JP3920471B2 - Frost heave mitigation structure - Google Patents

Frost heave mitigation structure Download PDF

Info

Publication number
JP3920471B2
JP3920471B2 JP25902098A JP25902098A JP3920471B2 JP 3920471 B2 JP3920471 B2 JP 3920471B2 JP 25902098 A JP25902098 A JP 25902098A JP 25902098 A JP25902098 A JP 25902098A JP 3920471 B2 JP3920471 B2 JP 3920471B2
Authority
JP
Japan
Prior art keywords
bearing plate
head
frost heave
ground
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25902098A
Other languages
Japanese (ja)
Other versions
JP2000087350A (en
Inventor
明 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoc Constructions Co Ltd
Original Assignee
Nittoc Constructions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoc Constructions Co Ltd filed Critical Nittoc Constructions Co Ltd
Priority to JP25902098A priority Critical patent/JP3920471B2/en
Publication of JP2000087350A publication Critical patent/JP2000087350A/en
Application granted granted Critical
Publication of JP3920471B2 publication Critical patent/JP3920471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、凍上により定着頭部背面の地盤が膨張し、アンカーやロックボルト等の定着力が増大して破断に到ることを防止する凍上緩和構造に関するものである。
【0002】
【従来の技術】
一般に、掘削した斜面等の地盤の崩壊を防ぐために施す、いわゆる土留めには、地盤にアンカー孔を掘削し、このアンカー孔に、アンカーテンドンを挿入するとともに、端部を地表に引き出した状態とし、次いで、セメントペースト等のグラウト材をアンカー孔内に充填して硬化させ、この後、ジャッキにより土留め壁に反力を取ってアンカーテンドンを緊張・定着させる、いわゆる地盤アンカー工法が多く用いられている。このアンカーテンドンとしては、PC鋼棒やPCストランドが通常用いられている。
【0003】
図4に、アンカー構造の一例を示す。
この図に示すように、地盤1には、断面略円形のアンカー孔2が地表から傾斜させて削孔されており、アンカー孔2にはPC鋼棒等の鋼棒3が挿入されている。
鋼棒3の下端側(一端側)は、グラウト等によって地盤1に一体的に定着、固定されている。そして、鋼棒3の頭部側は、地盤1の表層に沿って形成された土留め壁5および支圧板6を貫通して地表に引き出されるとともに、鋼棒3に螺着する頭部定着具7により支圧板6を介して土留め壁5に反力を取った状態で緊張、定着されている。
【0004】
鋼棒3の上端および頭部定着具7は、支圧板6の上面に取付ネジ10,10で固定されたヘッドキャップ11内に形成された貯留空間12に収納されている。そして、貯留空間12には、鋼棒3に錆が発生することを防止するために防錆油13が充填されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述したようなアンカー構造には、以下のような問題が存在する。
寒冷地においては、地盤1の表層が凍結して氷の結晶が膨張することにより地盤面が盛り上がる、いわゆる凍上が発生する。
この凍上が地盤1と土留め壁5との間に発生すると、土留め壁5が持ち上げられることにより、下端側が地盤1に固定された鋼棒3には、支圧板6および頭部定着具7を介して頭部側に引張する力が働く。
【0006】
ところが、この鋼棒3には、頭部定着部7によって予め緊張力が加えられているので、上記凍上によってさらに引張力が加わると、鋼棒3の弾性限度を越えてしまい所定の有効緊張力が維持できなかったり、凍上による盛り上がりが大きい場合には、頭部定着部7と支圧板6との間で鋼棒3が破断してしまうという可能性もあった。
【0007】
本発明は、以上のような点を考慮してなされたもので、凍上により地盤が盛り上がった際にも、鋼棒が破断することなく、有効緊張力を維持することのできる凍上緩和構造を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために本発明は、以下の構成を採用している。
請求項1記載の凍上緩和構造は、鋼棒の一端側が地盤に固定され、頭部側が支圧板を介して頭部定着具によって前記地盤に反力を取って緊張、定着され、凍上により前記支圧板および頭部定着具を介して前記鋼棒に加わる緊張力の増加を緩和する凍上緩和構造であって、前記頭部定着具と前記支圧板との間に、弾性復元力により前記鋼棒に前記緊張力を生じさせる弾性部材が、少なくとも前記地盤の凍上により前記支圧板が移動したときの移動長に対応する弾性変形長を有した状態で介装され、前記支圧板の背面側には、前記頭部側に開口して前記弾性部材を収容する有底円筒状の円筒部が設けられ、該円筒部は、前記鋼棒の一端側が挿入されるアンカー孔内に配置され、該有底円筒状の円筒部の底部と前記頭部定着具との間に前記弾性部材が介装され、凍上時に前記鋼棒に加わる緊張力を、前記弾性部材が弾性変形して該緊張力の増加を緩和することを特徴とするものである。
【0009】
従って、本発明の凍上緩和構造では、常態において、鋼棒の頭部側が弾性部材の弾性復元力により地盤に反力を取った状態で緊張、定着される。そして、凍上時に支圧板が頭部側に移動すると弾性部材が弾性変形する。これにより、頭部定着具を介して鋼棒が支圧板の移動長分、引張されることを防止する。
また、本発明の凍上緩和構造では、円筒部に収容された弾性部材の一端側がアンカー孔内に位置することになるので、弾性部材の頭部側が地盤から突出する量を小さくすることができる。
【0012】
請求項記載の凍上緩和構造は、請求項1記載の凍上緩和構造において、前記支圧板の頭部側には、防錆剤貯留用のヘッドキャップを装着するための突起が、前記支圧板から立設されてかつ該支圧板と一体に形成されていることを特徴とする。
【0013】
従って、本発明の凍上緩和構造では、凍上が発生しても、一端が地盤に固定された鋼棒の頭部側端縁は移動しないが、支圧板は上記頭部側へ凍上厚さ分移動する。そのため、鋼棒の頭部側端縁と、支圧板の突部の頭部側端縁との間の距離変化により、凍上による移動長を測定することができる。
【0014】
【発明の実施の形態】
以下、本発明の凍上緩和構造の実施の形態を、図1および図2を参照して説明する。
これらの図において、従来例として示した図4と同一の構成要素には同一符号を付し、その説明を簡略化する。
図1に示すように、土留め壁5の表面には、鋼棒3の緊張力を支圧する支圧板18が配置されている。支圧板18の背面側には、頭部側に開口する有底円筒状の円筒部25がアンカー孔2内に位置するように突設されている。円筒部25の底部28には、鋼棒3が貫通する貫通孔29が形成されている。
【0015】
また、支圧板18の頭部側には、外周に雄ネジが形成された突部30が立設されている。この突部30には、ヘッドキャップ21が支圧板18との間にOリング32を介して螺着している。ヘッドキャップ21の内部には、鋼棒3を防錆する防錆剤が貯留される貯留空間31が鋼棒3の頭部側を収納するように形成されている。
【0016】
鋼棒3の頭部側には、頭部定着具7が螺着しており、頭部定着具7の下端にはカラー19が配置されている。カラー19には、鋼棒3が挿通する挿通孔22と、背面側に向けて開口する段部23とが形成されている。
そして、頭部定着具7と支圧板18との間には、カラー19を介してコイルスプリング(弾性部材)20が介装されている。
【0017】
コイルスプリング20は、頭部側がカラー19の段部23に、背面側が支圧板18の円筒部25の底部28に圧縮状態で係合した状態で支圧板18の円筒部25内に収容されている
コイルスプリング20のバネ定数は、鋼棒3の有効緊張力を出力可能、且つ鋼棒3の引張り強度に対して十分小さくなるように設定されている。
【0018】
すなわち、鋼棒3の断面積をA、自由長をL、ヤング係数をEとすると、引張り荷重Pと伸びλの関係は次式で表される。
P=λ×(A×E/L) …(1)
この式における(A×E/L)は、バネ定数に相当しており、コイルスプリング20のバネ定数は鋼棒3の(A×E/L)で算出される値よりも十分小さく設定されている。
また、コイルスプリング20は、凍上が発生していない常時には所定の常時設計力が、凍上が発生してコイルスプリング20が所定量撓んだ時には所定の凍上時設計力が鋼棒3に伝達されるように、バネ定数および圧縮量が設定されている。
【0019】
上記の構成の凍上緩和構造の作用について以下に説明する。
図2に示すように、凍上により地盤1の表層に、例えば厚さL1の凍上部1aが発生すると、土留め壁5、支圧板18、ヘッドキャップ21もこれに追従して頭部側へ移動する。
これにより、支圧板18の底部28も頭部側へ移動するが、下端側が凍上の発生していない地盤1に固定されている鋼棒3は移動しない。従って、カラー19と底部28とが長さL1接近することになり、コイルスプリング20が長さL1だけ弾性変形して圧縮される。
【0020】
この圧縮によりコイルスプリング20の弾性復元力がバネ定数に長さL1を乗じた量増加して、鋼棒3にはカラー19、頭部定着具7を介して緊張力が増す方向への荷重が加わる。
すなわち、凍上前に常時設計力が作用していた鋼棒3には、凍上によって所定の凍上時設計力が伝達されることになる。しかしながら、コイルスプリング20のバネ定数が鋼棒3と比較して十分小さいため、この荷重を鋼棒3の引張り強度に対して十分小さい弾性範囲内に抑えることができる。
【0021】
一方、図2に示すように、凍上前の鋼棒3の頭部側端縁と突部30の頭部側端縁との距離は長さL3であるが、凍上後の鋼棒3の頭部側端縁と突部30の頭部側端縁との距離は長さL2に変化する。
したがって、上記の長さL2、L3を測定して、これらの差を算出することにより、支圧板18の移動長、すなわち、凍上部1aの厚さL1を求めることができ、さらに、既知のコイルスプリング20のバネ定数に厚さL1を乗じることにより、凍上により鋼棒3に加わった荷重も求めることができる。
【0022】
本実施の形態の凍上緩和構造では、コイルスプリング20がその弾性復元力により鋼棒3を緊張、定着させることができるとともに、凍上により支圧板18が長さL1移動しても、コイルスプリング20が弾性変形してこの移動量を吸収するため、鋼棒3にはこの移動が伝達されない。
そのため、鋼棒3に加わる緊張力を、鋼棒3の引張りによる多大なものではなく、これよりも数十分の一程度の大きさであるコイルスプリング20の弾性変形によるものに大幅に緩和することができるので、緊張力が弾性限度を限度を越えて所定の有効緊張力を維持できなくなったり、鋼棒3自体が破断してしまうことを防止できる。また、上記のように、凍上時、コイルスプリング20の弾性変形よる荷重が鋼棒3に加わっても、この荷重は所定の凍上時設計力なので、鋼棒3は適正な有効緊張力を維持することができる。
【0023】
また、本実施の形態の凍上緩和構造では、鋼棒3の頭部側端縁と突部30の頭部側端縁との距離を測定するだけで、土留め壁5の背面側で発生するため通常目視できない凍上の有無や、凍上厚さ、さらには、凍上により鋼棒3に加わった荷重も容易に確認することができる。
さらに、本実施の形態の凍上緩和構造では、コイルスプリング20を収容する支圧板18の円筒部25がアンカー孔内に配置されているので、地表に突出する鋼棒3の長さも短くすることができ、外観性も向上する。加えて、本構造では、鋼棒3、頭部定着具7およびコイルスプリング20がヘッドキャップ21に内蔵されて防錆剤に浸漬されるので、これらを長期間防錆することもでき、従って凍上による事故も長期間防止することができる。
【0024】
なお、上記実施の形態において、弾性部材をコイルスプリングとする構成としたが、これに限られることなく、皿バネやウレタンゴム等の弾性部材であってもよい。また鋼棒としては、PC鋼棒や異形PC鋼棒や図3に示すように、異形丸鋼にネジを形成したもの、さらにロックボルトを用いる構成であってもよい。
【0025】
【発明の効果】
以上説明したように、請求項1に係る凍上緩和構造は、頭部定着具と支圧板との間に、弾性復元力により鋼棒に緊張力を生じさせる弾性部材が介装され、凍上時に鋼棒に加わる緊張力を弾性部材が弾性変形して緊張力の増加を緩和する構成となっている。
これにより、この凍上緩和構造では、地山の凍結等が発生する寒冷地で、凍結上昇が発生しても、鋼棒の有効緊張力を保ち、また凍上による鋼棒の破断事故を防止できるという効果が得られる。
【0026】
また、前記支圧板の背面側には、前記頭部側に開口して前記弾性部材を収容する有底円筒状の円筒部が設けられ、該円筒部は、前記鋼棒の一端側が挿入されるアンカー孔内に配置され、該有底円筒状の円筒部の底部と前記頭部定着具との間に前記弾性部材が介装された構成となっており、これにより、この凍上緩和構造では、地表に突出する鋼棒の長さも短くすることができ、外観性が向上するという効果が得られる。
【0027】
請求項に係る凍上緩和構造は、前記支圧板の頭部側には、防錆剤貯留用のヘッドキャップを装着するための突起が、前記支圧板から立設されてかつ該支圧板と一体に形成されている構成となっている。
これにより、この凍上緩和構造では、鋼棒、弾性部材等を長期間防錆することができるので、凍上による事故も長期間防止することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態を示す図であって、支圧板と頭部定着具との間にコイルスプリングが介装された断面図である。
【図2】 本発明の実施の形態を示す図であって、凍上によりコイルスプリングが弾性変形した断面図である。
【図3】 本発明の実施の形態を示す図であって、鋼棒として異形丸鋼が用いられた断面図である。
【図4】 従来技術による凍上緩和構造の一例を示す断面図である。
【符号の説明】
1 地盤
2 アンカー孔
3 鋼棒
7 頭部定着具
18 支圧板
20 コイルスプリング(弾性部材)
21 ヘッドキャップ
25 円筒部
30 突部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a frost heave mitigating structure that prevents the ground on the back surface of a fixing head from expanding due to frost heaving and the fixing force of anchors, lock bolts, and the like from increasing and leading to breakage.
[0002]
[Prior art]
In general, for so-called earth retaining to prevent collapse of the ground such as excavated slopes, an anchor hole is excavated in the ground, and an uncurtain dong is inserted into the anchor hole, and the end portion is pulled out to the ground surface. Next, a so-called ground anchor method is often used in which a grout material such as cement paste is filled in the anchor hole and hardened, and then the uncurtain dong is tensioned and fixed by taking a reaction force against the earth retaining wall with a jack. ing. As this uncurtain dong, a PC steel rod or a PC strand is usually used.
[0003]
FIG. 4 shows an example of the anchor structure.
As shown in this figure, an anchor hole 2 having a substantially circular cross section is drilled from the ground surface in the ground 1, and a steel bar 3 such as a PC steel bar is inserted into the anchor hole 2.
The lower end side (one end side) of the steel bar 3 is integrally fixed and fixed to the ground 1 by grout or the like. Then, the head side of the steel bar 3 is pulled out to the ground surface through the retaining wall 5 and the bearing plate 6 formed along the surface layer of the ground 1 and is screwed to the steel bar 3. 7 is tensioned and fixed in a state where reaction force is applied to the earth retaining wall 5 via the bearing plate 6.
[0004]
The upper end of the steel bar 3 and the head fixing tool 7 are housed in a storage space 12 formed in a head cap 11 fixed to the upper surface of the bearing plate 6 with mounting screws 10, 10. The storage space 12 is filled with a rust preventive oil 13 to prevent the steel rod 3 from being rusted.
[0005]
[Problems to be solved by the invention]
However, the anchor structure as described above has the following problems.
In a cold region, the surface layer of the ground 1 is frozen and ice crystals expand, so that the ground surface rises, so-called frost heaving occurs.
When this frost heave occurs between the ground 1 and the retaining wall 5, the retaining wall 5 is lifted so that the lower end side of the steel bar 3 fixed to the ground 1 has a bearing plate 6 and a head fixing tool 7. The force pulling to the head side works through.
[0006]
However, since a tension force is applied to the steel bar 3 in advance by the head fixing portion 7, if a tensile force is further applied by the frost heaving, the elastic limit of the steel bar 3 is exceeded and a predetermined effective tension force is applied. However, the steel rod 3 could break between the head fixing part 7 and the bearing plate 6 when the swell due to freezing was large.
[0007]
The present invention has been made in consideration of the above points, and provides a frost heave mitigation structure capable of maintaining effective tension without breaking a steel bar even when the ground is raised by frost heave. The purpose is to do.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following configuration.
In the frost heave mitigating structure according to claim 1, one end side of the steel rod is fixed to the ground, and the head side is tensioned and fixed by the reaction force applied to the ground by a head fixing tool via a bearing plate, and the support is supported by freezing. A frost heave mitigating structure that alleviates an increase in tension force applied to the steel rod via a pressure plate and a head fixing tool, wherein the steel rod is elastically restored between the head fixing tool and the bearing plate. The elastic member that generates the tension force is interposed in a state having an elastic deformation length corresponding to a movement length when the support plate moves due to frosting of the ground, and on the back side of the support plate, A bottomed cylindrical cylindrical portion that opens to the head side and accommodates the elastic member is provided, and the cylindrical portion is disposed in an anchor hole into which one end side of the steel rod is inserted, and the bottomed cylinder The elastic member between the bottom of the cylindrical portion and the head fixing tool Is interposed, the tension applied to the steel rod during heaving, the elastic member is characterized in that to relieve the increase in該緊tension elastically deformed.
[0009]
Therefore, in the frost heave mitigation structure of the present invention, in a normal state, the head side of the steel bar is tensioned and fixed in a state where the reaction force is applied to the ground by the elastic restoring force of the elastic member. When the bearing plate moves to the head side during frosting, the elastic member is elastically deformed. Accordingly, the steel rod is prevented from being pulled through the head fixing tool by the moving length of the support plate.
Further, in the frost heave mitigating structure of the present invention, since the one end side of the elastic member accommodated in the cylindrical portion is located in the anchor hole, the amount by which the head side of the elastic member protrudes from the ground can be reduced.
[0012]
The frost heave mitigating structure according to claim 2 is the frost heave mitigating structure according to claim 1, wherein a projection for mounting a head cap for storing a rust preventive agent is provided on the head side of the bearing plate from the bearing plate. It is erected and formed integrally with the bearing plate .
[0013]
Therefore, in the frost heave mitigation structure of the present invention, even if frost heave occurs, the head side edge of the steel rod whose one end is fixed to the ground does not move, but the bearing plate moves to the head side by the frost heave thickness. To do. Therefore, the movement length by freezing can be measured by the change in the distance between the head-side edge of the steel bar and the head-side edge of the projection of the bearing plate.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the frost heave mitigating structure of the present invention will be described with reference to FIG. 1 and FIG.
In these drawings, the same components as those in FIG. 4 shown as the conventional example are denoted by the same reference numerals, and the description thereof will be simplified.
As shown in FIG. 1, a bearing plate 18 that supports the tension of the steel bar 3 is disposed on the surface of the earth retaining wall 5. On the back side of the pressure bearing plate 18, a bottomed cylindrical cylindrical portion 25 that opens to the head side is provided so as to be positioned in the anchor hole 2. A through hole 29 through which the steel rod 3 passes is formed in the bottom portion 28 of the cylindrical portion 25.
[0015]
Further, on the head side of the bearing plate 18, a protrusion 30 having a male screw formed on the outer periphery is provided upright. A head cap 21 is screwed to the projecting portion 30 with an O-ring 32 between the head pressure plate 18 and the pressure plate 18. Inside the head cap 21, a storage space 31 in which a rust preventive agent that rusts the steel bar 3 is stored is formed so as to store the head side of the steel bar 3.
[0016]
A head fixing tool 7 is screwed to the head side of the steel bar 3, and a collar 19 is disposed at the lower end of the head fixing tool 7. The collar 19 is formed with an insertion hole 22 through which the steel bar 3 is inserted and a step portion 23 that opens toward the back side.
A coil spring (elastic member) 20 is interposed between the head fixing tool 7 and the bearing plate 18 via a collar 19.
[0017]
The coil spring 20 is accommodated in the cylindrical portion 25 of the bearing plate 18 with the head side engaged with the step portion 23 of the collar 19 and the back side engaged with the bottom portion 28 of the cylindrical portion 25 of the bearing plate 18 in a compressed state. The spring constant of the coil spring 20 is set so that the effective tension of the steel bar 3 can be output and is sufficiently small with respect to the tensile strength of the steel bar 3.
[0018]
That is, when the cross-sectional area of the steel rod 3 is A, the free length is L, and the Young's modulus is E, the relationship between the tensile load P and the elongation λ is expressed by the following equation.
P = λ × (A × E / L) (1)
(A × E / L) in this equation corresponds to a spring constant, and the spring constant of the coil spring 20 is set sufficiently smaller than the value calculated by (A × E / L) of the steel rod 3. Yes.
The coil spring 20 is transmitted to the steel rod 3 with a predetermined design force when the frost heave is not generated and when the frost heave occurs and the coil spring 20 is bent by a predetermined amount. Thus, the spring constant and the compression amount are set.
[0019]
The operation of the frost heave mitigating structure having the above configuration will be described below.
As shown in FIG. 2, when a frozen portion 1a having a thickness L1, for example, is generated on the surface layer of the ground 1 due to freezing, the earth retaining wall 5, the bearing plate 18 and the head cap 21 also move to the head side following this. To do.
Thereby, although the bottom part 28 of the bearing plate 18 also moves to the head side, the steel bar 3 fixed to the ground 1 where the lower end side is not frosted does not move. Accordingly, the collar 19 and the bottom portion 28 approach the length L1, and the coil spring 20 is elastically deformed and compressed by the length L1.
[0020]
This compression increases the elastic restoring force of the coil spring 20 by an amount obtained by multiplying the spring constant by the length L1, and the steel rod 3 is subjected to a load in a direction in which the tension force increases via the collar 19 and the head fixing device 7. Join.
In other words, a predetermined design force during freezing is transmitted to the steel rod 3 on which the design force has always been applied before freezing. However, since the spring constant of the coil spring 20 is sufficiently smaller than that of the steel bar 3, this load can be suppressed within a sufficiently small elastic range with respect to the tensile strength of the steel bar 3.
[0021]
On the other hand, as shown in FIG. 2, the distance between the head side edge of the steel rod 3 before freezing and the head side edge of the protrusion 30 is a length L3. The distance between the part side edge and the head side edge of the protrusion 30 changes to the length L2.
Therefore, by measuring the lengths L2 and L3 and calculating the difference between them, the moving length of the bearing plate 18, that is, the thickness L1 of the frozen portion 1a can be obtained. By multiplying the spring constant of the spring 20 by the thickness L1, the load applied to the steel bar 3 by freezing can also be obtained.
[0022]
In the frost heave mitigation structure of the present embodiment, the coil spring 20 can tension and fix the steel bar 3 by its elastic restoring force, and even if the bearing plate 18 moves by the length L1 due to frost heave, the coil spring 20 This movement is not transmitted to the steel rod 3 because it is elastically deformed to absorb this movement amount.
Therefore, the tension force applied to the steel bar 3 is not greatly increased due to the tension of the steel bar 3, but greatly reduced by the elastic deformation of the coil spring 20 that is several tenths smaller than this. Therefore, it is possible to prevent the tension force from exceeding the elastic limit so that the predetermined effective tension force cannot be maintained or the steel bar 3 itself is broken. In addition, as described above, even when a load due to elastic deformation of the coil spring 20 is applied to the steel bar 3 during frosting, the load is a predetermined design force during frosting, so the steel bar 3 maintains an appropriate effective tension. be able to.
[0023]
Further, in the frost heave mitigation structure of the present embodiment, it occurs on the back side of the retaining wall 5 only by measuring the distance between the head side edge of the steel bar 3 and the head side edge of the protrusion 30. Therefore, it is possible to easily confirm the presence or absence of freezing that cannot be normally observed, the thickness of freezing, and the load applied to the steel rod 3 by freezing.
Furthermore, in the frost heave mitigating structure of the present embodiment, since the cylindrical portion 25 of the bearing plate 18 that houses the coil spring 20 is disposed in the anchor hole, the length of the steel rod 3 protruding to the ground surface can be shortened. And appearance is improved. In addition, in this structure, since the steel bar 3, the head fixing tool 7 and the coil spring 20 are built in the head cap 21 and immersed in the rust preventive agent, they can be rust-prevented for a long period of time. Accidents caused by can also be prevented for a long time.
[0024]
In the above-described embodiment, the elastic member is a coil spring. However, the elastic member is not limited to this and may be an elastic member such as a disc spring or urethane rubber. Moreover, as a steel bar, as shown in FIG. 3, a PC steel bar, a deformed PC steel bar, a deformed round steel formed with a screw, or a structure using a lock bolt may be used.
[0025]
【The invention's effect】
As described above, the frost heave mitigating structure according to claim 1 is provided with an elastic member for generating a tension force on the steel rod by elastic restoring force between the head fixing tool and the bearing plate, The elastic member is elastically deformed by the tension force applied to the rod, thereby reducing the increase in tension force.
As a result, in this frost heave mitigation structure, it is possible to maintain the effective tension of the steel rod even in the cold region where freezing of the natural ground occurs, and to prevent the steel rod from being broken due to frost heave. An effect is obtained.
[0026]
Also, on the back side of the pressure bearing plate, a bottomed cylindrical cylindrical portion that opens to the head side and accommodates the elastic member is provided, and one end side of the steel rod is inserted into the cylindrical portion. It is arranged in the anchor hole, and the elastic member is interposed between the bottom portion of the bottomed cylindrical cylindrical portion and the head fixing tool . The length of the steel bar protruding to the ground surface can also be shortened, and the effect of improving the appearance can be obtained.
[0027]
In the frost heave mitigating structure according to claim 2 , a protrusion for mounting a head cap for storing a rust preventive agent is provided on the head side of the bearing plate so as to stand upright from the bearing plate and integrated with the bearing plate. It is the structure formed in .
Thus, in this frost heave relaxed structure, steel rod, since the elastic member or the like can be prolonged rust, Ru can prevent long-term also accidents caused by frost heaving.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, in which a coil spring is interposed between a pressure bearing plate and a head fixing tool.
FIG. 2 is a view showing an embodiment of the present invention, and is a cross-sectional view in which a coil spring is elastically deformed by freezing.
FIG. 3 is a diagram showing an embodiment of the present invention, and is a cross-sectional view in which a deformed round steel is used as a steel bar.
FIG. 4 is a cross-sectional view showing an example of a frost heave mitigation structure according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ground 2 Anchor hole 3 Steel rod 7 Head fixing tool 18 Bearing plate 20 Coil spring (elastic member)
21 Head cap 25 Cylindrical portion 30 Projection

Claims (2)

鋼棒の一端側が地盤に固定され、頭部側が支圧板を介して頭部定着具によって前記地盤に反力を取って緊張、定着され、凍上により前記支圧板および頭部定着具を介して前記鋼棒に加わる緊張力の増加を緩和する凍上緩和構造であって、
前記頭部定着具と前記支圧板との間に、弾性復元力により前記鋼棒に前記緊張力を生じさせる弾性部材が、少なくとも前記地盤の凍上により前記支圧板が移動したときの移動長に対応する弾性変形長を有した状態で介装され、
前記支圧板の背面側には、前記頭部側に開口して前記弾性部材を収容する有底円筒状の円筒部が設けられ、該円筒部は、前記鋼棒の一端側が挿入されるアンカー孔内に配置され、該有底円筒状の円筒部の底部と前記頭部定着具との間に前記弾性部材が介装され、
凍上時に前記鋼棒に加わる緊張力を、前記弾性部材が弾性変形して該緊張力の増加を緩和することを特徴とする凍上緩和構造。
One end side of the steel rod is fixed to the ground, and the head side is tensioned and fixed by the reaction force applied to the ground by the head fixing tool via the supporting pressure plate, and the above-mentioned via the supporting pressure plate and the head fixing tool by freezing A frost heave mitigation structure that alleviates an increase in tension applied to a steel bar,
An elastic member that generates the tension force on the steel rod by an elastic restoring force between the head fixing device and the bearing pressure plate corresponds to a moving length when the bearing plate moves at least due to freezing of the ground. Is inserted in a state having an elastic deformation length to
On the back side of the bearing plate, a bottomed cylindrical cylindrical portion that opens to the head side and accommodates the elastic member is provided, and the cylindrical portion is an anchor hole into which one end side of the steel rod is inserted. The elastic member is interposed between the bottom of the bottomed cylindrical cylindrical portion and the head fixing tool,
A frost heave mitigating structure, wherein the elastic member is elastically deformed to relieve the tension force applied to the steel rod during frosting, and the increase in the tension force is alleviated.
請求項1記載の凍上緩和構造において、
前記支圧板の頭部側には、防錆剤貯留用のヘッドキャップを装着するための突起が、前記支圧板から立設されてかつ該支圧板と一体に形成されていることを特徴とする凍上緩和構造。
In the frost heave mitigation structure according to claim 1,
On the head side of the bearing plate, a protrusion for mounting a head cap for storing a rust preventive agent is provided upright from the bearing plate and integrally formed with the bearing plate. Freezing-up mitigation structure.
JP25902098A 1998-09-11 1998-09-11 Frost heave mitigation structure Expired - Fee Related JP3920471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25902098A JP3920471B2 (en) 1998-09-11 1998-09-11 Frost heave mitigation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25902098A JP3920471B2 (en) 1998-09-11 1998-09-11 Frost heave mitigation structure

Publications (2)

Publication Number Publication Date
JP2000087350A JP2000087350A (en) 2000-03-28
JP3920471B2 true JP3920471B2 (en) 2007-05-30

Family

ID=17328245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25902098A Expired - Fee Related JP3920471B2 (en) 1998-09-11 1998-09-11 Frost heave mitigation structure

Country Status (1)

Country Link
JP (1) JP3920471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884112A (en) * 2019-03-28 2019-06-14 哈尔滨工业大学 A kind of native frost heave detection device and its detection method of no external power supply

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146793A (en) * 2000-11-10 2002-05-22 Arai Gumi Ltd Load-introducing reinforced earth method and load- introducing reinforced earth structure
KR101370954B1 (en) * 2013-04-04 2014-03-10 (주) 효창이엔지 Site surface pressure reinforced structure and method associated soil nailing
KR102643714B1 (en) * 2023-07-12 2024-03-05 주식회사 에스와이텍 Thread bar coupling device, seismic pile having the same and construction method for seismic pile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884112A (en) * 2019-03-28 2019-06-14 哈尔滨工业大学 A kind of native frost heave detection device and its detection method of no external power supply
CN109884112B (en) * 2019-03-28 2021-07-23 哈尔滨工业大学 Detection method realized by soil frost heaving detection device without external power supply

Also Published As

Publication number Publication date
JP2000087350A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
US5064311A (en) Mine roof support structure and method
JP3920471B2 (en) Frost heave mitigation structure
US3868662A (en) Mobile home anchor strand tension indicator
JP3764657B2 (en) Seismic reinforcement structure for reinforced concrete support columns
KR200394338Y1 (en) Apparatus for fixing stone panel of building
JP2001032273A (en) Antifreeze anchoring structure of ground anchor
JP3541688B2 (en) Anchor head anchoring structure
JP3768118B2 (en) Fastening device
US5864993A (en) Stabilizer for ground stake
CA2466283A1 (en) Rock bolt
JP3578210B2 (en) Underground wall structure
JP2007285016A (en) Anchor bolt device
JP4097643B2 (en) Strengthening method of landslide prevention pile
JP4577893B2 (en) Ground anchor head structure
JP3948273B2 (en) Seismic isolation structure, seismic isolation method
JP3052289B1 (en) Vibration absorbing anchor
JP3730035B2 (en) Nuts with caps for civil engineering anchors and attachment devices for civil engineering anchors
WO2005012650A3 (en) Expansible hole anchor with enlargedd chock-releasing striker head
KR100681888B1 (en) High tension anchor
KR100476729B1 (en) Integrated bridge using PC beam and high-priced earthquake-proof shearing block structure
JP3598082B2 (en) Ground anchor
JPH1143941A (en) Anchor fixture part structure
JP2570085B2 (en) Anchor bolt construction method
KR200216784Y1 (en) Anchor Bolt for Supporting Bridge-Bearing
JP2009046817A (en) Seismic strengthening anchor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees