タブリード線7上に一組の、加熱空気を供給する加熱ノズル10と、冷却空気を供給する冷却ノズル11とが配設されている。そして、タブリード線7の上に配設され、且つ装置の移動ユニット(図示せず)に連結された一組の加熱ノズル10と冷却ノズル11から、隣接するフィンガー部8A間のタブリード線7に加熱空気と冷却空気とが別々に供給されるように構成されている。   In the second embodiment, a set of heating nozzles 10 for supplying heated air and cooling nozzles 11 for supplying cooling air are arranged on the tab lead wire 7. Then, the tab lead wire 7 between adjacent finger portions 8A is heated from a set of heating nozzle 10 and cooling nozzle 11 disposed on the tab lead wire 7 and connected to a moving unit (not shown) of the apparatus. Air and cooling air are configured to be supplied separately.

先ず、加熱ノズル10からの加熱空気によって、タブリード線7に被覆されている半田を溶融し、しかる後に、冷却ノズル11からの冷却空気によって溶融した半田を冷却して固化する。これら一組の加熱ノズル10と冷却ノズル11は、ユニットとして、タブリード線7上を順次移動しながらタブリード線7と集電電極5とを順次溶着する。続いて、タブリード線7の上から一時的に押さえ付けていたフィンガー部8Aが後退して、一連の接続動作が完了する。   First, the solder coated on the tab lead wire 7 is melted by the heated air from the heating nozzle 10, and then the molten solder is cooled and solidified by the cooling air from the cooling nozzle 11. The pair of heating nozzle 10 and cooling nozzle 11 as a unit sequentially welds the tab lead wire 7 and the current collecting electrode 5 while moving on the tab lead wire 7 sequentially. Subsequently, the finger portion 8A temporarily pressed from above the tab lead wire 7 is retracted, and a series of connection operations is completed.

実施態様3
図5で示すように、本実施態様は、前述の実施態様2における加熱ノズル10の代わりに加熱ゴテ12を使用した以外は実施態様2の場合と同様である。
すなわち、タブリード線7上に一組の加熱ゴテ12と冷却空気を供給する冷却ノズル11とを配設し、先ず加熱ゴテ12によりタブリード線7に被覆されている半田を溶融し、次いで、冷却ノズル11からの冷却空気により溶融した半田を冷却して固化して接続する方法である。
なお、集電電極5の上に配設されたタブリード線7をその位置に保持するために、装置におけるリード線押さえ機構部8のフィンガー部8Aの数は、前述の実施態様1、2においては片側に6本設けていたが、図5に示したように、素子1の両端位置の2箇所のみを押さえるようにフィンガー部8Aの数を片側2本にしてもよい。このように、フィンガー部8Aの数を減らすことにより、半田付けのピッチの変更が容易であり、また連続的に半田付けするのも容易である。
Embodiment 3
As shown in FIG. 5, this embodiment is the same as that in Embodiment 2 except that a heating iron 12 is used instead of the heating nozzle 10 in Embodiment 2 described above.
That is, a set of heating irons 12 and a cooling nozzle 11 for supplying cooling air are arranged on the tab lead wire 7, and the solder covered on the tab lead wire 7 is first melted by the heating iron 12, and then the cooling nozzle 11 is a method in which the melted solder is cooled and solidified by cooling air from No. 11.
In order to hold the tab lead wire 7 disposed on the current collecting electrode 5 in that position, the number of the finger portions 8A of the lead wire holding mechanism portion 8 in the apparatus is the same as in the first and second embodiments. Although six are provided on one side, as shown in FIG. 5, the number of finger portions 8 </ b> A may be two on one side so as to hold down only two positions at both ends of the element 1. Thus, by reducing the number of finger portions 8A, it is easy to change the soldering pitch, and it is also easy to continuously solder.

以下、実施例を挙げて本発明を詳述するが、本発明はかかる実施例のみに制限されないことは云うまでもない。   EXAMPLES Hereinafter, although an Example is given and this invention is explained in full detail, it cannot be overemphasized that this invention is not restrict | limited only to this Example.

実施例1
図4に示した接続方法により、太陽電池素子を接続した。太陽電池素子1としては、外寸125mm×125mm、厚み220ミクロンの単結晶基板で電極は予備半田済みのものを用い、また、タブリード線は厚み160ミクロン、幅1.5mmの無鉛の半田メッキ品を用いた。また、素子1へのタブリード線付けはタンデム方式で表裏別々に行った。条件は加熱空気の温度を510℃とし、タブリード線付け速度は、125mmタブリード線長に対し3.0秒とした。冷却空気は室温の30℃で、加熱ノズル10の加熱始点で開始した0.5秒遅れのパターンで、加熱・冷却操作を行った。加熱始点では0.5秒予熱した後、ノズルユニットの走行を開始した。
上記方法で接続した結果、素子96枚のタブリード線付けに対し、素子の割れはゼロであった。また、素子の反りは、中央付近の最大測定値として平均0.6mmで、モジュール化の加工工程やハンドリングの際の破損は皆無であった。
Example 1
The solar cell elements were connected by the connection method shown in FIG. As the solar cell element 1, a single crystal substrate having an outer dimension of 125 mm × 125 mm and a thickness of 220 microns is used, and the electrodes are pre-soldered, and the tab lead wire is a lead-free solder plated product having a thickness of 160 microns and a width of 1.5 mm. Was used. In addition, the tab lead wire to the element 1 was performed separately by the tandem method. The conditions were such that the temperature of the heated air was 510 ° C., and the tab lead wire attachment speed was 3.0 seconds for a 125 mm tab lead wire length. The cooling air was 30 ° C. at room temperature, and the heating / cooling operation was performed in a pattern with a 0.5 second delay starting from the heating start point of the heating nozzle 10. At the heating start point, the nozzle unit started running after preheating for 0.5 seconds.
As a result of connection by the above method, the cracking of the element was zero with respect to the tab lead wiring of 96 elements. Further, the warpage of the element was an average of 0.6 mm as the maximum measured value near the center, and there was no damage during the modularization process or handling.

比較例1
タブリード線全長に亘って同時に加熱した後タブリード線全長に亘って同時に冷却した他は実施例1と略同様にしてタブリード線を接続した。素子96枚のタブリード線付けに対し、素子の割れは2枚で、また、素子の反りは平均1.8mmで、モジュール化の加工工程やハンドリングの際にも1枚が破損した。
Comparative Example 1
Tab lead wires were connected in substantially the same manner as in Example 1 except that the entire length of the tab lead wire was heated at the same time and then cooled at the same time over the entire length of the tab lead wire. In contrast to the 96 tab lead wires, the cracks of the elements were two, and the warpage of the elements was an average of 1.8 mm, and one was damaged during the modularization process and handling.

実施例2
図5に示した接続方法により太陽電池素子を接続した。即ち、前述の実施例1と同様の太陽電池素子とタブリード線を用い、タンデム方式で表裏別々にタブリード線付けを行った。条件としては、加熱ゴテ温度は300℃とし、タブリード線付け速度は、5秒とした。加熱始点の予熱時間は0.5秒とした。また、冷却条件は実施例1の場合と同一条件で行った。また、加熱ゴテの先端部のタブリード線に接触する面には、SUS304チタンコーティング材を使用した。
上記方法で接続した結果、素子96枚のタブリード付けに対し割れはゼロであった。また、基板の反りは中央付近の最大値で平均0.5mmで、モジュール化の加工工程やハンドリングの際の破損は皆無であった。
Example 2
Solar cell elements were connected by the connection method shown in FIG. That is, using the same solar cell element and tab lead wire as in Example 1 described above, tab lead wires were attached separately on the front and back sides in a tandem manner. As conditions, the heating iron temperature was 300 ° C., and the tab lead wire attaching speed was 5 seconds. The preheating time at the heating start point was 0.5 seconds. The cooling conditions were the same as in Example 1. Further, a SUS304 titanium coating material was used on the surface of the heating iron that contacts the tab lead wire at the tip.
As a result of connection by the above method, the crack was zero with respect to the tab lead attachment of 96 elements. Further, the warpage of the substrate was 0.5 mm on average at the maximum value near the center, and there was no damage during the modularization process or handling.

叙上のとおり、本発明の接続方法によれば、タブリード線で半田付けする際の熱ストレスによる素子の破損が大幅に減少し、また、タブリード線で接続された素子の反りはモジュール化の加工工程やハンドリング時における破損を回避できる程度までに減少させることができ、歩留まりが大巾に向上する。   As described above, according to the connection method of the present invention, the damage of the element due to the thermal stress when soldering with the tab lead wire is greatly reduced, and the warp of the element connected with the tab lead wire is processed into a module. It can be reduced to the extent that damage during the process and handling can be avoided, and the yield is greatly improved.

また、本発明の接続方法では特殊なタブリード線は必要でなく、通常のタブリード線が使用できるので、上記の歩留まりの向上の相まって、安価な太陽電池モジュールを提供することできる。   In addition, since the connection method of the present invention does not require a special tab lead wire and a normal tab lead wire can be used, an inexpensive solar cell module can be provided in combination with the improvement in the yield.

(a)太陽電池素子の平面図である。 (b)同素子の側面図である。(A) It is a top view of a solar cell element. (B) It is a side view of the element. 複数の太陽電池素子を接続して太陽電池モジュールを形成する状態を示す側面図である。It is a side view which shows the state which connects a several solar cell element and forms a solar cell module. 本発明の実施態様を説明するための斜視図である。It is a perspective view for demonstrating the embodiment of this invention. 本発明の他の実施態様を説明するための斜視図である。It is a perspective view for demonstrating the other embodiment of this invention. 本発明の他の実施態様を説明するための斜視図である It is a perspective view for demonstrating the other embodiment of this invention .

符号の説明Explanation of symbols

1 太陽電池素子
2 基板
3 表面電極
4 裏面電極
5 集電電極
6 太陽電池モジュール
7 タブリード線
8 リード線押え機構部
8A フィンガー部
9 ノズル
10 加熱ノズル
11 冷却ノズル
12 加熱ゴテ
DESCRIPTION OF SYMBOLS 1 Solar cell element 2 Board | substrate 3 Front surface electrode 4 Back surface electrode 5 Current collecting electrode 6 Solar cell module 7 Tab lead wire 8 Lead wire holding | maintenance mechanism part 8A Finger part 9 Nozzle 10 Heating nozzle 11 Cooling nozzle 12 Heating iron

Claims (8)

表面に表面電極及び集電電極を備え、裏面に裏面電極を備えた太陽電池素子を電気銅の両面に半田がコーティングされたタブリード線の半田付けにより電気的に接続するに際し、前記タブリード線上を、加熱手段と冷却手段とが近接配置されてなる単位操作を移動させながら前記半田を局部的に溶融した後、速やかに局部的に固化することにより、タブリード線の全長に亘って連続的又は断続的に接続することを特徴とする太陽電池素子の接続方法。 When electrically connecting a solar cell element having a surface electrode and a collecting electrode on the front surface and a back surface electrode on the back surface by soldering a tab lead wire coated with solder on both surfaces of the electric copper, on the tab lead wire, The solder is locally melted while moving the unit operation in which the heating means and the cooling means are arranged close to each other, and then solidified quickly, thereby continuously or intermittently over the entire length of the tab lead wire. A method for connecting solar cell elements, comprising: connecting to a solar cell element. 加熱手段が赤外線ランプ、加熱気体又は加熱ゴテである請求項1記載の太陽電池素子の接続方法。   The method for connecting solar cell elements according to claim 1, wherein the heating means is an infrared lamp, heated gas, or heated iron. 冷却手段が気体、液体又は固体である請求項1又は2記載の太陽電池素子の接続方法。   The method for connecting solar cell elements according to claim 1 or 2, wherein the cooling means is gas, liquid or solid. 気体が空気である請求項3記載の太陽電池素子の接続方法。   The method for connecting solar cell elements according to claim 3, wherein the gas is air. 液体がエタノールである請求項3記載の太陽電池素子の接続方法。   The method for connecting solar cell elements according to claim 3, wherein the liquid is ethanol. タブリード線上に適宜間隔をおいてノズルを配設し、該ノズルに順次加熱気体を供給した後、順次冷却気体を供給する請求項1記載の太陽電池素子の接続方法。   The method for connecting solar cell elements according to claim 1, wherein a nozzle is disposed on the tab lead wire at an appropriate interval, a heating gas is sequentially supplied to the nozzle, and then a cooling gas is sequentially supplied. タブリード線上に一組の加熱ノズルと冷却ノズルとを配設し、前記加熱ノズルには加熱気体を供給し、前記冷却ノズルには冷却気体を供給しながら加熱ノズルと冷却ノズルを前記タブリード線上を移動させる請求項1記載の太陽電池素子の接続方法。   A set of heating nozzle and cooling nozzle is arranged on the tab lead wire, heating gas is supplied to the heating nozzle, and the heating nozzle and cooling nozzle are moved on the tab lead wire while supplying cooling gas to the cooling nozzle. The method for connecting solar cell elements according to claim 1. タブリード線上に加熱ゴテと冷却ノズルを配設し、前記加熱ゴテにより加熱し、前記冷却ノズルに冷却気体を供給しながら加熱ゴテと冷却ノズルを前記タブリード線上を移動させる請求項1記載の太陽電池素子の接続方法。   The solar cell element according to claim 1, wherein a heating iron and a cooling nozzle are arranged on the tab lead wire, heated by the heating iron, and the heating iron and the cooling nozzle are moved on the tab lead wire while supplying a cooling gas to the cooling nozzle. Connection method.
JP2004246310A 2004-08-26 2004-08-26 Connection method of solar cell elements Expired - Fee Related JP3978203B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004246310A JP3978203B2 (en) 2004-08-26 2004-08-26 Connection method of solar cell elements
PCT/JP2005/015179 WO2006022209A1 (en) 2004-08-26 2005-08-22 Method for connecting solar cell element
TW94128918A TWI419340B (en) 2004-08-26 2005-08-24 Method of connecting solar cell components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246310A JP3978203B2 (en) 2004-08-26 2004-08-26 Connection method of solar cell elements

Publications (3)

Publication Number Publication Date
JP2006066570A JP2006066570A (en) 2006-03-09
JP2006066570A5 JP2006066570A5 (en) 2007-02-22
JP3978203B2 true JP3978203B2 (en) 2007-09-19

Family

ID=35967421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246310A Expired - Fee Related JP3978203B2 (en) 2004-08-26 2004-08-26 Connection method of solar cell elements

Country Status (3)

Country Link
JP (1) JP3978203B2 (en)
TW (1) TWI419340B (en)
WO (1) WO2006022209A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273830A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Method for manufacturing solar battery device
JP4903021B2 (en) 2006-08-28 2012-03-21 株式会社エヌ・ピー・シー Tab lead soldering apparatus and soldering method
WO2008152678A1 (en) * 2007-06-13 2008-12-18 Eco. & Engineering Co., Ltd. Solar battery element connecting method and connecting apparatus
JP2009059738A (en) * 2007-08-29 2009-03-19 Kyocera Corp Method and apparatus for manufacturing solar battery module
DE102008037403A1 (en) * 2008-09-30 2010-04-01 Jörg NIEMEIER Method and device for connecting a solar cell to a cell connector
DE102008061537A1 (en) 2008-12-03 2010-06-10 Aci-Ecotec Gmbh & Co. Kg Curing device for photovoltaic thin-film solar cells
JP2011088165A (en) * 2009-10-20 2011-05-06 Nisshinbo Mechatronics Inc Soldering device and soldering method
JP5459841B2 (en) * 2009-12-11 2014-04-02 日本アビオニクス株式会社 Method and apparatus for joining solar cell modules
KR101022678B1 (en) 2010-05-11 2011-03-22 주식회사 톱텍 Soldering apparatus for lead frame
WO2011151769A2 (en) * 2010-06-02 2011-12-08 Somont Gmbh Methods and system for connecting solar cells
JP2012064748A (en) * 2010-09-16 2012-03-29 Nippon Avionics Co Ltd Method and device for joining solar cell module
KR101147165B1 (en) 2010-10-27 2012-05-25 주식회사 나래나노텍 A Multi-Dispensing Nozzle for Forming Electrode Patterns of Solar Cell, and An Apparatus for Forming Electrode Patterns of Solar Cell Using the Same
JP5541804B2 (en) * 2011-01-18 2014-07-09 日本アビオニクス株式会社 Soldering method, wiring apparatus and heater tool for solar cell current collecting wiring material
KR102164037B1 (en) * 2014-09-30 2020-10-13 주식회사 제우스 Multisubstrate processing apparatus
KR102164035B1 (en) * 2014-09-30 2020-10-13 주식회사 제우스 Tabbing apparatus and controlling method thereof
KR102187624B1 (en) * 2014-09-30 2020-12-08 주식회사 제우스 Tabbing apparatus
CN206022384U (en) * 2014-10-27 2017-03-15 杰宜斯科技有限公司 The electric wire mobile device of fixing device
US10290761B2 (en) 2015-10-12 2019-05-14 Lg Electronics Inc. Apparatus and method for attaching interconnector of solar cell panel

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604270A (en) * 1983-06-22 1985-01-10 Hitachi Ltd Manufacture of solar battery
EP0749636A1 (en) * 1994-12-01 1996-12-27 Angewandte Solarenergie - ASE GmbH Method and apparatus for interconnecting solar cells
JPH1187756A (en) * 1997-09-05 1999-03-30 Mec:Kk Method and tool for soldering metallic tab to surface of solar battery cell in superposing state
JPH11103078A (en) * 1997-09-25 1999-04-13 Sanyo Electric Co Ltd Solar battery module, manufacture, thereof and manufacturing equipment
JP3683700B2 (en) * 1998-02-27 2005-08-17 京セラ株式会社 Solar cell device
JP2000002218A (en) * 1998-06-15 2000-01-07 Shinjo Seisakusho:Kk Wood screw
JP4240587B2 (en) * 1998-07-03 2009-03-18 株式会社エヌ・ピー・シー Tab lead soldering equipment
JP4459339B2 (en) * 1999-11-02 2010-04-28 株式会社カネカ Method and apparatus for attaching solar cell lead wire
JP2001102610A (en) * 1999-09-29 2001-04-13 Kanegafuchi Chem Ind Co Ltd Lead wire with solder bump, lead wire-mounting device for solar cell, and method for manufacturing solar cell
JP4504485B2 (en) * 1999-10-27 2010-07-14 株式会社カネカ Solar cell lead wire soldering equipment
JP4588831B2 (en) * 2000-03-21 2010-12-01 株式会社カネカ Output lead line mounting device for photoelectric conversion module
JP3948946B2 (en) * 2001-11-30 2007-07-25 三洋電機株式会社 Tab lead soldering method and soldering device
JP3761495B2 (en) * 2002-05-17 2006-03-29 トヤマキカイ株式会社 Lead welding equipment
JP2002359388A (en) * 2002-05-28 2002-12-13 Kyocera Corp Solar battery device
JP3609803B2 (en) * 2002-07-03 2005-01-12 トヤマキカイ株式会社 Lead welding equipment
JP2004134654A (en) * 2002-10-11 2004-04-30 Sharp Corp Solar cell module manufacturing method
JP2004253475A (en) * 2003-02-18 2004-09-09 Sharp Corp Solar cell module, its producing process and heat source for use therein
JP2005243837A (en) * 2004-02-25 2005-09-08 Kyocera Corp Device and method for manufacturing solar battery module
JP2005252062A (en) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd Solar cell device

Also Published As

Publication number Publication date
JP2006066570A (en) 2006-03-09
TWI419340B (en) 2013-12-11
TW200618324A (en) 2006-06-01
WO2006022209A1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP3978203B2 (en) Connection method of solar cell elements
CA2680595A1 (en) Solar cell, method for manufacturing solar cells, and electric conductor track
JP2005302902A (en) Solar cell and solar cell module
JP2007273830A (en) Method for manufacturing solar battery device
JP2010205792A (en) Solar cell lead, method of manufacturing same, and solar cell using same
WO2006137746A1 (en) Stress relieving ribbons
WO2016152649A1 (en) Solar cell module and method for manufacturing same
JP4588580B2 (en) Hybrid condensing heater and method for connecting solar cell elements using the same
JP2009130118A (en) Semiconductor device, method for manufacturing the same, and solar battery
KR20200037064A (en) Solar modules and method of forming solar moldules
WO2007080822A1 (en) Method of connecting solar cell element and connection apparatus
JP2008258267A (en) Soldering method of tab lead to solar cell
US20160204303A1 (en) Using an active solder to couple a metallic article to a photovoltaic cell
JP2013237059A (en) Joining device and joining method for interconnector and solar battery element
JP4838787B2 (en) Solar cell element connection method and solar cell element connection device
JP2007149871A (en) Interconnect, method of connecting interconnect, solar cell string, method of manufacturing solar cell string, and solar cell module
US20120031895A1 (en) Soldering head and process for inductive soldering
JP2008192980A (en) Method of manufacturing solar cell module
JP2009135303A (en) Solar cell module and method of manufacturing solar cell module
JP2011044598A (en) Device and method for connection of solar cell substrate
JP2007165498A (en) Method of connection of solar battery element, and connecting device
JPWO2008105026A1 (en) Hybrid condensing heater and method for connecting solar cell elements using the same
JP2004200517A (en) Solar cell module and method of manufacturing the same
US20220271709A1 (en) Method for blackening an electrical conduit
JPS6362912B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees