JP3920194B2 - Ultrasonic measuring device - Google Patents

Ultrasonic measuring device Download PDF

Info

Publication number
JP3920194B2
JP3920194B2 JP2002316171A JP2002316171A JP3920194B2 JP 3920194 B2 JP3920194 B2 JP 3920194B2 JP 2002316171 A JP2002316171 A JP 2002316171A JP 2002316171 A JP2002316171 A JP 2002316171A JP 3920194 B2 JP3920194 B2 JP 3920194B2
Authority
JP
Japan
Prior art keywords
fundamental
wave
frequency domain
waves
reflected wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002316171A
Other languages
Japanese (ja)
Other versions
JP2004147852A (en
Inventor
憲男 田川
正 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002316171A priority Critical patent/JP3920194B2/en
Publication of JP2004147852A publication Critical patent/JP2004147852A/en
Application granted granted Critical
Publication of JP3920194B2 publication Critical patent/JP3920194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を用いて計測を行う分野に関する。
【技術的背景】
超音波を送信し、その反射波を受信することにより、反射した物体の画像を表示することは、例えば、医療の分野でよく行われている。
超音波による画像化手法の1つである、パルス圧縮方式に基づく画像化法では、送信系の物理的条件や、スタンドオフ領域の制限、あるいはドップラ計測の実現などの理由により、時間幅が狭く、かつ情報量の多い送信信号を用いる必要がある。ただし、圧縮性能(圧縮後のパルス幅や、サイドローブレベル、SN比等)も重視されることから、性能の保証されている基本的な符号化波形を足し合わせて合成送信信号とすることが多い。ダウンチャープ信号とアップチャープ信号を用いたものとして、例えば、特許文献1がある。
【0002】
さて、合成送信信号が周波数帯域の異なる基本波を足し合わせたものであれば、受信信号を各周波数帯域に基づいて容易に分離できる。しかし、例えば、アップチャープとダウンチャープ、あるいは位相の異なるチャープを足し合わせた合成送信信号を用いる場合は、周波数帯域に基づく受信信号の分離ができない。
この場合の圧縮処理として、合成送信信号が対象物体から反射されて戻ってくる受信信号に対して、合成送信信号による相関計算を行ったのでは、通常、単一の基本波を送信信号として用いたときよりも圧縮性能が劣化する。したがって、各基本波による圧縮処理を行い、得られる複数の圧縮信号に対して適切な処理を施すことによって、圧縮性能の向上を目指すことが考えられる。
【特許文献1】
特開2002−136522号公報
【0003】
【発明が解決しようとする課題】
本発明の目的は、超音波の合成送信信号を送信し、その反射波を受信するパルス圧縮方式の計測器において、受信信号を、各基本波に劣化することなく分離を行うことができるようにして、各基本波ごとの圧縮受信信号を得ることにより、計測精度を高めた計測器を提供しようとするものである。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明は、複数の基本波を送信し、その反射波を受信し、圧縮して測定を行う超音波測定装置であって、複数の基本波からなる超音波を送信する超音波送信手段と、送信された超音波の反射波を受信する超音波受信手段と、前記受信した反射波を周波数領域での表現とするフーリエ変換手段と、前記周波数領域表現とした反射波から、異なる基本波間の周波数領域のスペクトル比を用いて、周波数表現の基本波の反射波を求める分離手段と、前記周波数表現の基本波に対応した反射波から、基本波の反射波を求める逆フーリエ変換手段と、前記基本波の反射波から、圧縮受信信号を得る基本波との相関手段とを備えることを特徴とする。
前記複数の基本波をs(j)(t)(j=1,2,・・・,M)、その周波数領域の表現をS(j)(ω)とし、受信した反射波をr(t)、その周波数領域の表現をR(ω)、周波数領域の基本波の反射波をR(j)(ω)としたとき、
前記異なる基本波間の周波数領域のスペクトル比は、
【数6】

Figure 0003920194
であり、
前記分離手段は、H(j)(ω)=1+G(j)(ω)とすると、
【数7】
Figure 0003920194
により行うことができる。
【0005】
また、前記複数の基本波を初期位相の異なる複数のアップ/ダウンチャープとして階層的に用い、複数のアップチャープ信号をsu(j)(t)(j=1,2,・・・,M)、複数のダウンチャープ信号をsd(j)(t)(j=1,2,・・・,M)、その周波数領域の表現をSu(j)(ω),Sd(j)(ω)とし、受信した反射波をr(t)、その周波数領域の表現をR(ω)、周波数領域の基本波の反射波をRu(j)(ω),Rd(j)(ω)としたとき、
前記異なる基本波間の周波数領域のスペクトル比は、
【数8】
Figure 0003920194
および
【数9】
Figure 0003920194
(Gu,はjに対して不変)であり、
前記分離手段は、Hu(j)(ω)=Gu(j)(ω)+1,H(ω)=G(ω)+1およびHd(j)(ω)=Gd(j)(ω)+1,H(ω)=G(ω)+1とすると、
【数10】
Figure 0003920194
により行うことができる。
【0006】
【発明の実施の形態】
本発明の実施の形態を、図面を参照して説明する。
本発明では、パルス圧縮方式において、異なる基本波形間の周波数領域における比(スペクトル比)を利用して、周波数帯域による基本波成分の分離が困難な場合に、それを実現する方法を与える。
図1は、本発明の実施形態である超音波測定装置の構成を示すブロック図である。図1は計測器の特に受信部における分離圧縮フィルタ200を示している。図1において、今、基本信号発生器112,114からの2つの基本波s(t),s(t)を合成器120により足し合わせて作成した、合成送信信号s(t)(パルス)を超音波振動子130から対象物140に対して送信する場合を考える。
【数11】
Figure 0003920194
この関係を、フーリエ変換により周波数領域で表現すると
【数12】
Figure 0003920194
となる。ここで、次の比を計算する。
【数13】
Figure 0003920194
次に、反射体がN個存在するときの、式(1)の送信信号に対する反射(受信)信号r(t)を考えると、反射体142,144,146を区別する添字を iとして
【数14】
Figure 0003920194
となる。
【0007】
図1の分離圧縮フィルタ200において、受信信号r(t)をフーリエ変換器210で、周波数領域における表現にすると、
【数15】
Figure 0003920194
となる。ここで、適当な基本波を用いると、以下の関係と成る。
【数16】
Figure 0003920194
このとき、H(ω)=1+G(ω)とすると、式(5)は、
【数17】
Figure 0003920194
と書ける。この関係から、H(ω)が0となるωが測度ゼロの集合であれば、そのようなωでの成分はゼロとおき、それ以外の成分について
【数18】
Figure 0003920194
と、除算器222によりH(ω)で除算することで、基本波s(t)に対応する周波数表現の反射波R(ω)を求めることができる。これを逆フーリエ変換器232で時間表現のr(t)とし、基本波としてアップ/ダウンチャープ信号を用いた場合等の必要なときに相関器242で基本波s(t)との相関をとると、圧縮受信信号w(t)となる。
同様にH(ω)を求めることにより、基本波s(t)に対する圧縮受信信号w(t)を求めることができる。
【0008】
上述では、基本波を2つの場合で説明したが、一般的に複数の基本波を用いた場合でも適用することができる。
この場合、複数の基本波をs(j)(t)(j=1,2,・・・,M)とし、その周波数領域の表現をS(j)(ω)とすると、上述の比であるG(j)(ω)は、
【数19】
Figure 0003920194
で求めることができる。これにより、H(j)(ω)=1+G(j)(ω)とすると、
【数20】
Figure 0003920194
により、各基本波の受信信号を上述と同様に求めることができ、各基本波に対応する圧縮受信信号r(j)(t)は、上述と同様に求めることができる。
【0009】
また、階層的に、初期位相の異なる複数のアップ/ダウンチャープを足し合わせた送信信号を用いた場合でも適用可能である。図2(a)にアップチャープ信号、図2(b)にダウンチャープ信号を示す。図2(a)に示すように、アップチャープ信号は時間Tの間に周波数fがΔf上昇してfとなる。図2(b)に示すように、ダウンチャープ信号は時間Tの間に周波数fがΔf下降してfとなる。
アップとダウンを区別する添字をu,d、初期位相を区別する添字をj(=1,2,…,M)とすると、
【数21】
Figure 0003920194
および
【数22】
Figure 0003920194
(Gu,はjに対して不変)から、Hu(j),HおよびHd(j),Hを前述と同様に定義することで、
【数23】
Figure 0003920194
として各成分を分離できる。
【0010】
【実施例】
図3〜図5に、アップチャープ信号とダウンチャープ信号の2つの基本信号を送信した例を示す。図3は、合成送信信号s(t)(送信周波数19〜22MHz,パルス幅100μsを、媒質内(媒質内音速1500m/s)に距離をおいて設置している3つの反射体A,B,C(反射率はそれぞれ、0.5,0.1,0.5)に対して送信し、各反射体からの反射波r(t)を受けていることを示している。
図4は、受けた反射波を示しており、図5(a),図5(b)は、図1に示した構成で、上述のアップチャープ,ダウンチャープ信号の場合のように求めた圧縮受信信号w(t),w(t)を示している。図5(a),図5(b)に示すように分離されて、圧縮受信信号w(t),w(t)が求められる。図5から分かるように、圧縮受信信号w(t),w(t)には、各反射体A,B,Cからの反射が同じように明確に認められる。
【0011】
【発明の効果】
本発明の分離圧縮フィルタの構成を用いることにより、周波数の重なった送信チャープ信号でも、明確に分離することができ、複数の送信信号を用いることにより、得られる情報量を増加させることで、S/N比を増加することができる。したがって、例えば、超音波の反射により画像を生成する場合でも、明瞭な画像を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態である超音波測定器の構成を示すブロック図である。
【図2】アップチャープ波、ダウンチャープ波を示す図である。
【図3】実施例における反射体等を示す図である。
【図4】実施例における反射波(受信波)を示す図である。
【図5】実施例における圧縮受信波を示す図である。
【符号の説明】
112,114 基本信号発生器
120 合成器
130 超音波振動子(超音波送受信器)
140 反射体(測定対象)
200 分離圧縮フィルタ
210 フーリエ変換器
222,224 除算器
232,234 逆フーリエ変換器
242,244 相関器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the field of measuring using ultrasonic waves.
[Technical background]
Displaying an image of a reflected object by transmitting an ultrasonic wave and receiving the reflected wave is often performed in the medical field, for example.
In the imaging method based on the pulse compression method, which is one of ultrasonic imaging methods, the time width is narrow due to the physical conditions of the transmission system, the limitation of the standoff area, or the realization of Doppler measurement. In addition, it is necessary to use a transmission signal having a large amount of information. However, since compression performance (compressed pulse width, side lobe level, S / N ratio, etc.) is also emphasized, basic encoded waveforms with guaranteed performance may be added to form a combined transmission signal. Many. For example, Patent Document 1 discloses a technique using a down chirp signal and an up chirp signal.
[0002]
If the combined transmission signal is a combination of fundamental waves having different frequency bands, the received signal can be easily separated based on each frequency band. However, for example, when using a combined transmission signal in which up-chirp and down-chirp or chirps having different phases are added, the received signal cannot be separated based on the frequency band.
As a compression process in this case, if a correlation calculation is performed on the received signal that is reflected from the target object and returned by the synthesized transmission signal, a single fundamental wave is usually used as the transmission signal. Compression performance is worse than when it was. Therefore, it is conceivable to improve compression performance by performing compression processing using each fundamental wave and performing appropriate processing on a plurality of obtained compressed signals.
[Patent Document 1]
JP 2002-136522 A
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to enable a pulse compression measuring instrument that transmits an ultrasonic composite transmission signal and receives the reflected wave to separate the reception signal without degrading each fundamental wave. Thus, it is intended to provide a measuring instrument with improved measurement accuracy by obtaining a compressed received signal for each fundamental wave.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an ultrasonic measurement device that transmits a plurality of fundamental waves, receives the reflected waves, compresses them, and performs measurement. Ultrasonic transmitting means for transmitting, ultrasonic receiving means for receiving reflected waves of the transmitted ultrasonic waves, Fourier transform means for expressing the received reflected waves in the frequency domain, and reflection in the frequency domain expression The fundamental wave reflected wave is obtained from the separating means for obtaining the reflected wave of the fundamental wave in the frequency expression using the spectral ratio of the frequency domain between the different fundamental waves from the wave, and the reflected wave corresponding to the fundamental wave in the frequency expression. Inverse Fourier transform means and means for correlating with a fundamental wave for obtaining a compressed reception signal from the reflected wave of the fundamental wave are provided.
The plurality of fundamental waves are s (j) (t) (j = 1, 2,..., M), the frequency domain representation is S (j) (ω), and the received reflected waves are r (t). ), The frequency domain representation is R (ω), and the fundamental reflected wave of the frequency domain is R (j) (ω).
The spectral ratio in the frequency domain between the different fundamental waves is
[Formula 6]
Figure 0003920194
And
When the separating means is H (j) (ω) = 1 + G (j) (ω),
[Expression 7]
Figure 0003920194
Can be performed.
[0005]
Further, the plurality of fundamental waves are hierarchically used as a plurality of up / down chirps having different initial phases, and a plurality of up chirp signals are used as su (j) (t) (j = 1, 2,..., M ), A plurality of down-chirp signals as s d (j) (t) (j = 1, 2,..., M), and the frequency domain representation as S u (j) (ω), S d (j) (Ω), the received reflected wave is r (t), the frequency domain representation is R (ω), and the fundamental frequency reflected wave is R u (j) (ω), R d (j) ( ω)
The spectral ratio in the frequency domain between the different fundamental waves is
[Equation 8]
Figure 0003920194
And
Figure 0003920194
(G u, G d are invariant to j),
The separation means includes H u (j) (ω) = G u (j) (ω) +1, H u (ω) = G u (ω) +1 and H d (j) (ω) = G d (j ) (Ω) +1, H d (ω) = G d (ω) +1
[Expression 10]
Figure 0003920194
Can be performed.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
In the present invention, in the pulse compression method, a method for realizing the case where separation of fundamental wave components by frequency band is difficult by using a ratio (spectral ratio) in a frequency domain between different fundamental waveforms is provided.
FIG. 1 is a block diagram showing a configuration of an ultrasonic measurement apparatus according to an embodiment of the present invention. FIG. 1 shows a separation / compression filter 200 in the measuring device, particularly in the receiver. In FIG. 1, a combined transmission signal s (t) (pulse) created by adding two fundamental waves s 1 (t) and s 2 (t) from the fundamental signal generators 112 and 114 together by a synthesizer 120. ) Is transmitted from the ultrasonic transducer 130 to the object 140.
[Expression 11]
Figure 0003920194
If this relationship is expressed in the frequency domain by Fourier transform,
Figure 0003920194
It becomes. Here, the following ratio is calculated.
[Formula 13]
Figure 0003920194
Next, when the reflection (reception) signal r (t) with respect to the transmission signal of Expression (1) when there are N reflectors, the subscript that distinguishes the reflectors 142, 144, and 146 is i. 14]
Figure 0003920194
It becomes.
[0007]
In the separation compression filter 200 of FIG. 1, when the received signal r (t) is expressed in the frequency domain by the Fourier transformer 210,
[Expression 15]
Figure 0003920194
It becomes. Here, when an appropriate fundamental wave is used, the following relationship is established.
[Expression 16]
Figure 0003920194
At this time, if H 1 (ω) = 1 + G 1 (ω), Equation (5) is
[Expression 17]
Figure 0003920194
Can be written. From this relationship, if ω where H 1 (ω) is 0 is a set with a measure of zero, the component at such ω is set to zero, and other components are expressed as follows.
Figure 0003920194
Then, by dividing by H 1 (ω) by the divider 222, the reflected wave R 1 (ω) of the frequency expression corresponding to the fundamental wave s 1 (t) can be obtained. This is converted to r 1 (t) in time expression by the inverse Fourier transformer 232, and the correlation with the fundamental wave s 1 (t) is obtained by the correlator 242 when an up / down chirp signal is used as the fundamental wave. , The compressed received signal w 1 (t) is obtained.
Similarly, by obtaining H 2 (ω), the compressed received signal w 2 (t) for the fundamental wave s 2 (t) can be obtained.
[0008]
In the above description, the case where two fundamental waves are used has been described. However, the present invention can also be applied to cases where a plurality of fundamental waves are used.
In this case, when a plurality of fundamental waves are s (j) (t) (j = 1, 2,..., M) and the frequency domain is S (j) (ω), the above ratio is obtained. A certain G (j) (ω) is
[Equation 19]
Figure 0003920194
Can be obtained. Thus, when H (j) (ω) = 1 + G (j) (ω),
[Expression 20]
Figure 0003920194
Thus, the received signal of each fundamental wave can be obtained in the same manner as described above, and the compressed received signal r (j) (t) corresponding to each fundamental wave can be obtained in the same manner as described above.
[0009]
Further, the present invention can be applied even when a transmission signal in which a plurality of up / down chirps having different initial phases are added hierarchically is used. FIG. 2A shows an up-chirp signal, and FIG. 2B shows a down-chirp signal. As shown in FIG. 2 (a), the frequency f 1 is f 2 rises Δf between the up-chirp signal time T. As shown in FIG. 2 (b), the frequency f 2 is f 1 and Δf lowered during the down-chirp signal is a time T.
If subscripts distinguishing up and down are u and d, and subscripts distinguishing the initial phase are j (= 1, 2,..., M),
[Expression 21]
Figure 0003920194
And
Figure 0003920194
(G u and G d are invariant with respect to j) , H u (j) and H u and H d (j) and H d are defined in the same manner as described above.
[Expression 23]
Figure 0003920194
Each component can be separated as follows.
[0010]
【Example】
3 to 5 show examples in which two basic signals, an up-chirp signal and a down-chirp signal, are transmitted. FIG. 3 shows three reflectors A, B, which are provided with a combined transmission signal s (t) (transmission frequency 19-22 MHz, pulse width 100 μs, at a distance from the medium (sound velocity in the medium 1500 m / s). It is transmitted to C (reflectances are 0.5, 0.1, and 0.5, respectively), indicating that the reflected wave r (t) from each reflector is received.
FIG. 4 shows the reflected wave received, and FIGS. 5A and 5B show the compression obtained in the configuration shown in FIG. 1 as in the case of the above-described up-chirp and down-chirp signals. The received signals w 1 (t) and w 2 (t) are shown. The compressed received signals w 1 (t) and w 2 (t) are obtained by being separated as shown in FIGS. As can be seen from FIG. 5, reflections from the reflectors A, B, and C are clearly recognized in the same manner in the compressed reception signals w 1 (t) and w 2 (t).
[0011]
【The invention's effect】
By using the configuration of the separation and compression filter of the present invention, even transmission chirp signals with overlapping frequencies can be clearly separated, and by using a plurality of transmission signals, the amount of information obtained can be increased. The / N ratio can be increased. Therefore, for example, even when an image is generated by reflection of ultrasonic waves, a clear image can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an ultrasonic measuring instrument according to an embodiment of the present invention.
FIG. 2 is a diagram showing an up-chirp wave and a down-chirp wave.
FIG. 3 is a view showing a reflector and the like in the embodiment.
FIG. 4 is a diagram illustrating a reflected wave (received wave) in the embodiment.
FIG. 5 is a diagram illustrating a compressed reception wave in the embodiment.
[Explanation of symbols]
112, 114 Basic signal generator 120 Synthesizer 130 Ultrasonic transducer (Ultrasonic transceiver)
140 Reflector (measuring object)
200 Separation and compression filter 210 Fourier transformers 222 and 224 Dividers 232 and 234 Inverse Fourier transformers 242 and 244 Correlator

Claims (3)

複数の基本波を送信し、その反射波を受信し、圧縮して測定を行う超音波測定装置であって、
複数の基本波からなる超音波を送信する超音波送信手段と、
送信された超音波の反射波を受信する超音波受信手段と、
前記受信した反射波を周波数領域での表現とするフーリエ変換手段と、
前記周波数領域表現とした反射波から、異なる基本波間の周波数領域のスペクトル比を用いて、周波数表現の基本波の反射波を求める分離手段と、
前記周波数表現の基本波に対応した反射波から、基本波の反射波を求める逆フーリエ変換手段と、
前記基本波の反射波から、圧縮受信信号を得る基本波との相関手段と
を備えることを特徴とする超音波測定装置。
An ultrasonic measurement device that transmits a plurality of fundamental waves, receives the reflected waves, compresses and measures,
Ultrasonic transmission means for transmitting ultrasonic waves composed of a plurality of fundamental waves;
An ultrasonic wave receiving means for receiving a reflected wave of the transmitted ultrasonic wave;
Fourier transform means for representing the received reflected wave in the frequency domain;
Separating means for obtaining the reflected wave of the fundamental wave of the frequency representation using the spectral ratio of the frequency domain between the different fundamental waves from the reflected wave of the frequency domain representation;
An inverse Fourier transform means for obtaining a reflected wave of the fundamental wave from a reflected wave corresponding to the fundamental wave of the frequency expression;
An ultrasonic measurement apparatus comprising: means for correlating with a fundamental wave that obtains a compressed reception signal from the reflected wave of the fundamental wave.
請求項1に記載の超音波測定装置において、
前記複数の基本波をs(j)(t)(j=1,2,・・・,M)、その周波数領域の表現をS(j)(ω)とし、受信した反射波をr(t)、その周波数領域の表現をR(ω)、周波数領域の基本波の反射波をR(j)(ω)としたとき、
前記異なる基本波間の周波数領域のスペクトル比は、
Figure 0003920194
であり、
前記分離手段は、H(j)(ω)=1+G(j)(ω)とすると、
Figure 0003920194
により行うことを特徴とする超音波測定装置。
The ultrasonic measurement apparatus according to claim 1,
The plurality of fundamental waves are s (j) (t) (j = 1, 2,..., M), the frequency domain representation is S (j) (ω), and the received reflected waves are r (t). ), The frequency domain representation is R (ω), and the fundamental reflected wave of the frequency domain is R (j) (ω).
The spectral ratio in the frequency domain between the different fundamental waves is
Figure 0003920194
And
When the separating means is H (j) (ω) = 1 + G (j) (ω),
Figure 0003920194
An ultrasonic measurement apparatus, characterized in that
請求項1に記載の超音波測定装置において、
前記複数の基本波を初期位相の異なる複数のアップ/ダウンチャープとして階層的に用い、複数のアップチャープ信号をsu(j)(t)(j=1,2,・・・,M)、複数のダウンチャープ信号をsd(j)(t)(j=1,2,・・・,M)、その周波数領域の表現をSu(j)(ω),Sd(j)(ω)とし、受信した反射波をr(t)、その周波数領域の表現をR(ω)、周波数領域の基本波の反射波をRu(j)(ω),Rd(j)(ω)としたとき、
前記異なる基本波間の周波数領域のスペクトル比は、
Figure 0003920194
および
Figure 0003920194
(Gu,はjに対して不変)であり、
前記分離手段は、Hu(j)(ω)=Gu(j)(ω)+1,H(ω)=G(ω)+1およびHd(j)(ω)=Gd(j)(ω)+1,H(ω)=G(ω)+1とすると、
Figure 0003920194
により行うことを特徴とする超音波測定装置。
The ultrasonic measurement apparatus according to claim 1,
The plurality of fundamental waves are hierarchically used as a plurality of up / down chirps having different initial phases, and a plurality of up chirp signals are represented by su (j) (t) (j = 1, 2,..., M), A plurality of down-chirp signals are represented by s d (j) (t) (j = 1, 2,..., M), and their frequency domain representations are represented by S u (j) (ω), S d (j) (ω ), The received reflected wave is r (t), the frequency domain representation is R (ω), and the fundamental frequency reflected wave is R u (j) (ω), R d (j) (ω). When
The spectral ratio in the frequency domain between the different fundamental waves is
Figure 0003920194
and
Figure 0003920194
(G u, G d are invariant to j),
The separation means includes H u (j) (ω) = G u (j) (ω) +1, H u (ω) = G u (ω) +1 and H d (j) (ω) = G d (j ) (Ω) +1, H d (ω) = G d (ω) +1
Figure 0003920194
An ultrasonic measurement apparatus, characterized in that
JP2002316171A 2002-10-30 2002-10-30 Ultrasonic measuring device Expired - Fee Related JP3920194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316171A JP3920194B2 (en) 2002-10-30 2002-10-30 Ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316171A JP3920194B2 (en) 2002-10-30 2002-10-30 Ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JP2004147852A JP2004147852A (en) 2004-05-27
JP3920194B2 true JP3920194B2 (en) 2007-05-30

Family

ID=32459949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316171A Expired - Fee Related JP3920194B2 (en) 2002-10-30 2002-10-30 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JP3920194B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012332817B2 (en) 2011-10-28 2017-03-30 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound imaging
US9844359B2 (en) 2013-09-13 2017-12-19 Decision Sciences Medical Company, LLC Coherent spread-spectrum coded waveforms in synthetic aperture image formation
KR20180096493A (en) 2015-02-25 2018-08-29 디시전 사이선씨즈 메디컬 컴패니, 엘엘씨 Acoustic signal transmission contact medium and coupling medium
JP6755308B2 (en) 2015-10-08 2020-09-16 ディスィジョン サイエンシズ メディカル カンパニー,エルエルシー Acoustic orthopedic tracking system and method
WO2018086972A1 (en) * 2016-11-08 2018-05-17 Koninklijke Philips N.V. Method for wireless data transmission range extension
CA3080561A1 (en) 2017-10-27 2019-05-02 Decision Sciences Medical Company, LLC Spatial and temporal encoding of acoustic waveforms for full synthetic transmit aperture imaging
WO2020219705A1 (en) 2019-04-23 2020-10-29 Allan Wegner Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
JP2023549818A (en) 2020-11-13 2023-11-29 ディスィジョン サイエンシズ メディカル カンパニー,エルエルシー System and method for synthetic aperture ultrasound imaging of objects

Also Published As

Publication number Publication date
JP2004147852A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US6663565B2 (en) Ultrasound diagnostic apparatus
JP4931910B2 (en) Ultrasonic imaging device
US6918875B2 (en) Ultrasound measurement apparatus
JP2544342B2 (en) Ultrasonic Doppler diagnostic device
US8858446B2 (en) Color doppler ultrasonic diagnosis apparatus which can calculate blood flow component information
JP6536910B2 (en) Target extraction system, target extraction method, information processing apparatus, and control method and control program therefor
JP3920194B2 (en) Ultrasonic measuring device
JP5656505B2 (en) Radar equipment
JP6179940B2 (en) Doppler imaging signal transmitter, Doppler imaging signal receiver, Doppler imaging system and method
US20190018126A1 (en) Method for coded ultrasonic echo detection
US9535041B2 (en) Propagation rate measurement device, propagation rate measurement program, and propagation rate measurement method
JP2005009950A (en) Radar device
JP7262399B2 (en) Method and apparatus for compensating phase noise
EP4116736A1 (en) Distance measuring device, distance measuring method, and program
JP5835681B2 (en) Signal processing method and signal processing apparatus
CN111427035A (en) Radar actual measurement data set expansion method based on sub-band micro-Doppler difference
US20220365206A1 (en) Vibrometry and sound reproduction of acoustic sources on moving platforms using radar
JP4086684B2 (en) Pulse compression method and pulse compression apparatus
JP2005083833A (en) Radar signal processor
Natarajan et al. Step-FMCW signaling and target detection for ultrasound imaging systems with conformal transducer arrays
JP2001141815A (en) Apparatus and method for receiving/processing signal of radar transponder for search and rescue
JP2004041324A (en) Ultrasonograph
JP6161028B2 (en) Image apparatus and image forming method
Khyam et al. OFDM based low-complexity time of arrival estimation in active sonar
Lu et al. Comparison of time frequency analysis techniques for ultrasonic NDE signal

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees