JP3917688B2 - Gitter brick with bypass, stacking method and brick stacking repair method for hot stove regenerator - Google Patents

Gitter brick with bypass, stacking method and brick stacking repair method for hot stove regenerator Download PDF

Info

Publication number
JP3917688B2
JP3917688B2 JP23066796A JP23066796A JP3917688B2 JP 3917688 B2 JP3917688 B2 JP 3917688B2 JP 23066796 A JP23066796 A JP 23066796A JP 23066796 A JP23066796 A JP 23066796A JP 3917688 B2 JP3917688 B2 JP 3917688B2
Authority
JP
Japan
Prior art keywords
brick
hole
dowel
bricks
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23066796A
Other languages
Japanese (ja)
Other versions
JPH09269193A (en
Inventor
昌男 藤田
力生 小野
完二 相沢
良親 佐藤
年男 上谷
慎一 益本
正夫 南部
正義 中島
敬治 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP23066796A priority Critical patent/JP3917688B2/en
Priority to KR1019970002748A priority patent/KR100233695B1/en
Priority to CN97104859A priority patent/CN1059468C/en
Publication of JPH09269193A publication Critical patent/JPH09269193A/en
Application granted granted Critical
Publication of JP3917688B2 publication Critical patent/JP3917688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material

Description

【0001】
【発明の属する技術分野】
本発明は、熱風炉の蓄熱室内部に積重ねられ、高温ガスと冷風との熱交換の媒体となるギッター煉瓦、その積重ね方法及び熱風炉蓄熱室の煉瓦積み補修方法に関する。
【0002】
【従来の技術】
高炉操業では、高炉に装入したコークスを燃焼させるため、多量の空気が必要である。この空気は、燃焼室1と蓄熱室2とからなる熱風炉3(図6参照)を用い、燃料ガスの燃焼、燃焼熱の煉瓦への蓄熱、蓄熱した煉瓦と新しい冷風との熱交換等の作用を経て、700〜1300℃に予熱されてから、高炉に連続的に送られる。この連続送風を行うため、熱風炉3は、通常1基の高炉に対し3〜4基が設置され、適宜切り換えて使用するようになっている。
【0003】
ところで、上記燃焼熱を蓄熱するため、蓄熱室2内には所謂ギッターあるいはチェッカー煉瓦4が多段(通常、250段程度)に積まれている。そして、各ギッター煉瓦4には、燃焼で得た高温ガスや加熱されるべき空気を通過させるガス流路を形成するため、上下に向けて貫通孔5と溝(以下、上下溝6という)が多数設けられている。ちなみ、後述する6角柱状のギッター煉瓦4(図8参照)は、7個の貫通孔5に加えて、煉瓦側面に沿って12本の上下溝6が形成されており、この溝6も煉瓦積みした際に、隣接煉瓦の溝6と組み合わさって5個の貫通孔[(断面が1/2円の溝×6個)+(1/3円の溝×6個)=5個]となるので、煉瓦一個当たり合計12個の貫通孔(ガス流路)を有することになる。従って、近年新設された熱風炉3は、蓄熱室1基当たり、上下方向に連通する11、000本〜18、000本程度の同一径のガス流路が存在している。
【0004】
しかしながら、上記ガス流路は、永年使用していると、ダスト等の付着成長、局部加熱による煉瓦の一部溶融、異物流入等に起因して、閉塞されるものが出現する。1本のガス流路の途中で閉塞が起きると、その流路全体が蓄熱あるいは熱交換に利用できなくなり、熱風炉3の熱効率に影響を与える。多くの高炉改修時に、熱風炉3においてガス流路の貫通率が調査されている。その結果を図7に数値で示すが、該貫通率は、蓄熱室断面全体の平均で70.3%であり、そして周囲の貫通率が中央部より低いようである。また、ガス流路の閉塞位置を調査したところ、この閉塞は、蓄熱室2の上半分に用いる珪石質煉瓦で起きることが多く、下半分の高アルミナ質や粘土質煉瓦では少ないことも明らかになっている。
【0005】
一方、高炉は、以前には、10年にほぼ1回のペースで改修が行われていたが、熱風炉3はそれより寿命が永く20年程度もつので、高炉が改修されても、熱風炉3は元のままで再使用されることが多かった。その際、上記したような貫通率の低下があると、非常に熱効率の悪い熱風炉3で改修後の高炉操業を行うことになる。また、近年の高炉は、15年以上も継続して操業されるものがあるので、それに伴い熱風炉3の一層の寿命延長や熱効率の改善が必要になっている。
【0006】
そこで、実開平5−77242号公報は、図8に示すように、7個の貫通孔5及び12本の上下溝6で上下方向のガス流路を形成してなる6角柱状のギッター煉瓦において、その上面及び/又は底面の周囲に水平に溝を彫り(以下、水平溝9という)、該水平溝9と前記上下溝6の端部同士を連通させたものを提案した(図8(b)参照)。この水平溝9は、煉瓦を多段に積んだ際には、ガス流れに関しバイパス路として作用するので、このギッター煉瓦を使用すると、前記ガス流路の一部に閉塞が生じても、閉塞部を迂回してガスが流れ、そのガス流路の完全閉塞が回避できるようになる。
【0007】
また、実開平5−96046号公報は、図9及び10に示すように、上面及び/又は底面の周囲ではなく、面内に水平溝9を多数彫ったり、あるいは本体そのものに多数の水平貫通孔10を複雑(例えば、放射状)に設けて、バイパス路を形成した6角柱状のギッター煉瓦を開示した。
上記実開平5−77242号公報記載のギッター煉瓦は、多段に積まれた際に上下の煉瓦を拘束する環状のダボ11(貫通孔端部にリング状の突起を設ける)及びダボ孔12(貫通孔端部をリング状の段付構造とする)を、中心貫通孔を基準に120°の位置にある3本の同一貫通孔5の上下端に設けている。しかしながら、このダボ11がかえって邪魔になり、水平溝と連通させられないため煉瓦の重ね方が制約されてしまい、自由な重ね合わせができないという欠点がある。その結果、前記バイパス路で水平方向に連通しないガス流路が一部残ってしまう。しかも、かかるガス流路(ダボのあるガス流路)は、全体の25%に相当し、そこで部分的な閉塞が起きると、該ガス流路にはガスが流れなくなるので、実開平5−77242号公報記載の煉瓦を使用しても、熱効率の向上には限界があった。
【0008】
一方、実開平5−96046号公報記載のギッター煉瓦は、すべてのガス流路が互いに連通するようにバイパス路を形成することは可能である。しかし、そのようにバイパス路を形成すると、煉瓦の構造が複雑になり、積み重ねに際し煉瓦の強度低下が問題になる。さらに、煉瓦の製造工程も複雑になり、製作費用の増加が避けられない。
【0009】
【発明が解決しようとする課題】
本発明の目的は、かかる事情に鑑み、熱風炉の熱効率を高水準に維持し、且つ高強度で比較的容易に製造できるバイパス路付きギッター煉瓦及びその積重ね方を提供すると共に、これらの技術を利用した熱風炉蓄熱室の補修方法をも提供することにある。
【0010】
【課題を解決するための手段】
発明者は、上記目的を達成するため、従来のバイパス路付きギッター煉瓦の問題点を見直した。その結果、補修も含めて煉瓦を多段に積む際には、ダボ及びダボ孔の配置が、煉瓦強度の向上には、バイパス路の形状が、ガスの通過には、バイパスの深さが、非常に重要であることに気づき、本発明を着想するに至った。
【0011】
かかる本発明は、六角柱状の煉瓦本体と、その中心を上下に貫通する1本の中心貫通孔、該中心貫通孔を囲み、互いに60°間隔に設けた6本の貫通孔及び該本体側面に沿い、6角形の各頂点、各頂点間の中心位置に彫られ、隣り合う煉瓦のものと組合わせて貫通孔を形成する多数の上下溝からなるガス流路と、該本体の上下面のいずれかにおいて上記6本の貫通孔端部に設けられ、該本体を積重ねた際に上下を拘束するダボ及びダボ孔とを備えたギッター煉瓦において、本体の一面側には、上記ダボを、中心貫通孔を基準に互いに120°間隔にある3本の貫通孔端部に設け、残り3本の貫通孔の他面側端部に上記ダボ孔を設けると共に、上記ガス流路間を連通させるよう、上記6本の貫通孔のうち、ダボ又はダボ孔が設けられていない端部と、それに近接する3本の上下溝の端部とを連通させて、煉瓦を多段に積んだ際に前記各ガス流路間でバイパス路として作用させる広幅共同溝を本体面上下から切欠いてなることを特徴とするバイパス路付きギッター煉瓦である。
【0012】
また、本発明は、上記広幅共同溝を本体の一面に3ケ所形成したり、あるいは前記広幅共同溝の深さを、前記ギッター煉瓦高さの3%以上14%以下の範囲内にしたことを特徴とするバイパス路付きギッター煉瓦である。
さらに、本発明は、熱風炉の蓄熱室に、請求項1〜3いずれか記載のバイパス路を有するギッター煉瓦を積み重ねるに際し、前記煉瓦の側面同士を互いに隙間がないよう接触させて一段を形成し、二段目は、該一段目煉瓦の頂点上に、該二段目煉瓦の中心貫通孔が位置し、且つダボとダボ孔が嵌合するように積み、三段目は、前記一段目煉瓦の残りの頂点の鉛直線上に、三段目煉瓦の中心貫通孔が位置し、ダボとダボ孔が嵌合するように積み、これら三段を1セットの層で繰り返すことを特徴とするバイパス路付きギッター煉瓦の積重ね方法である。
【0013】
加えて、本発明は、上記バイパス路を有するギッター煉瓦を多段に積んだ層の他に、バイパス路を有しないギッター煉瓦の層を配置することを特徴とするバイパス路付き煉瓦の積み重ね方法である。
さらに加えて、六角柱状の煉瓦本体と、その中心を上下に貫通する1本の中心貫通孔、該中心貫通孔を囲み、互いに60°間隔に設けた6本の貫通孔及び該本体側面に沿い、6角形の各頂点、各頂点間の中心位置に彫られ、隣り合う煉瓦のものと組合わせて貫通孔を形成する多数の上下溝からなるガス流路と、該本体の上下面のいずれかにおいて上記6本の貫通孔端部に設けられ、該本体を積み重ねた際に上下を拘束するダボ及びダボ孔とを備えたギッター煉瓦を積んだ熱風炉蓄熱室の煉瓦層を補修するに際して、前記ギッター煉瓦層の間に、本体の一面側には、上記ダボを、中心貫通孔を基準に互いに120°間隔にある3本の貫通孔端部に設け、残り3本の貫通孔の他面側端部に上記ダボ孔を設けると共に、上記ガス流路間を連通させるよう、上記6本の貫通孔のうち、ダボ又はダボ孔が設けられていない端部と、それに近接する3本の上下溝の端部とを連通させて、煉瓦を多段に積んだ際に前記各ガス流路間でバイパス路として作用させる広幅共同溝を本体面上下から切欠いてなるバイパス路付きギッター煉瓦を、該バイパス路を有するギッター煉瓦の側面同士を互いに隙間がないよう接触させて一段を形成し、二段目は、該一段目煉瓦の頂点上に、該二段目煉瓦の中心貫通孔が位置し、且つダボとダボ孔が嵌合するように積み、三段目は、前記一段目煉瓦の残りの頂点の鉛直線上に、三段目煉瓦の中心貫通孔が位置し、ダボとダボ孔が嵌合するように積み、これら三段1セットのバイパス路を有するギッター煉瓦の層を少なくとも1セット介在させたり、あるいは上記熱風炉蓄熱室の煉瓦層を、高さ方向で2分して下方層を再使用のために残し、上方層に上記バイパス路付きギッター煉瓦の三段1セットの層を少なくとも1セット積み込むことを特徴とする熱風炉蓄熱室の煉瓦積み補修方法でもある。
【0014】
本発明では、ギッター煉瓦を上記のような構造にしたので、上下方向へのみ独立してガスを流していた11、000〜18、000本という多数のガス流路を、わずか3段1セットの積み重ねで、すべてのガス流路が水平方向で連通するようになる。従って、この3段1セットを、ほぼ250段ある蓄熱室2の煉瓦層の全部あるいは数セット配置するようにすれば、欠落片等によりガス流路の一部が閉塞されても、ガスはその部分を迂回するので、その閉塞されたガス流路を全面的に無駄にすることがなくなる。その結果、蓄熱室2は、伝熱面積の減少を抑制でき、高い熱効率を維持できるようになる。また、バイパス路は、煉瓦上面に3か所に分け、等間隔離れて形成されるので、比較的容易に製造でき、強度の確保もできる。さらに、上下方向のガス流路と同程度の通気抵抗になるように、バイパスの形状と深さを定めているので、ガスは、バイパス路へ円滑に流れるようになる。加えて、本発明に係るバイパス路付きギッター煉瓦及びその積重ね方法を蓄熱室の補修に利用すれば、高炉設備の保全に多大なメリット、つまり、経済的及び設備的メリットを与えることになる。
【0015】
【発明の実施の形態】
まず、図1〜3を参照して、本発明に係るバイパス路付きギッター煉瓦の一実施形態を説明する。なお、図1は、該バイパス路付きギッター煉瓦の斜視図、図2は、図1の平面図、図3は、図2のA−A断面図である。
煉瓦本体7は、図1から明らかなように、高さ150mm、一辺の長さ136mmの六角柱状であり、上面15と底面16との間を貫通する円形断面の貫通孔5が形成されている。この貫通孔5は、上記面の中心に位置する1本の中心貫通孔13と、該中心貫通孔13を囲み、互いに60°の間隔にある6本の貫通孔5とがあり、それぞれ独立して燃焼ガスや空気を上下方向に通過させるガス流路となる。
【0016】
また、六角柱状の煉瓦本体7の各頂点18には、該煉瓦本体7の側面14に沿い上下方向に延びる6本の上下溝6があり、それら上下溝6の断面積はそれぞれ上記貫通孔面積の3分の1となっている。さらに、六角形の各辺の中間位置21には、断面積が上記貫通孔5の半分になる6本の上下溝6が、上記同様に煉瓦本体7の側面14に沿い、上下方向に形成されている。これら12本の上下溝6は、煉瓦積みが行われた際、隣り合う煉瓦の上下溝6と組み合わさって、前記貫通孔5と同一径の孔になり、上下方向のガス流路となる。
【0017】
加えて、煉瓦本体7の上面15及び底面16には、煉瓦積みが行われた際、上下に位置する煉瓦同士を係止するダボ11及びダボ孔12が上記6本の貫通孔5のいずれか一方の端部に設けられている。なお、ダボ11は、リング状の突起であり、ダボ孔12はその突起を受け入れる断面が円形の凹部である。
ここまでは、前記した従来のバイパス路付きギッター煉瓦とほぼ同じ形状であるが、本発明は、下記の点で従来のものと異なっており、その使用効果は各段に差が生じるのである。
【0018】
まず、第1点目は、ダボ11及びダボ孔12の配置であり、上面15及び底面16のいずれか一方の面に3個のダボ11を、中心貫通孔13に関して互いに120°離れた位置にある貫通孔5の端部に設け、ダボ孔12は、ダボ11を設けた面と異なる側の面で、ダボ11を設けなかった貫通孔5の端部に設けた。この様子は、図2に示す平面上の二重実線及び二重点線(裏面側)、あるいは図3に示す縦断面から明らかであろう。本発明によるこのダボ11及びダボ孔12の配置は、このバイパス路付きギッター煉瓦を上段と下段で位置をずらして重ねられるように考慮したものである。
【0019】
第2点目は、バイパス路の形状であり、従来のバイパス路付きギッター煉瓦のそれは互いに1本のガス流路間を連通させるものであったが、本発明では3本の近接するガス流路間を共通させて連通させるようにしてある。つまり、図2から明らかなように、上記6本の貫通孔5のうち、ダボ11又はダボ孔12が設けられていない端部と、それに近接する3本の上下溝6の端部とを連通させるため、比較的広い面積の切欠(以下、広幅共同溝17という)を煉瓦上面あるいは底面に設けたのである。バイパス路をかかる形状にしたことによって、少ない重ね段数で、すべてのガス流路間に連通するバイパス路を形成できるようになる。
【0020】
また、該バイパス路は、上記広幅共同溝17が深いと、ガス流の抵抗は小さいが、損傷を受けやすい一方、浅いとガス流の抵抗は大きいが、損傷は受け難くなる。発明者は、このことを考慮してガス流れ抵抗に関する実験を行い、本発明での広幅共同溝17の深さを、煉瓦高さの3%以上14%以下の範囲内にするのが好ましいとしたのである。なお、本実施例では、その値は、5mm〜21mm程度となる。
【0021】
次に、図4及び図5を参照して、本発明に係る上記バイパス路付きギッター煉瓦の積重ね方法を説明する。図4は、該バイパス路付きギッター煉瓦を3段に積み重ねた状態を示す平面図である。それは、1段目を一点鎖線の六角形、2段目を破線の六角形、3段目を実線の六角形で描いてある。その積み方は、各段共通して煉瓦側面同士を互いに隙間なく接触させるが、2段目は、1段目煉瓦の3つの頂点18上にその中心貫通孔13が位置するように積み(1ケ所位置決めすると、他の2ケ所はおのずと決まる)、3段目は、1段目煉瓦の残り3つの頂点18’の鉛直線上に、3段目煉瓦の中心貫通孔13’がくるように積むことになる。このように積むと、先に示した図2の平面図を参照すれば理解できるように、2段に積んだ時点で全ガス流路のうちの半分が上記広幅共同溝17で連通し、3段目で残り半分が連通することになる。従って、本発明では、この3段1セットを、上記バイパス路付きギッター煉瓦の積み方の基本とし、それを繰り返して、蓄熱室2の全段をこのバイパス路付きギッタ煉瓦で積んだり、あるいはバイパス路のないギッター煉瓦と組み合わせて適当な段数(以下、層ということあり)だけ積むようにしたのである。図5に、本発明に係る上記の積み方で6段にした例を示すが、ガス流路で欠落片26等に起因した詰りが発生しても、ガス25は、バイパス路を利用して迂回するようになる。
【0022】
従って、本発明に係るギッター煉瓦とその積重ね方法を蓄熱室2の煉瓦積みに採用すれば、蓄熱室2の全ガス流路を長期間有効に使用することができるようになる。その結果、蓄熱室2の伝熱面積の減少を防止でき、高い熱効率を維持できる。また、バイパス路は、煉瓦面の周縁の3か所に等間隔離れて形成されているので、比較的容易に該バイパス路付きギッター煉瓦は製造でき、しかも上に積む煉瓦を支持する支持面積の減少を防止できるのである。
【0023】
次に、本発明に係るバイパス路付きギッター煉瓦及びその積重ね方法を利用する技術として、熱風炉蓄熱室の煉瓦積み補修方法を説明する。
高炉を有する製鉄会社の経済的メリットを配慮すると、高炉改修時に、既設熱風炉3を一部補修して再利用することは当然のことである。前述したように、蓄熱室2ギッター煉瓦の貫通率の調査によれば、一定期間使用したものは蓄熱室断面全体の平均で70.3%であり、ガス流路の閉塞は、蓄熱室外周部と蓄熱室(250段程度積む)の上半分に用いる珪石を使用したギッター煉瓦27に多く、下半分の高アルミナ質28や粘土質29のものに少ない。なお、これらのギッター煉瓦は、バイパス路を有していないのが現状である。
【0024】
そこで、本発明では、蓄熱室の煉瓦積みを補修する方法として、2つの補修技術を提案する。1つは、上記バイパス路を有しないギッター煉瓦19を積んだ熱風炉蓄熱室の煉瓦層を補修するに際して、上記バイパス路を有しないギッター煉瓦19の層間に、上記3段1セットのバイパス路付きギッター煉瓦20の層を少なくとも1セット介在させるものであり、他の1つは、上記熱風炉蓄熱室の煉瓦層を、高さ方向で2分して下方層を再使用に残し、更新する上方層にバイパス路付きギッタ煉瓦20を少なくとも1セット積み込むものである。
【0025】
これら方法の実施態様の一例を、前者に関しては図11に、後者に関しては図12に示す。図11では、本発明に係るバイパス路付きギッター煉瓦20の3段1セットの層を3セット連続したものを、バイパス路のないギッター煉瓦19の層間に2ケ所介在させている。また、図12では、蓄熱室煉瓦の下半分は、既設のギッター煉瓦19を残存させ、その上に本発明に係るバイパス路付きギッター煉瓦20を2セット積み、さらにその上に珪石質のバイパス路なしのギッター煉瓦19を積み直している。なお、本発明に係るバイパス路付きギッター煉瓦20のセットを介在させる組合せは、無数にあり、いずれの方法を採用するかは、改修すべき蓄熱室2の状態に依存するので、本発明では該組合せまで限定するものではない。
【0026】
また、これら補修方法の効果については、本発明に係るバイパス付きギッター煉瓦20の使用程度によって変わるので、後者に関して熱風炉3の熱効率回復を評価対象とした場合を例として、253段のうち111段のギッター煉瓦更新の場合の実績及び計算値を図13に示しておく。つまり、図13の横軸は、ガスの貫通程度を表わす指数で、その値0.0は、古いバイパス路を有しないギッター煉瓦19を流用した部分の該貫通率が70%で、新しいバイパス炉を有しないギッター煉瓦19に更新した部分も70%になった時の状態を示し、1.0は、更新部の貫通率が100%のものを示している。縦軸は、次式による熱風炉の熱効率であり、図中に矢印で示す数字は、本発明に係るバイパス路付きギッター煉瓦の介在量である。図13によれば、ガス貫通率は、本発明に係るバイパス路付きギッター煉瓦の介在で変わるが、それに伴い熱効率が増大する様子を示している。そして、本発明に係るバイパス路付きギッター煉瓦のを5セット介在させた結果、熱風炉3の熱効率は、90.4%となったことを示している。
熱効率(100%)=(送風熱量−送風空気の顕熱)/(燃料ガスの燃焼熱量)
【0027】
【発明の効果】
以上説明したように、本発明により、蓄熱室の全てのガス流路が互いに連通するようになるので、本発明を熱風炉の新設あるいは補修時に利用すれば、熱風炉の熱効率を低下させずに、熱風炉の再利用が可能となる。
【図面の簡単な説明】
【図1】本発明に係るバイパス路付きギッター煉瓦の一実施形態を示す斜視図である。
【図2】図1のバイパス路付きギッター煉瓦の平面図である。
【図3】図2のA−A断面図である。
【図4】本発明に係るバイパス路付きギッター煉瓦を3段に積み重ねた状態を線のみで示す平面図である。
【図5】図4のB−B断面の一部の縦断面図であり、本発明に係るバイパス路付きギッター煉瓦を6段に積み重ねた場合の連通状態を示す図である。
【図6】熱風炉の縦断面を示す図である。
【図7】熱風炉蓄熱室煉瓦のガス流路の貫通率分布を示す図である。
【図8】実開昭5−77242号公報で開示されたバイパス路付きギッター煉瓦の図であり、(a)は斜視図、(b)は平面図である。
【図9】実開平5−96046号公報で開示されたバイパス路付きギッター煉瓦を示す図であり、(a)は平面、(b)は縦断面である。
【図10】実開平5−96046号公報で開示されたバイパス路付きギッター煉瓦の別形態を示す図であり、(a)は平面、(b)は縦断面である。
【図11】蓄熱室煉瓦の補修形態を示す縦断面図である。
【図12】蓄熱室煉瓦の別の補修形態を示す縦断面図である。
【図13】蓄熱室煉瓦の補修に本発明に係るバイパス路付きギッター煉瓦を介在させた場合の熱風炉熱効率の回復程度を示す図である。
【符号の説明】
1 燃焼室
2 蓄熱室
3 熱風炉
4 ギッターあるいはチェッカー煉瓦
5 貫通孔
6 上下溝
7 煉瓦本体
9 水平溝
10 水平貫通孔
11 ダボ
12 ダボ孔
13 中心貫通孔
13’ 3段目煉瓦の中心貫通孔
14 側面
15 上面
16 底面
17 広幅共同溝
18 頂点
18’ 1段目煉瓦の残りの頂点
19 バイパス路なしギッター煉瓦
20 バイパス路付きギッター煉瓦
21 中間位置
22 煙突
23 冷風
24 熱風本管
25 ガス
26 欠落片
27 珪石を使用したギッター煉瓦
28 高アルミナ質ギッター煉
29 粘土質ギッター煉
[0001]
BACKGROUND OF THE INVENTION
The present invention is superimposed seen product to the heat storage chamber of the hot blast stove, Checker fireclay brick as a medium of heat exchange between the hot gas and the cold air, to brickwork repair method of the product viewed superposed method and a hot air oven Regenerator.
[0002]
[Prior art]
In blast furnace operation, a large amount of air is required to burn the coke charged in the blast furnace. This air uses a hot air furnace 3 (see FIG. 6) consisting of a combustion chamber 1 and a heat storage chamber 2 to burn fuel gas, store heat to the brick of combustion heat, heat exchange between the stored brick and new cold air, etc. After the action, it is preheated to 700-1300 ° C. and then continuously sent to the blast furnace. In order to perform this continuous blowing, 3 to 4 hot blast furnaces 3 are usually installed for one blast furnace, and are used by switching appropriately.
[0003]
By the way, in order to store the combustion heat, a so-called glitter or checker brick 4 is stacked in multiple stages (usually about 250 stages) in the heat storage chamber 2. Each of the brick bricks 4 has a through hole 5 and a groove (hereinafter referred to as an upper and lower groove 6) upward and downward in order to form a gas flow path through which high-temperature gas obtained by combustion and air to be heated pass. Many are provided. Incidentally, the hexagonal pillar-shaped glitter brick 4 (see FIG. 8), which will be described later, has 12 upper and lower grooves 6 formed along the side surface of the brick in addition to the seven through holes 5, and these grooves 6 are also made of brick. When stacked, 5 through-holes [(cross-section 1/2 groove × 6) + (1 / 3-circle groove × 6) = 5] combined with adjacent brick groove 6 Therefore, a total of 12 through holes (gas flow paths) are provided per brick. Therefore, the recently established hot stove 3 has gas passages having the same diameter of about 11,000 to 18,000 communicating with each heat storage chamber in the vertical direction.
[0004]
However, if the gas flow path has been used for many years, the gas flow path appears to be blocked due to adhesion growth of dust, partial melting of bricks due to local heating, inflow of foreign matter, and the like. If a blockage occurs in the middle of one gas flow path, the entire flow path cannot be used for heat storage or heat exchange, which affects the thermal efficiency of the hot stove 3. During many blast furnace repairs, the penetration rate of the gas flow path in the hot stove 3 has been investigated. The result is shown numerically in FIG. 7, and the penetration rate is 70.3% on average over the entire cross section of the heat storage chamber, and the surrounding penetration rate seems to be lower than the central part. In addition, when the blockage position of the gas flow path was investigated, it is clear that this blockage often occurs in the siliceous brick used in the upper half of the heat storage chamber 2, and is less in the high alumina or clay brick in the lower half. It has become.
[0005]
On the other hand, the blast furnace was previously renovated at a rate of about once every 10 years. However, the hot blast furnace 3 has a longer life and lasts about 20 years. 3 was often reused as is. At that time, if there is a decrease in the penetration rate as described above, the blast furnace operation after the repair is performed in the hot stove 3 having very poor thermal efficiency. In addition, some blast furnaces in recent years have been operated continuously for more than 15 years. Accordingly, further extension of the life of the hot stove 3 and improvement of thermal efficiency are required.
[0006]
Therefore, as shown in FIG. 8, Japanese Utility Model Laid-Open No. 5-77242 discloses a hexagonal columnar jitter brick in which a vertical gas flow path is formed by seven through holes 5 and twelve upper and lower grooves 6. A groove is engraved horizontally around the upper surface and / or the bottom surface (hereinafter referred to as horizontal groove 9), and the ends of the horizontal groove 9 and the upper and lower grooves 6 are communicated with each other (FIG. 8B). )reference). This horizontal groove 9 acts as a bypass for gas flow when bricks are stacked in multiple stages. Therefore, when this brick brick is used, even if a blockage occurs in a part of the gas flow path, By detouring the gas, it becomes possible to avoid complete blockage of the gas flow path.
[0007]
Further, as shown in FIGS. 9 and 10, Japanese Utility Model Laid-Open No. 5-96046 discloses a large number of horizontal grooves 9 in the surface, not around the top surface and / or the bottom surface, or a large number of horizontal through holes in the main body itself. A hexagonal pillar-shaped glitter brick in which 10 is provided in a complicated manner (for example, radially) to form a bypass is disclosed.
The above-mentioned Gita brick described in Japanese Utility Model Publication No. 5-77242 has an annular dowel 11 (provided with a ring-shaped protrusion at the end of the through hole) and dowel hole 12 (through) The hole end portion is a ring-shaped stepped structure) provided at the upper and lower ends of three identical through-holes 5 at a position of 120 ° with respect to the central through-hole. However, this dowel 11 is obstructive and cannot be communicated with the horizontal groove, so that the method of stacking bricks is restricted and there is a disadvantage that free stacking cannot be performed. As a result, part of the gas flow path that does not communicate in the horizontal direction in the bypass path remains. In addition, the gas flow path (gas flow path with dowels) corresponds to 25% of the total, and if partial blockage occurs there, no gas flows through the gas flow path. Even if the bricks described in Japanese Patent Publication No. Gazette were used, there was a limit to improving thermal efficiency.
[0008]
On the other hand, in the glitter brick described in Japanese Utility Model Laid-Open No. 5-96046, it is possible to form a bypass passage so that all the gas passages communicate with each other. However, if the bypass path is formed in this way, the brick structure becomes complicated, and the strength of the brick is reduced when stacked. Furthermore, the manufacturing process of bricks becomes complicated, and an increase in production cost is inevitable.
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION In view of such circumstances, the thermal efficiency of hot air oven maintained high level, and to provide a relatively easily bypass passage with Checker fireclay bricks and the product viewed superimposed way can be produced in high strength, these Another object is to provide a method for repairing a hot stove regenerator using technology.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the inventor reviewed the problems of the conventional brick brick with a bypass path. As a result, when stacking bricks including repairs, the arrangement of dowels and dowel holes, the shape of the bypass path for improving the brick strength, and the depth of the bypass for the passage of gas, The idea of the present invention has been made.
[0011]
The present invention includes a hexagonal columnar brick main body, one central through hole vertically passing through the center thereof, six through holes that surround the central through hole and are provided at 60 ° intervals, and side surfaces of the main body. Along each of the apexes of the hexagon, the center position between the apexes, and a gas flow path composed of a number of upper and lower grooves that form a through hole in combination with the adjacent bricks, and any of the upper and lower surfaces of the main body provided in the through hole end of the six in the pressure, the Checker fireclay bricks and a dowel and the dowel hole for restraining the lower the body when the piled saw product, the one side of the body, the dowel, Provided at the ends of three through-holes that are 120 ° apart from each other with the central through-hole as a reference, the dowel holes are provided at the other end of the other three through-holes, and the gas flow paths communicate with each other Of the six through holes, the dowel or the end where no dowel hole is provided And parts, thereby communicating the end of the three vertical grooves adjacent thereto, notch the wide joint groove bricks Ru was acting as a bypass between said when laden multistage each gas passage from the upper and lower body surfaces Gitter brick with bypass, characterized by
[0012]
Further, the present invention is or the wide joint grooves formed 3 places on one side of the body, or that the depth of the wide joint groove, and the Checker fireclay bricks in height range of 3% to 14% less It is a featured brick brick with bypass.
Furthermore, in the present invention, when stacking the brick bricks having the bypass passage according to any one of claims 1 to 3 in the heat storage chamber of the hot stove , the side surfaces of the bricks are brought into contact with each other so that there is no gap between them, thereby forming one step. The second stage is stacked such that the center through hole of the second stage brick is located on the apex of the first stage brick and the dowel and dowel hole are fitted, and the third stage is the first stage brick. The bypass passage is characterized in that the center through hole of the third-stage brick is positioned on the vertical line of the remaining vertex, and is stacked so that the dowel and the dowel hole are fitted, and these three stages are repeated in one set of layers. is the product only overlap method of per Checker fireclay brick.
[0013]
In addition, the present invention is a method for stacking bricks with bypass paths, characterized in that, in addition to the layer in which the above-mentioned bypass bricks are stacked in multiple layers, a layer of glitter bricks without bypass paths is arranged. .
In addition, a hexagonal columnar brick main body, one central through-hole penetrating vertically through the center, six through-holes surrounding the central through-hole and provided at 60 ° intervals, and along the side of the main body Each of the apexes of the hexagon, the gas flow path comprising a number of upper and lower grooves carved at the center position between the apexes and forming a through hole in combination with the adjacent bricks, and either the upper or lower surface of the main body In repairing the brick layer of the hot-blast stove regenerator chamber, which is provided at the end of the six through-holes in the above-mentioned six piled holes and is equipped with dowels and dowel holes that restrain the top and bottom when stacking the main body. during the firewood Potter brick layer, on the one side of the body, the dowel is provided on three of the through-hole ends in 120 ° intervals around the center through-hole, the other remaining three holes The dowel hole is provided at the end on the surface side, and the gas flow paths are communicated with each other. Of the six through-holes, when the dowels or the end portions where the dowel holes are not provided are communicated with the end portions of the three upper and lower grooves adjacent thereto, the bricks are stacked in multiple stages. Gitter bricks with bypass passages that are notched from the upper and lower sides of the main body surface between the gas flow passages and act as bypass passages. The second stage is stacked such that the center through hole of the second stage brick is positioned on the apex of the first stage brick and the dowel and the dowel hole are fitted, and the third stage is the first stage Stack the center brick of the third tier brick so that the dowel and dowel hole fit together on the vertical line of the remaining apex of the brick. At least one set intervenes or the above hot stove The brick layer of the heat chamber is divided into two in the height direction, the lower layer is left for reuse, and at least one set of three-stage set of the above-mentioned bypass bricks is loaded on the upper layer. It is also a method for repairing bricks in the hot stove regenerator.
[0014]
In the present invention, since the brick brick is structured as described above, a large number of gas flow paths of 11,000 to 18,000, which have flowed gas independently only in the vertical direction, are only one set in three stages. By stacking, all gas flow paths communicate in the horizontal direction. Therefore, if this three-stage set is arranged so that all or several sets of brick layers of the heat storage chamber 2 having about 250 stages are arranged, even if a part of the gas flow path is blocked by a missing piece or the like, Since the portion is bypassed, the blocked gas flow path is not completely wasted. As a result, the heat storage chamber 2 can suppress a decrease in the heat transfer area and can maintain high thermal efficiency. In addition, the bypass path is divided into three locations on the upper surface of the brick and is formed at equal intervals, so that it can be manufactured relatively easily and the strength can be ensured. Furthermore, since the shape and depth of the bypass are determined so that the ventilation resistance is comparable to that of the gas flow path in the vertical direction, the gas flows smoothly to the bypass path. In addition, by utilizing the bypass passage with Checker fireclay bricks and the product viewed superposed method according to the present invention for repairing the regenerator, significant benefits to the conservation of the blast furnace equipment, i.e., will provide the economic and facility merit .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, with reference to FIGS. 1-3, one Embodiment of the glitter brick with a bypass path which concerns on this invention is described. 1 is a perspective view of the bypass brick with a bypass, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a cross-sectional view taken along line AA of FIG.
As is clear from FIG. 1, the brick body 7 has a hexagonal column shape with a height of 150 mm and a side length of 136 mm, and has a through hole 5 having a circular cross section penetrating between the top surface 15 and the bottom surface 16. . The through-hole 5 includes one central through-hole 13 located at the center of the surface and six through-holes 5 surrounding the central through-hole 13 and spaced at 60 ° from each other. Thus, it becomes a gas flow path through which combustion gas and air pass in the vertical direction.
[0016]
Each apex 18 of the hexagonal columnar brick body 7 has six upper and lower grooves 6 extending in the vertical direction along the side surface 14 of the brick body 7, and the cross-sectional areas of the upper and lower grooves 6 are respectively the through-hole areas. It is one third of. Furthermore, at the intermediate position 21 of each side of the hexagon, six vertical grooves 6 whose cross-sectional area is half of the through-hole 5 are formed in the vertical direction along the side surface 14 of the brick body 7 as described above. ing. These twelve upper and lower grooves 6 are combined with the upper and lower grooves 6 of adjacent bricks when bricks are stacked to form holes having the same diameter as the through-holes 5 and serve as vertical gas flow paths.
[0017]
In addition, on the upper surface 15 and the bottom surface 16 of the brick main body 7, the dowels 11 and the dowel holes 12 that lock the bricks positioned above and below when the bricks are stacked are any of the six through holes 5. It is provided at one end. The dowel 11 is a ring-shaped protrusion, and the dowel hole 12 is a recess having a circular cross section for receiving the protrusion.
Up to this point, the shape is almost the same as that of the above-described conventional bypass brick with a bypass path, but the present invention is different from the conventional one in the following points, and the use effect differs in each stage.
[0018]
First, the first point is the arrangement of the dowels 11 and dowel holes 12, and the three dowels 11 on either one of the upper surface 15 and the bottom surface 16 are positioned 120 ° apart from each other with respect to the central through hole 13. The dowel hole 12 was provided at the end of the through hole 5, and the dowel hole 12 was provided at the end of the through hole 5 where the dowel 11 was not provided. This state will be apparent from the double solid line and double dotted line (on the back side) on the plane shown in FIG. 2, or from the longitudinal section shown in FIG. The arrangement of the dowels 11 and the dowel holes 12 according to the present invention is designed so that the jitter bricks with bypass passages can be stacked with their positions shifted at the upper and lower stages.
[0019]
The second point is the shape of the bypass passage, and that of the conventional brick brick with a bypass passage communicates between one gas passage, but in the present invention, three adjacent gas passages are used. They communicate with each other in common. That is, as is apparent from FIG. 2, the end portion of the six through holes 5 where the dowel 11 or dowel hole 12 is not provided and the end portions of the three upper and lower grooves 6 adjacent thereto are communicated. Therefore, a notch with a relatively large area (hereinafter referred to as a wide joint groove 17) is provided on the top or bottom surface of the brick. By forming the bypass path in such a shape, it is possible to form bypass paths communicating between all the gas flow paths with a small number of overlapping stages.
[0020]
Further, when the wide joint groove 17 is deep, the bypass passage has a small gas flow resistance, but is easily damaged. On the other hand, when the wide joint groove 17 is shallow, the gas flow resistance is large, but the damage is difficult to receive. The inventor considers this and conducts an experiment on the gas flow resistance, and it is preferable to set the depth of the wide joint groove 17 in the present invention within the range of 3% to 14% of the brick height. It was. In this embodiment, the value is about 5 mm to 21 mm.
[0021]
Next, with reference to FIGS. 4 and 5, illustrating the product seen overlapping method of the bypass passage with Checker fireclay bricks according to the present invention. FIG. 4 is a plan view showing a state in which the bypass brick with a bypass path is stacked in three stages. The first stage is drawn with a one-dot chain hexagon, the second stage is a broken hexagon, and the third stage is a solid hexagon. As for the stacking method, the brick side surfaces are brought into contact with each other without a gap in common with each step, but the second step is stacked such that the central through hole 13 is positioned on the three vertices 18 of the first step brick (1 (The other two places are naturally determined when positioning is done.) The third stage is stacked so that the central through hole 13 'of the third-stage brick comes on the vertical line of the remaining three vertices 18' of the first-stage brick. become. When stacked in this way, as can be understood with reference to the plan view of FIG. 2 shown above, half of all the gas flow paths are communicated with the wide joint groove 17 when stacked in two stages. The other half communicates at the stage. Accordingly, in the present invention, the three-stage set, the basic loading and how the bypass passage with Checker fireclay bricks, repeat it, Dari gained all stages of regenerator 2 in the bypass passage with Gitta over brick, or The appropriate number of steps (hereinafter sometimes referred to as “layers”) was stacked in combination with the bricks without bypass. FIG. 5 shows an example of six stages in the above stacking method according to the present invention. Even if clogging due to the missing piece 26 or the like occurs in the gas flow path, the gas 25 uses the bypass path. It becomes to detour.
[0022]
Therefore, by adopting Checker fireclay bricks according to the present invention and its product seen superimposed manner brickwork of the regenerator 2, so the total gas flow path of the heat storage chamber 2 can be effectively used for a long period of time. As a result, a reduction in the heat transfer area of the heat storage chamber 2 can be prevented, and high thermal efficiency can be maintained. In addition, since the bypass path is formed at equal intervals at three locations on the periphery of the brick surface, the bypass brick with a bypass path can be manufactured relatively easily, and the support area for supporting the brick stacked on the bypass path is relatively high. The decrease can be prevented.
[0023]
Next, as a technique for utilizing a bypass passage with Checker fireclay bricks and the product viewed superposed method according to the present invention, illustrating the brickwork repairing method of a hot air furnace regenerator.
Considering the economic merit of a steel company having a blast furnace, it is natural that a part of the existing hot stove 3 is repaired and reused when the blast furnace is repaired. As described above, according to the investigation of the penetration rate of the heat storage chamber 2 Gitter brick, the one used for a certain period is 70.3% on the average of the entire cross section of the heat storage chamber, and the blockage of the gas flow path is It is more common in the glitter brick 27 using the silica used in the upper half of the heat storage chamber (stacking about 250 stages), and less in the high alumina 28 and clay 29 of the lower half. In addition, the present condition is that these glitter bricks do not have a bypass.
[0024]
Therefore, in the present invention, two repair techniques are proposed as a method of repairing the brick storage in the heat storage chamber. One when repairing brick layer of a hot-air furnace regenerator laden Checker fireclay bricks 19 without the bypass passage, between the layers of no formic Potter bricks 19 on the Symbol bypass passage, the three-stage set bypass At least one set of layered glitter bricks 20 is interposed, and the other one is a renewal of the brick layer of the hot stove regenerator, divided into two in the height direction, leaving the lower layer reused. a bypass passage with Gitta over bricks 20 above layer to those embarking at least one set.
[0025]
An example of an implementation of these methods is shown in FIG. 11 for the former and FIG. 12 for the latter. In Figure 11, the three sets that successive three-stage set layer of the bypass passage with Checker fireclay brick 20 according to the present invention, the layers of the bypass passage of significance Potter bricks 19 are interposed two places. Further, in FIG. 12, the lower half of the regenerator bricks, is left to existing formic Potter bricks 19, thereon a bypass passage with Checker fireclay brick 20 according to the present invention two sets of loading the further bypass silica substance thereon and re-loading the formic Potter brick 19 with no road. In addition, since there are innumerable combinations with which the set of the glitter brick 20 with a bypass path according to the present invention is interposed, which method is adopted depends on the state of the heat storage chamber 2 to be repaired. The combination is not limited.
[0026]
The effects of these repair methods vary depending on the degree of use of the bypassed glitter brick 20 according to the present invention. Therefore, with respect to the latter, 111 cases out of 253 are used as an example of the case where the thermal efficiency recovery of the hot stove 3 is evaluated. FIG. 13 shows the actual results and calculated values in the case of updating the brick brick. That is, the horizontal axis of FIG. 13 is an index representing the degree of gas penetration, and the value 0. 0 0 70% said through rate of the portion diverted formic Potter brick 19 having no old bypass state when also updated the new bypass furnace without Checker fireclay bricks 19 parts was 70% 1.0 indicates that the update unit has a penetration rate of 100%. The vertical axis represents the thermal efficiency of the hot stove according to the following equation, and the number indicated by the arrow in the figure is the amount of interposition of the bypass brick with a bypass according to the present invention. According to FIG. 13, the gas penetration rate changes with the intervention of the bypass brick with the bypass passage according to the present invention, and the thermal efficiency is increased accordingly. And it has shown that the thermal efficiency of the hot stove 3 became 90.4% as a result of interposing 5 sets of the layers of the glitter brick with a bypass path which concerns on this invention.
Thermal efficiency (100%) = (Blowing heat amount-Sensible heat of blowing air) / (Fuel gas combustion heat amount)
[0027]
【The invention's effect】
As described above, according to the present invention, all the gas flow paths of the heat storage chamber are communicated with each other. Therefore, if the present invention is used at the time of newly installing or repairing a hot stove, without reducing the thermal efficiency of the hot stove. The hot stove can be reused.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a glitter brick with a bypass path according to the present invention.
FIG. 2 is a plan view of the jitter brick with bypass path of FIG. 1;
3 is a cross-sectional view taken along the line AA in FIG.
FIG. 4 is a plan view showing only a line a state in which the glitter bricks with bypass paths according to the present invention are stacked in three stages.
5 is a longitudinal sectional view of a part of the BB cross section of FIG. 4, and is a diagram showing a communication state in the case where the bypass bricks with bypass paths according to the present invention are stacked in six stages.
FIG. 6 is a view showing a longitudinal section of a hot stove.
FIG. 7 is a diagram showing a penetration rate distribution of a gas flow path in a hot stove regenerator brick.
FIGS. 8A and 8B are diagrams of a bypass brick with a bypass path disclosed in Japanese Utility Model Laid-Open No. 5-77242, in which FIG. 8A is a perspective view and FIG. 8B is a plan view.
FIGS. 9A and 9B are diagrams showing a jitter brick with a bypass path disclosed in Japanese Utility Model Laid-Open No. 5-96046, in which FIG. 9A is a plane, and FIG. 9B is a longitudinal section.
FIGS. 10A and 10B are diagrams showing another embodiment of the bypass brick with a bypass path disclosed in Japanese Utility Model Laid-Open No. 5-96046, in which FIG. 10A is a plane, and FIG. 10B is a longitudinal section.
FIG. 11 is a longitudinal sectional view showing a repair mode of a heat storage chamber brick.
FIG. 12 is a longitudinal sectional view showing another repair mode of a heat storage chamber brick.
FIG. 13 is a diagram showing the degree of recovery of hot stove thermal efficiency when a bypass brick with a bypass path according to the present invention is interposed in repairing a heat storage chamber brick.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Thermal storage chamber 3 Hot stove 4 Gitter or checker brick 5 Through-hole 6 Vertical groove 7 Brick main body 9 Horizontal groove 10 Horizontal through-hole 11 Dowel 12 Dowel hole 13 Center through-hole 13 'Center through-hole 14 of the 3rd step brick side 15 top 16 bottom 17 wide joint groove 18 vertices 18 'first stage remaining vertices 19 bypass teeth formic Potter brick 20 bypass passage with Checker fireclay brick 21 intermediate position 22 chimney 23 cold 24 hot mains 25 gas 26 missing brick Checker fireclay bricks 28 using piece 27 silica high alumina question Potter practitioners tiles 29 clay Q & Potter practitioners tiles

Claims (7)

六角柱状の煉瓦本体と、その中心を上下に貫通する1本の中心貫通孔、該中心貫通孔を囲み、互いに60°間隔に設けた6本の貫通孔及び該本体側面に沿い、6角形の各頂点、各頂点間の中心位置に彫られ、隣り合う煉瓦のものと組合わせて貫通孔を形成する多数の上下溝からなるガス流路と、該本体の上下面のいずれかにおいて上記6本の貫通孔端部に設けられ、該本体を積み重ねた際に上下を拘束するダボ及びダボ孔とを備えたギッター煉瓦において、
本体の一面側には、上記ダボを、中心貫通孔を基準に互いに120°間隔にある3本の貫通孔端部に設け、残り3本の貫通孔の他面側端部に上記ダボ孔を設けると共に、上記ガス流路間を連通させるよう、上記6本の貫通孔のうち、ダボ又はダボ孔が設けられていない端部と、それに近接する3本の上下溝の端部とを連通させて、煉瓦を多段に積んだ際に前記各ガス流路間でバイパス路として作用させる広幅共同溝を本体面上下から切欠いてなることを特徴とするバイパス路付きギッター煉瓦。
A hexagonal columnar brick body, one central through-hole penetrating the center of the brick body, six central through-holes surrounding the central through-hole and provided at 60 ° intervals, and along the side of the main body, Each of the vertices, a gas flow path composed of a number of upper and lower grooves which are carved at the center position between the vertices and combined with adjacent bricks to form a through-hole, and the above six on either the upper or lower surface of the main body Gitter bricks provided with dowels and dowel holes that restrain the top and bottom when the main body is stacked,
On one side of the main body, the dowels are provided at three end portions of the three through holes that are spaced from each other by 120 ° with respect to the center through hole, and the dowel holes are provided at the other end portions of the other three through holes. Among the six through-holes, the end where the dowels or dowel holes are not provided and the ends of the three upper and lower grooves adjacent to the dowel holes are communicated with each other so as to communicate between the gas flow paths. A wide-width joint groove that acts as a bypass path between the gas flow paths when the bricks are stacked in multiple stages is cut out from above and below the main body surface.
上記広幅共同溝を本体の一面に3ケ所形成してなることを特徴とする請求項1記載のバイパス路付きギッター煉瓦。  2. The brick with bypass passage according to claim 1, wherein the wide joint groove is formed at three locations on one surface of the main body. 前記広幅共同溝の深さを、前記ギッター煉瓦高さの3%以上14%以下の範囲内にしたことを特徴とする請求項1又は2記載のバイパス路付きギッター煉瓦。  The depth of the said wide joint groove was made into the range of 3% or more and 14% or less of the said brick brick height, The glitter brick with a bypass path of Claim 1 or 2 characterized by the above-mentioned. 熱風炉の蓄熱室に、請求項1〜3いずれか記載のバイパス路を有するギッター煉瓦を積み重ねるに際し、
前記煉瓦の側面同士を互いに隙間がないよう接触させて一段を形成し、二段目は、該一段目煉瓦の頂点上に、該二段目煉瓦の中心貫通孔が位置し、且つダボとダボ孔が嵌合するように積み、三段目は、前記一段目煉瓦の残りの頂点の鉛直線上に、三段目煉瓦の中心貫通孔が位置し、ダボとダボ孔が嵌合するように積み、これら三段を1セットの層で繰り返すことを特徴とするバイパス路付きギッター煉瓦の積み重ね方法。
When stacking the brick brick having the bypass path according to any one of claims 1 to 3, in the heat storage chamber of the hot stove,
Side surfaces of the bricks are brought into contact with each other without any gaps, and a first step is formed. The second step has a central through hole of the second step brick located on the top of the first step brick, and a dowel and a dowel Stack the holes so that the holes fit, and place the third stage on the vertical line of the remaining vertex of the first stage brick so that the center through hole of the third stage brick is located and the dowel and dowel hole fit together. A method for stacking the gitter bricks with bypass passages, characterized in that these three steps are repeated in one set of layers.
上記バイパス路を有するギッター煉瓦を多段に積んだ層の他に、バイパス路を有しないギッター煉瓦の層を配置することを特徴とする請求項4記載のバイパス路付き煉瓦の積み重ね方法。  5. The method for stacking bricks with bypass paths according to claim 4, wherein, in addition to the layer in which the glitter bricks having bypass paths are stacked in multiple stages, a layer of glitter bricks without bypass paths is disposed. 六角柱状の煉瓦本体と、その中心を上下に貫通する1本の中心貫通孔、該中心貫通孔を囲み、互いに60°間隔に設けた6本の貫通孔及び該本体側面に沿い、6角形の各頂点、各頂点間の中心位置に彫られ、隣り合う煉瓦のものと組合わせて貫通孔を形成する多数の上下溝からなるガス流路と、該本体の上下面のいずれかにおいて上記6本の貫通孔端部に設けられ、該本体を積み重ねた際に上下を拘束するダボ及びダボ孔とを備えたギッター煉瓦を積んだ熱風炉蓄熱室の煉瓦層を補修するに際して、
記ギッター煉瓦層の間に、本体の一面側には、上記ダボを、中心貫通孔を基準に互いに120°間隔にある3本の貫通孔端部に設け、残り3本の貫通孔の他面側端部に上記ダボ孔を設けると共に、上記ガス流路間を連通させるよう、上記6本の貫通孔のうち、ダボ又はダボ孔が設けられていない端部と、それに近接する3本の上下溝の端部とを連通させて、煉瓦を多段に積んだ際に前記各ガス流路間でバイパス路として作用させる広幅共同溝を本体面上下から切欠いてなるバイパス路付きギッター煉瓦を、該バイパス路を有するギッター煉瓦の側面同士を互いに隙間がないよう接触させて一段を形成し、二段目は、該一段目煉瓦の頂点上に、該二段目煉瓦の中心貫通孔が位置し、且つダボとダボ孔が嵌合するように積み、三段目は、前記一段目煉瓦の残りの頂点の鉛直線上に、三段目煉瓦の中心貫通孔が位置し、ダボとダボ孔が嵌合するように積み、これら三段1セットのバイパス路を有するギッター煉瓦の層を少なくとも1セット介在させることを特徴とする熱風炉蓄熱室の煉瓦積み補修方法。
A hexagonal columnar brick body, one central through-hole penetrating the center of the brick body, six central through-holes surrounding the central through-hole and provided at 60 ° intervals, and along the side of the main body, Each of the vertices, a gas flow path composed of a number of upper and lower grooves which are carved at the center position between the vertices and combined with adjacent bricks to form a through-hole, and the above six on either the upper or lower surface of the main body When repairing a brick layer of a hot stove regenerator chamber loaded with a gitter brick provided with dowels and dowel holes that restrain the top and bottom when the main body is stacked ,
Before between firewood Potter brick layer, on the one side of the body, the dowel is provided on three of the through-hole ends in 120 ° intervals around the center through-hole, the remaining three holes The dowel hole is provided at the other surface side end, and among the six through holes, the dowel or the end not provided with the dowel hole and the three adjacent to the dowel hole so as to communicate between the gas flow paths are provided. Gitter bricks with bypass passages, in which wide joint grooves that act as bypass passages between the gas flow paths when the bricks are stacked in multiple stages are communicated with the ends of the upper and lower grooves of the main body surface, Side surfaces of the glitter bricks having the bypass path are brought into contact with each other without any gaps, and a first stage is formed, and the second stage has a central through hole of the second stage brick located on the top of the first stage brick. And the dowel and dowel hole are stacked so that the dowel hole fits. On the vertical line of the remaining vertices of the eye bricks, and position the central through hole of the third stage brick, stacked as dowel and the dowel hole is fitted, a layer of Checker fireclay brick having a bypass passage of these three stages set A method for repairing brickwork in a hot stove regenerator, characterized in that at least one set is interposed.
六角柱状の煉瓦本体と、その中心を上下に貫通する1本の中心貫通孔、該中心貫通孔を囲み、互いに60°間隔に設けた6本の貫通孔及び該本体側面に沿い、6角形の各頂点、各頂点間の中心位置に彫られ、隣り合う煉瓦のものと組合わせて貫通孔を形成する多数の上下溝からなるガス流路と、該本体の上下面のいずれかにおいて上記6本の貫通孔端部に設けられ、該本体を積み重ねた際に上下を拘束するダボ及びダボ孔とを備 えたギッター煉瓦を積んだ熱風炉蓄熱室の煉瓦層を補修するに際して、
上記熱風炉蓄熱室の煉瓦層を、高さ方向で2分して下方層を再使用のために残し、上方層に、請求項記載のバイパス路を有するギッター煉瓦の三段1セットの層を少なくとも1セット積み込むことを特徴とする熱風炉蓄熱室の煉瓦積み補修方法。
A hexagonal columnar brick body, one central through-hole penetrating the center of the brick body, six central through-holes surrounding the central through-hole and provided at 60 ° intervals, and along the side of the main body, Each of the vertices, a gas flow path composed of a number of upper and lower grooves which are carved at the center position between the vertices and combined with adjacent bricks to form a through-hole, and the above six on either the upper or lower surface of the main body provided the through-hole ends, when repairing a brick layer of a hot-air furnace regenerator loaded with Checker fireclay brick example Bei the dowel and the dowel hole to restrain the up and down when the stacked body,
The brick layer of the hot stove regenerator is divided into two in the height direction and the lower layer is left for reuse, and the upper layer is a set of three stages of a set of glitter bricks having a bypass passage according to claim 6. A brick-laying repair method for a hot stove regenerator, characterized in that at least one set is loaded.
JP23066796A 1996-01-30 1996-08-30 Gitter brick with bypass, stacking method and brick stacking repair method for hot stove regenerator Expired - Fee Related JP3917688B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23066796A JP3917688B2 (en) 1996-01-30 1996-08-30 Gitter brick with bypass, stacking method and brick stacking repair method for hot stove regenerator
KR1019970002748A KR100233695B1 (en) 1996-01-30 1997-01-30 Gitter brick with bypass passage, stacking method therefor, and method for repairing brick masonry in regenenerator of hot blast stove
CN97104859A CN1059468C (en) 1996-01-30 1997-01-30 Gate brick, its masonry method and brick masonry mending method for regenerative chamber of hot-blast stove

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1427196 1996-01-30
JP8-14271 1996-01-30
JP23066796A JP3917688B2 (en) 1996-01-30 1996-08-30 Gitter brick with bypass, stacking method and brick stacking repair method for hot stove regenerator

Publications (2)

Publication Number Publication Date
JPH09269193A JPH09269193A (en) 1997-10-14
JP3917688B2 true JP3917688B2 (en) 2007-05-23

Family

ID=26350186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23066796A Expired - Fee Related JP3917688B2 (en) 1996-01-30 1996-08-30 Gitter brick with bypass, stacking method and brick stacking repair method for hot stove regenerator

Country Status (3)

Country Link
JP (1) JP3917688B2 (en)
KR (1) KR100233695B1 (en)
CN (1) CN1059468C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187364B1 (en) * 2007-10-29 2012-10-04 손신원 The heating blocks, the heating blocks set, and the manufacturing method of the blocks, and the construction method of the blocks
DE202009009101U1 (en) 2009-07-01 2010-12-02 Novokeram Gmbh heat storage
CN102607273A (en) * 2012-03-29 2012-07-25 无锡远能耐火材料有限公司 Suspension wall brick
AU2013280611A1 (en) * 2012-06-29 2015-02-05 Saint-Gobain Ceramics & Plastics. Inc. Low void fraction thermal storage articles and methods
CN104110964A (en) * 2013-04-22 2014-10-22 江苏长城窑炉工程有限公司 Heat-accumulating honeycomb brick
CN106440812A (en) * 2016-11-30 2017-02-22 无锡市莱达热工工程有限公司 Burner brick
CN106918145B (en) * 2017-03-24 2019-05-28 福建南平荣田机械制造有限公司 A kind of stacked accumulation of heat furnace core
JP7190379B2 (en) * 2019-03-15 2022-12-15 黒崎播磨株式会社 checkered brick
WO2021173023A1 (en) * 2020-02-24 2021-09-02 Doru Tatar Checker-brick, construction method for a structure formed of a plurality of checker-bricks and the structure thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131780B2 (en) * 1973-11-13 1976-09-08
JPS5228496B2 (en) * 1973-12-26 1977-07-27

Also Published As

Publication number Publication date
KR19980018012A (en) 1998-06-05
CN1059468C (en) 2000-12-13
KR100233695B1 (en) 2000-03-02
CN1182181A (en) 1998-05-20
JPH09269193A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
KR101595572B1 (en) Corbel repairs of coke ovens
JP3917688B2 (en) Gitter brick with bypass, stacking method and brick stacking repair method for hot stove regenerator
JP2854985B2 (en) Heat exchanger bricks
EA023241B1 (en) Checker brick for hot blast stove
CN214781941U (en) Grate and hot-blast furnace system
JP5867221B2 (en) How to rebuild a coke oven
JP6544331B2 (en) Dust removal method for coke oven heat storage chamber
JP5092628B2 (en) Construction method of hot stove
EP0328371B2 (en) Method for renovating ring chamber furnaces
US3135505A (en) Checkerbrick for industrial heating furnaces
JPS6154349B2 (en)
JPS6031070Y2 (en) hot stove brick structure
KR900008337B1 (en) Coke oven battery
JP2014091764A (en) Method for repairing coke oven by partial replacement
CN218989346U (en) Cover type stepping trolley and top refractory arrangement structure thereof
US2855192A (en) Heat regenerators
JPH04272114A (en) Structure of external combustion hot air stove
US2733197A (en) cassan
CN113136471A (en) High-temperature-resistant grate, hot blast stove system and method for heating medium-temperature air
EP1409939B1 (en) A method for creating a thermally stable base structure and furnace comprising a thermally stable structure
JP2573340Y2 (en) Gitter brick for hot stove
CN112457869A (en) Method for repairing regenerative chamber after coke oven integral shutdown
JPH0726136B2 (en) Blast furnace hot stove structure
JP2019163394A (en) Construction method of coke oven and brick block for brick structure of coke oven
JPH0277511A (en) Hot stove for blast furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees