JP3922760B2 - Fluid machinery - Google Patents

Fluid machinery Download PDF

Info

Publication number
JP3922760B2
JP3922760B2 JP12356097A JP12356097A JP3922760B2 JP 3922760 B2 JP3922760 B2 JP 3922760B2 JP 12356097 A JP12356097 A JP 12356097A JP 12356097 A JP12356097 A JP 12356097A JP 3922760 B2 JP3922760 B2 JP 3922760B2
Authority
JP
Japan
Prior art keywords
frequency
flow rate
pump
current value
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12356097A
Other languages
Japanese (ja)
Other versions
JPH10299685A (en
Inventor
真 小林
雅和 山本
良男 三宅
薫 八木
圭太 上井
義晶 宮崎
克自 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP12356097A priority Critical patent/JP3922760B2/en
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to EP98917626A priority patent/EP0978657B1/en
Priority to IDW991266A priority patent/ID24674A/en
Priority to CNB988043505A priority patent/CN1268847C/en
Priority to AU70792/98A priority patent/AU722386B2/en
Priority to US09/402,617 priority patent/US6350105B1/en
Priority to KR10-1999-7009768A priority patent/KR100533699B1/en
Priority to RU99124601/06A priority patent/RU2193697C2/en
Priority to DE1998622808 priority patent/DE69822808T2/en
Priority to PCT/JP1998/001847 priority patent/WO1998049449A1/en
Publication of JPH10299685A publication Critical patent/JPH10299685A/en
Application granted granted Critical
Publication of JP3922760B2 publication Critical patent/JP3922760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine

Description

【0001】
【発明の属する技術分野】
本発明は流体機械に係り、特に循環用ポンプにとって好適な定流量特性を容易に得られるようにしたうず巻ポンプ及び給水用ポンプにとって好適な定揚程特性を容易に得られるようにした軸流ポンプを含む流体機械に関するものである。
【0002】
【従来の技術】
従来から暖房・冷房用の冷温水循環ポンプには、うず巻ポンプが用いられてきた。この用途で重要な事柄は下記の通りである。
▲1▼ 必要流量がわかっていても、計算上の配管損失と、実際の配管損失には微妙な違いがあるため、現地でバルブによる流量調整が必要となる。この場合、バルブの損失分だけエネルギーロスがある。
▲2▼ 配管の経年変化や、バルブへの異物の詰まり等によって配管損失が増加すると、流量が減ってしまう。従って、定期的にバルブ等によって流量調整が必要となる。
▲3▼ 現地には一般的に流量を測定する手段がないため、圧力計等によって圧力を把握し、流量をポンプ特性曲線に基づき、推定する必要がある。しかしながら、この手法は精度が低い。
【0003】
これらの問題を解決する従来からの技術としては、以下に列挙するものがある。
▲1▼ 電磁流量計の信号を制御盤にて処理し、電磁弁の開度をコントロールする。この手法は、高価であり、且つバルブの損失を伴うため、省エネルギーの効果が低いという欠点がある。
▲2▼ 電磁流量計の信号を周波数変換器に取り込み、可変速運転する。この手法は、省エネルギーにはなるが、高価である。
▲3▼ ポンプに回転数切替えつまみが設けられており、ポンプのQ−H特性を変化させると同時に、バルブを並用して必要流量に合わせて使用する。この方法はバルブの抵抗によるエネルギーロスを低減する効果はあるが、流量を安定させる効果はない。従って配管損失の増加等がある場合には、その都度、流量を調整する必要がある。
【0004】
【発明が解決しようとする課題】
本発明は、前述の問題点に鑑み、特別な附帯設備が不要で、配管抵抗の変化に拘わらずに、常に安定した流量を供給する渦巻ポンプ等の流体機械を提供することを技術的課題としている。
また、本発明は、流量が変化しても発生揚程が一定であり、給水用ポンプとして好適な軸流ポンプ等の流体機械を提供することを技術的課題としている。
【0005】
【課題を解決するための手段】
上述した課題を解決するため、本発明は、モータによって駆動され、羽根車が回転することによって、圧力を発生する流体機械において、モータに電力を供給する周波数変換器と、モータに供給する電流の電流値を検出する検出手段と、周波数 Hz と電流値(A)の関係であるA=K Hz (K及びnは正の定数)をあらかじめ記憶した前記周波数変換器に設けた制御部とを備え、前記制御部は、実際に運転した場合の周波数及び電流値と、前記周波数( Hz )と電流値(A)の関係であるA=K Hz とを比較し、前記モータに供給する電流の電流値がA=K Hz に合うように前記周波数変換器の発生周波数変化させるようにし、前記K及びnの値を切替える手段を前記周波数変換器に設けたことを特徴とするものである。
【0006】
本発明の1態様においては、同一回転数の下では、流量が増加するに従って軸動力が増加する流体機械を使用し、発生圧力が変化しても流量が略一定となるようにしている。
本発明の1態様においては、同一回転数の下では、流量が増加するに従って軸動力が減少する流体機械を使用し、流量が変化しても発生圧力が略一定となるようにしている
【0007】
また本発明の好ましい態様としては、三相誘導電動機によって駆動されるうず巻ポンプと、該三相誘導電動機に電力を供給する周波数変換器と、周波数変換器に設けられた周波数及び電流値の検出手段と、周波数変換器に記憶された周波数と電流値の関係を規定するプログラムとを備えたポンプ装置において、実際に運転した場合の周波数及び電流値と、上記規定プログラムとを比較し、ポンプの運転点を上記規定プログラムに近づけるように周波数変換器の発生周波数が変化するようにし、ポンプの揚程が変化しても、流量が略同一となるようにしている
本発明の好ましい態様においては、周波数変換器の出力した時間と前記一定流量の値を乗ずることで、流量を積算する機能をもたせている。
そして、本発明の好ましい態様としては、周波数変換器に流量の表示部を設けている。
本発明の好ましい態様としては、周波数変換器のメモリー機能を活用し、所定時間おきに所定量の水を搬送する作業を所定日数連続で行い、所定日数休止し、更に所定日数連続で作業を行うような自動運転を行えるようにしている。
【0008】
【発明の実施の形態】
以下、本発明に係る流体機械の実施の形態について説明する。
図1は本発明の基本概念を説明する説明図であり、図1(a)は流体機械の1例である渦巻ポンプの流量(Q)と揚程(H)との関係を示す図、図1(b)は図1(a)のI(b)部を拡大して示す図である。図1(a)において、横軸は流量比、縦軸は揚程比を示す。本発明の渦巻ポンプを駆動するモータはインバータを具備している。そして、所要の流量を選択する複数のツマミ(選択手段)を具備している。
【0009】
図1においては、インバータの周波数(Hz)と電流値(A(アンペア))は、
ツマミA A=0.001×Hz2……流量比0.7
ツマミB A=0.0014×Hz2……流量比1.0
の2通りメモリーされている場合を例に挙げて説明する。
今、仮に、ツマミBを選択したものとして説明する。
このとき配管の抵抗曲線は図1の▲2▼であったとする。
ポンプを起動すると、あらかじめ記憶しておいた周波数100Hz(6000rpm)にて運転される。運転点は、抵抗曲線▲2▼との交点α1(100Hz−15A)となる。この運転点は、あらかじめ記憶したA=0.0014Hz2(A=0.0014×1002=14A)に比較して、電流値が高い。即ち、周波数100Hzにとっては、電流値が過大であることを意味している。
【0010】
そこで、インバータは周波数と電流値をA=0.0014Hz2に合わせるべく減速運転する。即ち、周波数を下げて運転する。
次に、ポンプが減速した結果、90Hzで運転されたとする。運転点は抵抗曲線▲2▼との交点β1(90Hz−10A)となる。この運転点は、あらかじめ記憶したA=0.0014Hz2(A=0.0014×902=11.34A)に比較して、電流値が低い。即ち、周波数90Hzにとっては、電流値が過小であることを意味している。
【0011】
そこで、インバータは周波数と電流値をA=0.0014Hz2に合わせるべく増速運転する。即ち、周波数を上げて運転する。
上記の結果、ポンプはA=0.0014×952≒12.5A(95Hz−12.5A)の点γ1で運転される。
即ち、選択したツマミBの流量によって運転される訳である。この手法を用いると、配管抵抗の大きさや変動とは無関係に、一定の流量で運転され、且つ、必要最小限の消費電力で運転されるため、循環用ポンプにとって最適である。
尚、図1に真の要項と記載した点δは、例えば温水循環用に用いた場合に、最も好適な熱量を供給する運転点のことである。この点は、あらかじめ計算した運転熱量と若干ずれる場合がある。これは、計算上、余裕を見たりするためである。
【0012】
この問題を解決するため、インバータの流量選択ツマミの選択できる種類を増やす(図1のようにA、Bの2種類でなく例えば8種類程度)こともできる。
以上は、一定回転数(一定周波数(Hz))の下で流量が増加する程、軸動力(消費電力及び電流値)が増加するうず巻ポンプの事例である。
【0013】
図2は一定回転数(一定周波数(Hz))の下で流量が増加する程、軸動力が低下する軸流ポンプを圧力一定で制御した事例を示す説明図である。図2において、横軸は流量比、縦軸は揚程比を示す。
【0014】
図2においては、インバータの周波数(Hz)と電流値(A(アンペア))は、
A=0.0012×Hz2 ……揚程比0.75
の1通りメモリーされている場合を例に挙げて説明する。
このとき配管の抵抗曲線は図2の▲1▼であったとする。
ポンプを起動すると、あらかじめ記憶しておいた周波数100Hz(6000rpm)にて運転される。運転点は、抵抗曲線▲1▼との交点α2(100Hz−14A)となる。この運転点は、あらかじめ記憶したA=0.0012×Hz2 (A=0.0012×1002 =12A)に比較して、電流値が高い。即ち、周波数100Hzにとっては、電流値が過大であることを意味している。
【0015】
そこで、インバータは周波数と電流値をA=0.0012Hz2に合わせるべく減速運転する。即ち、周波数を下げて運転する。
次に、ポンプが減速した結果、90Hzで運転されたとする。運転点は、抵抗曲線▲1▼との交点β2(90Hz−9A)となる。この運転点は、あらかじめ記憶したA=0.0012Hz2 (A=0.0012×902 =9.72A)に比較して、電流値が低い。即ち、周波数90Hzにとっては、電流値が過小であることを意味している。
【0016】
そこで、インバータは周波数と電流値をA=0.0012Hz2に合わせるべく増速運転する。すなわち、周波数を上げて運転する。
上記の結果、ポンプはA=0.0012×952A≒11A(95Hz−11A)の点で運転される。即ち、選択した圧力によって運転される。この手法を用いると、配管抵抗の大きさや変動とは無関係に、一定の圧力(揚程)で運転され、且つ必要最小限の消費電力で運転されるため、給水用ポンプとして好適である。
【0017】
図1及び図2に示すように、本発明によれば、電磁流量計や圧力計(又は圧力センサー)等を用いることなく、ポンプ単体にて流量又は圧力を一定に保つことができるため、ユーザは特別の附帯設備を必要とせず、また、バルブの調整等の手間も不要となる。
【0018】
図3は本発明を実施するための、好適なポンプ装置を示している。本ポンプ装置は、モータの周囲を取扱液が流れる全周流型キャンドモータポンプである。
【0019】
本実施例に示す全周流型キャンドモータポンプは、ポンプケーシング1と、このポンプケーシング1内に収容されたキャンドモータ6と、このキャンドモータ6の主軸7の端部に固定された羽根車8とを備えている。ポンプケーシング1はポンプケーシング外筒(バレル)2と、このポンプケーシング外筒2の両端にそれぞれ接続された吸込ケーシング3と、吐出ケーシング4とからなっている。吸込ケーシング3は外筒2に溶接によって接続され、吐出ケーシング4はフランジ61,62によって外筒2に接続されている。ポンプケーシング外筒2、吸込ケーシング3および吐出ケーシング4はステンレススチール等からなる板金によって形成されている。
【0020】
一方、キャンドモータ6は、固定子13と、この固定子13の外周部に設けられたモータフレーム外胴14と、モータフレーム外胴14の両開放端に溶接固定されるモータフレーム側板15,16と、固定子13の内周部に嵌着され上記モータフレーム側板15,16に溶接固定されるキャン17とを備えている。また固定子13内に回転可能に収容されている回転子18は主軸7に焼き嵌め固定されている。モータフレーム外胴14と外筒2との間には環状空間(流路)40が形成されている。モータの周囲に取扱液を内包する外筒(バレル)2の外面にはインバータ(周波数変換器)Fが固定されている。インバータFはケース20内に収容されており、このケース20には流量表示計及び流量設定ツマミも内蔵されている。
【0021】
また、キャンドモータ6のモータフレーム側板15には、流体を半径方向外方から内方に導くガイド部材11が保持されている。そして、ガイド部材11には羽根車8を収容する内ケーシング12が固定されている。また、ガイド部材11の外周部には、シール部材13が介装されている。
【0022】
ガイド部材11の内端にはライナリング51が設けられ、このライナリング51は羽根車8の前面部(吸込マウス側)と摺動するようになっている。内ケーシング12は概略ドーム形状を有し、キャンドモータポンプ6の主軸7の軸端を覆いかくす形状になっている。この内ケーシング12は羽根車8から吐出された流体を案内するガイドベーン又はボリュートからなる案内装置12aを有している。また、内ケーシング12は先端部に空気抜き穴12bを有している。
【0023】
軸受は、シリコンカーバイド製の滑り軸受であり、全ての軸受が、モータ回転子18と羽根車8の間の空間に収容されている。軸受は自液にて潤滑される。
軸受ブラケット21は、ステンレス鋳物製で、軸方向の両側に固定側ラジアル軸受22,23が焼ばめ固定され、更に外周部から樹脂を注入することで廻り止めされている。また固定側ラジアル軸受22,23の軸方向端部は、回転側スラスト軸受24,25と摺動するように構成されている。回転側スラスト軸受24,25及び回転側ラジアル軸受26,27は、主軸7に羽根車8及びディスタンスピース28を適宜に介してハネ止めナット29によって固定されている。
【0024】
図3に示す全周流型キャンドモータポンプの作用を簡単に説明すると、吸込ケーシング3より吸い込まれた流体は、外筒2とキャンドモータ6のモータフレーム外胴14との間に形成された環状流路40に流入し、この流路40を通ってガイド部材11に案内されて羽根車8内に導かれる。羽根車8から吐出された流体は、案内装置12aを経て吐出ケーシング4より吐出される。
【0025】
次に本発明における周波数変換器の実施例について、図4を参照して説明する。図4においては、ポンプ等の流体機械はMで示され、周波数変換器はFで示されている。三相交流を入力として用いる場合、周波数変換器Fは、交流を直流にする整流回路41と整流された電圧を平滑化する平滑コンデンサ42からなるコンバータ部分と、直流から交流に変換するインバータ部43とからなる。直流部分であるコンバータには、補助電源部44と、コンバータ部の直流電圧を検出する電圧検出部45が接続されている。周波数変換器Fは、更に発生周波数と電流値の関係を予め記憶した制御部46を備え、制御部46からPWM信号を出力し、インバータ部43をドライブする。
【0026】
三相インバータ43の出力部には電流検出センサ48が設けてあり、検出された電流は検出部47により信号に変換されて制御部46に入力される。三相インバータ43の出力側にはモータ6が接続されている。なお、符号49は温度センサである。
【0027】
制御部46には、予め発生周波数と電流値を特定する関数をメモリーしたROMと、電流検出部47からの信号とROMの設定内容とを比較して、演算処理を行い所定のPWM信号を出力させるCPUと、制御ICが設けられている。
【0028】
周波数変換器Fは、前述の通り制御部46を有し、自らが出力した時間を記憶することができる。また、前述の流量一定制御による運転を行えば、周波数変換器Fは、ポンプが搬送している時々刻々の流量を検知することができる。また、周波数変換器Fには、演算機能がある。従って、周波数変換器Fは時々刻々の流量に加えて、積算流量を表示することができる。即ち、このポンプ装置そのものを流量計として使用できる。
【0029】
更に、周波数変換器Fのメモリー機能を活用し、所定時間(例えば24時間)おきに所定量(例えば1m3 )の水を搬送する作業を所定日数(例えば5日間)連続で行い、所定日数(例えば2日間)休止し、更に所定日数(例えば5日間)連続で作業を行うような自動運転を行える。この方法は、1日の給水量を制限して、節水を行う場合等に好適であり、特別な附帯設備を設けることなく自動給水できる点が特徴である。
【0030】
【発明の効果】
以上説明したように、本発明によれば、特別な附帯設備が不要で、配管抵抗の変化に拘わらず、常に安定した流量を供給する渦巻ポンプ等の流体機械とすることができる。
また本発明によれば、流量が変化しても、発生揚程が一定の軸流ポンプ等の流体機械を実現することが可能である。
【図面の簡単な説明】
【図1】本発明に係る流体機械の基本概念を説明する説明図である。
【図2】本発明に係る流体機械の基本概念を説明する説明図である。
【図3】本発明を実施するために好適なポンプ装置を示す断面図である。
【図4】本発明における周波数変換器の回路図である。
【符号の説明】
1 ポンプケーシング
2 外筒(バレル)
3 吸込ケーシング
4 吐出ケーシング
6 キャンドモータ
7 主軸
8 羽根車
11 ガイド部材
12 内ケーシング
13 固定子
18 回転子
21 軸受ブラケット
22,23 固定側ラジアル軸受
24,25 回転側スラスト軸受
26,27 回転側ラジアル軸受
41 整流回路
42 平滑コンデンサ
43 三相インバータ
44 補助電源部
45 電圧検出部
46 制御部
47 電流検出部
F 周波数変換器
M 流体機械
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid machine, and in particular, an axial flow pump capable of easily obtaining a constant head characteristic suitable for a centrifugal pump and a feed water pump which can easily obtain a constant flow characteristic suitable for a circulation pump. The present invention relates to a fluid machine including
[0002]
[Prior art]
Conventionally, a spiral pump has been used as a hot / cold water circulation pump for heating and cooling. The important matters in this application are as follows.
(1) Even if the required flow rate is known, there is a subtle difference between the calculated piping loss and the actual piping loss, so it is necessary to adjust the flow rate with a valve on site. In this case, there is an energy loss corresponding to the loss of the valve.
(2) If the piping loss increases due to aging of the piping or clogging of foreign matter to the valve, the flow rate will decrease. Therefore, it is necessary to periodically adjust the flow rate with a valve or the like.
(3) Since there is generally no means for measuring the flow rate at the site, it is necessary to grasp the pressure with a pressure gauge and estimate the flow rate based on the pump characteristic curve. However, this method has low accuracy.
[0003]
Conventional techniques for solving these problems include those listed below.
(1) The electromagnetic flow meter signal is processed by the control panel to control the opening of the solenoid valve. This method is expensive and involves a loss of a valve, so that there is a disadvantage that the energy saving effect is low.
(2) Take the signal of the electromagnetic flowmeter into the frequency converter and run it at variable speed. This method saves energy but is expensive.
(3) A rotation speed switching knob is provided on the pump, and the QH characteristic of the pump is changed, and at the same time, a valve is used in parallel and used according to the required flow rate. This method has an effect of reducing energy loss due to the resistance of the valve, but has no effect of stabilizing the flow rate. Therefore, when there is an increase in piping loss, etc., it is necessary to adjust the flow rate each time.
[0004]
[Problems to be solved by the invention]
In view of the above-mentioned problems, the present invention has as a technical problem to provide a fluid machine such as a centrifugal pump that does not require special incidental equipment and always supplies a stable flow rate regardless of changes in pipe resistance. Yes.
Further, the present invention has a technical problem to provide a fluid machine such as an axial flow pump that is suitable as a water supply pump because the generated head is constant even when the flow rate is changed.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is directed to a frequency converter that supplies electric power to a motor and a current that is supplied to the motor in a fluid machine that generates pressure by being driven by a motor and rotating an impeller . Detection means for detecting a current value , and a control unit provided in the frequency converter in which A = K Hz n (K and n are positive constants) , which is a relationship between the frequency ( Hz ) and the current value (A) , is stored in advance. The control unit compares the frequency and current value in actual operation with A = K Hz n , which is the relationship between the frequency ( Hz ) and the current value (A), and supplies it to the motor. and wherein the current value of the current is in so that by changing the occurrence frequency of the frequency converter to match the a = K Hz n, provided with means for switching the value of the K and n to the frequency converter for To do.
[0006]
In one aspect of the present invention, a fluid machine in which shaft power increases as the flow rate increases under the same rotational speed is used so that the flow rate becomes substantially constant even if the generated pressure changes.
In one aspect of the present invention, a fluid machine in which shaft power decreases as the flow rate increases under the same rotational speed is used so that the generated pressure becomes substantially constant even when the flow rate changes .
[0007]
Moreover, as a preferable aspect of the present invention , a spiral pump driven by a three-phase induction motor, a frequency converter that supplies power to the three-phase induction motor, and detection of a frequency and a current value provided in the frequency converter In the pump device comprising the means and a program that defines the relationship between the frequency and current value stored in the frequency converter, the frequency and current value in actual operation are compared with the specified program, and the pump the operating point so as to change the generated frequency of the frequency converter so as to be close to the specified program, lift of the pump be varied, the flow rate is set to be substantially the same.
In a preferred aspect of the present invention, the function of integrating the flow rate is provided by multiplying the time output by the frequency converter and the value of the constant flow rate.
As a preferred embodiment of the present invention, a flow rate display unit is provided in the frequency converter.
As a preferred embodiment of the present invention, the memory function of the frequency converter is utilized to carry out a work for transporting a predetermined amount of water every predetermined time continuously for a predetermined number of days, to pause for a predetermined number of days, and to perform a work continuously for a predetermined number of days. Automatic operation like this is possible.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a fluid machine according to the present invention will be described.
FIG. 1 is an explanatory diagram for explaining the basic concept of the present invention, and FIG. 1 (a) is a diagram showing the relationship between the flow rate (Q) and the head (H) of a centrifugal pump as an example of a fluid machine. (B) is a figure which expands and shows the I (b) part of Fig.1 (a). In FIG. 1A, the horizontal axis indicates the flow rate ratio, and the vertical axis indicates the head ratio. The motor for driving the centrifugal pump of the present invention includes an inverter. And the several knob (selection means) which selects a required flow volume is comprised.
[0009]
In FIG. 1, the frequency (Hz) and current value (A (ampere)) of the inverter are
Knob A A = 0.001 × Hz 2 …… Flow rate ratio 0.7
Knob B A = 0.0014 × Hz 2 ...... Flow ratio 1.0
A case where two types of memory are stored will be described as an example.
Now, it is assumed that knob B is selected.
At this time, it is assumed that the resistance curve of the pipe is (2) in FIG.
When the pump is activated, the pump is operated at a previously stored frequency of 100 Hz (6000 rpm). The operating point is the intersection α1 (100 Hz-15 A) with the resistance curve (2). This operating point has a higher current value compared to A = 0.0014 Hz 2 (A = 0.0014 × 100 2 = 14 A) stored in advance. That is, for a frequency of 100 Hz, this means that the current value is excessive.
[0010]
Therefore, the inverter is decelerated to match the frequency and current value to A = 0.0014 Hz 2 . That is, the operation is performed at a reduced frequency.
Next, it is assumed that the pump is operated at 90 Hz as a result of deceleration. The operating point is the intersection β1 (90 Hz-10 A) with the resistance curve (2). This operating point has a lower current value than A = 0.0014 Hz 2 (A = 0.0014 × 90 2 = 11.34 A) stored in advance. That is, for a frequency of 90 Hz, it means that the current value is too small.
[0011]
Therefore, the inverter operates at a higher speed so that the frequency and the current value are adjusted to A = 0.0014 Hz 2 . In other words, the frequency is increased.
As a result of the above, the pump is operated at the point γ1 of A = 0.0014 × 95 2 ≈12.5 A (95 Hz-12.5 A).
That is, the operation is performed according to the flow rate of the selected knob B. If this method is used, the pump is operated at a constant flow rate and operated with the minimum necessary power consumption regardless of the magnitude and fluctuation of the pipe resistance, and is optimal for the circulation pump.
Note that the point δ described as a true essential point in FIG. 1 is an operating point for supplying the most suitable amount of heat when used for circulating hot water, for example. This point may slightly deviate from the amount of operating heat calculated in advance. This is to allow a margin in calculation.
[0012]
In order to solve this problem, the types of inverter flow rate selection knobs that can be selected can be increased (for example, about eight types instead of two types A and B as shown in FIG. 1).
The above is an example of a centrifugal pump in which shaft power (power consumption and current value) increases as the flow rate increases at a constant rotational speed (constant frequency (Hz)).
[0013]
FIG. 2 is an explanatory diagram showing an example in which an axial pump whose axial power decreases as the flow rate increases at a constant rotational speed (a constant frequency (Hz)) is controlled at a constant pressure. In FIG. 2, the horizontal axis represents the flow ratio, and the vertical axis represents the head ratio.
[0014]
In FIG. 2, the frequency (Hz) and current value (A (ampere)) of the inverter are
A = 0.0012 × Hz 2 …… Head ratio 0.75
A case where the data is stored in the memory will be described as an example.
At this time, the resistance curve of the pipe is assumed to be (1) in FIG.
When the pump is activated, the pump is operated at a previously stored frequency of 100 Hz (6000 rpm). The operating point is the intersection α2 (100 Hz-14 A) with the resistance curve (1). This operating point has a higher current value as compared to A = 0.0012 × Hz 2 (A = 0.0012 × 100 2 = 12 A) stored in advance. That is, for a frequency of 100 Hz, this means that the current value is excessive.
[0015]
Therefore, the inverter is decelerated to match the frequency and current value to A = 0.0012 Hz 2 . That is, the operation is performed at a reduced frequency.
Next, it is assumed that the pump is operated at 90 Hz as a result of deceleration. The operating point is the intersection β2 (90 Hz-9A) with the resistance curve (1). This operating point has a low current value as compared to A = 0.0012 Hz 2 (A = 0.0012 × 90 2 = 9.72 A) stored in advance. That is, for a frequency of 90 Hz, it means that the current value is too small.
[0016]
Therefore, the inverter operates at a higher speed so that the frequency and the current value are adjusted to A = 0.0012 Hz 2 . In other words, the frequency is increased.
As a result of the above, the pump is operated at the point of A = 0.0012 × 95 2 A≈11 A (95 Hz-11 A). That is, it operates with the selected pressure. When this method is used, the pump is operated at a constant pressure (lift) and operated with the minimum necessary power consumption regardless of the magnitude and fluctuation of the pipe resistance, and therefore, it is suitable as a water supply pump.
[0017]
As shown in FIGS. 1 and 2, according to the present invention, the flow rate or pressure can be kept constant with a single pump without using an electromagnetic flow meter, pressure gauge (or pressure sensor), etc. Does not require any special equipment and does not require the adjustment of valves.
[0018]
FIG. 3 shows a preferred pump apparatus for carrying out the present invention. This pump device is an all-around canned motor pump in which a handling liquid flows around the motor.
[0019]
The all-around flow type canned motor pump shown in this embodiment includes a pump casing 1, a canned motor 6 accommodated in the pump casing 1, and an impeller 8 fixed to an end of a main shaft 7 of the canned motor 6. And. The pump casing 1 includes a pump casing outer cylinder (barrel) 2, a suction casing 3 connected to both ends of the pump casing outer cylinder 2, and a discharge casing 4. The suction casing 3 is connected to the outer cylinder 2 by welding, and the discharge casing 4 is connected to the outer cylinder 2 by flanges 61 and 62. The pump casing outer cylinder 2, the suction casing 3, and the discharge casing 4 are formed of sheet metal made of stainless steel or the like.
[0020]
On the other hand, the canned motor 6 includes a stator 13, a motor frame outer body 14 provided on the outer periphery of the stator 13, and motor frame side plates 15 and 16 which are fixed to both open ends of the motor frame outer body 14 by welding. And a can 17 fitted to the inner peripheral portion of the stator 13 and welded to the motor frame side plates 15 and 16. Further, the rotor 18 accommodated in the stator 13 so as to be rotatable is fixed to the main shaft 7 by shrink fitting. An annular space (flow path) 40 is formed between the motor frame outer body 14 and the outer cylinder 2. An inverter (frequency converter) F is fixed to the outer surface of the outer cylinder (barrel) 2 containing the handling liquid around the motor. The inverter F is accommodated in the case 20, and the case 20 also includes a flow rate indicator and a flow rate setting knob.
[0021]
The motor frame side plate 15 of the canned motor 6 holds a guide member 11 that guides the fluid from radially outward to inward. An inner casing 12 that houses the impeller 8 is fixed to the guide member 11. A seal member 13 is interposed on the outer periphery of the guide member 11.
[0022]
A liner ring 51 is provided at the inner end of the guide member 11, and the liner ring 51 slides on the front portion (on the suction mouse side) of the impeller 8. The inner casing 12 has a substantially dome shape and covers the shaft end of the main shaft 7 of the canned motor pump 6. The inner casing 12 has a guide device 12a composed of a guide vane or a volute that guides the fluid discharged from the impeller 8. Further, the inner casing 12 has an air vent hole 12b at the tip.
[0023]
The bearing is a sliding bearing made of silicon carbide, and all the bearings are accommodated in a space between the motor rotor 18 and the impeller 8. The bearing is lubricated with its own liquid.
The bearing bracket 21 is made of a cast stainless steel, and fixed-side radial bearings 22 and 23 are fixed by shrinkage fitting on both sides in the axial direction. Further, the bearing bracket 21 is stopped by injecting resin from the outer periphery. The axial end portions of the fixed-side radial bearings 22 and 23 are configured to slide with the rotation-side thrust bearings 24 and 25. The rotation-side thrust bearings 24 and 25 and the rotation-side radial bearings 26 and 27 are fixed to the main shaft 7 with a spring stopper nut 29 through an impeller 8 and a distance piece 28 as appropriate.
[0024]
The operation of the all-around flow type canned motor pump shown in FIG. 3 will be briefly described. The fluid sucked from the suction casing 3 is an annular shape formed between the outer cylinder 2 and the motor frame outer cylinder 14 of the canned motor 6. It flows into the flow path 40 and is guided to the guide member 11 through the flow path 40 and guided into the impeller 8. The fluid discharged from the impeller 8 is discharged from the discharge casing 4 through the guide device 12a.
[0025]
Next, an embodiment of the frequency converter in the present invention will be described with reference to FIG. In FIG. 4, a fluid machine such as a pump is indicated by M, and a frequency converter is indicated by F. When three-phase alternating current is used as an input, the frequency converter F includes a converter portion including a rectifier circuit 41 that converts alternating current into direct current, a smoothing capacitor 42 that smoothes the rectified voltage, and an inverter portion 43 that converts direct current into alternating current. It consists of. An auxiliary power supply unit 44 and a voltage detection unit 45 that detects a DC voltage of the converter unit are connected to the converter that is a DC unit. The frequency converter F further includes a control unit 46 that stores in advance the relationship between the generated frequency and the current value, outputs a PWM signal from the control unit 46, and drives the inverter unit 43.
[0026]
A current detection sensor 48 is provided at the output section of the three-phase inverter 43, and the detected current is converted into a signal by the detection section 47 and input to the control section 46. The motor 6 is connected to the output side of the three-phase inverter 43. Reference numeral 49 denotes a temperature sensor.
[0027]
The control unit 46 compares the ROM that previously stores the function for specifying the generated frequency and current value, the signal from the current detection unit 47 and the setting contents of the ROM, performs arithmetic processing, and outputs a predetermined PWM signal. CPU and control IC are provided.
[0028]
The frequency converter F has the control part 46 as mentioned above, and can memorize | store the time which self output. Moreover, if the operation by the above-described constant flow rate control is performed, the frequency converter F can detect the flow rate every moment that the pump is carrying. Further, the frequency converter F has a calculation function. Therefore, the frequency converter F can display the integrated flow rate in addition to the momentary flow rate. That is, the pump device itself can be used as a flow meter.
[0029]
Further, by utilizing the memory function of the frequency converter F, a predetermined amount (for example, 1 m 3 ) of water is transported every predetermined time (for example, 24 hours) for a predetermined number of days (for example, 5 days). For example, it is possible to perform an automatic operation that pauses for two days and performs work continuously for a predetermined number of days (for example, five days). This method is suitable for water saving by limiting the daily water supply amount, and is characterized in that automatic water supply can be performed without providing any special incidental facilities.
[0030]
【The invention's effect】
As described above, according to the present invention, a special auxiliary facility is not required, and a fluid machine such as a vortex pump that constantly supplies a stable flow rate can be obtained regardless of changes in pipe resistance.
Further, according to the present invention, it is possible to realize a fluid machine such as an axial flow pump having a constant generated head even if the flow rate changes.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a basic concept of a fluid machine according to the present invention.
FIG. 2 is an explanatory diagram illustrating a basic concept of a fluid machine according to the present invention.
FIG. 3 is a cross-sectional view showing a pump device suitable for carrying out the present invention.
FIG. 4 is a circuit diagram of a frequency converter in the present invention.
[Explanation of symbols]
1 Pump casing 2 Outer cylinder (barrel)
3 Suction casing 4 Discharge casing 6 Canned motor 7 Main shaft 8 Impeller 11 Guide member 12 Inner casing 13 Stator 18 Rotor 21 Bearing brackets 22 and 23 Fixed radial bearings 24 and 25 Rotary thrust bearings 26 and 27 Rotary radial bearings 41 Rectifier circuit 42 Smoothing capacitor 43 Three-phase inverter 44 Auxiliary power supply unit 45 Voltage detection unit 46 Control unit 47 Current detection unit F Frequency converter M Fluid machinery

Claims (3)

モータによって駆動され、羽根車が回転することによって、圧力を発生する流体機械において、モータに電力を供給する周波数変換器と、モータに供給する電流の電流値を検出する検出手段と、周波数 Hz と電流値(A)の関係であるA=K Hz (K及びnは正の定数)をあらかじめ記憶した前記周波数変換器に設けた制御部とを備え、
前記制御部は、実際に運転した場合の周波数及び電流値と、前記周波数( Hz )と電流値(A)の関係であるA=K Hz とを比較し、前記モータに供給する電流の電流値がA=K Hz に合うように前記周波数変換器の発生周波数変化させるようにし
前記K及びnの値を切替える手段を前記周波数変換器に設けたことを特徴とする流体機械。
In a fluid machine driven by a motor and rotating an impeller to generate pressure, a frequency converter that supplies power to the motor, a detection means that detects a current value of the current supplied to the motor, and a frequency ( Hz ) And the current value (A) A = K Hz n (where K and n are positive constants), and a controller provided in the frequency converter that stores in advance,
The control unit compares the frequency and current value in actual operation with A = K Hz n which is the relationship between the frequency ( Hz ) and the current value (A), and the current of the current supplied to the motor value to so that by changing the occurrence frequency of the frequency converter to match the a = K Hz n,
A fluid machine characterized in that the frequency converter is provided with means for switching the values of K and n .
同一回転数の下では、流量が増加するに従って軸動力が増加する流体機械を使用し、発生圧力が変化しても流量が略一定となるようにしたことを特徴とする請求項1に記載の流体機械。  2. The fluid machine according to claim 1, wherein a fluid machine is used in which shaft power increases as the flow rate increases under the same rotational speed, so that the flow rate becomes substantially constant even if the generated pressure changes. Fluid machinery. 同一回転数の下では、流量が増加するに従って軸動力が減少する流体機械を使用し、流量が変化しても発生圧力が略一定となるようにしたことを特徴とする請求項1に記載の流体機械。  2. A fluid machine in which shaft power decreases as the flow rate increases under the same rotational speed, so that the generated pressure becomes substantially constant even when the flow rate changes. Fluid machinery.
JP12356097A 1997-04-25 1997-04-25 Fluid machinery Expired - Fee Related JP3922760B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP12356097A JP3922760B2 (en) 1997-04-25 1997-04-25 Fluid machinery
DE1998622808 DE69822808T2 (en) 1997-04-25 1998-04-22 TURBOMACHINE
CNB988043505A CN1268847C (en) 1997-04-25 1998-04-22 Fluid machinery
AU70792/98A AU722386B2 (en) 1997-04-25 1998-04-22 Fluid machinery
US09/402,617 US6350105B1 (en) 1997-04-25 1998-04-22 Frequency and current control for fluid machinery
KR10-1999-7009768A KR100533699B1 (en) 1997-04-25 1998-04-22 Fluid machinery
EP98917626A EP0978657B1 (en) 1997-04-25 1998-04-22 Fluid machinery
IDW991266A ID24674A (en) 1997-04-25 1998-04-22 FLUID MACHINE
PCT/JP1998/001847 WO1998049449A1 (en) 1997-04-25 1998-04-22 Fluid machinery
RU99124601/06A RU2193697C2 (en) 1997-04-25 1998-04-22 Hydraulic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12356097A JP3922760B2 (en) 1997-04-25 1997-04-25 Fluid machinery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007020506A Division JP2007162700A (en) 2007-01-31 2007-01-31 Pump device

Publications (2)

Publication Number Publication Date
JPH10299685A JPH10299685A (en) 1998-11-10
JP3922760B2 true JP3922760B2 (en) 2007-05-30

Family

ID=14863618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12356097A Expired - Fee Related JP3922760B2 (en) 1997-04-25 1997-04-25 Fluid machinery

Country Status (10)

Country Link
US (1) US6350105B1 (en)
EP (1) EP0978657B1 (en)
JP (1) JP3922760B2 (en)
KR (1) KR100533699B1 (en)
CN (1) CN1268847C (en)
AU (1) AU722386B2 (en)
DE (1) DE69822808T2 (en)
ID (1) ID24674A (en)
RU (1) RU2193697C2 (en)
WO (1) WO1998049449A1 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152497A1 (en) * 2001-10-24 2003-05-15 Pierburg Gmbh Wet rotor
US8337166B2 (en) 2001-11-26 2012-12-25 Shurflo, Llc Pump and pump control circuit apparatus and method
US6776584B2 (en) * 2002-01-09 2004-08-17 Itt Manufacturing Enterprises, Inc. Method for determining a centrifugal pump operating state without using traditional measurement sensors
DE10252754A1 (en) * 2002-11-13 2004-06-17 Rexroth Indramat Gmbh Electric motor with a device for temperature monitoring
ITTO20030392A1 (en) * 2003-05-28 2004-11-29 Varian Spa VACUUM PUMPING SYSTEM.
US8762577B2 (en) * 2003-06-30 2014-06-24 Apple Inc. Method and system for providing network synchronization with a unified messaging system
US8540493B2 (en) 2003-12-08 2013-09-24 Sta-Rite Industries, Llc Pump control system and method
US8602745B2 (en) 2004-08-26 2013-12-10 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
US8019479B2 (en) 2004-08-26 2011-09-13 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US8469675B2 (en) * 2004-08-26 2013-06-25 Pentair Water Pool And Spa, Inc. Priming protection
US7686589B2 (en) 2004-08-26 2010-03-30 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
US8043070B2 (en) 2004-08-26 2011-10-25 Pentair Water Pool And Spa, Inc. Speed control
US7874808B2 (en) 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US7845913B2 (en) * 2004-08-26 2010-12-07 Pentair Water Pool And Spa, Inc. Flow control
US8480373B2 (en) 2004-08-26 2013-07-09 Pentair Water Pool And Spa, Inc. Filter loading
DE102004060206B3 (en) * 2004-12-14 2006-06-14 Siemens Ag Method for operating a converter-fed compressor
US7518333B1 (en) * 2005-03-07 2009-04-14 Gary Randolph Fisher Dynamic reef surge generation
EP1847714B1 (en) * 2006-04-20 2016-11-09 ABB Oy Frequency converter for motor pump
JP5004498B2 (en) * 2006-04-27 2012-08-22 パナソニック株式会社 Pump operation support system
DE102006026681A1 (en) * 2006-06-02 2007-12-06 Laing, Oliver Coil module for a stator of an electric motor, stator, electric motor, circulation pump and method for producing a stator
DE102006026678A1 (en) * 2006-06-02 2007-12-06 Laing, Oliver circulating pump
DE102007022348A1 (en) * 2007-05-12 2008-11-13 Ksb Aktiengesellschaft Device and method for fault monitoring
US8774972B2 (en) * 2007-05-14 2014-07-08 Flowserve Management Company Intelligent pump system
AU2009302593B2 (en) 2008-10-06 2015-05-28 Danfoss Low Power Drives Method of operating a safety vacuum release system
US8400035B2 (en) * 2008-12-27 2013-03-19 Schlumberger Technology Corporation Rotor bearing assembly
US8622713B2 (en) * 2008-12-29 2014-01-07 Little Giant Pump Company Method and apparatus for detecting the fluid condition in a pump
CN101871447B (en) * 2009-04-21 2015-12-16 埃克斯雷姆Ip控股有限责任公司 Pump controller
US8425200B2 (en) 2009-04-21 2013-04-23 Xylem IP Holdings LLC. Pump controller
US8564233B2 (en) 2009-06-09 2013-10-22 Sta-Rite Industries, Llc Safety system and method for pump and motor
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
US8436559B2 (en) 2009-06-09 2013-05-07 Sta-Rite Industries, Llc System and method for motor drive control pad and drive terminals
FI125258B (en) * 2010-07-19 2015-08-14 Runtech Systems Oy Method of controlling a vacuum centrifugal fan with adjustable rotational speed
US8961149B2 (en) 2010-07-19 2015-02-24 Runtech Systems Oy Method for controlling a regulated-rotation-speed low-pressure centrifugal fan
BR112013014476A2 (en) 2010-12-08 2016-09-20 Pentair Water Pool & Spa Inc vacuum relief relief valve for a vacuum release safety system
US8700221B2 (en) 2010-12-30 2014-04-15 Fluid Handling Llc Method and apparatus for pump control using varying equivalent system characteristic curve, AKA an adaptive control curve
JP5914365B2 (en) * 2011-01-21 2016-05-11 株式会社荏原製作所 Water supply equipment
BR112014010665A2 (en) 2011-11-01 2017-12-05 Pentair Water Pool & Spa Inc flow blocking system and process
DE102011087041A1 (en) * 2011-11-24 2013-05-29 Continental Automotive Gmbh Apparatus and method for operating a fuel delivery system and fuel delivery system
RU2611071C2 (en) 2011-12-16 2017-02-21 Флюид Хэндлинг ЭлЭлСи Dynamic linear control method and pump control device with variable speed
EP2610501B1 (en) * 2011-12-29 2014-07-23 Espa 2025, S.L. Method for stopping a hydraulic pump with adjustable rotating speed in a hydraulic system and hydraulic pump controller device
US20130189131A1 (en) * 2012-01-19 2013-07-25 Han-Lung Huang Water cooled motor with stainless steel cooling jacket
DE102012006444A1 (en) * 2012-03-30 2013-10-02 Wilo Se Method for operating a pump set
EP2861374B1 (en) 2012-06-14 2021-04-14 Flow Control LLC. Technique for preventing air lock through stuttered starting and air release slit for pumps
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
EP3025064B1 (en) 2013-07-25 2021-09-08 Fluid Handling LLC. Sensorless adaptive pump control with self-calibration apparatus for hydronic pumping system
RU2539252C1 (en) * 2013-08-06 2015-01-20 Валентин Романович Гуняков Oxidiser for internal surfaces of hollow cylindrical parts
CN103671054B (en) * 2013-12-06 2016-09-28 杭州哲达科技股份有限公司 Nothing sensing constant current conversion method and device for fluid supply system
EP3129756A4 (en) * 2014-04-08 2017-11-22 Fluid Handling LLC. Best-fit affinity sensorless conversion means or technique for pump differential pressure and flow monitoring
CA2993685C (en) * 2016-06-14 2018-06-19 S.A. Armstrong Limited Self-regulating open circuit pump unit
US9977433B1 (en) 2017-05-05 2018-05-22 Hayward Industries, Inc. Automatic pool cleaner traction correction
CN112805528B (en) 2018-10-05 2023-10-17 塞阿姆斯特朗有限公司 Feedforward flow control for heat transfer systems
JP2021032193A (en) 2019-08-28 2021-03-01 株式会社荏原製作所 Pump device
JP2022090957A (en) * 2020-12-08 2022-06-20 富士電機株式会社 Pump clogging detection system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE413947B (en) * 1977-11-24 1980-06-30 Pumpex Production Ab PROCEDURE FOR CONTINUOUS CONTROL OF SPEED AND FOR VARIATION OF PERFORMANCE OF A ROTODYNAMIC TYPE WASTE PUMP AND REGULATOR FOR IMPLEMENTATION OF THE PROCEDURE
DD136520A1 (en) * 1978-05-29 1979-07-11 Hans Spengler HIGH PRESSURE PUMPS UNIT
DE3210641A1 (en) * 1982-03-23 1983-10-06 Dupont Inc ENERGY-SAVING HEAT CARRIER CIRCUIT PUMP, ESPECIALLY FOR HEAT PUMP HEATERS
CH651111A5 (en) * 1982-07-28 1985-08-30 Cerac Inst Sa PUMPING INSTALLATION AND METHOD FOR ACTIVATING THE SAME.
US4633157A (en) * 1984-08-27 1986-12-30 Franklin Electric Co., Inc. Control system for permanent magnet synchronous motor
JPS61190194A (en) * 1985-02-19 1986-08-23 Sanyo Electric Co Ltd Method of controlling pump
GB2176667B (en) * 1985-06-11 1989-07-05 Toshiba Kk Electric motor running system employing a photovoltaic array
US5212438A (en) * 1987-09-24 1993-05-18 Kabushiki Kaisha Toshiba Induction motor control system
JPH02118362A (en) * 1988-10-26 1990-05-02 Hitachi Ltd Capacity control air conditioner
DK1293A (en) * 1992-08-21 1994-02-22 Smedegaard As Method of controlling an electric motor operating a centrifugal pump
AT405996B (en) * 1993-07-09 2000-01-25 Rudin Franz METHOD FOR REGULATING THE SPEED OF AN ELECTRIC MOTOR AND DEVICE FOR IMPLEMENTING THE METHOD
KR100344716B1 (en) * 1993-09-20 2002-11-23 가부시키 가이샤 에바라 세이사꾸쇼 Pump operation control device
JP3077490B2 (en) * 1993-12-28 2000-08-14 株式会社荏原製作所 Pump assembly
US5580221A (en) * 1994-10-05 1996-12-03 Franklin Electric Co., Inc. Motor drive circuit for pressure control of a pumping system
JPH0988871A (en) * 1995-09-18 1997-03-31 Hitachi Ltd Device and method for controlling rotary machine
JPH0996292A (en) * 1995-10-02 1997-04-08 Tsurumi Mfg Co Ltd Rotational speed control device for motor-driven pump
JPH09119378A (en) * 1995-10-25 1997-05-06 Ishikawajima Harima Heavy Ind Co Ltd Turbo compressor
JP3321356B2 (en) * 1996-05-20 2002-09-03 株式会社日立製作所 Motor control device and control device for electric vehicle

Also Published As

Publication number Publication date
CN1268847C (en) 2006-08-09
US20020018721A1 (en) 2002-02-14
CN1252855A (en) 2000-05-10
WO1998049449A1 (en) 1998-11-05
JPH10299685A (en) 1998-11-10
AU7079298A (en) 1998-11-24
AU722386B2 (en) 2000-08-03
US6350105B1 (en) 2002-02-26
DE69822808D1 (en) 2004-05-06
KR20010020192A (en) 2001-03-15
DE69822808T2 (en) 2005-01-13
EP0978657B1 (en) 2004-03-31
KR100533699B1 (en) 2005-12-05
ID24674A (en) 2000-07-27
EP0978657A1 (en) 2000-02-09
EP0978657A4 (en) 2002-07-17
RU2193697C2 (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP3922760B2 (en) Fluid machinery
FI75030B (en) FOERFARANDE ATT MEDELST EN BORSTLOES VAEXELSTROEMSMOTOR DRIVA PUMPHJULET I EN VAETSKEPUMP SAMT VAETSKEPUMP FOER ATT UTOEVA FOERFARANDET.
US6715996B2 (en) Method for the operation of a centrifugal pump
EP0644333B1 (en) Pump system
US6435836B1 (en) Fluid machinery
US20070216398A1 (en) Speed indication for pump condition monitoring
EP0784156A2 (en) Submerged hydraulic turbine-generator
KR920007601A (en) Electric sweeper and control method
CN108591081A (en) Centrifugal pump and magneto monitoring of working condition feedback device and its regulation and control method
CN208089581U (en) Centrifugal pump and magneto monitoring of working condition feedback device
JPH0861287A (en) Inverter unit for pump and pump device having this unit
JP2007162700A (en) Pump device
WO1999045276A1 (en) Variable speed control fluid machinery unit
JP2004232606A (en) Pump driving device and control method for pump driving device
JPH07109991A (en) Fluid machinery having induction motor
CN206092452U (en) Automatic energy -conserving centrifugal water pump of speed governing
JP3490986B2 (en) Transportation power reduction system in air conditioning facilities
JP6581801B2 (en) Water supply equipment
EP0851053A2 (en) Apparatus and method for monitoring and controlling liquid flow rate
SU1150702A2 (en) Rotor for electric machine
JPH07311065A (en) Gas meter
JP2565155Y2 (en) Turbo molecular pump device
JP2021025467A (en) Home electric well pump device
JPH0335938B2 (en)
JPS59185196A (en) Driving device of compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees