JP3935848B2 - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
JP3935848B2
JP3935848B2 JP2003009700A JP2003009700A JP3935848B2 JP 3935848 B2 JP3935848 B2 JP 3935848B2 JP 2003009700 A JP2003009700 A JP 2003009700A JP 2003009700 A JP2003009700 A JP 2003009700A JP 3935848 B2 JP3935848 B2 JP 3935848B2
Authority
JP
Japan
Prior art keywords
circuit
electric signal
frequency
detection
electrical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003009700A
Other languages
Japanese (ja)
Other versions
JP2004219377A (en
Inventor
吉彦 宇崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP2003009700A priority Critical patent/JP3935848B2/en
Publication of JP2004219377A publication Critical patent/JP2004219377A/en
Application granted granted Critical
Publication of JP3935848B2 publication Critical patent/JP3935848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は超音波を可聴周波数帯域の電気信号に変換する超音波変換装置に関し、例えば、超音波検出に基づき配管系における流体漏洩箇所の検出や機器摩損の検出あるいは機器の作動状態の検出を行う装置での検出超音波の電気的処理などに用いる超音波変換装置に関する。
【0002】
【従来の技術】
従来、この種の超音波変換装置では、図7に示す如く、超音波Uを高周波電気信号Ziに変換する変換回路2と、その変換回路2から送出される高周波電気信号Ziと周波数が近似する電気信号Zmを発生する局部発振回路15と、変換回路2から送出される高周波電気信号Ziに局部発振回路15の発生電気信号Zmを重畳するミキシング回路9Aと、このミキシング回路9Aから送出される電気信号Zt′を検波処理する検波回路9Bと、この検波回路9Bの送出電気信号Ztから高周波成分を除去して可聴周波数帯域の電気信号Zoを取り出すフィルタ回路10とを主要回路として装置を構成していた。
【0003】
そして従来、同図7に示すごとく、ミキシング回路9Aを構成するのに、変換回路2から送出される高周波電気信号ZiをボリュームVR1を介して非反転入力端子に入力するバッファBを設けるとともに、このバッファBから送出される高周波電気信号Ziを抵抗R1を通じて反転入力端子に入力する反転増幅回路OP(オペアンプ)を設け、この反転増幅回路OPの反転入力端子に局部発振回路15が発生する近似周波数の電気信号Zmを抵抗R1からの高周波電気信号Ziとともに入力する構成にしていた。
【0004】
また、検波回路9Bを構成するのに、2個のダイオードD1,D2を用いた倍電圧整流回路によりミキシング回路9Aからの送出電気信号Zt′を検波処理する構成にしていた。
【0005】
なお、反転増幅回路OPの非反転入力端子は接地状態にし、反転増幅回路OPの反転入力端子には反転増幅回路OPの出力電圧を帰還抵抗Rfを通じて帰還させてある。また、8は変換回路2から送出される高周波電気信号Ziを増幅する増幅回路である。
【0006】
つまり、この従来装置では、反転増幅回路OPを用いたミキシング回路9Aにおいて変換回路2から送出される高周波電気信号Ziに局部発振回路15の発生電気信号Zm(近似周波数の電気信号)を重畳することで、図8(イ)に模式的に示す如き両波波形の重畳電気信号Zt′を生成し、続いて、この両波波形の重畳電気信号Zt′を倍電圧整流回路からなる検波回路9Bにおいて検波処理することで、図8(ロ)に模式的に示す如き片波波形(検波波形)の重畳電気信号Ztを生成し、そして、この片波波形の重畳電気信号Ztに対しフィルタ回路10において高周波成分の除去処理を施すことで、図8(ハ)に模式的に示す如き可聴周波数帯域の電気信号Zoを得るようにしていた。
【0007】
【発明が解決しようとする課題】
しかし、上記した従来の超音波変換装置は、ミキシング回路9A及び検波回路9Bの夫々を構成する部品の点数が多くて装置コストが高く付き、また、ミキシング回路9A(特に反転増幅回路OP)の消費電力が大きい問題があった。
【0008】
しかも、ミキシング回路9Aにおける反転増幅回路OPの反転入力端子に入力する局部発振回路15の発生電気信号Zmが抵抗R1を通じ前段の変換回路2の側に漏れ易くて、その漏れ信号が装置の作動に悪影響を与える問題もあり、例えば、この種の超音波変換装置では一般に、変換回路2から送出される高周波電気信号Ziを増幅する増幅回路8がミキシング回路9Aの前段に設けられるが、この増幅回路8に上記漏れ信号が混入することで、増幅回路8の出力信号が飽和するといったことが生じ易い。
【0009】
そしてまた、この漏れ信号による悪影響を極力回避するために増幅回路8の増幅度が低く制限され、そのことで装置のS/N比が低くなる問題もあった。
【0010】
この実情に鑑み、本発明の主たる課題は、合理的な改良により上記問題を効果的に解消する点にある。
【0011】
【課題を解決するための手段】
請求項1に係る発明は超音波変換装置に係り、その特徴は、
超音波を高周波電気信号に変換する変換回路と、その変換回路から送出される高周波電気信号と周波数が近似する電気信号を発生する局部発振回路と、前記変換回路から送出される高周波電気信号をゲート端子に入力するとともに前記局部発振回路の発生電気信号を非接地のソース端子に入力するミキシング・検波用の電界効果トランジスタと、この電界効果トランジスタにおける電源非接続のドレイン端子から送出される電気信号から高周波成分を除去して可聴周波数帯域の電気信号を取り出すフィルタ回路とを設けてある点にある。
【0012】
つまり、この構成によれば、変換回路から送出される高周波電気信号に対し局部発振回路の発生電気信号を重畳するミキシング処理(すなわち、先述の従来装置におけるミキシング回路9Aでの処理)と、そのミキシング処理により得られる重畳電気信号に対して施す検波処理(すなわち、先述の従来装置における検波回路9Bでの処理)との両方が上記ミキシング・検波用の電界効果トランジスタにおいて施される形態となり、変換回路から送出される高周波電気信号(すなわち、変換回路に入力された超音波に相応する高周波電気信号)と局部発振回路の発生電気信号(すなわち、変換回路から送出される高周波電気信号と周波数が近似する電気信号)との周波数差に等しい周波数の低周波成分(うなり成分)を含む検波済みの重畳電気信号が電界効果トランジスタのドレイン端子から送出されて後続のフィルタ回路に入力される。
【0013】
したがって、従来装置と同様、局部発振回路に発生させる電気信号の周波数を変換回路への入力超音波に応じた適当値に設定した状態で、フィルタ回路において上記電界効果トランジスタのドレイン端子から送出される電気信号から高周波成分を除去するようにすれば、変換回路への入力超音波に対応する可聴周波数帯域の電気信号をフィルタ回路から取り出すことができる。
【0014】
そして、このように超音波を可聴周波数帯域の電気信号に変換する機能については従来装置と同様の機能を得ながらも、上記構成によれば、従来装置における先述の如きミキシング回路9Aや検波回路9Bに比べ、ミキシング処理部及び検波処理部を構成する部品の点数を少なくすることができて、装置コストを安価にすることができ、また、ドレイン端子が電源非接続で電界効果トランジスタの消費電力が無いことから、装置全体の消費電力も大きく低減することができる。
【0015】
しかも、電界効果トランジスタの入力インピーダンスは反転増幅回路の入力インピーダンスに比べかなり大きくて、電界効果トランジスタのゲート端子に対する入力部に大きな抵抗を介装することが許容されることから、上記構成によれば、局部発振回路の発生電気信号が前段の変換回路側に漏れることを効果的に回避することができ、これにより、その漏れ信号による従来の問題、すなわち、漏れ信号が装置作動に悪影響を与えるといった問題や、漏れ信号による悪影響を回避するために変換回路からの高周波電気信号に対する増幅処理での増幅度が低く制限されて装置のS/N比が低くなるといった問題も効果的に回避することができ、この点で、従来装置に比べ装置性能も効果的に向上させることができる。
【0016】
なお、請求項1に係る発明の実施において、フィルタ回路で取り出した可聴周波数帯域の電気信号は、必ずしも、その信号をスピーカーやレシーバーに入力して超音波に対応した可聴音を発生させる用途に用いるに限らず、その信号の信号値を種々の目的で表示したり、その信号に基づき種々の制御を行うなど、どのような用途に用いてもよい。
【0017】
また、変換回路は、気体中を伝播する超音波を入力するものに限らず、固体中を機械的な振動として伝播する超音波を入力するものや、液体中を伝播する超音波を入力するものなど、どのような形態で超音波を入力するものであってもよい。
【0018】
【発明の実施の形態】
図1,図2は本発明の超音波変換装置を用いた携帯型の超音波式漏洩検出装置を示し、この漏洩検出装置1の先端部には、配管系における流体漏洩箇所で発生する超音波Uを検出する指向性マイクロホン2及び光ビーム照射光源3を配置し、後端部には、検出した超音波Uの強さ(本例では検出超音波Uの音圧レベル)をデジタル表示4aとバーグラフ表示4bとにより表示するとともに、各時点の感度レベルSをデジタル表示4cで表示するディスプレイ4、並びに、各種キー5を配置してある。
【0019】
また、この漏洩検出装置1には、検出した超音波Uの強さを、それに応じた音量(または音質)の可聴音で表現して装置の使用者に認知させるイヤホン6を装備してある。
【0020】
マイクロホン2は、図3に示す如く複数個をそれらの指向範囲Eに共通の重なり部分EEが生じる状態に装置前面視で正多角形K(本例では正六角形)の頂点位置に分散配置し、また、光ビーム照射光源3はマイクロホン指向範囲Eの共通重なり部分EEに対して光ビームを照射する状態に装置前面視で上記正多角形Kの重心位置に配置してある。
【0021】
つまり、この漏洩検出装置1では、図4に示す如く装置先端を探知対象の配管の側に向けた状態でその先端向きを配管の延設方向へ徐々に変化させてマイクロホン2の指向方向を変化させながら、イヤホン6の出力可聴音、及び、ディスプレイ4上のデジタル表示4aとバーグラフ表示4bとに基づき漏洩箇所を探知するが、この際、上記光ビーム照射光源3から照射する光ビームの照射ポイントPが各時点の探知対象箇所に合致するようにしてあり、これにより、その照射ポイントPの目視により装置の使用者は各時点の探知対象箇所を逐次明確に把握することができる。
【0022】
なお、7は先端に小開口を形成した円錐状のキャップであり、漏洩箇所と思われる箇所を探知したときには、必要に応じ、このキャップ7を装置1の先端部に装着して複数のマイクロホン2の全体としての指向性を強くした状態で、漏洩箇所をより詳細に確認する。
【0023】
図5は、この漏洩検出装置1の検出回路を示し、マイクロホン2は増幅回路8とミキシング検波回路9とフィルタ回路10と整流回路11と最終調整回路12との直列接続回路を介して、マイクロコンピュータからなる中央処理装置13のA/D入力端子に接続してあり、また、イヤホン6は音量調整手段14を介して上記直列接続回路におけるフィルタ回路10と整流回路11との間の部分に接続してある。
【0024】
マイクロホン2(具体的には複数のマイクロホン2の直列又は並列接続回路)は変換回路として、漏洩箇所から空気中を伝播する超音波Uをそれに相応の高周波電気信号Ziに変換し、増幅回路8はマイクロホン2から送出される高周波電気信号Ziを指定の倍率で増幅する。
【0025】
15はマイクロホン2から送出される高周波電気信号Ziと周波数が近似する設定近似周波数の電気信号Zmを発生する局部発振回路であり、ミキシング検波回路9は、マイクロホン2から送出されて増幅回路8で増幅された高周波電気信号Ziに対し局部発振回路15の発生電気信号Zmを重畳するミキシング処理を行うとともに、そのミキシング処理に併せ検波処理を行い、続いて、フィルタ回路10は、ミキシング検波回路9から送出される検波済みの重畳電気信号Ztから高周波成分を除去して可聴周波数帯域の電気信号Zoを取り出す。
【0026】
すなわち、この漏洩検出装置1では、いわゆるヘテロダイン方式により、マイクホン2の検出超音波Uをそれに対応する可聴周波数帯域の電気信号Zoに変換する。
【0027】
フィルタ回路10から送出される可聴周波数帯域の電気信号Zoは、整流回路11で全波整流されるとともに最終調整回路12で最終調整されて中央処理装置13に入力され、中央処理装置13は、この入力信号Zoの信号値を平均化するとともに所定の換算値にしてデジタル表示4a及びバーグラフ表示4bによりディスプレイ4上に表示する。
【0028】
また一方、フィルタ回路10から送出される可聴周波数帯域の電気信号Zoは、音量調整手段14を介しイヤホン6に入力され、これにより、検出超音波Uに応じた可聴音がイヤホン6から出力される。
【0029】
中央処理装置13には、ディスプレイ4の他、光ビーム照射光源3、各種キー5、引き金形態の起動スイッチ16、記憶手段17、通信手段18を接続してあり、中央処理装置13は、使用者による起動スイッチ16の操作に従い電源をON・OFF操作して装置の作動状態と非作動状態との切り換えを行い、また、使用者による各種キー5の操作に従って光ビーム照射光源3のON・OFF操作、感度レベルSの変更処理、漏洩量の演算処理、データ記録処理などの各種処理を実行する。
【0030】
増幅回路8は、増幅器19aと帯域フィルタ20aと減衰器21aを直列接続した第1調整部8Aと、同じく増幅器19bと帯域フィルタ20bと減衰器21bを直列接続した第2調整部8Bと、同じく増幅器19cと帯域フィルタ20cと減衰器21cを直列接続した第3調整部8Cとを直列に接続して構成してあり、中央処理装置13は、キー操作により感度レベルSの変更を指示されると、制御信号cにより各調整部8A〜8Cにおける減衰器21a〜21cの減衰率を段階的に変更して、増幅回路8全体としての信号増幅の倍率を指示された感度レベルSに対応する倍率に変更する。
【0031】
また、中央処理装置13は、キー操作により漏洩量の演算を指示されると、同じくキー操作により入力される演算条件と、予め記憶手段17に格納されている漏洩量演算についての設定情報と、超音波Uの検出データとに基づいて、その超音波検出データを得た漏洩箇所での流体漏洩量を演算する。
【0032】
そしてまた、中央処理装置13は、キー操作によりデータ記録を指示されると、デジタル表示4aの表示値やその表示値を得たときの感度レベルSなどの超音波検出データとともに、その超音波検出データを得た漏洩箇所についての演算漏洩量を探知漏洩箇所ごとの管理番号を付して記憶手段17に格納する。
【0033】
通信手段18は、キー操作により付与される通信指令や外部の管理コンピュータ(図示せず)の側からの通信指令に応じ中央処理装置13による通信制御下において管理コンピュータとの間で双方向の通信を行うものであり、この双方向の通信により、漏洩箇所探知作業において漏洩箇所ごとに記憶手段17に逐次格納したデータ(管理番号と超音波検出データと演算漏洩量)を漏洩検出装置1から管理コンピュータに送る処理や、前記した漏洩量演算についての設定情報及び装置の各種初期設定値などを管理コンピュータから漏洩検出装置1に送って記憶手段17に格納する処理などを行う。
【0034】
ミキシング検波回路9は、マイクロホン2から送出されて増幅回路8で増幅された高周波電気信号Ziを抵抗R1を通じてゲート端子Gに入力するとともに、局部発振回路15が発生する設定近似周波数の電気信号Zmを抵抗R2を介して非接地のソース端子Sに入力するミキシング・検波用の電界効果トランジスタ9T(本例ではNチャンネル型FET)で構成してあり、この電界効果トランジスタ9Tにおける電源非接続のドレイン端子Dから送出される電気信号Ztをフィルタ回路10に入力するようにしてある。
【0035】
また、フィルタ回路10は、抵抗R5と抵抗R6との直列接続列において抵抗R5と抵抗R6との間、及び、抵抗R6の下手側の夫々に接地コンデンサC3,C4を接続して構成したローパスフィルタにしてあり、抵抗R6と接地コンデンサC4とを接続した出力端子から高周波成分除去済みの電気信号Zoを取り出すようにしてある。なお、コンデンサC5は検波時に発生したDC成分を除去するためのものである。
【0036】
つまり、この漏洩検出装置1では、マイクロホン2から送出されて増幅回路8で増幅された高周波電気信号Ziに対し局部発振回路15の発生電気信号Zmを重畳するミキシング処理と、そのミキシング処理により得られる重畳電気信号に対して施す検波処理との両方がミキシング・検波用の電界効果トランジスタ9Tにおいて施される形態となり、マイクロホン2から送出される高周波電気信号Ziと局部発振回路15の発生電気信号Zmとの周波数差に等しい周波数の低周波成分(うなり成分)を含む検波済みの重畳電気信号Ztが電界効果トランジスタ9Tにおける電源非接続のドレイン端子Dから送出されてフィルタ回路10に入力される。
【0037】
そして、このフィルタ回路10において、電界効果トランジスタ9Tのドレイン端子Dから送出される検波済みの重畳電気信号Ztから高周波成分を除去することで、マイクロホン2への入力超音波Uに対応する可聴周波数帯域の電気信号Zoをフィルタ回路10から後続回路へ送出する。
【0038】
また、このように超音波Uをヘテロダイン方式により可聴周波数帯域の電気信号Zoに変換することにおいて、局部発振回路15の発生電気信号Zmが電界効果トランジスタ9Tを通じて前段側に漏れることを、電界効果トランジスタ9Tのゲート端子Gに接続した大きな抵抗R1により効果的に防止し、これにより、そのような漏れ信号に原因する装置作動上の不都合を効果的に防止して高い装置性能を確保する。
【0039】
15a,15bは局部発振回路15を構成する発振子及びバッファー、R3,R4は局部発振回路15を構成する抵抗、C1,C2は同じく局部発振回路15を構成するコンデンサであり、12a,12bは最終調整回路12におけるローパスフィルタ及び増幅器である。
【0040】
なお、図6の(イ)〜(ニ)は図5の検出回路におけるイ〜ニの各部での電気信号Zi,Zt,Zm,Zoの波形例を示している。
【0041】
〔別の実施形態〕
次に別実施形態を列記する。
【0042】
本発明の実施において、超音波Uを高周波電気信号Ziに変換する変換回路は、前述の実施形態で示した如く気体中を伝播する超音波を入力するものに限らず、どのような形態で超音波を入力するものであってもよく、また、その具体的な回路構造も検出対象超音波の形態や装置の用途などに応じて種々の構造を採ることができる。
【0043】
また、本発明の実施において、変換回路から送出される高周波電気信号Ziと周波数が近似する電気信号Zmを発生する局部発振回路の具体的な回路構造、及び、電界効果トラジスタ9Tにおける電源非接続のドレイン端子Dから送出される検波済みの重畳電気信号Ztから高周波成分を除去して可聴周波数帯域の電気信号Zoを取り出すフィルタ回路の具体的な回路構造も夫々、前述の実施形態で示した如き構造に限らず、種々の構成変更が可能である。
【0044】
フィルタ回路で取り出した可聴周波数帯域の電気信号Zoは、どのような用途に用いてもよく、本発明による超音波変換装置は、超音波検出に基づいて配管系やタンク類での流体漏洩を検出する超音波式の漏洩検出装置や、超音波検出に基づいて機器の摩損を検出する超音波式の摩損検出装置、あるいは、超音波検出に基づいて機器の作動状態を検出する超音波式の作動状態検出装置など、各種装置に適用することができる。
【図面の簡単な説明】
【図1】漏洩検出装置の斜視図
【図2】装置背面部分の拡大図
【図3】装置前面部分の拡大図及び指向範囲を示す図
【図4】装置使用状態を示す斜視図
【図5】検出回路の回路構成を示すブロック図
【図6】各部の電気信号波形を示すグラフ
【図7】従来装置の回路構成を示すブロック図
【図8】従来装置における各部の電気信号波形を模式的に示すグラフ
【符号の説明】
2 変換回路
9T ミキシング・検波用の電界効果トランジスタ
10 フィルタ回路
15 局部発振回路
D 電源非接続のドレイン端子
G ゲート端子
S 非接地のソース端子
U 超音波
Zi 変換回路が送出する高周波電気信号
Zm 局部発振回路が発生する近似周波数の電気信号
Zo フィルタ回路で取り出される可聴周波数帯域の電気信号
Zt ドレイン端子から送出される電気信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic transducer that converts an ultrasonic wave into an electric signal in an audible frequency band. For example, based on ultrasonic detection, detection of a fluid leakage point in a piping system, detection of equipment wear, or detection of an operating state of an equipment. The present invention relates to an ultrasonic transducer used for electrical processing of detected ultrasonic waves in the apparatus.
[0002]
[Prior art]
Conventionally, in this type of ultrasonic transducer, as shown in FIG. 7, the frequency approximates the conversion circuit 2 that converts the ultrasonic wave U into the high-frequency electric signal Zi, and the high-frequency electric signal Zi that is sent from the conversion circuit 2. The local oscillation circuit 15 that generates the electrical signal Zm, the mixing circuit 9A that superimposes the electrical signal Zm generated by the local oscillation circuit 15 on the high-frequency electrical signal Zi that is transmitted from the conversion circuit 2, and the electrical that is transmitted from the mixing circuit 9A The apparatus comprises a detection circuit 9B for detecting the signal Zt ′ and a filter circuit 10 for removing a high-frequency component from the electric signal Zt transmitted from the detection circuit 9B and extracting an electric signal Zo in the audible frequency band. It was.
[0003]
Conventionally, as shown in FIG. 7, in order to constitute the mixing circuit 9A, a buffer B for inputting the high-frequency electric signal Zi sent from the conversion circuit 2 to the non-inverting input terminal via the volume VR1 is provided. An inverting amplifier circuit OP (op-amp) that inputs the high-frequency electrical signal Zi transmitted from the buffer B to the inverting input terminal through the resistor R1 is provided, and an approximate frequency generated by the local oscillation circuit 15 is generated at the inverting input terminal of the inverting amplifier circuit OP. The electric signal Zm is input together with the high-frequency electric signal Zi from the resistor R1.
[0004]
In addition, the detection circuit 9B is configured to detect the electrical signal Zt ′ transmitted from the mixing circuit 9A by a voltage doubler rectifier circuit using two diodes D1 and D2.
[0005]
The non-inverting input terminal of the inverting amplifier circuit OP is grounded, and the output voltage of the inverting amplifier circuit OP is fed back to the inverting input terminal of the inverting amplifier circuit OP through the feedback resistor Rf. Reference numeral 8 denotes an amplifier circuit that amplifies the high-frequency electric signal Zi sent from the conversion circuit 2.
[0006]
In other words, in this conventional apparatus, the electric signal Zm (approximate frequency electric signal) generated by the local oscillation circuit 15 is superimposed on the high-frequency electric signal Zi sent from the conversion circuit 2 in the mixing circuit 9A using the inverting amplifier circuit OP. Thus, a superimposed electric signal Zt ′ having both waveforms as schematically shown in FIG. 8 (a) is generated, and then the superimposed electric signal Zt ′ having both waveforms is generated in the detection circuit 9B comprising a voltage doubler rectifier circuit. By performing the detection process, a superimposed electric signal Zt having a single-wave waveform (detection waveform) as schematically shown in FIG. 8B is generated, and the superimposed electric signal Zt having the single-wave waveform is generated in the filter circuit 10. By performing the removal process of the high frequency component, an electric signal Zo in an audible frequency band as schematically shown in FIG.
[0007]
[Problems to be solved by the invention]
However, the above-described conventional ultrasonic transducer has a large number of parts constituting each of the mixing circuit 9A and the detection circuit 9B, resulting in a high apparatus cost. Further, the consumption of the mixing circuit 9A (particularly the inverting amplification circuit OP) is increased. There was a problem with large power.
[0008]
In addition, the electric signal Zm generated by the local oscillation circuit 15 input to the inverting input terminal of the inverting amplifier circuit OP in the mixing circuit 9A is likely to leak to the converter circuit 2 side of the previous stage through the resistor R1, and the leakage signal causes the operation of the apparatus. For example, in this type of ultrasonic transducer, for example, an amplifier circuit 8 for amplifying a high-frequency electric signal Zi transmitted from the converter circuit 2 is generally provided in front of the mixing circuit 9A. When the leakage signal is mixed into 8, the output signal of the amplifier circuit 8 is likely to be saturated.
[0009]
In addition, in order to avoid the adverse effect caused by the leakage signal as much as possible, the amplification degree of the amplifier circuit 8 is limited to be low, which causes a problem that the S / N ratio of the device is lowered.
[0010]
In view of this situation, the main problem of the present invention is to effectively solve the above problem by rational improvement.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 relates to an ultrasonic transducer, characterized by
A conversion circuit that converts ultrasonic waves into a high-frequency electrical signal, a local oscillation circuit that generates an electrical signal whose frequency approximates that of the high-frequency electrical signal sent from the conversion circuit, and a high-frequency electrical signal sent from the conversion circuit is gated A field effect transistor for mixing and detection that inputs an electric signal generated by the local oscillation circuit to an ungrounded source terminal and an electric signal transmitted from a drain terminal of the field effect transistor that is not connected to a power source. And a filter circuit for removing an electric signal in an audible frequency band by removing a high frequency component.
[0012]
That is, according to this configuration, the mixing process of superimposing the electric signal generated by the local oscillation circuit on the high-frequency electric signal sent from the conversion circuit (that is, the process in the mixing circuit 9A in the above-described conventional apparatus) and the mixing are performed. Both the detection processing applied to the superimposed electrical signal obtained by the processing (that is, the processing in the detection circuit 9B in the above-described conventional device) is performed in the above-described field effect transistor for mixing and detection, and the conversion circuit The frequency approximates the frequency of the high-frequency electrical signal transmitted from the terminal (that is, the high-frequency electrical signal corresponding to the ultrasonic wave input to the conversion circuit) and the generated electrical signal of the local oscillation circuit (that is, the high-frequency electrical signal transmitted from the conversion circuit). Detected superimposed electricity that includes a low frequency component (beat component) with a frequency equal to the frequency difference from the electrical signal) No. is input to the subsequent filter circuit is delivered from the drain terminal of the field effect transistor.
[0013]
Therefore, as in the conventional device, the frequency of the electric signal generated in the local oscillation circuit is set to an appropriate value according to the input ultrasonic wave to the conversion circuit, and is sent from the drain terminal of the field effect transistor in the filter circuit. If the high-frequency component is removed from the electric signal, an electric signal in an audible frequency band corresponding to the input ultrasonic wave to the conversion circuit can be extracted from the filter circuit.
[0014]
And while obtaining the same function as the conventional device for the function of converting the ultrasonic wave into an audible frequency band in this way, according to the above configuration, the mixing circuit 9A and the detection circuit 9B as described above in the conventional device are used. Compared to the above, the number of parts constituting the mixing processing unit and the detection processing unit can be reduced, the device cost can be reduced, and the drain terminal is not connected to the power source, and the power consumption of the field effect transistor is reduced. Therefore, the power consumption of the entire apparatus can be greatly reduced.
[0015]
In addition, the input impedance of the field effect transistor is considerably larger than the input impedance of the inverting amplifier circuit, and a large resistance is allowed to be inserted in the input portion with respect to the gate terminal of the field effect transistor. Therefore, it is possible to effectively avoid the leakage of the electric signal generated by the local oscillation circuit to the conversion circuit side of the previous stage, thereby causing the conventional problem caused by the leakage signal, that is, the leakage signal adversely affects the operation of the device. In order to avoid problems and adverse effects due to leakage signals, the problem that the S / N ratio of the device is lowered by limiting the amplification degree in the amplification process for the high-frequency electrical signal from the conversion circuit to be low can be effectively avoided. In this respect, the device performance can be effectively improved as compared with the conventional device.
[0016]
In the implementation of the invention according to claim 1, the electric signal in the audible frequency band taken out by the filter circuit is not necessarily used for the purpose of generating the audible sound corresponding to the ultrasonic wave by inputting the signal to the speaker or the receiver. However, the present invention may be used for any purpose such as displaying the signal value of the signal for various purposes or performing various controls based on the signal.
[0017]
The conversion circuit is not limited to the one that inputs ultrasonic waves propagating in gas, but the one that inputs ultrasonic waves that propagate as solid mechanical vibrations or one that inputs ultrasonic waves that propagate in liquids. For example, ultrasonic waves may be input in any form.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a portable ultrasonic leak detection device using the ultrasonic transducer of the present invention. At the tip of the leak detection device 1, ultrasonic waves generated at a fluid leak point in a piping system are shown. A directional microphone 2 for detecting U and a light beam irradiation light source 3 are arranged, and the intensity of the detected ultrasonic wave U (in this example, the sound pressure level of the detected ultrasonic wave U) is displayed on the rear end portion with a digital display 4a. A bar graph display 4b and a display 4 for displaying the sensitivity level S at each time point as a digital display 4c and various keys 5 are arranged.
[0019]
In addition, the leak detection device 1 is equipped with an earphone 6 that expresses the intensity of the detected ultrasonic wave U with an audible sound having a sound volume (or sound quality) according to the detected strength and recognizes it to the user of the device.
[0020]
As shown in FIG. 3, the microphones 2 are arranged in a distributed manner at the apex positions of the regular polygon K (regular hexagon in this example) in a state where the overlapping portion EE common to the directivity range E is generated as shown in FIG. In addition, the light beam irradiation light source 3 is disposed at the center of gravity of the regular polygon K in a front view of the apparatus so as to irradiate the common overlapping portion EE of the microphone directing range E with the light beam.
[0021]
That is, in this leak detection device 1, the direction of the tip of the microphone 2 is changed by gradually changing the direction of the tip in the direction in which the pipe extends in the state where the tip of the device is directed toward the pipe to be detected as shown in FIG. In this case, the leakage location is detected based on the audible sound output from the earphone 6 and the digital display 4 a and the bar graph display 4 b on the display 4. At this time, the irradiation of the light beam emitted from the light beam irradiation light source 3 is performed. The point P matches the detection target location at each time point, so that the user of the apparatus can clearly grasp the detection target location at each time point by visually observing the irradiation point P.
[0022]
Reference numeral 7 denotes a conical cap having a small opening formed at the tip. When a portion that seems to be a leaked portion is detected, the cap 7 is attached to the tip of the apparatus 1 as necessary, and a plurality of microphones 2 are attached. In a state where the directivity as a whole is strengthened, the leakage location is confirmed in more detail.
[0023]
FIG. 5 shows a detection circuit of the leak detection apparatus 1, and the microphone 2 is connected to a microcomputer via a series connection circuit of an amplification circuit 8, a mixing detection circuit 9, a filter circuit 10, a rectification circuit 11, and a final adjustment circuit 12. The earphone 6 is connected to the portion between the filter circuit 10 and the rectifier circuit 11 in the series connection circuit via the volume control means 14. It is.
[0024]
The microphone 2 (specifically, a series or parallel connection circuit of a plurality of microphones 2) is a conversion circuit that converts the ultrasonic wave U propagating in the air from the leakage location into a corresponding high-frequency electric signal Zi, and the amplification circuit 8 A high-frequency electric signal Zi transmitted from the microphone 2 is amplified at a specified magnification.
[0025]
Reference numeral 15 denotes a local oscillation circuit that generates an electric signal Zm having a set approximate frequency that approximates the frequency of the high-frequency electric signal Zi transmitted from the microphone 2, and the mixing detection circuit 9 is transmitted from the microphone 2 and amplified by the amplifier circuit 8. A mixing process for superimposing the generated electric signal Zm of the local oscillation circuit 15 on the high frequency electric signal Zi is performed, and a detection process is performed in conjunction with the mixing process. Subsequently, the filter circuit 10 sends out from the mixing detection circuit 9 The high frequency component is removed from the detected superimposed electric signal Zt, and the electric signal Zo in the audible frequency band is taken out.
[0026]
That is, in the leak detection apparatus 1, the detected ultrasonic wave U of the microphone 2 is converted into an electric signal Zo in the audible frequency band corresponding to the so-called heterodyne method.
[0027]
The audible frequency band electrical signal Zo transmitted from the filter circuit 10 is full-wave rectified by the rectifier circuit 11 and finally adjusted by the final adjustment circuit 12 and input to the central processing unit 13. The signal value of the input signal Zo is averaged and converted into a predetermined conversion value and displayed on the display 4 by the digital display 4a and the bar graph display 4b.
[0028]
On the other hand, an audible frequency band electrical signal Zo transmitted from the filter circuit 10 is input to the earphone 6 via the volume adjusting means 14, and thereby an audible sound corresponding to the detected ultrasonic wave U is output from the earphone 6. .
[0029]
In addition to the display 4, the central processing unit 13 is connected to the light beam irradiation light source 3, various keys 5, trigger-type activation switch 16, storage unit 17, and communication unit 18. According to the operation of the start switch 16, the power is turned ON / OFF to switch between the operating state and the non-operating state of the device, and the light beam irradiation light source 3 is turned ON / OFF according to the operation of the various keys 5 by the user. Then, various processes such as a sensitivity level S change process, a leakage amount calculation process, and a data recording process are executed.
[0030]
The amplifier circuit 8 includes a first adjustment unit 8A in which an amplifier 19a, a band filter 20a, and an attenuator 21a are connected in series, a second adjustment unit 8B in which the amplifier 19b, a band filter 20b, and an attenuator 21b are connected in series, and the amplifier 19c, a band filter 20c and an attenuator 21c connected in series are connected in series. When the central processing unit 13 is instructed to change the sensitivity level S by a key operation, The attenuation rate of the attenuators 21a to 21c in each of the adjustment units 8A to 8C is changed stepwise by the control signal c, and the magnification of the signal amplification as the entire amplification circuit 8 is changed to a magnification corresponding to the instructed sensitivity level S. To do.
[0031]
In addition, when the central processing unit 13 is instructed to calculate the leakage amount by a key operation, the calculation conditions similarly input by the key operation, the setting information about the leakage amount calculation stored in the storage unit 17 in advance, Based on the detection data of the ultrasonic wave U, the amount of fluid leakage at the leakage point where the ultrasonic detection data is obtained is calculated.
[0032]
Further, when the central processing unit 13 is instructed to record data by key operation, the ultrasonic detection is performed together with ultrasonic detection data such as the display value of the digital display 4a and the sensitivity level S when the display value is obtained. The calculation leakage amount for the leaked location from which data is obtained is stored in the storage means 17 with a management number for each detected leak location.
[0033]
The communication means 18 performs two-way communication with the management computer under communication control by the central processing unit 13 in accordance with a communication command given by key operation or a communication command from the external management computer (not shown). Through this two-way communication, the data (management number, ultrasonic detection data, and calculation leak amount) sequentially stored in the storage means 17 for each leak location in the leak location detection operation is managed from the leak detection device 1. Processing to send to the computer, processing information for the leak amount calculation described above, various initial setting values of the device, etc. are sent from the management computer to the leak detection device 1 and stored in the storage means 17.
[0034]
The mixing detection circuit 9 inputs a high-frequency electric signal Zi transmitted from the microphone 2 and amplified by the amplifier circuit 8 to the gate terminal G through the resistor R1, and an electric signal Zm having a set approximate frequency generated by the local oscillation circuit 15. The field effect transistor 9T for mixing and detection (N-channel FET in this example) is input to the ungrounded source terminal S through the resistor R2, and the drain terminal of the field effect transistor 9T is connected to the power source. The electric signal Zt sent out from D is inputted to the filter circuit 10.
[0035]
The filter circuit 10 is a low-pass filter configured by connecting ground capacitors C3 and C4 between the resistors R5 and R6 and the lower side of the resistor R6 in a series connection row of resistors R5 and R6. The electric signal Zo from which the high frequency component has been removed is taken out from the output terminal connected to the resistor R6 and the ground capacitor C4. The capacitor C5 is for removing a DC component generated at the time of detection.
[0036]
In other words, in this leakage detection apparatus 1, a mixing process of superimposing the electric signal Zm generated by the local oscillation circuit 15 on the high-frequency electric signal Zi transmitted from the microphone 2 and amplified by the amplifier circuit 8 is obtained by the mixing process. Both the detection processing applied to the superimposed electric signal is performed in the field effect transistor 9T for mixing and detection, and the high-frequency electric signal Zi sent from the microphone 2 and the electric signal Zm generated by the local oscillation circuit 15 The detected superimposed electric signal Zt including a low frequency component (beat component) having a frequency equal to the frequency difference is transmitted from the drain terminal D of the field effect transistor 9T not connected to the power source and input to the filter circuit 10.
[0037]
In this filter circuit 10, an audible frequency band corresponding to the input ultrasonic wave U to the microphone 2 is removed by removing a high frequency component from the detected superimposed electric signal Zt transmitted from the drain terminal D of the field effect transistor 9 T. The electric signal Zo is sent from the filter circuit 10 to the subsequent circuit.
[0038]
In addition, when the ultrasonic wave U is converted into the electric signal Zo in the audible frequency band by the heterodyne method in this way, the electric signal Zm generated by the local oscillation circuit 15 leaks to the front stage side through the field effect transistor 9T. The large resistance R1 connected to the 9T gate terminal G effectively prevents the device operation inconvenience caused by such a leakage signal, thereby ensuring high device performance.
[0039]
Reference numerals 15a and 15b denote oscillators and buffers that constitute the local oscillator circuit 15, R3 and R4 denote resistors that constitute the local oscillator circuit 15, C1 and C2 denote capacitors that also constitute the local oscillator circuit 15, and 12a and 12b denote final capacitors. These are a low-pass filter and an amplifier in the adjustment circuit 12.
[0040]
6A to 6D show examples of the waveforms of the electrical signals Zi, Zt, Zm, and Zo at the respective parts A to D in the detection circuit of FIG.
[0041]
[Another embodiment]
Next, another embodiment will be listed.
[0042]
In the implementation of the present invention, the conversion circuit that converts the ultrasonic wave U into the high-frequency electric signal Zi is not limited to the one that inputs the ultrasonic wave propagating in the gas as shown in the above-described embodiment, but in any form. A sound wave may be input, and the specific circuit structure may take various structures depending on the form of the ultrasonic wave to be detected, the application of the apparatus, and the like.
[0043]
In the implementation of the present invention, the specific circuit structure of the local oscillation circuit that generates the electrical signal Zm having a frequency approximate to that of the high-frequency electrical signal Zi transmitted from the conversion circuit, and the power supply unconnected in the field effect transistor 9T The specific circuit structures of the filter circuits for removing the high frequency component from the detected superimposed electric signal Zt transmitted from the drain terminal D and extracting the electric signal Zo in the audible frequency band are the structures as shown in the above embodiments. Not limited to this, various configuration changes are possible.
[0044]
The audible frequency band electrical signal Zo extracted by the filter circuit may be used for any purpose, and the ultrasonic transducer according to the present invention detects fluid leakage in the piping system and tanks based on the ultrasonic detection. Ultrasonic leak detection device that detects the wear of equipment based on ultrasonic detection, or ultrasonic operation that detects the operating state of equipment based on ultrasonic detection The present invention can be applied to various devices such as a state detection device.
[Brief description of the drawings]
FIG. 1 is a perspective view of a leak detection apparatus. FIG. 2 is an enlarged view of a rear part of the apparatus. FIG. 3 is an enlarged view of a front part of the apparatus and a pointing range. FIG. 6 is a block diagram showing the electric signal waveform of each part. FIG. 7 is a block diagram showing the circuit structure of the conventional apparatus. FIG. 8 is a schematic diagram of the electric signal waveform of each part in the conventional apparatus. Graph [Explanation of symbols]
2 Conversion circuit 9T Field effect transistor 10 for mixing and detection Filter circuit 15 Local oscillation circuit D Drain terminal G not connected to power source S Gate terminal S Non-grounded source terminal U Ultrasonic Zi High frequency electric signal Zm sent out by conversion circuit Local oscillation Electric signal Zo of approximate frequency generated by the circuit Electric signal Zt of audio frequency band taken out by filter circuit Electric signal sent from drain terminal

Claims (1)

超音波を高周波電気信号に変換する変換回路と、その変換回路から送出される高周波電気信号と周波数が近似する電気信号を発生する局部発振回路と、前記変換回路から送出される高周波電気信号をゲート端子に入力するとともに前記局部発振回路の発生電気信号を非接地のソース端子に入力するミキシング・検波用の電界効果トランジスタと、この電界効果トランジスタにおける電源非接続のドレイン端子から送出される電気信号から高周波成分を除去して可聴周波数帯域の電気信号を取り出すフィルタ回路とを設けてある超音波変換装置。A conversion circuit that converts ultrasonic waves into a high-frequency electrical signal, a local oscillation circuit that generates an electrical signal whose frequency approximates that of the high-frequency electrical signal sent from the conversion circuit, and a high-frequency electrical signal sent from the conversion circuit is gated A field effect transistor for mixing and detection that inputs an electric signal generated by the local oscillation circuit to an ungrounded source terminal and an electric signal transmitted from a drain terminal of the field effect transistor that is not connected to a power source. An ultrasonic transducer provided with a filter circuit that removes high frequency components and extracts an electric signal in an audible frequency band.
JP2003009700A 2003-01-17 2003-01-17 Ultrasonic transducer Expired - Lifetime JP3935848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009700A JP3935848B2 (en) 2003-01-17 2003-01-17 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009700A JP3935848B2 (en) 2003-01-17 2003-01-17 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JP2004219377A JP2004219377A (en) 2004-08-05
JP3935848B2 true JP3935848B2 (en) 2007-06-27

Family

ID=32899121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009700A Expired - Lifetime JP3935848B2 (en) 2003-01-17 2003-01-17 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP3935848B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024784A2 (en) * 2007-08-20 2009-02-26 Sonitor Technologies As Ultrasound detectors

Also Published As

Publication number Publication date
JP2004219377A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US10945062B2 (en) Headphone with off-ear and on-ear detection
JP4371268B2 (en) Directional speaker driving method and directional speaker
JP2004163875A (en) Feedback active noise controlling circuit and headphone
TWI651971B (en) Hand-held electronic apparatus, sound producing system and control method of sound producing thereof
CN111917489B (en) Audio signal processing method and device and electronic equipment
CN101621730A (en) Apparatus and method for detecting acoustic feedback
JP2007189627A (en) Audio apparatus
CN107708041A (en) A kind of audio beam loudspeaker
US6056698A (en) Apparatus for audibly monitoring the condition in an ear, and method of operation thereof
US11611822B2 (en) Earbud operation during earbud insertion detection
CN106642262A (en) Range hood capable of initiatively eliminating noise
CN102316395B (en) Method and device for judging and eliminating howlround
JP3935848B2 (en) Ultrasonic transducer
KR102158040B1 (en) Multiple frequency ultrasonic generator and frequency control method
JP2001177891A (en) Harmonic wave generator in audio signal
CN101199233B (en) Howling control apparatus and acoustic apparatus
CN106782488A (en) The washing machine that a kind of active abates the noise
JP2007159042A (en) Acoustic apparatus
CN1901384B (en) AM radio receiving circuit
JP7241381B2 (en) Parametric speaker and signal processor
CN114860030A (en) Electronic equipment, audio playing method and device and readable storage medium
CN204616065U (en) Aircraft electrophone testing circuit
CN106499224A (en) A kind of active noise reduction telephone booth for eliminating ambient noise
US20110170706A1 (en) Feedback-Killing Speaker System
CN106535051A (en) Mattress for active noise cancellation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Ref document number: 3935848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term