JP3922611B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP3922611B2
JP3922611B2 JP21670798A JP21670798A JP3922611B2 JP 3922611 B2 JP3922611 B2 JP 3922611B2 JP 21670798 A JP21670798 A JP 21670798A JP 21670798 A JP21670798 A JP 21670798A JP 3922611 B2 JP3922611 B2 JP 3922611B2
Authority
JP
Japan
Prior art keywords
cooling
heat
air
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21670798A
Other languages
Japanese (ja)
Other versions
JP2000046425A (en
Inventor
潤二 松田
邦明 川村
誠 佐野
克己 藤間
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to JP21670798A priority Critical patent/JP3922611B2/en
Publication of JP2000046425A publication Critical patent/JP2000046425A/en
Application granted granted Critical
Publication of JP3922611B2 publication Critical patent/JP3922611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、空気を冷媒として圧縮し、高温高圧となった圧縮空気を常温付近まで冷却したのち、膨張機を介して低温空気を得るようにした空気冷凍サイクルを使用した冷却装置に関する。
【0002】
【従来の技術】
従来の空気冷凍サイクルを利用した冷却装置は、作動媒体となる空気を流路に沿って圧縮機、放熱用熱交換器、膨張機を配設し、原動機で圧縮機、膨張機を運転し、前記圧縮機で断熱圧縮を行い、放熱用熱交換器で周囲温度まで冷却し、膨張機で断熱膨張を行い、低温空気を得るようにしたものである。
【0003】
ところが、上記冷却装置では、作動媒体が空気であるため、通常の空気調和機の温度範囲では蒸発凝縮を伴わないため、潜熱の利用が不可能であった。このため、冷媒である空気の流量が必然的に大きくなり、圧縮機や膨張機の容量増大化を招き、回転数、騒音も大となり放熱用熱交換器も伝熱面積が大きくなる問題があつた。
【0004】
そのため、断熱圧縮−断熱膨張させて低温空気を得る逆ブレイトンサイクルと、水を蒸発させて蒸発潜熱を奪う逆ランキングサイクルとの複合サイクルにより冷却を行うようにして、上記問題解決を図る提案がされている。
【0005】
即ち、特開昭62−102061号公報に開示された提案によれば、上記複合サイクルを使用した冷却装置は、図4に示すように、作動媒体である空気の流路に沿って順に圧縮機51、放熱用熱交換器53、膨張機52及び水噴霧装置56を配設する構成とし、前記逆ランキングサイクルの機能を持つ水噴霧装置56により水の蒸発による蒸発潜熱により低温空気のさらなる低温化を図ったものである。なお、放熱用熱交換器53と膨張機52との間には、水蒸気分離膜等を使用した水蒸気分離装置57が設けられ、放熱用熱交換器53を通過した空気に含まれる水蒸気を分離し、乾燥した空気を膨張機52に送り、分離した水蒸気は系外へ除去するようにしてある。
上記水噴霧装置56の噴霧部位には、絞り部58を設け空気と水が均一に接触して蒸発潜熱によりさらに低温化する構造にしてある。水噴霧装置56を経由した空気は冷却用熱交換器59に送られファン60により屋内空気を冷却する。または熱交換器59を使用せずに水噴霧装置56を通過した空気を直接冷房等に使用する。
【0006】
上記冷却装置においては、室内空気は原動機54により駆動する圧縮機51で高温高圧空気となり、ついで放熱用熱交換器53で室内空気温度近くまで降温させ、水蒸気分離装置57で水分は除去される。ついで、膨張機52内で断熱膨張され、低温(室内空気以下の温度)且低圧空気となり水噴霧装置56の絞り部58へ送られる。ここで水噴霧により蒸発潜熱が前記低温低圧空気より熱を奪い、をさらなる低温化を図っている。
このようにして得られた低温空気は直接室内へ吹き出され室内冷房に使用されたり、或いは冷却用熱交換器59を介して室内冷房に使用される。
【0007】
【発明が解決しようとする課題】
ところで、従来の空気冷凍サイクルにおける空気流量の増大化、及び圧縮機、膨張機の大形化や負荷に対する対応性も上記水噴霧装置により幾分の解決がなされたが、未だ充分でなく冷却能力向上の余地は残されている。
【0008】
本発明は、上記課題解決のためになされたもので、空気冷凍サイクルを使用した冷却装置の機能改善を可能とした冷却装置の提供を目的とするものである。
【0009】
上記目的達成のため、作動媒体である低温空気に水を噴霧して、水の蒸発による潜熱の発生を介して低温空気のさらなる低温化を図る従来の水噴霧装置を見直し、より効果的に機能させる水噴霧冷却装置が必要である。
【0010】
【課題を解決するための手段】
そこで、本発明の冷却装置の第1の発明は、
空気を媒体として圧縮機、放熱用熱交換器、除湿器、膨張機の順よりなる流路を介して低温空気を形成して、冷却用熱負荷を冷却する空気冷凍サイクルにおいて、
低温空気による熱負荷を冷却する主冷却手段と、該主冷却手段に使用した低温空気に、制御弁にて水噴霧量が調整された水微粒子を噴霧し、該噴霧水の蒸発潜熱により再度冷却されて低温水として得られる冷熱源と、前記冷熱源を構成する低温水により前記熱負荷を再冷却する再冷却手段とを設けたことを要旨とする。
【0011】
上記請求項1記載の発明により、
空気を媒体として圧縮機、放熱用熱交換器、除湿器、膨張機の順よりなる流路を介して得られた低温空気を使用して、主冷却手段を介して冷却用熱負荷を冷却し、昇温した低温空気に水噴霧による冷却を行い蒸発潜熱に相当する熱量を収奪させて、さらなる低温の冷熱源を形成させ、該冷熱源により前記熱負荷を再冷却手段により冷却するようにしたものである。
【0012】
上記、主冷却手段は熱負荷を形成する熱媒体に熱交換器を介在させる構成としても良い。
【0013】
または、熱負荷を構成する熱媒体に直接低温空気の吹き込みにより前記主冷却手段を構成しても良い。
【0014】
また、前記水噴霧は噴霧量の調整により冷熱源の温度調整が行えるようにしても良い。
【0015】
そして、前記請求項1記載の発明は、前記再冷却手段を、主冷却手段の対象冷却媒体を内蔵する容器外壁へ未気化水滴を含む低温気化流体を吹き付けて形成される冷水膜の形成により構成したことにある。
【0016】
即ち、発明は、主冷却手段の対象とする熱媒体の容器の外壁の一部を熱交換器としてその外壁に、水噴霧によりさらに低温化された未気化の噴霧冷水によりなる冷水膜を形成させて、外壁より前記熱媒体を再冷却するようにしたものである。
【0017】
また、請求項2記載の発明は、主冷却手段の対象とする熱媒体を内蔵する被冷却室内に熱交換器を設け、該熱交換器に冷熱源である冷水タンクよりポンプにより循環させて前記再冷却手段を形成したことを特徴とする。
【0018】
即ち、発明は、主冷却手段の対象となる熱媒体を内蔵する容器内に熱交換器を設け、水噴霧によりさらに低温化された低温冷水の冷熱源と前記熱交換器との間に冷水を循環させることにより、前記熱媒体を再冷却するようにしたものである。
【0019】
また、更に請求項3記載の発明は、前記再冷却手段を、主冷却手段の対象とする熱媒体を内蔵する被冷却室内と、冷水タンクに形成された冷熱源との間に、冷熱伝播用のヒートパイプを設け、該ヒートパイプにより被冷却室に内蔵する熱媒体の再冷却手段として形成させたことを特徴とする。
【0020】
即ち、発明は、主冷却手段の対象とする熱媒体と、水噴霧によりさらに低温化された低温空気との間にヒートパイプを設け、前記熱媒体を再冷却するようにしたものである。
【0021】
また、本発明の冷却装置の第2の発明は、
空気を媒体として圧縮機、放熱用熱交換器、除湿器、膨張機の順よりなる流路を介して低温空気を形成して、冷却用熱負荷を冷却する空気冷凍サイクルにおいて、
膨張機後段に、低温空気取り入れ手段と、制御弁にて水噴霧量が調整可能の水微粒子噴霧手段と、減圧気化手段とを備えた水噴霧冷却熱交換器装置を設け、
前記減圧気化手段には、前記冷却用熱負荷に冷風を導くサクションファンと冷却用熱負荷内の冷却空気を還気する還気口とを設け、前記サクションファンと還気口とにより冷却用熱負荷(被冷却室)内の温度を適温に制御可能の構造にしたことを特徴とする。
【0022】
上記請求項記載の発明は、
空気を媒体として圧縮機、放熱用熱交換器、除湿器、膨張機の順よりなる流路を介して得られた低温空気を、前記膨張機の後段に設けた水噴霧冷却熱交換器装置を設け、該装置には、低温空気取り入れ手段と、調整可能の水微粒子噴霧手段と、減圧気化手段とを備える構成とし、冷却用熱負荷に好適な冷風を被冷却室に送気して適宜所用の冷却を行うことができるようにしたものである。
【0023】
また、前記請求項記載の除湿器は、一対の吸着器を使用する構成とし、圧縮機からの高温高圧空気を吸着済みの吸着器内に貫流させて再生させ、ついで放熱用熱交換器からの断熱膨張前の高圧空気を他の再生済みの吸着器内に貫流除湿させ、一方の吸着器を再生させるとともに他方の吸着器により除湿を行い、再生と除湿とを交互に切り替え可能に構成したことを特徴とするものである。
【0024】
上記請求項記載の発明により、断熱膨張前の高圧空気は常に乾燥状態を維持することができる。また、再生には高温圧縮空気を使用するため省エネ効果が大である。
【0025】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
なお、従来例を示す図面に記載の部品と同一の品名と同一機能を持つ部品を使用する場合は同一符号を使用する。
図1は本発明の冷却装置の第一の実施例の概略の構成を示す系統図で、図2は図1の吸着器による吸着再生回路の変形例を示す図である。図3は図1、図2における冷却用熱負荷の再冷却手段を示し、(A)は冷水循環によるものを示し、(B)はヒートパイプによるものを示す図である。また、図4は本発明の第二の実施例の概略の構成を示す系統図である。
【0026】
図1に示すように、本発明の第一の実施例に係る冷却装置は、圧縮機51、放熱用熱交換器53、膨張機52、冷却用熱負荷20の順に配設された密閉型空気冷凍サイクルに除湿用に一対の吸着器11、12を設け、
前記冷却用熱負荷20は、冷却用熱交換器59を内蔵して冷却用熱負荷を形成する被冷却室18と、該被冷却室18に接して設けられた水噴霧冷却装置10とにより構成したものである。
【0027】
上記吸着器12は放熱用熱交換器53と膨張機52の間に設けられ、内蔵する吸着剤を介して、放熱用熱交換器53により冷却された高圧高湿度空気より除湿を行うようにしたものである。
なお、吸着器11は圧縮機51と放熱用熱交換器53の間に設け、既に吸着済みの吸着剤を圧縮機51からの高温高圧空気により再生するようにして、後記するように吸着と再生とを交互に行うようにしてある。
【0028】
また、水噴霧冷却装置10は、冷却用熱交換器59を内蔵する被冷却室18に隣接して設けられ、制御弁10bを備えた水噴霧管10aとよりなり、前記被冷却室18で冷却用熱交換器59を経由して、略35℃程度に昇温した前記膨張機により断熱膨張した低温空気に水噴霧をし、潜熱により前記昇温した低温空気を冷却して未気化水滴を含む低温気化流体を形成させ、前記被冷却室18の壁面に吹き付け冷水膜を形成して壁面に沿い流下するようにしてある。上記冷水膜により被冷却室内の熱媒体を再冷却する。
なお、前記制御弁10bにより水噴霧量を調節して潜熱による冷却の程度を加減して低温気化流体の吹き付けにより冷却される被冷却室18の室温を適宜調整可能にしてある。
なお、上記被冷却室18内へ、前記冷却用熱交換器59の代わりに低温空気を直接吹き込むようにしても良い。
【0029】
上記構成により図1に示す冷却装置においては、作動媒体である空気は、実線矢印に示す流路に沿い、圧縮機51、吸着器11の加熱コイル11a、放熱用熱交換器53、吸着器12、膨張機52、冷却用熱負荷20を循環して密閉型空気冷凍サイクルを形成する。
作動媒体である空気は、圧縮機51で断熱圧縮され高温高圧空気となり、ついで放熱用熱交換器53で周囲温度まで冷却されるとともに、周囲温度飽和相当分の余分な水分は凝縮され図示しない外部へ排出される。
上記放熱用熱交換器53を出た周囲温度なみに温度降下した高圧空気は、さらに吸着器12で内蔵する吸着剤により脱湿され高圧の乾燥空気となる。ついで膨張機52で断熱膨張して0℃程度の低温空気となり、冷却用熱負荷20の被冷却室18に内蔵する冷却用熱交換器59に導入される。
被冷却室18に内蔵する熱媒体は前記冷却用熱交換器59により冷却され主冷却手段を形成する。前記冷却用熱交換器59を経由した略0℃の前記低温空気は略35℃程度に昇温されるが、水噴霧冷却装置10における噴霧水の蒸発潜熱により再度冷却され低温流体となり冷熱源を形成する。
そして、上記低温流体よりなる冷水膜を被冷却室18の壁面に吹き付け流下させ、内蔵熱媒体を再冷却する。
そのため、被冷却室18は主冷却に加え再冷却を受け、冷却用熱負荷20は前記低温空気と低温流体とにより個別に冷却され高効率の冷却を可能にしている。 なお、水噴霧冷却装置10の水噴霧管10aには制御弁10bを設けてあるため、その開度調整により被冷却室18の温度制御ができる。
【0030】
ところで、圧縮機51を出た高温高圧空気は、吸着器11の加熱コイル11aを通過して吸着剤を加熱して水分の脱着再生を行い、放熱用熱交換器53へ送られて周囲温度まで冷却される。上記熱交換器53を出た空気は、吸着器12で内蔵する吸着剤の水分吸着反応で乾燥される。この時の反応熱は後記する図2に示すように膨張機52の出口または途中から戻し流路21a、21bを介して低温空気より取り去り圧縮機51の導入側へ還流するようにしてある。
なお、実線矢印で示す流路は吸着器12を吸着用に使用し吸着器11を再生用に使用する場合を示し、点線矢印により示す流路は吸着器11を吸着用に使用し吸着器12を再生用に使用する場合を示し、一対の吸着器が吸着、再生の切り替え使用が可能の構成にしてある。
即ち、実線矢印の場合の流路系統は、
圧縮機51→吸着器11の加熱コイル11a→放熱用熱交換器53→吸着器12→膨張機52、
点線矢印の場合の流路系統は、
圧縮機51→吸着器12の加熱コイル12a→放熱用熱交換器53→吸着器11→膨張機52、
のようになる。
【0031】
図2は、前記したように吸着反応熱が膨張機52の途中から戻し流路21aを介して圧縮機51の導入側流路21bへ還流する場合の流路系統を示す図で、
その還流路は実践矢印の場合の還流流路系統は、
流路21→吸着器12の加熱コイル12a→バルブO→吸着器11→21b、
点線矢印の場合の還流流路系統は、
流路21→吸着器11の加熱コイル11a→バルブS→吸着器12→21b、
のようになる。
【0032】
図3には、図1、図2に示す冷却用熱負荷の冷却における再冷却手段を示し、(A)はポンプによる冷水循環によるもので(B)はヒートパイプによるものである。
図3の(A)は、主冷却手段の対象とする熱媒体を内蔵する被冷却室18内に熱交換器59を設け、該熱交換器に冷熱源である冷水タンク21よりポンプ22により循環させて再冷却手段を形成させたものを表す。
前記冷熱源は、膨張機52より供給された低温空気を被冷却室18に内蔵する熱交換器59に導入させ主冷却手段を形成して被冷却室内の熱媒体を冷却させる。冷却の結果、昇温した前記低温空気は水噴霧管10aと制御弁10bを介してポンプアップされた水の噴霧を受け、蒸発潜熱により低温空気とともに噴霧水は低温化され低温冷水となり冷熱源を形成している。
【0033】
図3の(B)には、主冷却手段の対象とする熱媒体を内蔵する被冷却室18内と、冷水タンク21に形成された冷熱源との間に、ヒートパイプ23を設け、該ヒートパイプ23により被冷却室18に内蔵する熱媒体の再冷却手段を形成させたものである。
前記冷熱源は、膨張機52より供給された低温空気は熱媒体を内蔵する被冷却室18に吹き込まれ、熱媒体を冷却して主冷却手段を形成する。主冷却を終了した低温空気は冷水タンク21内に導入されるが、前記低温空気は水噴霧管10aと制御弁10bを介してポンプアップされた水の噴霧を受け、蒸発潜熱によりさらなる低温化され冷熱源を形成している。
【0034】
図4は、本発明の第二の実施例の概略の構成を示す系統図である。
図に見るように、本実施例の場合は、図1の冷却用熱交換器59及び水噴霧冷却装置10の個別使用により被冷却室18を冷却する代わりに、冷却用熱負荷20に水噴霧冷却熱交換器装置15を設け、膨張機52で得られた低温空気より温度調整可能の冷風を得るようにして、被冷却室18を冷却するようにしたものである。
【0035】
上記第二実施例の場合は、図1と同様に、作動媒体である空気は圧縮機51で断熱圧縮され高温高圧空気となり、ついで放熱用熱交換器53で周囲温度まで冷却されるとともに、周囲温度飽和相当分の余分な水分は凝縮され図示してない外部へ排出される。
上記放熱用熱交換器53を出た周囲温度なみに温度降下した高圧空気はさらに吸着器12で内蔵する吸着剤により脱湿され高圧の乾燥空気となる。ついで膨張機52で断熱膨張して0℃程度の低温空気となり、図に示す水噴霧冷却熱交換器装置15へ送られる。
【0036】
上記水噴霧冷却熱交換器装置15は、水噴霧気化室16と減圧気化室17と被冷却室18とより構成する。前記水噴霧気化室16は、低温空気取り入れ口16eと制御弁16cと水ポンプ16bと水噴霧管16aとよりなる水微粒子噴霧手段とタンク16dよりなり、減圧気化室はサクションファン17aと還気口17bを備える構成にしてある。なお、余剰水滴は下部のタンク16dに貯留するようにしてある。
【0037】
そこで、水噴霧冷却熱交換器装置15へ導入された低温空気は、水ポンプ16bを介しての高圧微粒子噴霧に曝され、かつ減圧化のもとで水の気化が増進され、さらに冷却される。
上記のようにさらに冷却された低温空気は、減圧気化室17で冷風となりサクションファン17aにより被冷却室18に導入され被冷却室18を冷却する。
前記水微粒子噴霧手段には水噴霧量を規制する制御弁16cと減圧気化室17には被冷却室18からの還気口17bが設けてあり、被冷却室18の温度調整可能の構造にしてある。
【0038】
【発明の効果】
上記構成により、発明においては、冷却用熱負荷に対する低温空気による主冷却手段を形成した後の低温空気に水噴霧させ、水の蒸発潜熱により冷熱源を形成して、該熱源により前記冷却用熱負荷に対する再冷却手段を形成させるようにしてある。そのため、低温空気による冷却作用を個別に作用させ、冷却効果の効率化を図るとともに、水噴霧量の調整により冷却制御性を付与できる。
【0039】
また、請求項、請求項、請求項記載の発明により、再冷却手段に冷水膜の流下によるもの、冷水循環によるもの、ヒートパイプによるものに多様化することができ、それぞれ適所に適応できる。
【0040】
また、請求項記載の発明により、
空気を媒体として圧縮機、放熱用熱交換器、除湿器、膨張機の順よりなる流路を介して得られた低温空気は前記膨張機の後段に設けた水噴霧冷却熱交換器装置により導入され、該低温空気は水噴霧気化室でさらに低温化され、ついで減圧気化室でその温度がさらに降下され、サクションファンと還気口とにより被冷却室の温度を適温に制御して、冷却用熱負荷に好適な冷風を送気することができる。
【0041】
また、請求項記載の発明により、断熱膨張前の高圧空気は常に乾燥状態を維持することができる。また、再生には高温圧縮空気を使用するため省エネ効果が大である。
【図面の簡単な説明】
【図1】 本発明の冷却装置の第一の実施例の概略の構成を示す系統図である。
【図2】 図1の吸着器による吸着再生回路の変形例を示す図である。
【図3】 図1、図2における冷却用熱負荷の再冷却手段を示し、(A)は冷水循環によるものを示し、(B)はヒートパイプによるものを示す図である。
【図4】 本発明の第二の実施例の概略の構成を示す系統図である。
【図5】 従来の空気冷凍サイクルによる冷却装置の概略の構成を示す系統図である。
【符号の説明】
10 水噴霧冷却装置
10a、16a 水噴霧管
10b、16c 制御弁
11、12 吸着器
15 水噴霧冷却熱交換器装置
16 水噴霧気化室
16b、22 水ポンプ
17 減圧気化室
18 被冷却室
20 冷却用熱負荷
21 冷水タンク
23 ヒートパイプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling device using an air refrigeration cycle in which air is compressed as a refrigerant, compressed air that has become high temperature and pressure is cooled to near room temperature, and low temperature air is obtained via an expander.
[0002]
[Prior art]
A cooling device using a conventional air refrigeration cycle is provided with a compressor, a heat-dissipating heat exchanger, and an expander along the flow path of air serving as a working medium, and operates the compressor and expander with a prime mover. Adiabatic compression is performed with the compressor, cooled to ambient temperature with a heat exchanger for heat dissipation, and adiabatic expansion is performed with an expander to obtain low-temperature air.
[0003]
However, in the above cooling device, since the working medium is air, it does not accompany evaporation and condensation in the temperature range of a normal air conditioner, and thus it is impossible to use latent heat. For this reason, the flow rate of air, which is a refrigerant, inevitably increases, which increases the capacity of the compressor and expander, increases the number of rotations and noise, and increases the heat transfer area of the heat dissipation heat exchanger. It was.
[0004]
Therefore, it has been proposed that cooling be performed by a combined cycle of a reverse Brayton cycle in which low-temperature air is obtained by adiabatic compression and adiabatic expansion, and a reverse ranking cycle in which water is evaporated to take away latent heat of evaporation to solve the above problem. ing.
[0005]
That is, according to the proposal disclosed in Japanese Patent Application Laid-Open No. Sho 62-102061, the cooling device using the combined cycle includes a compressor in order along a flow path of air as a working medium as shown in FIG. 51, a heat exchanger for heat dissipation 53, an expander 52, and a water spray device 56 are arranged, and the water spray device 56 having the function of the reverse ranking cycle further lowers the temperature of the low-temperature air by the latent heat of evaporation due to water evaporation. Is intended. A steam separation device 57 using a steam separation membrane or the like is provided between the heat dissipation heat exchanger 53 and the expander 52 to separate water vapor contained in the air that has passed through the heat dissipation heat exchanger 53. The dried air is sent to the expander 52, and the separated water vapor is removed from the system.
The spray portion of the water spray device 56 is provided with a constricted portion 58 so that air and water are in uniform contact with each other and the temperature is further lowered by latent heat of vaporization. The air passing through the water spray device 56 is sent to the cooling heat exchanger 59 and the indoor air is cooled by the fan 60. Alternatively, the air that has passed through the water spray device 56 without using the heat exchanger 59 is directly used for cooling or the like.
[0006]
In the cooling device, the room air is converted into high-temperature and high-pressure air by the compressor 51 driven by the prime mover 54, then cooled to near the room air temperature by the heat-dissipating heat exchanger 53, and the water is removed by the water vapor separator 57. Subsequently, it is adiabatically expanded in the expander 52, becomes low-temperature (temperature below room air) and low-pressure air, and is sent to the throttle unit 58 of the water spray device 56. Here, the latent heat of vaporization takes heat from the low-temperature and low-pressure air by spraying water, thereby further reducing the temperature.
The low-temperature air thus obtained is blown directly into the room and used for room cooling, or is used for room cooling via the cooling heat exchanger 59.
[0007]
[Problems to be solved by the invention]
By the way, the above-mentioned water spraying device has also solved the increase in the air flow rate in the conventional air refrigeration cycle, the increase in size of the compressor and the expander, and the response to the load, but it is still not sufficient and the cooling capacity There is room for improvement.
[0008]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a cooling device capable of improving the function of a cooling device using an air refrigeration cycle.
[0009]
In order to achieve the above objectives, the conventional water spraying device, which sprays water on low-temperature air, which is the working medium, and further reduces the temperature of the low-temperature air through the generation of latent heat due to water evaporation, functions more effectively. A water spray cooling device is required.
[0010]
[Means for Solving the Problems]
Therefore, the first invention of the cooling device of the present invention is:
In the air refrigeration cycle that cools the cooling heat load by forming low-temperature air through a flow path consisting of a compressor, a heat dissipation heat exchanger, a dehumidifier, and an expander in the order of air,
The main cooling means for cooling the heat load due to the low-temperature air, and water fine particles whose water spray amount is adjusted by the control valve are sprayed on the low-temperature air used for the main cooling means, and then cooled again by the latent heat of evaporation of the spray water. The gist of the present invention is to provide a cold heat source obtained as low temperature water and a recooling means for recooling the heat load with the low temperature water constituting the cold heat source .
[0011]
According to the invention of claim 1 above,
Cooling the heat load for cooling through the main cooling means using low temperature air obtained through the flow path consisting of compressor, heat exchanger for heat dissipation, dehumidifier, and expander in the order of air. The temperature of the raised low-temperature air is cooled by water spray, and the amount of heat corresponding to the latent heat of vaporization is taken away to form a further low-temperature cold heat source, and the heat load is cooled by the re-cooling means by the cold heat source. Is.
[0012]
The main cooling means may have a configuration in which a heat exchanger is interposed in a heat medium that forms a heat load.
[0013]
Or you may comprise the said main cooling means by blowing low temperature air directly in the heat medium which comprises a heat load.
[0014]
Further, the water spray may be adjusted in temperature of the cold heat source by adjusting the spray amount.
[0015]
In the invention described in claim 1, the recooling means is formed by forming a cold water film formed by spraying a low-temperature vaporized fluid containing unvaporized water droplets onto the outer wall of the container containing the target cooling medium of the main cooling means. It is to have done.
[0016]
That is, according to the present invention, a part of the outer wall of the heat medium container that is the object of the main cooling means is used as a heat exchanger, and a cold water film is formed on the outer wall of the unvaporized sprayed cold water that has been further cooled by water spraying. Thus, the heat medium is re-cooled from the outer wall.
[0017]
According to the second aspect of the present invention, a heat exchanger is provided in a cooled room containing a heat medium that is a target of the main cooling means, and the heat exchanger is circulated by a pump from a cold water tank that is a cold heat source. A recooling means is formed .
[0018]
That is, the present invention provides a heat exchanger in a container containing a heat medium that is a target of main cooling means, and chilled water is provided between the heat exchanger and a cold heat source of low-temperature cold water that has been further lowered in temperature by water spraying. Is used to re-cool the heat medium.
[0019]
Furthermore, the invention according to claim 3 is characterized in that the recooling means is used for the propagation of cold between the room to be cooled containing the heat medium to be the object of the main cooling means and the cold heat source formed in the cold water tank . The heat pipe is provided , and the heat pipe is formed as a recooling means for the heat medium built in the chamber to be cooled .
[0020]
That is, according to the present invention, a heat pipe is provided between a heat medium to be a target of the main cooling means and low-temperature air further reduced in temperature by water spray, and the heat medium is re-cooled.
[0021]
The second invention of the cooling device of the present invention is:
In the air refrigeration cycle that cools the cooling heat load by forming low-temperature air through a flow path consisting of a compressor, a heat dissipation heat exchanger, a dehumidifier, and an expander in the order of air,
In the latter stage of the expander, a water spray cooling heat exchanger device provided with low temperature air intake means, water fine particle spray means whose water spray amount can be adjusted with a control valve , and reduced pressure vaporization means is provided,
The depressurization vaporization means is provided with a suction fan for introducing cool air to the cooling heat load and a return air port for returning the cooling air in the cooling heat load, and the heat for cooling is provided by the suction fan and the return air port. The structure is such that the temperature in the load (cooled room) can be controlled to an appropriate temperature .
[0022]
The invention described in claim 4 is as follows.
A water spray cooling heat exchanger apparatus provided at a subsequent stage of the expander with low-temperature air obtained through a flow path comprising a compressor, a heat dissipation heat exchanger, a dehumidifier, and an expander in the order of air. The apparatus includes a low-temperature air intake means, an adjustable water fine-particle spraying means, and a reduced-pressure vaporization means, and sends a cool air suitable for a cooling heat load to the room to be cooled as appropriate. The cooling can be performed.
[0023]
Further, the dehumidifier according to claim 4 is configured to use a pair of adsorbers, and the high-temperature and high-pressure air from the compressor is caused to flow through the adsorbed adsorber to be regenerated, and then from the heat dissipation heat exchanger. The high-pressure air before adiabatic expansion is dehumidified by flowing through the other regenerated adsorbers, and one adsorber is regenerated and dehumidified by the other adsorber, so that regeneration and dehumidification can be switched alternately. It is characterized by this.
[0024]
According to the fifth aspect of the present invention, the high-pressure air before adiabatic expansion can always be kept dry. Moreover, since high-temperature compressed air is used for regeneration, the energy saving effect is great.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
In addition, the same code | symbol is used when using the component which has the same product name and the same function as the component as described in drawing which shows a prior art example.
FIG. 1 is a system diagram showing a schematic configuration of a first embodiment of the cooling device of the present invention, and FIG. 2 is a diagram showing a modification of the adsorption regeneration circuit by the adsorber of FIG. 3 shows the re-cooling means of the heat load for cooling in FIG. 1 and FIG. 2, (A) shows the thing by the cold water circulation, and (B) shows the thing by the heat pipe. FIG. 4 is a system diagram showing a schematic configuration of the second embodiment of the present invention.
[0026]
As shown in FIG. 1, the cooling device according to the first embodiment of the present invention includes a sealed air in which a compressor 51, a heat dissipation heat exchanger 53, an expander 52, and a cooling heat load 20 are arranged in this order. A pair of adsorbers 11 and 12 are provided for dehumidification in the refrigeration cycle,
The cooling heat load 20, by a target cooling chamber 18 to the cooling heat exchanger 59 the built to form the cooling heat load, the water spray cooling device 10 provided in contact to said cooling chamber 18 It is composed.
[0027]
The adsorber 12 is provided between the heat-dissipating heat exchanger 53 and the expander 52, and dehumidifies from the high-pressure high-humidity air cooled by the heat-dissipating heat exchanger 53 via a built-in adsorbent. Is.
The adsorber 11 is provided between the compressor 51 and the heat-dissipating heat exchanger 53 so that the adsorbent that has already been adsorbed is regenerated with the high-temperature and high-pressure air from the compressor 51, and adsorbed and regenerated as described later. Are alternately performed.
[0028]
Further, the water spray cooling device 10 is provided adjacent to the cooled chamber 18 in which the heat exchanger 59 for cooling is built, and includes a water spray tube 10a provided with a control valve 10b. Water spray is applied to the low-temperature air adiabatically expanded by the expander that has been heated to approximately 35 ° C. via the heat exchanger 59, and the heated low-temperature air is cooled by latent heat to contain unvaporized water droplets. A low-temperature vaporized fluid is formed, sprayed onto the wall surface of the chamber to be cooled 18 to form a cold water film, and flows down along the wall surface. The heat medium in the room to be cooled is recooled by the cold water film.
The control valve 10b adjusts the amount of water spray to adjust the degree of cooling by latent heat so that the room temperature of the cooled chamber 18 cooled by spraying the low temperature vaporized fluid can be appropriately adjusted.
Note that low temperature air may be directly blown into the cooled chamber 18 instead of the cooling heat exchanger 59.
[0029]
In the cooling apparatus shown in FIG. 1 with the above configuration, the air that is the working medium flows along the flow path indicated by the solid arrow, and the compressor 51, the heating coil 11a of the adsorber 11, the heat exchanger 53 for heat dissipation, and the adsorber 12. Then, the expander 52 and the cooling heat load 20 are circulated to form a sealed air refrigeration cycle.
Air, which is a working medium, is adiabatically compressed by the compressor 51 to become high-temperature and high-pressure air, and then cooled to the ambient temperature by the heat-dissipating heat exchanger 53. Is discharged.
The high-pressure air that has fallen in temperature just like the ambient temperature leaving the heat-dissipating heat exchanger 53 is further dehumidified by the adsorbent built in the adsorber 12 to become high-pressure dry air. Subsequently, it is adiabatically expanded by the expander 52 to become low-temperature air of about 0 ° C., and is introduced into the cooling heat exchanger 59 built in the cooled chamber 18 of the cooling heat load 20.
The heat medium built in the chamber to be cooled 18 is cooled by the cooling heat exchanger 59 to form main cooling means. The low-temperature air at about 0 ° C. through the cooling heat exchanger 59 is heated to about 35 ° C., but is cooled again by the latent heat of vaporization of the spray water in the water spray cooling device 10 to become a low-temperature fluid. Form.
And the cold water film | membrane consisting of the said low temperature fluid is sprayed and flowed down on the wall surface of the to-be-cooled chamber 18, and a built-in heat medium is recooled.
Therefore, the cooled chamber 18 is re-cooled in addition to the main cooling, and the cooling heat load 20 is individually cooled by the low-temperature air and the low-temperature fluid to enable highly efficient cooling. Since the water spray pipe 10a of the water spray cooling device 10 is provided with a control valve 10b, the temperature of the cooled chamber 18 can be controlled by adjusting the opening degree.
[0030]
By the way, the high-temperature high-pressure air that has exited the compressor 51 passes through the heating coil 11a of the adsorber 11, heats the adsorbent, desorbs and regenerates moisture, and is sent to the heat exchanger 53 for heat dissipation to the ambient temperature. To be cooled. The air leaving the heat exchanger 53 is dried by a moisture adsorption reaction of the adsorbent built in the adsorber 12. As shown in FIG. 2 to be described later, the reaction heat at this time is removed from the low-temperature air from the outlet or the middle of the expander 52 via the return flow passages 21a and 21b and refluxed to the introduction side of the compressor 51.
The flow path indicated by the solid line arrow indicates the case where the adsorber 12 is used for adsorption and the adsorber 11 is used for regeneration, and the flow path indicated by the dotted line arrow indicates that the adsorber 11 is used for adsorption and the adsorber 12 is used. Is used for regeneration, and a pair of adsorbers can be switched between adsorption and regeneration.
That is, the flow path system in the case of a solid line arrow is
Compressor 51 → heating coil 11a of adsorber 11 → heat exchanger 53 for heat dissipation → adsorber 12 → expander 52,
The flow path system in the case of the dotted arrow is
Compressor 51 → heating coil 12a of adsorber 12 → heat exchanger 53 for heat dissipation → adsorber 11 → expander 52,
become that way.
[0031]
FIG. 2 is a diagram showing a flow path system in the case where the heat of adsorption reaction returns from the middle of the expander 52 to the introduction-side flow path 21b of the compressor 51 through the return flow path 21a as described above.
When the return path is a practice arrow, the return path system is
Channel 21 → heating coil 12a of adsorber 12 → valve O → adsorber 11 → 21b,
In the case of a dotted arrow, the reflux channel system is
The flow path 21 → the heating coil 11a of the adsorber 11 → the valve S → the adsorber 12 → 21b,
become that way.
[0032]
FIG. 3 shows a re-cooling means in the cooling of the cooling heat load shown in FIGS. 1 and 2, (A) is due to cold water circulation by a pump, and (B) is due to a heat pipe.
In FIG. 3A, a heat exchanger 59 is provided in a cooled room 18 containing a heat medium to be a main cooling means, and the heat exchanger is circulated by a pump 22 from a cold water tank 21 serving as a cold heat source. The recooling means is formed.
The cold heat source introduces low-temperature air supplied from the expander 52 into a heat exchanger 59 built in the cooled room 18 to form a main cooling means to cool the heat medium in the cooled room. As a result of cooling, the low-temperature air that has been heated is sprayed with water pumped up through the water spray pipe 10a and the control valve 10b, and the spray water is cooled together with the low-temperature air by latent heat of vaporization to form low-temperature cold water, and a cold heat source. Forming.
[0033]
In FIG. 3B, a heat pipe 23 is provided between the inside of the cooled room 18 containing the heat medium to be the main cooling means and the cold heat source formed in the cold water tank 21. A re-cooling means for the heat medium built in the cooled chamber 18 is formed by the pipe 23.
In the cold heat source, the low-temperature air supplied from the expander 52 is blown into the cooled chamber 18 containing the heat medium, and cools the heat medium to form a main cooling means. The low-temperature air that has finished the main cooling is introduced into the cold water tank 21, but the low-temperature air receives the water spray pumped up through the water spray pipe 10a and the control valve 10b, and is further cooled by the latent heat of evaporation. A cold source is formed.
[0034]
FIG. 4 is a system diagram showing a schematic configuration of the second embodiment of the present invention.
As shown in the figure, in the case of the present embodiment, water spray is applied to the cooling heat load 20 instead of cooling the cooled chamber 18 by using the cooling heat exchanger 59 and the water spray cooling device 10 of FIG. The cooling heat exchanger device 15 is provided, and the cooled room 18 is cooled by obtaining cold air whose temperature is adjustable from the low-temperature air obtained by the expander 52.
[0035]
In the case of the second embodiment, as in FIG. 1, the air as the working medium is adiabatically compressed by the compressor 51 to become high-temperature and high-pressure air, and then cooled to the ambient temperature by the heat-dissipating heat exchanger 53, Excess water corresponding to the temperature saturation is condensed and discharged outside (not shown).
The high-pressure air that has fallen in temperature just like the ambient temperature leaving the heat-dissipating heat exchanger 53 is further dehumidified by the adsorbent incorporated in the adsorber 12 to become high-pressure dry air. Then, it is adiabatically expanded by the expander 52 to become low-temperature air of about 0 ° C., and is sent to the water spray cooling heat exchanger device 15 shown in the figure.
[0036]
The water spray cooling heat exchanger device 15 includes a water spray vaporization chamber 16, a decompression vaporization chamber 17, and a cooled chamber 18. The water spray vaporizing chamber 16 is composed of a water fine particle spraying means comprising a low temperature air intake port 16e, a control valve 16c, a water pump 16b and a water spray tube 16a, and a tank 16d, and the vacuum vaporizing chamber is a suction fan 17a and a return air port. 17b is provided. Excess water droplets are stored in the lower tank 16d.
[0037]
Therefore, the low-temperature air introduced into the water spray cooling heat exchanger device 15 is exposed to the high-pressure fine particle spray through the water pump 16b, and the vaporization of water is promoted under reduced pressure and further cooled. .
The low-temperature air further cooled as described above becomes cold air in the decompression vaporization chamber 17 and is introduced into the cooled chamber 18 by the suction fan 17a to cool the cooled chamber 18.
The water fine particle spraying means is provided with a control valve 16c for regulating the amount of water spray and a reduced pressure vaporization chamber 17 provided with a return air port 17b from the cooled chamber 18 so that the temperature of the cooled chamber 18 can be adjusted. is there.
[0038]
【The invention's effect】
With the above configuration, in the present invention, water is sprayed on the low-temperature air after forming the main cooling means by the low-temperature air for the cooling heat load, a cold heat source is formed by the latent heat of evaporation of the water, and the cooling source is formed by the heat source. A recooling means for the heat load is formed. Therefore, the cooling action by the low-temperature air can be individually actuated to improve the efficiency of the cooling effect, and the cooling controllability can be imparted by adjusting the water spray amount.
[0039]
Further, according to claim 1, claim 2, the invention of claim 3, wherein, due to falling of the cold membrane recooling unit, by cold water circulation can be diversified by the heat pipe, respectively adapted in place it can.
[0040]
According to the invention of claim 4 ,
Low-temperature air obtained through a flow path consisting of a compressor, a heat-dissipating heat exchanger, a dehumidifier, and an expander in the order of air as a medium is introduced by a water spray cooling heat exchanger device provided at the subsequent stage of the expander. The low-temperature air is further cooled in the water spray vaporization chamber, then the temperature is further lowered in the vacuum vaporization chamber, and the temperature of the chamber to be cooled is controlled to an appropriate temperature by the suction fan and the return air port. Cold air suitable for heat load can be supplied.
[0041]
Further, according to the invention described in claim 5, the high-pressure air before adiabatic expansion can always be kept dry. Moreover, since high-temperature compressed air is used for regeneration, the energy saving effect is great.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a schematic configuration of a first embodiment of a cooling device of the present invention.
FIG. 2 is a view showing a modification of the adsorption regeneration circuit by the adsorber of FIG.
FIGS. 3A and 3B show the re-cooling means of the cooling heat load in FIGS. 1 and 2, FIG. 3A shows the cooling water circulation, and FIG. 3B shows the heat pipe.
FIG. 4 is a system diagram showing a schematic configuration of a second embodiment of the present invention.
FIG. 5 is a system diagram showing a schematic configuration of a cooling device using a conventional air refrigeration cycle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Water spray cooling device 10a, 16a Water spray pipe 10b, 16c Control valve 11, 12 Adsorber 15 Water spray cooling heat exchanger device 16 Water spray vaporization chamber 16b, 22 Water pump 17 Decompression vaporization chamber 18 Cooled chamber 20 For cooling Heat load 21 Cold water tank 23 Heat pipe

Claims (5)

  1. 空気を媒体として圧縮機、放熱用熱交換器、除湿器、膨張機の順よりなる流路を介して低温空気を形成して、冷却用熱負荷を冷却する空気冷凍サイクルにおいて、
    低温空気による熱負荷を冷却する主冷却手段と、該主冷却手段に使用した低温空気に、制御弁にて水噴霧量が調整された水微粒子を噴霧し、該噴霧水の蒸発潜熱により再度冷却されて低温水として得られる冷熱源と、前記冷熱源を構成する低温水により前記熱負荷を再冷却する再冷却手段とを設け、
    更に前記再冷却手段は、主冷却手段の対象冷却媒体を内蔵する容器外壁へ未気化水滴を含む低温気化流体を吹き付けて形成される冷水膜の形成により構成したことを特徴とする冷却装置。
    In the air refrigeration cycle that cools the cooling heat load by forming low-temperature air through a flow path consisting of a compressor, a heat dissipation heat exchanger, a dehumidifier, and an expander in the order of air,
    The main cooling means for cooling the heat load due to the low-temperature air, and water fine particles whose water spray amount is adjusted by the control valve are sprayed on the low-temperature air used for the main cooling means, and then cooled again by the latent heat of evaporation of the spray water. A cold heat source obtained as low temperature water, and a recooling means for recooling the heat load with the low temperature water constituting the cold heat source ,
    Further, the re-cooling means is constituted by forming a cold water film formed by spraying a low-temperature vaporized fluid containing unvaporized water droplets on the outer wall of the container containing the target cooling medium of the main cooling means.
  2. 空気を媒体として圧縮機、放熱用熱交換器、除湿器、膨張機の順よりなる流路を介して低温空気を形成して、冷却用熱負荷を冷却する空気冷凍サイクルにおいて、
    低温空気による熱負荷を冷却する主冷却手段と、該主冷却手段に使用した低温空気に、制御弁にて水噴霧量が調整された水微粒子を噴霧し、該噴霧水の蒸発潜熱により再度冷却されて低温水として得られる冷熱源と、前記冷熱源を構成する低温水により前記熱負荷を再冷却する再冷却手段とを設け、
    更に主冷却手段の対象とする熱媒体を内蔵する被冷却室内に熱交換器を設け、該熱交換器に冷熱源である冷水タンクよりポンプにより循環させて前記再冷却手段を形成したことを特徴とする冷却装置。
    In the air refrigeration cycle that cools the cooling heat load by forming low-temperature air through a flow path consisting of a compressor, a heat dissipation heat exchanger, a dehumidifier, and an expander in the order of air,
    The main cooling means for cooling the heat load due to the low-temperature air, and water fine particles whose water spray amount is adjusted by the control valve are sprayed on the low-temperature air used for the main cooling means, and then cooled again by the latent heat of evaporation of the spray water. A cold heat source obtained as low temperature water, and a recooling means for recooling the heat load with the low temperature water constituting the cold heat source ,
    Furthermore, a heat exchanger is provided in a cooled room containing a heat medium that is a target of the main cooling means, and the recooling means is formed by circulating the heat exchanger by a pump from a cold water tank that is a cold heat source. And cooling device.
  3. 空気を媒体として圧縮機、放熱用熱交換器、除湿器、膨張機の順よりなる流路を介して低温空気を形成して、冷却用熱負荷を冷却する空気冷凍サイクルにおいて、
    低温空気による熱負荷を冷却する主冷却手段と、該主冷却手段に使用した低温空気に、制御弁にて水噴霧量が調整された水微粒子を噴霧し、該噴霧水の蒸発潜熱により再度冷却されて低温水として得られる冷熱源と、前記冷熱源を構成する低温水により前記熱負荷を再冷却する再冷却手段とを設け、
    更に前記再冷却手段は、主冷却手段の対象とする熱媒体を内蔵する被冷却室内と、冷水タンクに形成された冷熱源との間に、冷熱伝播用のヒートパイプを設け、該ヒートパイプにより被冷却室に内蔵する熱媒体の再冷却手段として形成されていることを特徴とする冷却装置。
    In the air refrigeration cycle that cools the cooling heat load by forming low-temperature air through a flow path consisting of a compressor, a heat dissipation heat exchanger, a dehumidifier, and an expander in the order of air,
    The main cooling means for cooling the heat load due to the low-temperature air, and water fine particles whose water spray amount is adjusted by the control valve are sprayed on the low-temperature air used for the main cooling means, and then cooled again by the latent heat of evaporation of the spray water. A cold heat source obtained as low temperature water, and a recooling means for recooling the heat load with the low temperature water constituting the cold heat source ,
    Further, the re-cooling means, and the cooling chamber with a built-in heat medium as a target of the main cooling means between the cold heat source formed in the cold water tank, provided a heat pipe for cold propagation, by the heat pipes A cooling device, characterized in that the cooling device is formed as a re-cooling means for a heat medium incorporated in a chamber to be cooled .
  4. 空気を媒体として圧縮機、放熱用熱交換器、除湿器、膨張機の順よりなる流路を介して低温空気を形成して、冷却用熱負荷を冷却する空気冷凍サイクルにおいて、
    膨張機後段に、低温空気取り入れ手段と、制御弁にて水噴霧量が調整可能の水微粒子噴霧手段と、減圧気化手段とを備えた水噴霧冷却熱交換器装置を設け、
    前記減圧気化手段には、前記冷却用熱負荷に冷風を導くサクションファンと冷却用熱負荷内の冷却空気を還気する還気口とを設け、前記サクションファンと還気口とにより冷却用熱負荷内の温度を適温に制御可能の構造にしたことを特徴とする冷却装置。
    In the air refrigeration cycle that cools the cooling heat load by forming low-temperature air through a flow path consisting of a compressor, a heat dissipation heat exchanger, a dehumidifier, and an expander in the order of air,
    In the latter stage of the expander, a water spray cooling heat exchanger device provided with low temperature air intake means, water fine particle spray means whose water spray amount can be adjusted with a control valve, and reduced pressure vaporization means is provided,
    The depressurization vaporization means is provided with a suction fan for introducing cool air to the cooling heat load and a return air port for returning the cooling air in the cooling heat load, and the heat for cooling is provided by the suction fan and the return air port. A cooling device characterized in that the temperature inside the load can be controlled to an appropriate temperature.
  5. 前記除湿器は、一対の吸着器を使用する構成とし、圧縮機からの高温高圧空気を吸着済みの吸着器内に貫流再生させ、放熱用熱交換器からの断熱膨張前の高圧空気を他の再生済みの吸着器内に貫流除湿させ、再生と除湿とを交互に切り替え可能に構成したことを特徴とする請求項記載の冷却装置。The dehumidifier uses a pair of adsorbers, regenerates the high-temperature high-pressure air from the compressor through the adsorbed adsorber, and regenerates the high-pressure air from the heat-dissipating heat exchanger before adiabatic expansion to the other 5. The cooling apparatus according to claim 4 , wherein the desorber is reflowed and dehumidified to be switched between regeneration and dehumidification alternately.
JP21670798A 1998-07-31 1998-07-31 Cooling system Expired - Fee Related JP3922611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21670798A JP3922611B2 (en) 1998-07-31 1998-07-31 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21670798A JP3922611B2 (en) 1998-07-31 1998-07-31 Cooling system

Publications (2)

Publication Number Publication Date
JP2000046425A JP2000046425A (en) 2000-02-18
JP3922611B2 true JP3922611B2 (en) 2007-05-30

Family

ID=16692668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21670798A Expired - Fee Related JP3922611B2 (en) 1998-07-31 1998-07-31 Cooling system

Country Status (1)

Country Link
JP (1) JP3922611B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8056350B2 (en) * 2005-10-04 2011-11-15 Ac-Sun Aps Cooling apparatus for air conditioning and heat pumps

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633933B2 (en) * 1985-02-16 1994-05-02 大同ほくさん株式会社 High-purity oxygen gas production equipment
JPS62102061A (en) * 1985-10-25 1987-05-12 Matsushita Electric Works Ltd Cooling device
JP3245662B2 (en) * 1994-01-14 2002-01-15 株式会社テイエルブイ Decompression evaporative cooling system
JP3390801B2 (en) * 1995-03-16 2003-03-31 日本酸素株式会社 Cooling method of crushed material in low-temperature crushing equipment

Also Published As

Publication number Publication date
JP2000046425A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US7260945B2 (en) Desiccant-assisted air conditioning system and process
US4941324A (en) Hybrid vapor-compression/liquid desiccant air conditioner
US4984434A (en) Hybrid vapor-compression/liquid desiccant air conditioner
JP5068235B2 (en) Refrigeration air conditioner
US20090139254A1 (en) Thermodynamic closed loop desiccant rotor system and process
JP2005164165A (en) Air conditioning system
US20100281893A1 (en) Desiccant dehumidifier utilizing hot water for reactivation, and related method
US5797272A (en) Vacuum dewatering of desiccant brines
CN107940801B (en) A kind of space division system recycling compressed air waste-heat
JP3922611B2 (en) Cooling system
JP2005172380A (en) Adsorption-type heat pump
JP4529204B2 (en) heat pump
KR19980058201A (en) System Load Reduction Device of Air Conditioning Equipment
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
JP2980603B1 (en) Dehumidifying air conditioner and dehumidifying method
JP2004125259A (en) Air conditioner
CN109475807A (en) Device and aerial cooler for continuous absorption water
JP3942323B2 (en) Heat pump and dehumidifying device equipped with heat pump
JP2011177632A (en) Method and apparatus for dehumidifying compressed gas
JP2005214551A (en) Absorption type heat accumulator
JPH06173855A (en) Air dryer
JP2580267B2 (en) Air conditioning system with oxygen enrichment function
JP2527221B2 (en) Air conditioner
JPH0814691A (en) Adsorption type freezing device
JP4395936B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees