JP3888522B2 - Thin solid electrolytic capacitor and manufacturing method thereof - Google Patents

Thin solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP3888522B2
JP3888522B2 JP2001337238A JP2001337238A JP3888522B2 JP 3888522 B2 JP3888522 B2 JP 3888522B2 JP 2001337238 A JP2001337238 A JP 2001337238A JP 2001337238 A JP2001337238 A JP 2001337238A JP 3888522 B2 JP3888522 B2 JP 3888522B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
capacitor element
insulating layer
electrolytic capacitor
thin solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001337238A
Other languages
Japanese (ja)
Other versions
JP2003142335A (en
Inventor
慎太郎 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2001337238A priority Critical patent/JP3888522B2/en
Publication of JP2003142335A publication Critical patent/JP2003142335A/en
Application granted granted Critical
Publication of JP3888522B2 publication Critical patent/JP3888522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気密性が低下することなく保持され、かつコンデンサ特性に優れた、より薄型で小型の固体電解コンデンサ、並びに、より薄型で、大面積、大容量の固体電解コンデンサに関し、より詳しくは、特定構造のコンデンサ素子載置基板と、金属箔の両面に絶縁層を形成させた被覆シートとの間に、コンデンサ素子を挟み込んだ構造の薄型固体電解コンデンサに関する。
【0002】
【従来の技術】
従来、チップ型固体電解質コンデンサは、一般に、導電性高分子による固体電解質陰極層を形成させたコンデンサ素子に、予め所定の寸法に折り曲げた陽極リード及び陰極リードを取り付け、封止樹脂を形成させた構造であり、コンデンサとしては、コンデンサ素子の体積比率が小さく、ロスが大きかった。
【0003】
本発明者らは、先に出願した、特願2001−326508号により、水平方向に離間して、平行に配置された、長尺状の陽極及び陰極電極箔を1組とする電極箔群が、前記電極箔群の各々の一部分を露出させた電極取出部となる第1絶縁層、並びに前記電極箔群と、複数個のコンデンサ素子の陽極及び陰極との接合位置に、貫通孔を各々穿ってなる第2絶縁層に挟持された構造のコンデンサ素子載置基板上に、複数個のコンデンサ素子の陽極及び陰極を、第2絶縁層の貫通孔を通して、前記電極箔群と各々接合させ、封止樹脂をモールドして封止樹脂層を形成させた後、ダイシングソーを用いて、1個、または所望の容量となる複数個のコンデンサ素子を1ユニットの構成とする薄型固体電解コンデンサを提案した。
【0004】
特願2001−326508号では、封止樹脂のモールド時の硬化による樹脂変形がなく、また前記コンデンサ素子載置基板上に、コンデンサ素子を直接載置、接合できるので、薄型で小型のコンデンサ、あるいは、薄型で、大面積、大容量のコンデンサが得られるというものである。
【0005】
上記コンデンサは、薄型コンデンサを達成し得るものの、より薄型のコンデンサを得ようとした場合には、気密性が低下して、コンデンサ特性が劣化してしまうため、コンデンサの厚さには限界があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、封止樹脂のモールド時の硬化による樹脂変形がなく、かつ気密性が低下することなく保持された、優れたコンデンサ特性の、より薄型で小型の固体電解コンデンサ、あるいは、より薄型で、大面積、大容量の固体電解コンデンサを提供することである。
【課題を解決するための手段】
本発明者らは、薄型コンデンサの気密性の保持という観点から、鋭意研究した結果、特願2001−326508号の薄型固体電解コンデンサにおいて、封止樹脂層上に、金属箔の両面に絶縁層を形成させた被覆シートを配置させることにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、a)水平方向に離間して、平行に配置された、1組の陽極電極箔及び陰極電極箔が、前記電極箔の各々の一部分を露出させた電極取出部となる第1絶縁層、並びに前記電極箔と、コンデンサ素子の陽極及び陰極との接合位置に、貫通孔を各々穿ってなる第2絶縁層により挟持された構造のコンデンサ素子載置基板と、b)コンデンサ素子の陽極及び陰極が、第2絶縁層の貫通孔を通して、前記電極箔と各々接合されたコンデンサ素子と、c)前記コンデンサ素子の封止樹脂層と、d)該封止樹脂層の上の、金属箔の両面に絶縁層を形成させた被覆シートとからなることを特徴とする、薄型で小型の固体電解コンデンサとその製造方法であり、また、上記固体電解コンデンサにおいて、所望の容量に応じ、コンデンサ素子載置基板上に、1ユニットを構成してなる複数個のコンデンサ素子が、載置、接合された、薄型で、大面積、大容量の固体電解コンデンサとその製造方法である。
【0008】
以下、図面を参照して、本発明を、詳細に説明する。
【0009】
図1は、本発明に用いられるコンデンサ素子載置基板の構造を示す斜視模式図である。図2は、コンデンサ素子載置基板上に、縦10個×横2列のコンデンサ素子を、直接、載置、接合させた状態を示す斜視模式図である。図3は、コンデンサ素子が1個の時の薄型固体電解コンデンサの構造の一例を示す断面模式図である。なお、本発明は、図1〜図3により、なんら限定されない。
【0010】
本発明に用いられるコンデンサ素子載置基板は、図1に示すように、水平方向に離間して、交互に平行に配置された、長尺状の陽極電極箔2及び陰極電極箔2’を1組とする電極箔群が、該電極箔群の各々の一部を露出させた電極取出部となる第1絶縁層1、並びに、該電極箔群と、複数個のコンデンサ素子6の陽極及び陰極とを接合させる位置に、貫通孔4、4’が各々穿たれた第2絶縁層3により挟持された構造からなるものである。
【0011】
陽極電極箔2及び陰極電極箔2’としては、一般に、電極として用いられている金属箔であればよい。電気伝導度を考慮すると、銅、銀、アルミニウム、ニッケル、洋白、42アロイが好ましく、これらの少なくとも1種が用いられる。
【0012】
本発明の目的である、封止樹脂のモールド時の硬化による樹脂変形を防止するには、大面積の金属箔により、コンデンサ素子載置基板に強度を持たせればよい。コンデンサ素子載置基板の陽極電極箔2及び陰極電極箔2’の面積は、大きければ大きいほど、また、離間距離は、小さいければ小さいほどよい。しかしながら、前記電極箔の離間距離が小さ過ぎる場合、陽極と陰極とが短絡する恐れがあり、不都合となるので、前記電極箔の離間距離は、5〜100μmが適当である。
【0013】
また、コンデンサ素子載置基板の陽極電極箔2及び陰極電極箔2’の厚さは、電極箔の種類により異なるが、通常、10〜50μmの範囲である。電極箔の厚さが50μm超の場合、本発明の目的である薄型という点に反し、不都合であり、10μm未満の場合、強度及び作業性に支障をきたすので、不都合である。
【0014】
第1絶縁層1及び第2絶縁層3となる樹脂としては、一般に、プリント配線基板に用いられる樹脂であればよい。例えば、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂、充填剤入りエポキシ樹脂、ガラスエポキシ樹脂シート、ポリイミド樹脂シート−エポキシ樹脂シート複合材があげられ、これらの少なくとも1種が用いられる。
【0015】
絶縁層の厚さ及び作業性を考慮すると、第1絶縁層1及び第2絶縁層3としては、電極箔の両面に、ポリイミド樹脂シート−エポキシ樹脂シート複合材を貼り合わせたもの、あるいは、一方にポリイミド樹脂シート−エポキシ樹脂シート複合材を貼り合せ、他方にエポキシ樹脂またはフェノール樹脂を印刷させたものが、特に好ましい。
【0016】
第1絶縁層1の厚さは、樹脂の種類により異なるが、本発明の目的である薄型という点を考慮すると、通常、10〜50μmの範囲である。また、第2絶縁層3のコンデンサ素子載置基板の強度への影響は、第1絶縁層より少なく、コンデンサ素子6との絶縁性が保持できる限り、薄ければ薄いほどよい。第2絶縁層3の厚さは、作業性を考慮して、通常、5〜25μmの範囲が適当である。
【0017】
第2絶縁層3に穿つ貫通孔4、4’は、コンデンサ素子6の陽極及び陰極に対応する位置に、各々設けられる。陽極貫通孔4は、コンデンサ素子6の陰極と短絡しない位置に設けることが必要である。
【0018】
貫通孔径は、用いられるコンデンサ素子6の種類により、適宜設定される。例えば、エッチドアルミニウム箔を用いた場合、陽極貫通孔径は、少なくとも0.5mmφ以上、かつ陽極短径の2倍以下であり、陰極貫通孔径は、少なくとも0.5mmφ以上、かつ陰極短径の3/4以下の範囲が適当である。
【0019】
コンデンサ素子載置基板の第1絶縁層1側の陽極電極箔2及び陰極電極箔2’の露出部分には、金メッキ、銀メッキまたはハンダメッキが施され、電極取出部となる。また、第2絶縁層3側の貫通孔4、4’の陽極電極箔2及び陰極電極箔2’が露出している部分には、金メッキまたは銀メッキが施されていることが適当である。
【0020】
本発明に用いられるコンデンサ素子載置基板は、構造が簡単であり、またコンデンサ素子を、容易かつ簡単に、載置、接合できるので、作業性よく、容易に、コンデンサを作製することができる。
【0021】
本発明に用いられるコンデンサ素子6としては、特公平4−74853号公報等の周知の方法により、ポリピロール、ポリチオフェン、ポリアニリン等の導電性高分子による固体電解質陰極層を形成させた、エッチドアルミニウム箔、タンタル焼結体、ニオブ焼結体またはチタン焼結体があげられる。本発明の目的である薄型及び気密性を考慮すると、エッチドアルミニウム箔を用いたコンデンサ素子が、素子体積に対する上下の面積割合が大きく、特に好適である。
【0022】
コンデンサ素子6の陽極と、コンデンサ素子載置基板の陽極電極箔2との接合は、第2絶縁層3の貫通孔4を通して、銀ペースト等の導電性ペースト5を用いて、直接、接合させる方法の他、コンデンサ素子6の陽極に、金、銀、銅、ニッケル等の金属を超音波接合させるか、あるいは、金、銀、銅、ニッケルまたはスズを、溶射またはメッキさせた後、第2絶縁層3の貫通孔4を通して、銀ペースト等の導電性ペースト5またはハンダにより、接合させる方法によって行われる。
【0023】
上記方法の内、金または銅バンプボールを超音波接合、銅を溶射、または銅メッキさせた後、導電性ペースト5により接合させる方法が好ましい。コンデンサ素子のサイズが小さいことを考慮すると、金または銅バンプボールを超音波接合、または銅を溶射させた後、導電性ペースト5により、接合させる方法が、作業性よく、特に好ましい。
【0024】
コンデンサ素子6の陰極と、コンデンサ素子載置基板の陰極電極箔2’との接合は、コンデンサ素子6の陰極を、第2絶縁層3の貫通孔4’を通して、銀ペースト等の導電性ペースト5’を用いて、直接、接合させることにより行われる。
【0025】
図2は、コンデンサ素子載置基板上に、複数個のコンデンサ素子6を、直接、載置、接合させた状態を示す斜視模式図である。
【0026】
コンデンサ素子載置基板上に、図2のように、コンデンサ素子6を、直接、載置、接合させた後、予め作製した被覆シートを、コンデンサ素子6の上方に配置させる。
【0027】
封止樹脂層7の気密性の低下を抑制し、保持させるための被覆シートは、金属箔8の両面に絶縁層9、9’を形成させたものである。
【0028】
被覆シートの金属箔8としては、封止樹脂層の気密性を保持できる金属箔であればよい。例えば、安価な点で、銅、ニッケルまたはアルミニウムが好ましい。
【0029】
また、金属箔8の厚さは、封止樹脂層7の気密性を保持できればよく、本発明の目的である薄型を考慮すると、薄ければ薄いほどよい。本発明の金属箔8としては、一般的な箔以外の金属蒸着膜等も含まれる。
【0030】
金属箔8は、封止樹脂層7の気密性を保持できる範囲であれば、一枚箔、適宜孔の開いた箔、水平方向に適宜離間させた複数枚の箔等のいずれの形状でも差支えない。
【0031】
被覆シートの絶縁層9、9’となる樹脂としては、一般に、プリント配線基板に用いられる樹脂であればよい。例えば、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂、充填剤入りエポキシ樹脂、ガラスエポキシ樹脂シート、ポリイミド樹脂シート−エポキシ樹脂シート複合材があげられ、これらの少なくとも1種が用いられる。
【0032】
被覆シートの絶縁層9、9’の厚さは、樹脂の種類により異なるが、本発明の目的である薄型及び作業性を考慮すると、通常、5〜25μmの範囲が適当である。
【0033】
コンデンサ素子載置基板上に、図2のように、複数個のコンデンサ素子6を載置、接合させた後、コンデンサ素子6の上方に、上記気密性保持用の被覆シートを配置させ、ついで、コンデンサ素子載置基板と被覆シートとの間に、エポキシ樹脂等を封入、硬化させて、封止樹脂層7を形成させ、ついで、ダイシングソーを用いて、縦横、切断して、本発明の薄型固体電解コンデンサを完成する。
【0034】
上記方法では、コンデンサ素子載置基板と被覆シートとの間に、封止樹脂を封入、硬化させているが、コンデンサ素子載置基板上のコンデンサ素子を、封止樹脂でモールドさせた後、気密性保持用の被覆シートを配置させても、差支えない。
【0035】
図3は、以上のようにして完成した、コンデンサ素子が1個の時の薄型固体電解コンデンサの構造の一例を示す断面模式図である。
【0036】
なお、本発明の薄型固体電解コンデンサは、図3のように、コンデンサ素子が1個の場合だけでなく、所望の容量に応じ、縦横、複数個のコンデンサ素子を1ユニットの構成としてもよい。この場合、薄型で、大面積、大容量の固体電解コンデンサを得ることができる。
【0037】
本発明の固体電解コンデンサは、5〜100μmの狭い間隔で離間して配置された、陽極及び陰極電極箔を1組とする電極箔群が、前記電極箔群の各々の一部分を露出させた電極取出部となる第1絶縁層と、コンデンサ素子の陽極及び陰極との接合位置に、貫通孔を各々設けてなる第2絶縁層とに挟持された構造のコンデンサ素子載置基板上に、順次、コンデンサ素子、封止樹脂層、金属箔の両面に絶縁層を形成させた被覆シートが配置されてなり、コンデンサ素子載置基板及び被覆シートにより、封止樹脂のモールド時の硬化による樹脂変形が、効果的に防止される。
【0038】
本発明の固体電解コンデンサは、従来のコンデンサのように、コンデンサ素子に陽極リード及び陰極リードを取り付ける必要がなく、コンデンサ素子載置基板上に、コンデンサ素子を、直接載置、接合されてなり、薄型で小型のコンデンサを得ることができる。
【0039】
本発明では、コンデンサ素子載置基板及び被覆シートにより、封止樹脂のモールド時の硬化によるシートの反りを極力抑制でき、樹脂変形がなく、封止樹脂の硬化後、ダイシングソーを用いて切断するには、好適であり、工程が簡略化でき、作業性よく、容易に、コンデンサが作製できる。
【0040】
本発明では、コンデンサ素子載置基板と気密性保持用の被覆シートとの間に、コンデンサ素子を挟み込んでおり、被覆シートのない特願2001−326508号のようなコンデンサと比べ、より薄い厚さのコンデンサでも、気密性を十分保持することができ、より薄型で小型の固体電解コンデサを得ることができる。
【0041】
また、本発明では、所望の容量に応じ、複数個のコンデンサ素子を1ユニットの構成とすることができ、気密性が十分保持された、より薄型で、大面積、大容量の固体電解コンデンサとすることができる。
【0042】
【発明の実施の形態】
本発明の実施の形態を、実施例に基いて、以下に説明する。なお、本発明は、実施例により、なんら限定されない。
【0043】
実施例1
図1に示すように、長さ80mm×横8mm×厚さ18μmの長尺状の銅陽極電極箔2及び銅陰極電極箔2’を1組とする、2組の電極箔群を、水平方向に離間距離100μmで、平行に配置させ、該電極箔群の下方に、ポリイミド樹脂シート(厚さ25μm)−エポキシ樹脂シート(厚さ20μm)を接着層とした、幅4.5mmの複合材を貼り付け、該電極箔群の各々の一部分を露出させて、第1絶縁層1とし、ついで、該電極箔群の上方に、コンデンサ素子6の陽極及び陰極と接合させる部分に、縦10個×横2列の陽極貫通孔(直径1mmφ)4及び陰極貫通孔4’(直径2mmφ)を穿った、ポリイミド樹脂シート(厚さ12μm)−エポキシ樹脂シート(厚さ10μm)を接着層とした複合材を貼り付け、第2絶縁層3とした。ついで、第1絶縁層1側の該金属箔群の露出部分と、第2絶縁層3側の貫通孔4、4’部の該電極箔群の露出部分に、金メッキを施し、コンデンサ素子載置基板を作製した。
【0044】
また、厚さ20μmの銅金属箔8の両面に、ポリイミド樹脂シート(厚さ12μm)にエポキシ樹脂シート(厚さ10μm)を接着層とした複合材を貼り付け、絶縁層9、9’を形成させて、気密性保持用の被覆シートを作製した。
【0045】
厚さ200μmのエッチドアルミニウム箔に、特公平4−74853号公報に開示されている方法に準じて、化学酸化重合及び電解重合による導電性ポリピロールの固体電解質陰極層を形成させた。ついで、該素子の短径の一端の固体電解質陰極層を幅1mmにわたって削りとり、アルミニウム表面を露出させ、陽極を形成させた。該陽極に、金バンプボールを超音波接合させて、縦6mm×横3.6mmのコンデンサ素子6(定格電圧4V、定格容量33μF)を作製した。
【0046】
ついで、図2に示すように、コンデンサ素子載置基板上に載せ、縦10個×横2列のコンデンサ素子6を、直接、載置させ、コンデンサ素子6の陽極及び陰極を、コンデンサ素子載置基板の貫通孔4、4’を通して、銀ペースト5、5’を用いて、電極箔群2、2’と、各々接合させた。
【0047】
次に、コンデンサ素子6の上方に、予め作製した被覆シートを配置させた後、コンデンサ素子載置基板と被覆シートとの間に、エポキシ樹脂を封入し、真空脱泡した後、硬化させて、封止樹脂層7を形成させて、縦10個×横2列のコンデンサ素子を1ユニットの構成とする、薄型、大面積固体電解コンデンサ(厚さ0.7mm)を完成した。
【0048】
完成したコンデンサについて、120Hzでの静電容量(以下、「C」と記す。)及び100kHzでの等価直列抵抗(以下、「ESR」と記す。)の初期値を測定したところ、Cが668μF、ESRが1.45mΩであり、十分満足するコンデンサ特性であった。結果を表1に示す。
【0049】
実施例2
実施例1において、実施例1と同様にして、コンデンサ素子載置基板上に、順次、縦10個×横2列のコンデンサ素子6、封止樹脂層7、及び被覆シートを配置させた後、ダイシングソーを用いて、縦横、切断して、コンデンサ素子数が1個の薄型、小型固体電解コンデンサ(厚さ0.7mm)を完成した。
【0050】
ダイシングソー切断前のシートは、シート両端の反りが1mm未満であり、スムースに切断でき、封止樹脂のモールド時の硬化による樹脂変形が実質的にないものと判断された。
【0051】
図3は、コンデンサ素子数1個の時の薄型固体電解コンデンサの断面模式図である。
【0052】
完成したコンデンサについて、実施例1と同様にして、C及びESRの初期値を測定した。ついで、温度105℃で、電圧4V×500時間、印加させる高温負荷性試験を行った後、ESRを測定した。結果を表1に示す。
【0053】
比較例
実施例1において、金属箔の両面に絶縁層を形成させた被覆シートの代りに、厚さ90μmのガラス布を用いた以外は、実施例1と同様にして、コンデンサ素子載置基板上に、順次、縦10個×横2列のコンデンサ素子6、封止樹脂層7、及びガラス布を配置させた後、ダイシングソーを用いて、縦横、切断して、コンデンサ素子数が1個の薄型、小型固体電解コンデンサ(厚さ0.75mm)を完成した。
【0054】
完成したコンデンサについて、実施例1と同様にして、C及びESRの初期値、及び高温負荷試験(温度105℃×500時間)後のESRを測定した。結果を表1に示す。
【0055】
【表1】

Figure 0003888522
【0056】
表1に示されるように、コンデンサ素子載置基板、コンデンサ素子、封止樹脂層及び被覆シートからなる、本発明のコンデンサ(実施例2)は、被覆シートのないコンデンサ(比較例)と比べ、高温負荷試験後でも、気密性の低下によるESRの上昇が、最小限に抑制されておリ、気密性が保持され、かつ優れた特性のコンデンサであった。
【0057】
【発明の効果】
本発明の固体電解コンデンサは、5〜100μmの狭い間隔で離間して配置された、陽極及び陰極電極箔を1組とする電極箔群が、前記電極箔群の各々の一部分を露出させた電極取出部となる第1絶縁層と、コンデンサ素子の陽極及び陰極との接合位置に、貫通孔を各々設けてなる第2絶縁層とに挟持された3層構造のコンデンサ素子載置基板上に、順次、コンデンサ素子、封止樹脂層、金属箔の両面に絶縁層を形成させた被覆シートが配置されてなり、コンデンサ載置基板及び被覆シートにより、封止樹脂のモールド時の硬化による樹脂変形が、効果的に防止される。
【0058】
本発明では、従来のコンデンサのように、コンデンサ素子に陽極リード及び陰極リードを取り付ける必要がなく、コンデンサ素子載置基板上に、コンデンサ素子が、直接、載置、接合されており、薄型で小型のコンデンサを得ることができる。
【0059】
本発明では、コンデンサ素子載置基板及び被覆シートにより、封止樹脂のモールド時の硬化によるシートの反りを極力抑制でき、樹脂変形がなく、封止樹脂の硬化後、ダイシングソーを用いて切断するには、好適であり、工程が簡略化でき、作業性よく、容易に、コンデンサが作製できる。
【0060】
本発明の固体電解コンデンサは、コンデンサ素子載置基板上に接合させたコンデンサ素子上方に、気密性保持用の被覆シートが配置されてなり、被覆シートのない薄型コンデンサと比べ、より薄い厚さのコンデンサでも、気密性を十分保持することができ、より薄型で小型のコンデサを得ることができる。
【0061】
また、本発明の固体電解コンデンサは、所望の容量に応じ、複数個のコンデンサ素子を1ユニットの構成とすることができ、気密性が十分保持された、より薄型で、大面積、大容量のコンデンサとすることができる。
【図面の簡単な説明】
【図1】本発明に用いられるコンデンサ素子載置基板の構造を示す斜視模式図である。
【図2】コンデンサ素子載置基板上に、複数個のコンデンサ素子を、直接、載置、接合させた状態を示す斜視模式図である。
【図3】コンデンサ素子が1個の時の薄型固体電解コンデンサの構造の一例を示す断面模式図である。
【符号の説明】
1 第1絶縁層
2 陽極電極箔
2’ 陰極電極箔
3 第2絶縁層
4 陽極貫通孔
4’ 陰極貫通孔
5、5’ 導電性ペースト
6 コンデンサ素子
7 封止樹脂層
8 金属箔
9、9’ 絶縁層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thinner and smaller solid electrolytic capacitor that is maintained without deterioration in hermeticity and excellent in capacitor characteristics, and a thinner, large area, large capacity solid electrolytic capacitor. The present invention relates to a thin solid electrolytic capacitor having a structure in which a capacitor element is sandwiched between a capacitor element mounting substrate having a specific structure and a covering sheet having an insulating layer formed on both surfaces of a metal foil.
[0002]
[Prior art]
Conventionally, a chip-type solid electrolyte capacitor is generally formed by attaching an anode lead and a cathode lead bent in advance to a predetermined dimension to a capacitor element in which a solid electrolyte cathode layer made of a conductive polymer is formed, and forming a sealing resin. As the capacitor, the volume ratio of the capacitor element was small and the loss was large.
[0003]
The inventors of the present invention filed an electrode foil group consisting of a pair of elongated anode and cathode electrode foils arranged in parallel and spaced apart in the horizontal direction according to Japanese Patent Application No. 2001-326508 filed earlier. A through-hole is formed in each of the first insulating layer serving as an electrode extraction portion exposing a part of each of the electrode foil groups, and the joining positions of the electrode foil groups and the anodes and cathodes of a plurality of capacitor elements. On the capacitor element mounting substrate having a structure sandwiched between the second insulating layers, the anodes and cathodes of a plurality of capacitor elements are respectively joined to the electrode foil group through the through holes of the second insulating layer, and sealed. After forming a sealing resin layer by molding a stop resin, a thin solid electrolytic capacitor having a single unit or a plurality of capacitor elements having a desired capacity using a dicing saw was proposed. .
[0004]
In Japanese Patent Application No. 2001-326508, there is no resin deformation due to curing at the time of molding of the sealing resin, and a capacitor element can be directly mounted and bonded on the capacitor element mounting substrate. A thin, large area, large capacity capacitor can be obtained.
[0005]
Although the above capacitor can achieve a thin capacitor, when trying to obtain a thinner capacitor, the hermeticity deteriorates and the capacitor characteristics deteriorate, so the thickness of the capacitor is limited. It was.
[0006]
[Problems to be solved by the invention]
It is an object of the present invention to provide a thin and small solid electrolytic capacitor having excellent capacitor characteristics that is not deformed by curing at the time of molding of the sealing resin and is not deteriorated in airtightness. The object is to provide a thin, large area, large capacity solid electrolytic capacitor.
[Means for Solving the Problems]
As a result of earnest research from the viewpoint of maintaining the airtightness of the thin capacitor, the present inventors have found that in the thin solid electrolytic capacitor of Japanese Patent Application No. 2001-326508, an insulating layer is formed on both surfaces of the metal foil on the sealing resin layer. The present inventors have found that the above problems can be solved by arranging the formed covering sheet, and have completed the present invention.
[0007]
That is, according to the present invention, a) a pair of anode electrode foil and cathode electrode foil, which are spaced apart in parallel in the horizontal direction and arranged in parallel, is an electrode extraction part in which a part of each of the electrode foils is exposed. 1) an insulating layer, and a capacitor element mounting substrate having a structure in which the electrode foil is sandwiched by second insulating layers each having a through hole at a junction position between the electrode foil and the anode and cathode of the capacitor element; and b) a capacitor element. A capacitor element bonded to the electrode foil through the through hole of the second insulating layer, c) a sealing resin layer of the capacitor element, and d) above the sealing resin layer, A thin and small-sized solid electrolytic capacitor and a manufacturing method thereof, characterized by comprising a coated sheet having an insulating layer formed on both surfaces of a metal foil. In the solid electrolytic capacitor, according to a desired capacity, Capacitor element On 置基 plate, a plurality of capacitor elements made constitute one unit, placed, bonded, thin, a large area, and a solid electrolytic capacitor having a large capacity manufacturing method thereof.
[0008]
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0009]
FIG. 1 is a schematic perspective view showing the structure of a capacitor element mounting substrate used in the present invention. FIG. 2 is a schematic perspective view showing a state in which capacitor elements of 10 vertical × 2 horizontal rows are directly mounted and bonded on the capacitor element mounting substrate. FIG. 3 is a schematic cross-sectional view showing an example of the structure of a thin solid electrolytic capacitor with one capacitor element. In addition, this invention is not limited at all by FIGS.
[0010]
As shown in FIG. 1, the capacitor element mounting substrate used in the present invention includes a long anode electrode foil 2 and a cathode electrode foil 2 ′ that are spaced apart in the horizontal direction and arranged alternately in parallel. The group of electrode foils includes a first insulating layer 1 serving as an electrode extraction part exposing each of the electrode foil groups, the electrode foil group, and anodes and cathodes of a plurality of capacitor elements 6 Are formed by a structure sandwiched by the second insulating layer 3 in which through holes 4 and 4 ′ are respectively drilled at positions where the two are joined.
[0011]
The anode electrode foil 2 and the cathode electrode foil 2 ′ may be metal foils that are generally used as electrodes. In consideration of electrical conductivity, copper, silver, aluminum, nickel, white and 42 alloy are preferable, and at least one of these is used.
[0012]
In order to prevent resin deformation due to curing of the sealing resin at the time of molding, which is an object of the present invention, the capacitor element mounting substrate may be made strong by a large-area metal foil. The larger the area of the anode electrode foil 2 and the cathode electrode foil 2 ′ of the capacitor element mounting substrate, the better the smaller the separation distance. However, if the distance between the electrode foils is too small, the anode and the cathode may be short-circuited, which is inconvenient. Therefore, the distance between the electrode foils is appropriately 5 to 100 μm.
[0013]
Moreover, although the thickness of the anode electrode foil 2 and cathode electrode foil 2 'of a capacitor | condenser element mounting board changes with kinds of electrode foil, it is the range of 10-50 micrometers normally. When the thickness of the electrode foil exceeds 50 μm, it is inconvenient, contrary to the thinness that is the object of the present invention, and when it is less than 10 μm, the strength and workability are hindered.
[0014]
In general, the resin used for the first insulating layer 1 and the second insulating layer 3 may be a resin used for a printed wiring board. Examples thereof include phenol resin, polyimide resin, epoxy resin, filled epoxy resin, glass epoxy resin sheet, polyimide resin sheet-epoxy resin sheet composite, and at least one of these is used.
[0015]
In consideration of the thickness and workability of the insulating layer, the first insulating layer 1 and the second insulating layer 3 are obtained by bonding a polyimide resin sheet-epoxy resin sheet composite on both surfaces of the electrode foil, or It is particularly preferable that a polyimide resin sheet-epoxy resin sheet composite material is bonded to the other and an epoxy resin or a phenol resin is printed on the other.
[0016]
Although the thickness of the 1st insulating layer 1 changes with kinds of resin, when the point of the thinness which is the objective of this invention is considered, it is the range of 10-50 micrometers normally. In addition, the influence of the second insulating layer 3 on the strength of the capacitor element mounting substrate is less than that of the first insulating layer, and the thinner the better, as long as the insulation with the capacitor element 6 can be maintained. In consideration of workability, the thickness of the second insulating layer 3 is usually in the range of 5 to 25 μm.
[0017]
The through holes 4, 4 ′ drilled in the second insulating layer 3 are respectively provided at positions corresponding to the anode and the cathode of the capacitor element 6. It is necessary to provide the anode through hole 4 at a position where it does not short-circuit with the cathode of the capacitor element 6.
[0018]
The through hole diameter is appropriately set depending on the type of capacitor element 6 used. For example, when an etched aluminum foil is used, the anode through hole diameter is at least 0.5 mmφ or more and twice or less the anode short diameter, and the cathode through hole diameter is at least 0.5 mmφ or more and 3 mm of the cathode short diameter. A range of / 4 or less is appropriate.
[0019]
The exposed portions of the anode electrode foil 2 and the cathode electrode foil 2 ′ on the first insulating layer 1 side of the capacitor element mounting substrate are subjected to gold plating, silver plating, or solder plating to form an electrode extraction portion. Further, it is appropriate that gold plating or silver plating is applied to the exposed portions of the anode electrode foil 2 and the cathode electrode foil 2 'of the through holes 4, 4' on the second insulating layer 3 side.
[0020]
The capacitor element mounting substrate used in the present invention has a simple structure, and the capacitor element can be mounted and joined easily and easily. Therefore, the capacitor can be easily manufactured with good workability.
[0021]
As the capacitor element 6 used in the present invention, an etched aluminum foil in which a solid electrolyte cathode layer made of a conductive polymer such as polypyrrole, polythiophene, polyaniline or the like is formed by a known method such as Japanese Patent Publication No. 4-74853. Tantalum sintered body, niobium sintered body or titanium sintered body. In consideration of thinness and airtightness, which are the objects of the present invention, a capacitor element using an etched aluminum foil has a large area ratio in the vertical direction relative to the element volume, and is particularly suitable.
[0022]
A method of bonding the anode of the capacitor element 6 and the anode electrode foil 2 of the capacitor element mounting substrate directly through the through hole 4 of the second insulating layer 3 using a conductive paste 5 such as silver paste. In addition, the second insulation is performed after ultrasonically bonding a metal such as gold, silver, copper, or nickel to the anode of the capacitor element 6 or spraying or plating gold, silver, copper, nickel, or tin. This is performed by a method of bonding through a through-hole 4 of the layer 3 with a conductive paste 5 such as a silver paste or solder.
[0023]
Among the above methods, a method in which gold or copper bump balls are ultrasonically bonded, copper is thermally sprayed, or copper-plated and then bonded by the conductive paste 5 is preferable. Considering that the size of the capacitor element is small, a method in which gold or copper bump balls are ultrasonically bonded or copper is thermally sprayed and then bonded by the conductive paste 5 is particularly preferable because of good workability.
[0024]
The cathode of the capacitor element 6 and the cathode electrode foil 2 ′ of the capacitor element mounting substrate are joined by passing the cathode of the capacitor element 6 through the through hole 4 ′ of the second insulating layer 3 and a conductive paste 5 such as silver paste. It is done by joining directly using '.
[0025]
FIG. 2 is a schematic perspective view showing a state in which a plurality of capacitor elements 6 are directly mounted and bonded on the capacitor element mounting substrate.
[0026]
As shown in FIG. 2, the capacitor element 6 is directly placed and bonded onto the capacitor element mounting substrate, and then a pre-manufactured covering sheet is placed above the capacitor element 6.
[0027]
The covering sheet for suppressing and retaining the hermeticity of the sealing resin layer 7 is one in which insulating layers 9 and 9 ′ are formed on both surfaces of the metal foil 8.
[0028]
The metal foil 8 of the covering sheet may be a metal foil that can maintain the airtightness of the sealing resin layer. For example, copper, nickel, or aluminum is preferable in terms of inexpensiveness.
[0029]
Moreover, the thickness of the metal foil 8 should just hold | maintain the airtightness of the sealing resin layer 7, and when the thinness which is the objective of this invention is considered, it is so thin that it is thin. The metal foil 8 of the present invention includes a metal vapor deposited film other than a general foil.
[0030]
As long as the metal foil 8 can maintain the airtightness of the sealing resin layer 7, it can be in any shape such as a single foil, an appropriately perforated foil, or a plurality of foils appropriately spaced in the horizontal direction. Absent.
[0031]
In general, the resin used for the insulating layers 9 and 9 ′ of the covering sheet may be a resin used for a printed wiring board. Examples thereof include phenol resin, polyimide resin, epoxy resin, filled epoxy resin, glass epoxy resin sheet, polyimide resin sheet-epoxy resin sheet composite, and at least one of these is used.
[0032]
Although the thickness of the insulating layers 9 and 9 ′ of the covering sheet varies depending on the type of resin, the range of 5 to 25 μm is usually appropriate in consideration of the thinness and workability that are the objects of the present invention.
[0033]
As shown in FIG. 2, after a plurality of capacitor elements 6 are mounted and bonded on the capacitor element mounting substrate, the airtight holding covering sheet is disposed above the capacitor elements 6, An epoxy resin or the like is encapsulated and cured between the capacitor element mounting substrate and the cover sheet to form a sealing resin layer 7, and then cut vertically and horizontally using a dicing saw, so that the thin shape of the present invention is obtained. Complete the solid electrolytic capacitor.
[0034]
In the above method, the sealing resin is sealed and cured between the capacitor element mounting substrate and the covering sheet. However, after the capacitor element on the capacitor element mounting substrate is molded with the sealing resin, the sealing resin is sealed. There is no problem even if a covering sheet is used to maintain the property.
[0035]
FIG. 3 is a schematic cross-sectional view showing an example of the structure of a thin solid electrolytic capacitor with one capacitor element completed as described above.
[0036]
As shown in FIG. 3, the thin solid electrolytic capacitor of the present invention is not limited to the case where there is only one capacitor element, but may be configured as a single unit of a plurality of capacitor elements depending on the desired capacity. In this case, a thin, large area, large capacity solid electrolytic capacitor can be obtained.
[0037]
The solid electrolytic capacitor according to the present invention is an electrode in which an electrode foil group having a pair of an anode and a cathode electrode foil arranged at a narrow interval of 5 to 100 μm exposes a part of each of the electrode foil groups. On the capacitor element mounting substrate having a structure sandwiched between the first insulating layer serving as the take-out portion and the second insulating layer provided with the through holes at the junction positions of the anode and the cathode of the capacitor element, sequentially, A capacitor element, a sealing resin layer, and a coating sheet in which an insulating layer is formed on both surfaces of the metal foil are arranged, and the resin deformation due to curing at the time of molding of the sealing resin by the capacitor element mounting substrate and the coating sheet, Effectively prevented.
[0038]
The solid electrolytic capacitor of the present invention does not require the anode lead and the cathode lead to be attached to the capacitor element as in the conventional capacitor, and the capacitor element is directly mounted and bonded on the capacitor element mounting substrate. A thin and small capacitor can be obtained.
[0039]
In the present invention, the capacitor element mounting substrate and the cover sheet can suppress the warpage of the sheet due to curing during molding of the sealing resin as much as possible, there is no resin deformation, and after the sealing resin is cured, it is cut using a dicing saw. Therefore, the capacitor can be easily produced with good workability and with a simplified process.
[0040]
In the present invention, the capacitor element is sandwiched between the capacitor element mounting substrate and the cover sheet for maintaining airtightness, and the thickness is smaller than that of the capacitor as in Japanese Patent Application No. 2001-326508 having no cover sheet. Even with this capacitor, airtightness can be sufficiently maintained, and a thinner and smaller solid electrolytic capacitor can be obtained.
[0041]
Further, according to the present invention, a plurality of capacitor elements can be configured as one unit according to a desired capacity, and a thinner, large-area, large-capacity solid electrolytic capacitor with sufficient airtightness and can do.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on examples. In addition, this invention is not limited at all by the Example.
[0043]
Example 1
As shown in FIG. 1, two sets of electrode foil groups, each comprising a long copper anode electrode foil 2 and a copper cathode electrode foil 2 ′ having a length of 80 mm × width of 8 mm × thickness of 18 μm, are arranged in a horizontal direction. A composite material having a width of 4.5 mm using a polyimide resin sheet (thickness 25 μm) -epoxy resin sheet (thickness 20 μm) as an adhesive layer below the electrode foil group. A part of each of the electrode foil groups is exposed to form the first insulating layer 1, and then 10 parts in length in the part to be joined to the anode and the cathode of the capacitor element 6 above the electrode foil group × Composite material using polyimide resin sheet (thickness 12 μm) -epoxy resin sheet (thickness 10 μm) with two horizontal rows of anode through-holes (diameter 1 mmφ) 4 and cathode through-holes 4 ′ (diameter 2 mmφ) as an adhesive layer Was affixed to obtain the second insulating layer 3. Next, the exposed portion of the metal foil group on the first insulating layer 1 side and the exposed portion of the electrode foil group on the through-holes 4 and 4 ′ on the second insulating layer 3 side are plated with gold to place the capacitor element. A substrate was produced.
[0044]
Further, a composite material in which an epoxy resin sheet (thickness 10 μm) is bonded to a polyimide resin sheet (thickness 12 μm) is pasted on both surfaces of a copper metal foil 8 having a thickness of 20 μm to form insulating layers 9 and 9 ′. Thus, a coating sheet for maintaining airtightness was produced.
[0045]
A solid electrolyte cathode layer of conductive polypyrrole by chemical oxidative polymerization and electrolytic polymerization was formed on an etched aluminum foil having a thickness of 200 μm according to the method disclosed in Japanese Patent Publication No. 4-74853. Next, the solid electrolyte cathode layer at one end of the short diameter of the device was scraped over a width of 1 mm to expose the aluminum surface and form an anode. A gold bump ball was ultrasonically bonded to the anode to produce a capacitor element 6 (rated voltage 4 V, rated capacity 33 μF) having a length of 6 mm and a width of 3.6 mm.
[0046]
Next, as shown in FIG. 2, the capacitor element 6 is placed on the capacitor element mounting substrate, and the capacitor elements 6 of 10 vertical × 2 horizontal rows are directly mounted. The anode and the cathode of the capacitor element 6 are placed on the capacitor element mounting. Through the through holes 4 and 4 ′ of the substrate, the silver foils 5 and 5 ′ were used to join the electrode foil groups 2 and 2 ′, respectively.
[0047]
Next, after placing a pre-made covering sheet above the capacitor element 6, an epoxy resin is sealed between the capacitor element mounting substrate and the covering sheet, vacuum degassed, and then cured, A sealing resin layer 7 was formed to complete a thin, large-area solid electrolytic capacitor (thickness 0.7 mm) having a configuration of 10 vertical × 2 horizontal capacitor elements as one unit.
[0048]
The initial value of the capacitance at 120 Hz (hereinafter referred to as “C”) and the equivalent series resistance at 100 kHz (hereinafter referred to as “ESR”) of the completed capacitor was measured, and C was 668 μF. The ESR was 1.45 mΩ, which was a sufficiently satisfactory capacitor characteristic. The results are shown in Table 1.
[0049]
Example 2
In Example 1, in the same manner as in Example 1, after the capacitor elements 6 of 10 vertical × 2 horizontal rows, the sealing resin layer 7 and the covering sheet were sequentially arranged on the capacitor element mounting substrate, Using a dicing saw, the thin and small solid electrolytic capacitor (thickness 0.7 mm) with one capacitor element was completed by cutting vertically and horizontally.
[0050]
The sheet before cutting the dicing saw had a warp at both ends of the sheet of less than 1 mm, and was able to be cut smoothly, and it was judged that there was substantially no resin deformation due to curing during molding of the sealing resin.
[0051]
FIG. 3 is a schematic cross-sectional view of a thin solid electrolytic capacitor having one capacitor element.
[0052]
About the completed capacitor | condenser, it carried out similarly to Example 1, and measured the initial value of C and ESR. Next, after conducting a high temperature loadability test to be applied at a temperature of 105 ° C. and a voltage of 4 V × 500 hours, ESR was measured. The results are shown in Table 1.
[0053]
Comparative Example In the same manner as in Example 1 except that a glass cloth having a thickness of 90 μm was used instead of the covering sheet in which the insulating layers were formed on both surfaces of the metal foil, the capacitor element mounting substrate was used. Next, after sequentially arranging 10 vertical × 2 horizontal rows of capacitor elements 6, sealing resin layer 7 and glass cloth, using a dicing saw, it is cut vertically and horizontally, and the number of capacitor elements is one. A thin, small solid electrolytic capacitor (thickness: 0.75 mm) was completed.
[0054]
About the completed capacitor | condenser, it carried out similarly to Example 1, and measured the initial value of C and ESR, and ESR after a high temperature load test (temperature of 105 degreeC x 500 hours). The results are shown in Table 1.
[0055]
[Table 1]
Figure 0003888522
[0056]
As shown in Table 1, the capacitor (Example 2) of the present invention consisting of a capacitor element mounting substrate, a capacitor element, a sealing resin layer and a covering sheet is compared with a capacitor without a covering sheet (Comparative Example), Even after the high-temperature load test, the increase in ESR due to the decrease in airtightness was suppressed to a minimum, and the capacitor had excellent characteristics and airtightness was maintained.
[0057]
【The invention's effect】
The solid electrolytic capacitor according to the present invention is an electrode in which an electrode foil group including a pair of an anode and a cathode electrode foil, which are spaced apart at a narrow interval of 5 to 100 μm, exposes a part of each of the electrode foil groups. On the capacitor element mounting substrate having a three-layer structure sandwiched between a first insulating layer serving as an extraction portion and a second insulating layer provided with a through hole at the junction position between the anode and the cathode of the capacitor element, Sequentially, a covering sheet in which an insulating layer is formed on both surfaces of a capacitor element, a sealing resin layer, and a metal foil is arranged, and the resin mounting due to the capacitor mounting substrate and the covering sheet causes resin deformation due to curing during molding of the sealing resin. Effectively prevented.
[0058]
In the present invention, unlike the conventional capacitor, there is no need to attach an anode lead and a cathode lead to the capacitor element, and the capacitor element is directly mounted and bonded on the capacitor element mounting substrate, and is thin and small. Can be obtained.
[0059]
In the present invention, the capacitor element mounting substrate and the cover sheet can suppress the warpage of the sheet due to curing during molding of the sealing resin as much as possible, there is no resin deformation, and after the sealing resin is cured, it is cut using a dicing saw. Therefore, the capacitor can be easily produced with good workability and with a simplified process.
[0060]
In the solid electrolytic capacitor of the present invention, a coating sheet for airtightness is arranged above a capacitor element bonded on a capacitor element mounting substrate, and has a thinner thickness than a thin capacitor without a coating sheet. Even with a capacitor, airtightness can be sufficiently maintained, and a thinner and smaller capacitor can be obtained.
[0061]
Further, the solid electrolytic capacitor of the present invention can have a single unit configuration of a plurality of capacitor elements according to a desired capacity, and is thinner, large area and large capacity with sufficient airtightness. It can be a capacitor.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a structure of a capacitor element mounting substrate used in the present invention.
FIG. 2 is a schematic perspective view showing a state in which a plurality of capacitor elements are directly mounted and bonded on a capacitor element mounting substrate.
FIG. 3 is a schematic cross-sectional view showing an example of the structure of a thin solid electrolytic capacitor with one capacitor element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st insulating layer 2 Anode electrode foil 2 'Cathode electrode foil 3 2nd insulating layer 4 Anode through-hole 4' Cathode through-hole 5, 5 'Conductive paste 6 Capacitor element 7 Sealing resin layer 8 Metal foil 9, 9' Insulation layer

Claims (23)

a)水平方向に離間して、平行に配置された、1組の陽極電極箔及び陰極電極箔が、前記電極箔の各々の一部分を露出させた電極取出部となる第1絶縁層、並びに前記電極箔と、コンデンサ素子の陽極及び陰極との接合位置に、貫通孔を各々穿ってなる第2絶縁層により挟持された構造のコンデンサ素子載置基板と、b)コンデンサ素子の陽極及び陰極が、第2絶縁層の貫通孔を通して、前記電極箔と各々接合されたコンデンサ素子と、c)前記コンデンサ素子の封止樹脂層と、d)前記封止樹脂層上の、金属箔の両面に絶縁層を形成させた被覆シートとからなることを特徴とする薄型固体電解コンデンサ。a) a first insulating layer serving as an electrode extraction portion in which a pair of anode electrode foil and cathode electrode foil arranged in parallel and spaced apart in the horizontal direction exposes a part of each of the electrode foils; and A capacitor element mounting substrate having a structure in which the electrode foil and the anode and cathode of the capacitor element are sandwiched by second insulating layers each having a through hole; and b) the anode and cathode of the capacitor element, A capacitor element bonded to the electrode foil through the through hole of the second insulating layer; c) a sealing resin layer of the capacitor element; and d) an insulating layer on both surfaces of the metal foil on the sealing resin layer. A thin solid electrolytic capacitor, characterized in that it comprises a covering sheet on which is formed. a)水平方向に離間して、平行に配置された、長尺状の陽極電極箔及び陰極電極箔を1組とする電極箔群が、前記電極箔群の各々の一部分を露出させた電極取出部となる第1絶縁層、並びに前記電極箔群と、複数個のコンデンサ素子の陽極及び陰極との接合位置に、貫通孔を各々穿ってなる第2絶縁層により挟持された構造のコンデンサ素子載置基板と、b)コンデンサ素子の陽極及び陰極が、第2絶縁層の貫通孔を通して、前記電極箔群と各々接合された、1ユニットを構成する複数個のコンデンサ素子と、c)前記コンデンサ素子の封止樹脂層と、d)前記封止樹脂層上の、金属箔の両面に絶縁層を形成させた被覆シートとからなることを特徴とする薄型固体電解コンデンサ。a) Electrode extraction in which an electrode foil group having a pair of long anode electrode foil and cathode electrode foil arranged in parallel apart from each other in the horizontal direction exposes a part of each of the electrode foil groups A capacitor element mounting structure having a structure in which the first insulating layer serving as a portion and the electrode foil group and the anode and cathode of a plurality of capacitor elements are sandwiched by second insulating layers each having a through hole. A placement substrate; b) a plurality of capacitor elements constituting one unit, wherein an anode and a cathode of the capacitor element are respectively joined to the electrode foil group through a through hole of the second insulating layer; and c) the capacitor element. A thin solid electrolytic capacitor comprising: a sealing resin layer; and d) a covering sheet having an insulating layer formed on both surfaces of a metal foil on the sealing resin layer. 電極箔が、銅、銀、アルミニウム、ニッケル、洋白及び42アロイからなる群から選ばれた少なくとも1種であることを特徴とする請求項1または請求項2に記載の薄型固体電解コンデンサ。3. The thin solid electrolytic capacitor according to claim 1, wherein the electrode foil is at least one selected from the group consisting of copper, silver, aluminum, nickel, white and 42 alloy. 電極箔の離間距離が、5〜100μmであり、かつ電極箔の厚さが、10〜50μmであることを特徴とする請求項1から請求項3のいずれか1項に記載の薄型固体電解コンデンサ。The thin solid electrolytic capacitor according to any one of claims 1 to 3, wherein the distance between the electrode foils is 5 to 100 µm, and the thickness of the electrode foil is 10 to 50 µm. . 電極箔の第1絶縁層側の露出部分に、金メッキ、銀メッキ及びハンダメッキからなる群から選ばれた1種が施され、かつ第2絶縁層側の貫通孔部分に、金メッキまたは銀メッキが施されてなることを特徴とする請求項1から請求項4のいずれか1項に記載の薄型固体電解コンデンサ。One type selected from the group consisting of gold plating, silver plating and solder plating is applied to the exposed portion on the first insulating layer side of the electrode foil, and gold plating or silver plating is applied to the through hole portion on the second insulating layer side. The thin solid electrolytic capacitor according to any one of claims 1 to 4, wherein the thin solid electrolytic capacitor is provided. 金属箔が、銅、アルミニウム及びニッケルからなる群から選ばれた1種であることを特徴とする請求項1から請求項5のいずれか1項に記載の薄型固体電解コンデンサ。The thin solid electrolytic capacitor according to any one of claims 1 to 5, wherein the metal foil is one selected from the group consisting of copper, aluminum, and nickel. 第1絶縁層、第2絶縁層及び被覆シートの絶縁層が、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂、充填剤入りエポキシ樹脂、ガラスエポキシ樹脂シート及びポリイミド樹脂シート−エポキシ樹脂シート複合材からなる群から選ばれた少なくとも1種であることを特徴とする請求項1から請求項6のいずれか1項に記載の薄型固体電解コンデンサ。From the group which the insulating layer of a 1st insulating layer, a 2nd insulating layer, and a coating sheet consists of a phenol resin, a polyimide resin, an epoxy resin, an epoxy resin with a filler, a glass epoxy resin sheet, and a polyimide resin sheet-epoxy resin sheet composite material The thin solid electrolytic capacitor according to any one of claims 1 to 6, wherein the thin solid electrolytic capacitor is at least one selected. 第1絶縁層及び第2絶縁層の少なくとも一方が、ポリイミド樹脂シート−エポキシ樹脂シート複合材であることを特徴とする請求項1から請求項7のいずれか1項に記載の薄型固体電解コンデンサ。The thin solid electrolytic capacitor according to any one of claims 1 to 7, wherein at least one of the first insulating layer and the second insulating layer is a polyimide resin sheet-epoxy resin sheet composite material. コンデンサ素子が、導電性高分子による固体電解質陰極層を形成させた、エッチドアルミニウム箔、タンタル焼結体、ニオブ焼結体及びチタン焼結体からなる群から選ばれた1種であることを特徴とする請求項1から請求項8のいずれか1項に記載の薄型固体電解コンデンサ。The capacitor element is one type selected from the group consisting of an etched aluminum foil, a tantalum sintered body, a niobium sintered body, and a titanium sintered body on which a solid electrolyte cathode layer made of a conductive polymer is formed. The thin solid electrolytic capacitor according to any one of claims 1 to 8, wherein the thin solid electrolytic capacitor is characterized. コンデンサ素子が、導電性高分子による固体電解質陰極層を形成させたエッチドアルミニウム箔であることを特徴とする請求項1から請求項8のいずれか1項に記載の薄型固体電解コンデンサ。The thin solid electrolytic capacitor according to any one of claims 1 to 8, wherein the capacitor element is an etched aluminum foil in which a solid electrolyte cathode layer is formed of a conductive polymer. コンデンサ素子の陽極とコンデンサ素子載置基板の陽極電極箔とが、導電性ペーストにより直接接合、あるいは、コンデンサ素子の陽極が金バンプポールを超音波接合、銅を溶射または銅メッキされた後、導電性ペーストまたはハンダにより、接合されてなることを特徴とする請求項1から請求項10のいずれか1項に記載の薄型固体電解コンデンサ。The anode of the capacitor element and the anode electrode foil of the capacitor element mounting substrate are directly bonded by a conductive paste, or the capacitor element anode is ultrasonically bonded to a gold bump pole, copper is sprayed or copper plated, and then conductive. The thin solid electrolytic capacitor according to any one of claims 1 to 10, wherein the thin solid electrolytic capacitor is joined by a conductive paste or solder. 水平方向に離間して、平行に配置された、1組の陽極電極箔及び陰極電極箔の下方に、前記電極箔の各々の一部分を露出させて電極取出部とする第1絶縁層を、また上方に、前記電極箔と、コンデンサ素子の陽極及び陰極との接合位置に、貫通孔を各々穿った第2絶縁層を形成させたコンデンサ素子載置基板上に、コンデンサ素子を載置させ、第2絶縁層の貫通孔を通して、コンデンサ素子の陽極及び陰極と、前記電極箔とを各々接合させた後、該コンデンサ素子の上方に、金属箔の両面に絶縁層を形成させた被覆シートを配置させ、前記コンデンサ素子載置基板と該被覆シートとの間に、封止樹脂を封入、硬化させ、封止樹脂層を形成させることを特徴とする薄型固体電解コンデンサの製造方法。A first insulating layer that exposes a part of each of the electrode foils and serves as an electrode lead-out portion under a pair of anode electrode foils and cathode electrode foils arranged in parallel and spaced apart in the horizontal direction, A capacitor element is mounted on a capacitor element mounting substrate on which a second insulating layer having a through hole is formed at the bonding position between the electrode foil and the anode and the cathode of the capacitor element. (2) After the anode and cathode of the capacitor element and the electrode foil are joined through the through holes of the insulating layer, a covering sheet having insulating layers formed on both surfaces of the metal foil is disposed above the capacitor element. A method for producing a thin solid electrolytic capacitor, comprising encapsulating and curing a sealing resin between the capacitor element mounting substrate and the covering sheet to form a sealing resin layer. 水平方向に離間して、交互に平行に配置された、長尺状の陽極電極箔及び陰極電極箔を1組とする電極箔群の下方に、前記電極箔群の各々の一部分を露出させて電極取出部とする第1絶縁層を、また上方に、前記電極箔群とコンデンサ素子の陽極及び陰極との接合位置に、貫通孔を各々穿った第2絶縁層を形成させたコンデンサ素子載置基板上に、1ユニットを構成する複数個のコンデンサ素子を載置させ、第2絶縁層の貫通孔を通して、コンデンサ素子の陽極及び陰極と、前記電極箔群とを各々接合させた後、該コンデンサ素子の上方に、金属箔の両面に絶縁層を形成させた被覆シートを配置させ、前記コンデンサ素子載置基板と該被覆シートとの間に、封止樹脂を封入、硬化させ、封止樹脂層を形成させることを特徴とする薄型固体電解コンデンサの製造方法。A part of each of the electrode foil groups is exposed below the electrode foil group that is a pair of long anode electrode foils and cathode electrode foils arranged in parallel alternately spaced apart in the horizontal direction. Capacitor element mounting in which a first insulating layer serving as an electrode lead-out portion is formed, and a second insulating layer having a through hole is formed at a position where the electrode foil group and the anode and cathode of the capacitor element are joined. A plurality of capacitor elements constituting one unit are placed on the substrate, and the anode and cathode of the capacitor element and the electrode foil group are respectively joined through the through hole of the second insulating layer, and then the capacitor A covering sheet in which an insulating layer is formed on both surfaces of a metal foil is disposed above the element, and a sealing resin is sealed and cured between the capacitor element mounting substrate and the covering sheet. Thin-film solid electrolysis characterized by forming Manufacturing method of the capacitor. 電極箔が、銅、銀、アルミニウム、ニッケル、洋白及び42アロイからなる群から選ばれた少なくとも1種であることを特徴とする請求項12または請求項13に記載の薄型固体電解コンデンサの製造方法。14. The thin solid electrolytic capacitor according to claim 12 or 13, wherein the electrode foil is at least one selected from the group consisting of copper, silver, aluminum, nickel, white and 42 alloys. Method. 電極箔の離間距離が、5〜100μmであり、かつ電極箔の厚さが、10〜50μmであることを特徴とする請求項12から請求項14のいずれか1項に記載の薄型固体電解コンデンサの製造方法。The thin solid electrolytic capacitor according to any one of claims 12 to 14, wherein the separation distance of the electrode foil is 5 to 100 µm, and the thickness of the electrode foil is 10 to 50 µm. Manufacturing method. 電極箔の第1絶縁層側の露出部分に、金メッキ、銀メッキ及びハンダメッキからなる群から選ばれた1種が施され、かつ第2絶縁層側の貫通孔部分に、金メッキまたは銀メッキが施されたことを特徴とする請求項12から請求項15のいずれか1項に記載の薄型固体電解コンデンサの製造方法。One type selected from the group consisting of gold plating, silver plating and solder plating is applied to the exposed portion on the first insulating layer side of the electrode foil, and gold plating or silver plating is applied to the through hole portion on the second insulating layer side. 16. The method for producing a thin solid electrolytic capacitor according to claim 12, wherein the thin solid electrolytic capacitor is applied. 金属箔が、銅、アルミニウム及びニッケルからなる群から選ばれた1種であることを特徴とする請求項12から請求項16のいずれか1項に記載の薄型固体電解コンデンサの製造方法。The method for producing a thin solid electrolytic capacitor according to any one of claims 12 to 16, wherein the metal foil is one selected from the group consisting of copper, aluminum and nickel. 第1絶縁層、第2絶縁層及び被覆シートの絶縁層が、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂、充填剤入りエポキシ樹脂、ガラスエポキシ樹脂シート及びポリイミド樹脂シート−エポキシ樹脂シート複合材からなる群から選ばれた少なくとも1種であることを特徴とする請求項12から請求項17のいずれか1項に記載の薄型固体電解コンデンサの製造方法。From the group which the insulating layer of a 1st insulating layer, a 2nd insulating layer, and a coating sheet consists of a phenol resin, a polyimide resin, an epoxy resin, an epoxy resin with a filler, a glass epoxy resin sheet, and a polyimide resin sheet-epoxy resin sheet composite material The method for producing a thin solid electrolytic capacitor according to any one of claims 12 to 17, wherein the method is at least one selected. 電極箔上に形成される第1絶縁層及び第2絶縁層、並びに金属箔の両面に形成される絶縁層が、貼り付けまたは印刷により形成されることを特徴とする請求項12から請求項18のいずれか1項に記載の薄型固体電解コンデンサの製造方法。The first insulating layer and the second insulating layer formed on the electrode foil, and the insulating layers formed on both surfaces of the metal foil are formed by pasting or printing. The manufacturing method of the thin-shaped solid electrolytic capacitor of any one of these. コンデンサ素子が、導電性高分子による固体電解質陰極層を形成させた、エッチドアルミニウム箔、タンタル焼結体、ニオブ焼結体及びチタン焼結体からなる群から選ばれた1種であることを特徴とする請求項12から請求項19のいずれか1項に記載の薄型固体電解コンデンサの製造方法。The capacitor element is one type selected from the group consisting of an etched aluminum foil, a tantalum sintered body, a niobium sintered body, and a titanium sintered body on which a solid electrolyte cathode layer made of a conductive polymer is formed. The method for manufacturing a thin solid electrolytic capacitor according to any one of claims 12 to 19, wherein the method is a thin solid electrolytic capacitor. コンデンサ素子が、導電性高分子による固体電解質陰極を形成させたエッチドアルミニウム箔であることを特徴とする請求項12から請求項19のいずれか1項に記載の薄型固体電解コンデンサの製造方法。The method for producing a thin solid electrolytic capacitor according to any one of claims 12 to 19, wherein the capacitor element is an etched aluminum foil in which a solid electrolyte cathode made of a conductive polymer is formed. コンデンサ素子の陽極とコンデンサ素子載置基板の陽極電極箔とを、導電性ペーストにより直接接合させるか、あるいは、コンデンサ素子の陽極に、金または銅バンプポールを超音波接合させるか、銅を溶射させるか、または銅メッキさせた後、導電性ペーストまたはハンダにより接合させることを特徴とする請求項12から請求項21のいずれか1項に記載の薄型固体電解コンデンサの製造方法。The anode of the capacitor element and the anode electrode foil of the capacitor element mounting substrate are directly bonded with a conductive paste, or gold or a copper bump pole is ultrasonically bonded to the anode of the capacitor element, or copper is thermally sprayed. The method for manufacturing a thin solid electrolytic capacitor according to any one of claims 12 to 21, wherein the thin solid electrolytic capacitor is bonded with a conductive paste or solder after being plated with copper. コンデンサ素子載置基板上に、複数個のコンデンサ素子を載置、接合させ、コンデンサ素子載置基板と被覆シートとの間に、封止樹脂層を形成させた後、ダイシングソーにより切断させることを特徴とする請求項12から請求項22のいずれか1項に記載の薄型固体電解コンデンサの製造方法。A plurality of capacitor elements are mounted and bonded on the capacitor element mounting substrate, a sealing resin layer is formed between the capacitor element mounting substrate and the covering sheet, and then cut by a dicing saw. The method for producing a thin solid electrolytic capacitor according to any one of claims 12 to 22, wherein the method is a thin solid electrolytic capacitor.
JP2001337238A 2001-11-02 2001-11-02 Thin solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP3888522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337238A JP3888522B2 (en) 2001-11-02 2001-11-02 Thin solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337238A JP3888522B2 (en) 2001-11-02 2001-11-02 Thin solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003142335A JP2003142335A (en) 2003-05-16
JP3888522B2 true JP3888522B2 (en) 2007-03-07

Family

ID=19151912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337238A Expired - Fee Related JP3888522B2 (en) 2001-11-02 2001-11-02 Thin solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3888522B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610462B1 (en) 2004-02-20 2006-08-08 엔이씨 도낀 가부시끼가이샤 Solid electrolytic capacitor, transmission-line device, method of producing the same, and composite electronic component using the same
US7457103B2 (en) * 2005-05-11 2008-11-25 Nec Tokin Corporation Solid electrolytic capacitor which can easily be lowered in ESL
KR20200046790A (en) * 2018-10-25 2020-05-07 삼성전자주식회사 Patch type Secondary battery and electronic apparatus including the same
JP7408288B2 (en) 2019-03-22 2024-01-05 株式会社村田製作所 solid electrolytic capacitor
CN111613448B (en) * 2020-06-12 2021-12-03 上海金艺检测技术有限公司 Electrolytic capacitor with overheat and overcurrent protection
CN114899011B (en) * 2022-05-05 2024-08-23 肇庆绿宝石电子科技股份有限公司 High-voltage laminated capacitor and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853544U (en) * 1971-10-22 1973-07-11
JPH04710A (en) * 1990-04-02 1992-01-06 Nippon Chemicon Corp Solid electrolytic capacitor and manufacture thereof
JPH0494723U (en) * 1991-01-11 1992-08-17
JPH05283301A (en) * 1992-04-03 1993-10-29 Nippon Chemicon Corp Solid-state electrolytic capacitor
JPH0620890A (en) * 1992-06-30 1994-01-28 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor
JP3479570B2 (en) * 1994-04-28 2003-12-15 ローム株式会社 Structure of package type solid electrolytic capacitor
JP3568432B2 (en) * 1999-09-30 2004-09-22 三洋電機株式会社 Method for manufacturing solid electrolytic capacitor
JP3958913B2 (en) * 2000-03-10 2007-08-15 ローム株式会社 Solid electrolytic capacitor
JP2001267181A (en) * 2000-03-21 2001-09-28 Hitachi Aic Inc Chip type solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2003142335A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
CN100466124C (en) Solid electrolytic capacitor and method of manufacturing the same
JP3276113B1 (en) Solid electrolytic capacitors
KR100984535B1 (en) Solid electrolytic capacitor and a method of producing the same
US8416558B2 (en) Solid electrolytic capacitor and method for manufacturing same
JP3888523B2 (en) Three-terminal thin aluminum solid electrolytic capacitor
JP4757698B2 (en) Solid electrolytic capacitor
JP5267586B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2011071559A (en) Solid electrolytic capacitor
US11355289B2 (en) Solid electrolytic capacitor
JP4214763B2 (en) Solid electrolytic capacitor
JP3888522B2 (en) Thin solid electrolytic capacitor and manufacturing method thereof
JP3966402B2 (en) Thin solid electrolytic capacitor and manufacturing method thereof
US20070230091A1 (en) Solid electrolytic capacitor and method of making same
US7525791B2 (en) Solid electrolytic capacitor
JP2004063543A (en) Solid electrolytic capacitor and its manufacturing method
JP4276774B2 (en) Chip-shaped solid electrolytic capacitor
JP2004088073A (en) Solid electrolytic capacitor
JPH0684716A (en) Manufacture of solid electrolytic capacitor
JPH11274002A (en) Chip-laminated electrolytic capacitor
JP2020053588A (en) Solid electrolytic capacitor
JP3079780B2 (en) Multilayer solid electrolytic capacitor and method of manufacturing the same
JP2004281715A (en) Chip-like solid electrolytic capacitor
JP2005012084A (en) Circuit module
JPH0693421B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002175953A (en) Lead frame for capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees