JP3887896B2 - Flame retardant tablet, flame retardant method therefor, flame retardant resin composition containing the same, and molded product thereof - Google Patents

Flame retardant tablet, flame retardant method therefor, flame retardant resin composition containing the same, and molded product thereof Download PDF

Info

Publication number
JP3887896B2
JP3887896B2 JP21504997A JP21504997A JP3887896B2 JP 3887896 B2 JP3887896 B2 JP 3887896B2 JP 21504997 A JP21504997 A JP 21504997A JP 21504997 A JP21504997 A JP 21504997A JP 3887896 B2 JP3887896 B2 JP 3887896B2
Authority
JP
Japan
Prior art keywords
flame retardant
water
tablet
heat
expandable graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21504997A
Other languages
Japanese (ja)
Other versions
JPH10110169A (en
Inventor
民企男 後藤
保巳 田中
憲治 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP21504997A priority Critical patent/JP3887896B2/en
Publication of JPH10110169A publication Critical patent/JPH10110169A/en
Application granted granted Critical
Publication of JP3887896B2 publication Critical patent/JP3887896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、難燃剤を必須成分とした混合物を錠剤化した難燃剤錠剤、それにより樹脂を難燃化する方法及びそれを配合してなる難燃性樹脂組成物に関するものであり、特に難燃性に優れた難燃性樹脂組成物及びその成形品を提供するものである。
【0002】
【従来の技術】
加熱膨張性黒鉛が、赤リン、ポリリン酸アンモニウム等のリン化合物、三酸化アンチモン、ホウ酸亜鉛等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物等の難燃助剤との組み合わせ、又はこれら難燃助剤の2種類以上との組み合わせにより、優れた難燃性を示すことは公知である。
【0003】
この様な難燃性に優れる加熱膨張性黒鉛を含む難燃樹脂組成物を製造する方法としては、樹脂と加熱膨張性黒鉛、更には前記難燃助剤とを混合し、単軸押出機、二軸押出機等の混練装置を用いた溶融剪断による混練を行い、まずは難燃コンパウンド又は難燃マスターバッチを製造し、その後難燃コンパウンドはそのまま射出成形機等の成形機で、一方、難燃マスターバッチは樹脂との混合後射出成形機等の成形機で成形するのが一般的であった。
【0004】
【発明が解決しようとする課題】
このような溶融混練によって製造される加熱膨張性黒鉛の難燃マスターバッチは、難燃剤濃度が50%程度が限界であるため、樹脂成分(以下バインダーと呼ぶ)が非常に多くなり、樹脂とマスターバッチを混合後成形した場合には、樹脂の機械物性に与えるバインダーの影響が大きく、各樹脂毎に対応したマスターバッチを製造する必要があり非常に問題であった。
【0005】
一方、加熱膨張性黒鉛は、難燃コンパウンド又は難燃マスターバッチを製造する際、樹脂との混練により溶融下剪断を受け破砕され粒度が微細化し、その結果難燃性が低下する問題を抱えていた。
【0006】
そこで加熱膨張性黒鉛を含む難燃性樹脂組成物を製造する際、樹脂との混練による破砕を防ぐため、単軸押出機等では極めて低い剪断速度で混練する方法が試みられ、また二軸押出機等では加熱膨張性黒鉛をサイドフィーダーで供給し混練する方法が試みられている。しかしながら前者の方法では、生産性が低いばかりか加熱膨張性黒鉛の分散性が悪く十分な難燃性は得られず、一方後者の方法では、加熱膨張性黒鉛の混練による破砕をある程度は防止できるものの十分満足できるものではなかった。
【0007】
また、特開平6−25476号公報、特開平6−25485号公報、特開平6−73251号公報等には、加熱膨張性黒鉛を急速加熱した際のC軸方向の膨張性と、80メッシュ篩い上の粒度を規定し、より優れた難燃性を付与する方法が開示されている。しかしながらこれらの方法においても、加熱膨張性黒鉛の樹脂との混練による破砕に起因する難燃性低下を補うことはできなかった。
【0008】
本発明は、上記の課題に鑑みてなされたものであり、その目的は、加熱膨張性黒鉛を含む難燃性樹脂組成物を製造する際に、加熱膨張性黒鉛の溶融下剪断による破砕を最小限に抑制することができる難燃剤錠剤、それによる難燃化方法、並びにそれを配合してなる難燃性樹脂組成物及びその成形品を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、加熱膨張性黒鉛と水溶性難燃助剤を含有する難燃剤混合物、又はさらに非水溶性難燃助剤を含有する難燃剤混合物を造粒し錠剤化した難燃剤錠剤を見出し、これを樹脂に混合することにより、加熱膨張性黒鉛を含む樹脂組成物製造時の溶融剪断による加熱膨張性黒鉛の破砕が最小限に抑制され、且つ樹脂と難燃剤錠剤との組成物が難燃性に優れることを見出し、本発明を完成するに至った。
【0010】
すなわち本発明は、(A)加熱膨張性黒鉛と(B)水溶性難燃助剤を含有する難燃剤混合物、又は(A)加熱膨張性黒鉛、(B)水溶性難燃助剤、及び(C)非水溶性難燃助剤を含有する難燃剤混合物を造粒してなる難燃剤錠剤、樹脂100重量部に対して当該難燃剤錠剤を5〜60部配合することを特徴とする難燃化方法、並びに難燃性樹脂組成物に関するものである。
【0011】
以下、本発明をさらに詳細に説明する。
【0012】
本発明において難燃剤錠剤とは、粉体状の(A)加熱膨張性黒鉛と(B)水溶性難燃助剤、又は粉体状の(A)加熱膨張性黒鉛、(B)水溶性難燃助剤、及び(C)非水溶性難燃助剤を含有する一定の形状と大きさとをもつ粒状のものをいう。難燃剤錠剤の形状としては特に限定するものではないが、例えば、球状、円柱状、角柱状、板状のもの等が挙げられる。また、難燃剤錠剤の大きさとしては、平均粒径が0.1〜10mm程度のものであり、1〜10mm程度のものが好ましく、使用する樹脂ペレットと同程度の大きさのものが特に好ましい。尚、本発明において平均粒径とは、難燃剤錠剤の形状が球状である場合はその直径の平均をいい、円柱状又は角柱状である場合は柱の長さの平均をいい、板状である場合は板の最大径の平均をいい、その他の形状である場合は粒子の最大径の平均をいう。
【0013】
本発明の(A)成分は加熱膨張性黒鉛である。加熱膨脹性黒鉛とは天然黒鉛又は人造黒鉛由来の物質で、室温から800〜1000℃への急速加熱により結晶のC軸方向(黒鉛のへき開方向に直角の方向)に対して膨脹する性質を有するものをいう。
【0014】
本発明において加熱膨脹性黒鉛としては、膨脹性、即ち、室温から800〜1000℃への急速加熱前後の比容積の差が100ml/g以上のものが難燃効果の面から特に好ましい。これは、100ml/g以上の膨張性を持たない加熱膨脹性黒鉛は、100ml/g以上の膨張性を持つものと比べて難燃性が著しく小さいためである。尚、本発明においていう膨張性、即ち、室温から800〜1000℃への加熱前後の比容積(ml/g)の差は、具体的には次に示す方法で測定される。電気炉内で予め1000℃に加熱した石英ビーカーに加熱膨張性黒鉛を2g投入し、すばやく1000℃に加熱した電気炉内に石英ビーカーを10秒間入れた後膨張した黒鉛の100mlの重量を計量し、ゆるみ見かけ比重(g/ml)を測定し、
比容積=1/ゆるみ見かけ比重
とする。次に加熱していない室温での加熱膨張性黒鉛の比容積を同様の方法で求め、
膨張性=加熱後の比容積−室温での比容積
として、加熱膨張性黒鉛の膨張性を求める。
【0015】
加熱膨張性黒鉛の製造方法としては、鱗片状黒鉛を酸化処理する方法が挙げられ、また酸化処理の方法としては、過酸化水素/硫酸中での電解酸化、リン酸と硝酸、硫酸と硝酸、硫酸と過塩素酸との混酸等の酸化処理等が挙げられるが、これらの方法に限定されるものではない。
【0016】
本発明の(B)成分である水溶性難燃助剤とは、難燃化において(A)成分の加熱膨張性黒鉛と相乗作用を有するものであり、且つ水に対する溶解度が0.5mg/100g−水以上のものをいう。溶解度が0.5mg/100g−水未満のものでは、強度が弱くなり造粒化できず、錠剤として適さない。
【0017】
水溶性難燃助剤としては、特に限定するものではないが、例えば、水溶性のリン化合物、金属の酸化物及び金属の水酸化物からなる群より選ばれる1種又は2種以上のものが挙げられる。尚、本発明において金属の酸化物は、金属の複合酸化物を含む。
【0018】
本発明の(B)成分として用いられる水溶性のリン化合物としては、(A)成分の加熱膨張性黒鉛との相乗作用を有するものであれば特に限定するものではないが、例えば、リンのオキソ酸(以下「リン酸」と称する)誘導体、すなわち、リン酸塩、リン酸エステルの塩、リン酸エステル、縮合リン酸塩、含窒素リン誘導体、ホスホン酸誘導体、ホスフィン酸誘導体、亜リン酸誘導体、次亜リン酸誘導体、ホスホネート、ホスフィネート、ホスフィンオキシド、ホスファイト、ホスホナイト、ホスフィナイト及びホスフィン類が好適なものとして挙げられる。具体的には、ジメチル−メチルホスホナートとエチレンオキサイドと五酸化リンとの付加反応生成物、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム、ポリリン酸メラミン、リン酸メラミン等が例示される。これらのうち、ポリリン酸アンモニウム(18℃における水に対する溶解度:1mg/100g−水)が最も好適に使用される。
【0019】
本発明の(B)成分として用いられる水溶性の金属酸化物としては、(A)成分の加熱膨張性黒鉛との相乗作用を有するものであれば特に限定するものではないが、例えば、アンチモン、ビスマス、ジルコニウム、モリブデン、タングステン、ホウ素、アルミニウム、マグネシウム及び亜鉛からなる群より選ばれる1種又は2種以上の金属の酸化物や複合酸化物が好適なものとして挙げられる。具体的には、酸化マグネシウム、酸化ホウ素、三酸化モリブデン、ホウ酸のアルカリ金属塩、モリブデン酸のアルカリ金属塩が例示される。これらのうち、酸化マグネシウム(18℃における水に対する溶解度:0.62mg/100g−水)が最も好適に使用される。
【0020】
本発明の(B)成分として用いられる水溶性の金属水酸化物としては、(A)成分の加熱膨張性黒鉛との相乗作用を有するものであれば特に限定するものではないが、具体的には、水酸化マグネシウム、水酸化バリウム、水酸化カルシウム、水酸化ストロンチウム及び水酸化亜鉛からなる群より選ばれる1種又は2種以上が挙げられ、これらのうち、水酸化マグネシウム(18℃における水に対する溶解度:0.9mg/100g−水)が最も好適に使用される。
【0021】
本発明の(B)成分である水溶性難燃助剤は、(A)成分の加熱膨張性黒鉛と相乗し難燃剤としての役割を果たすのみならず、当該難燃剤混合物を造粒し錠剤化する際のバインダーの役割を果たす。(B)成分の配合量は、(A)加熱膨脹性黒鉛100重量部に対して少なくとも1重量部以上である。1重量部未満では、当該難燃剤混合物を造粒し錠剤化するバインダーとしての効果が小さく錠剤化できない場合がある。
【0022】
本発明においては、さらに(C)成分として非水溶性難燃助剤を用いてもよい。
【0023】
本発明の(C)成分である非水溶性難燃助剤とは、難燃化において加熱膨張性黒鉛と相乗作用を有するものであり、かつ水に対する溶解度が0.5mg/100g−水未満のものをいう。
【0024】
非水溶性難燃助剤としては、特に限定するものではないが、例えば、赤リン、非水溶性のリン化合物、金属の酸化物及び金属の水酸化物からなる群より選ばれる1種又は2種以上のものが挙げられる。尚、本発明において金属の酸化物は、金属の複合酸化物を含む。
【0025】
本発明の(C)成分として用いられる非水溶性のリン化合物としては、(A)成分の加熱膨張性黒鉛との相乗作用を有するものであれば特に限定するものではないが、例えば、下記式(1)〜(4)
【0026】
【化5】

Figure 0003887896
【0027】
【化6】
Figure 0003887896
【0028】
【化7】
Figure 0003887896
【0029】
【化8】
Figure 0003887896
【0030】
で示されるリン化合物が好適なものとして例示される。
【0031】
本発明の(C)成分として用いられる非水溶性の金属酸化物としては、(A)成分の加熱膨張性黒鉛との相乗作用を有するものであれば特に限定するものではないが、例えば、、アンチモン、ビスマス、ジルコニウム、モリブデン、タングステン、ホウ素、アルミニウム、マグネシウム及び亜鉛からなる群より選ばれる1種又は2種以上の金属の酸化物や複合酸化物が好適なものとして挙げられる。具体的には、三酸化アンチモン、酸化アルミニウム、三酸化二ビスマス、ホウ酸亜鉛、アンチモン酸ナトリウム、モリブデン酸亜鉛等が例示される。これらのうち、三酸化アンチモン(18℃における水に対する溶解度:0.16mg/100g−水)、ホウ酸亜鉛が特に好適なものとして使用される。
【0032】
本発明の(C)成分として用いられる非水溶性の金属水酸化物としては、(A)成分の加熱膨張性黒鉛との相乗作用を有するものであれば特に限定するものではないが、例えば、水酸化アルミニウム(18℃における水に対する溶解度:0.104mg/100g−水)が好適なものとして例示される。
【0033】
本発明において、(B)成分の水溶性難燃助剤と(C)成分の非水溶性難燃助剤との割合は、水溶性難燃助剤の重量比率が少ないとバインダーとしての効果が小さく錠剤の強度が低下し、貯蔵、輸送時あるいは樹脂との混合時に難燃剤錠剤が破壊されやすくなるため、(B)水溶性難燃助剤/(C)非水溶性難燃助剤≧1/99(重量比)であることが好ましい。
【0034】
本発明においては、(A)加熱膨張性黒鉛と(B)水溶性難燃助剤を含有する難燃剤混合物、又はさらに(C)非水溶性難燃助剤を含有する難燃剤混合物を造粒機により造粒し錠剤化する。造粒機としては、特に限定するものではないが、例えば、回転皿形式、回転円筒形式、回転頭切円錐形式等の転動造粒機、流動層形式、変形流動層形式、噴流層形式等の流動層造粒機、パグミル、ヘンシェル、アイリッヒ等の攪拌造粒機、回転ナイフ形式、回転バー形式等の解砕造粒機、圧縮ロール形式、ブリケッティングロール形式、打錠成形等の圧縮造粒機、スクリュー形式、回転多孔ダイス形式、回転ブレード形式等の押出造粒機等が挙げられる。これらのうち、水をバインダーとして使用する転動造粒機、流動層造粒機、押出造粒機等、又は圧縮造粒機等が好ましく、これらの中でも、錠剤の形状、大きさが一定化でき、錠剤の強度が高くまた生産性に優れる等の理由から、押出造粒機が最も好適である。
【0035】
次に本発明の難燃化方法及び難燃性樹脂組成物について説明する。
【0036】
本発明においては、樹脂100重量部に対して、(A)加熱膨張性黒鉛と(B)水溶性難燃助剤を含有する難燃剤混合物、又は(A)加熱膨張性黒鉛、(B)水溶性難燃助剤、及び(C)非水溶性難燃助剤を含有する難燃剤混合物を造粒し錠剤化した難燃剤錠剤を5〜60重量部の範囲で用いることができる。これは、難燃剤錠剤が5重量部未満では樹脂の難燃化が不十分であり、また60重量部を越えると樹脂の機械的強度の低下が著しく、また難燃効果が飽和し経済的にも不利となるためである。
【0037】
本発明において、(B)成分の水溶性難燃助剤、(C)成分の非水溶性難燃助剤は、難燃助剤としての効果及び水溶性を損なわない範囲で、表面処理を施しても良い。表面処理の方法としては、例えば、フェノール樹脂、メラミン樹脂等の熱硬化性樹脂、マグネシウム、アルミニウム等の水酸化物又は酸化物等による表面処理が挙げられる。
【0038】
本発明において用いられる樹脂としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。熱可塑性樹脂の具体例としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合樹脂、エチレン−アクリル酸エステル共重合樹脂等のオレフィン系樹脂、ポリスチレン、アクリロニトリル−スチレン共重合樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂等のスチレン系樹脂、塩化ビニル樹脂、ポリメチルメタクリレート、エチレン−酢酸ビニル共重合樹脂等のビニル系樹脂、6−ナイロン、66−ナイロン等のアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のエステル系樹脂、ポリカーボネート等のカーボネート系樹脂等が挙げられ、それらの単独若しくは混合物、共重合体又はそれらを変性した各種樹脂も例示される。また、熱硬化性樹脂の具体例としては、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、クロロプレンゴム等のゴム弾性重合体、フェノール樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、シリコーンエラストマーや室温硬化型シリコーンゴム等のポリシロキサン樹脂、ポリウレタン樹脂等が挙げられる。
【0039】
本発明において、難燃剤錠剤と樹脂とを混ぜる混合機としては特に限定されるものではないが、タンブラー、ヘンシェルミキサー、リボンミキサー等が挙げられる。
【0040】
本発明において、難燃剤錠剤と樹脂とを混合した難燃性樹脂組成物を成形加工する方法としては特に限定するものではないが、例えば、射出成形機、押出成形(シート成形、ブロー成形)等でペレットから直接成形する方法、低剪断の押出機により溶融混練する方法等が挙げられる。
【0041】
本発明において、本発明の効果を損なわない範囲で他の難燃剤を併用することが可能である。また必要に応じて樹脂に、無機充填剤、着色剤、酸化防止剤等の種々の添加剤を配合して差し支えない。
【0042】
【発明の効果】
本発明の難燃剤錠剤は、難燃性樹脂組成物及びその成形品製造時の加熱膨張性黒鉛の破砕による微粒化が抑制できるため、難燃性に極めて優れており、また加熱膨張性黒鉛の微粒化がほとんどないため、加熱膨張性黒鉛を配合量を低減化でき、経済的にも優れている。
【0043】
【実施例】
以下、具体例を示して本発明の効果を明確にするが、本発明はこれらの実施例に限定されるものではない。
【0044】
以下の実施例、比較例においては、原料として以下のものを用いた。
【0045】
(A)加熱膨脹性黒鉛
(A1):加熱膨脹性黒鉛A(中央化成(株)製、80メッシュ篩い上84重量%、室温から1000℃への急速加熱前後の比容積の差180ml/g)
(A2):加熱膨脹性黒鉛B(中央化成(株)製、80メッシュ篩い上96重量%、室温から1000℃への急速加熱前後の比容積の差200ml/g)
(B)水溶性難燃助剤
(B1):ポリリン酸アンモニウム(ヘキスト製、HOSTAFLAM AP462)
(B2):ジメチル−メチルホスホナートとエチレンオキサイドと五酸化リンとの付加反応物(アクゾ・カシマ(株)製、ファイロール51。以下、リン化合物Aと称する)
(B3):酸化マグネシウム(協和化学工業(株)製、キョウワマグ150)(B4):水酸化マグネシウム(神島化学工業(株)製、水酸化マグネシウム200)。
【0046】
(C)非水溶性難燃助剤
(C1):三酸化アンチモン(東ソー(株)製、フレームカット610R)
(C2):ホウ酸亜鉛(富田製薬(株)製、ホウ酸亜鉛2335)
(C3):赤リン(東ソー(株)製、フレームカット ノーバレッド120)
(C4):上記式(1)で示されるクレゾール縮合型リン酸エステル(大八化学工業(株)製、PX−200。以下、リン化合物Bと称する)
(C5):上記式(2)で示されるビスフェノール−A骨格リン酸エステル(アクゾ・カシマ(株)製、フォスフレックス580。以下、リン化合物Cと称する)
(C6):上記式(3)で示される9,10−ジヒドロ−9−オキサ10−ホスファナスフェナンスレン10−オキサイド(Kohlon製、HIRETAR101。以下、リン化合物Dと称する)
(C7):上記式(4)で示されるトリフェニルホスフェート(アクゾ・カシマ(株)製、フォスフレックスTPP。以下、リン化合物Eと称する)。
【0047】
(D)樹脂
(D1):ポリプロピレン(チッソ(株)製、チッソポリプロ K7014)(D2):エチレン酢酸ビニル共重合樹脂(東ソー(株)製、ウルトラセン630)
(D3):低密度ポリエチレン(東ソー(株)製、ペトロセン203)。
【0048】
また、実施例、比較例において実施した各種試験の方法は次の通りである。
【0049】
<難燃剤錠剤の強度>
難燃剤錠剤を10メッシュの篩い上で振とう機を用いて20分間振とうさせた後、壊れて篩いを通過した量(重量%)を破砕率として評価した。
○:破砕率10重量%未満
△:破砕率10〜20重量%
×:破砕率20重量%以上。
【0050】
<UL−94燃焼性試験>
アンダーライターズ・ラボラトリーのサブジェクト94号の垂直燃焼試験方法に基づき、厚み1/8インチ、1/16インチの試験片各5本を用いて測定した。
【0051】
<成形品中の加熱膨張性黒鉛の粒度>
射出成形した試験片を、熱キシレンで樹脂のみを溶解させ、その後300メッシュのステンレス製網を5枚重ねた濾過装置で加熱膨張性黒鉛を分離し、その加熱膨張性黒鉛の粒度(80メッシュの篩を通らない粒径のものの割合)を測定した。
【0052】
実施例1
加熱膨脹性黒鉛A(A1)100重量部に対して、ポリリン酸アンモニウム (B1)10重量部を混合し、その粉体合計量に対して15重量%の水を添加して混合した難燃剤混合物を、造粒機(不二パウダル(株)製、商品名「ディスクペレッター」)で造粒した後乾燥して、直径3mm、長さ4mmの円柱状の錠剤を得た。
【0053】
次にポリプロピレン(D1)100重量部に対して、当該難燃剤錠剤40重量部をタンブラーで混合し、当該混合物をノズルを200℃、シリンダーを200℃に設定した射出成形機のホッパーに投入し、UL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0054】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を上記方法により測定した。また当該難燃剤錠剤の強度を上記方法により評価した。結果を表1に示す。
【0055】
【表1】
Figure 0003887896
【0056】
表1から明らかなように、得られた難燃剤錠剤は十分な強度を持ち、また加熱膨張性黒鉛の破砕もなく優れた難燃性が得られた。
【0057】
実施例2〜実施例5
加熱膨脹性黒鉛A(A1)とポリリン酸アンモニウム(B1)とを、表1に示す難燃剤錠剤の組成で混合し、実施例1と同様の方法で錠剤化した。
【0058】
次にポリプロピレン(D1)100重量部に対して、当該難燃剤錠剤40重量部をタンブラーで混合し、当該混合物をノズルを200℃、シリンダーを200℃に設定した射出成形機のホッパーに投入し、UL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0059】
得られた試験片の燃焼性、お及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また難燃剤錠剤の強度を実施例1と同様にして評価した。結果を表1にあわせて示す。
【0060】
表1から明らかなように、得られた難燃剤錠剤は十分な強度を持ち、また加熱膨張性黒鉛の破砕もなく優れた難燃性が得られた。
【0061】
比較例1
加熱膨張性黒鉛A(A1)のみを実施例1と同様の方法で錠剤化した。
【0062】
次に、ポリプロピレン(D1)100重量部に対して、当該難燃剤錠剤40重量部をタンブラーで混合し、当該混合物をノズルを200℃、シリンダーを200℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0063】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして評価した。結果を表1にあわせて示す。
【0064】
表1から明らかなように、加熱膨張性黒鉛のみでは錠剤化できず、成形品の難燃剤の分散が悪く難燃性が劣った。
【0065】
比較例2〜比較例6
加熱膨張性黒鉛A(A1)とポリリン酸アンモニウム(B1)とを、表2に示す難燃剤混合物の組成の割合で混合した。
【0066】
次に、ポリプロピレン(D1)100重量部に対して、当該難燃剤混合物40重量部の割合で、ダイを200℃、シリンダーを200℃に設定した同方向二軸押出機のホッパーに樹脂を、サイドフィーダーに当該難燃剤混合物をそれぞれ投入し、溶融混練により難燃性ペレットコンパウンドを作製した。当該ペレットをノズルを200℃、シリンダーを200℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0067】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。結果を表2にあわせて示す。
【0068】
【表2】
Figure 0003887896
【0069】
表2から明らかなように、難燃剤混合物を錠剤化しない場合には、加熱膨張性黒鉛が破砕し、難燃性が劣った。
【0070】
実施例6〜実施例16
表3に示す難燃剤錠剤の組成で原料を混合し、実施例1と同様の方法で錠剤化した。
【0071】
次に、ポリプロピレン(D1)と当該難燃剤錠剤を表3に示す難燃性樹脂組成物の組成で混合し、当該混合物をノズルを200℃、シリンダーを200℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0072】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして評価した。結果を表3にあわせて示す。
【0073】
【表3】
Figure 0003887896
【0074】
表3から明らかなように、得られた難燃剤錠剤は十分な強度を持ち、また加熱膨張性黒鉛の破砕もなく優れた難燃性が得られた。
【0075】
実施例17〜実施例21
表4に示す難燃剤錠剤の組成で原料を混合し、実施例1と同様の方法で錠剤化した。
【0076】
次に、ポリプロピレン(D1)と当該難燃剤錠剤を表4に示す難燃性樹脂組成物の組成で混合し、当該混合物をノズルを200℃、シリンダーを200℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0077】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして評価した。結果を表4にあわせて示す。
【0078】
【表4】
Figure 0003887896
【0079】
得られた難燃剤錠剤は十分な強度を持ち、また加熱膨張性黒鉛の破砕もなく優れた難燃性が得られた。
【0080】
比較例7〜比較例9
表4に示す難燃剤錠剤の組成で原料を混合し、実施例1と同様の方法で錠剤化した。
【0081】
次に、ポリプロピレン(D1)と当該難燃剤錠剤を表4に示す難燃性樹脂組成物の組成で混合し、当該混合物をノズルを200℃、シリンダーを200℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0082】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして評価した。結果を表4にあわせて示す。
【0083】
表4から明らかなように、(B)成分である水溶性難燃助剤を加えない場合、錠剤の強度が弱く、成形品の難燃剤の分散が悪く難燃性が劣った。
【0084】
実施例22〜実施例25
加熱膨張性黒鉛B(A2)100重量部に対し、ポリリン酸アンモニウム(B1)50重量部を混合し、実施例1と同様の方法で錠剤化した。
【0085】
次に、ポリプロピレン(D1)と当該難燃剤錠剤を表5に示す難燃組成物の割合で混合し、当該混合物をノズルを200℃、シリンダーを200℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片及び1/16インチの試験片を成形した。
【0086】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして測定した。結果を表5にあわせて示す。
【0087】
【表5】
Figure 0003887896
【0088】
表5から明らかなように、得られた難燃剤錠剤は十分な強度を持ち、また加熱膨張性黒鉛の破砕もなく優れた難燃性が得られた。
【0089】
比較例10〜比較例14
加熱膨張性黒鉛B(A1)100重量部に対し、ポリリン酸アンモニウム(B1)50重量部を混合した。
【0090】
次に、ポリプロピレン(D1)100重量部に対して、当該難燃剤混合物を表6に示す難燃組成物の組成で、比較例2と同様の同方向二軸押出機を用い、樹脂をホッパーに、当該難燃剤混合物をサイドフィーダーにそれぞれ投入し、比較例2と同様の条件で難燃性ペレットコンパウンドを作製した。当該コンパウンドをノズルを200℃、シリンダーを200℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片及び1/16インチの試験片を成形した。
【0091】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。結果を表6にあわせて示す。
【0092】
【表6】
Figure 0003887896
【0093】
表6から明らかなように、難燃剤混合物を錠剤化しない場合、加熱膨張性黒鉛が破砕し、難燃性が劣った。
【0094】
実施例26、実施例27
加熱膨張性黒鉛B(A2)100重量部に対し、ポリリン酸アンモニウム(B1、実施例1に同じ)50重量部を混合し、実施例1と同様の方法で錠剤化した。
【0095】
次に、エチレン酢酸ビニル共重合樹脂(D2)と当該難燃剤錠剤を表7に示す難燃組成物の組成で混合し、当該混合物をノズルを150℃、シリンダーを150℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0096】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして測定した。以上の結果を表7にあわせて示す。
【0097】
【表7】
Figure 0003887896
【0098】
表7から明らかなように、得られた難燃剤錠剤は十分な強度を持ち、また加熱膨張性黒鉛の破砕もなく優れた難燃性が得られた。
【0099】
実施例28、実施例29
加熱膨張性黒鉛B(A2)100重量部に対し、ポリリン酸アンモニウム50重量部(B1)を混合し、実施例1と同様の方法で錠剤化した。
【0100】
次に、低密度ポリエチレン(D3)と当該難燃剤錠剤を表7に示す難燃組成物の組成の割合で混合し、当該混合物をノズルを160℃、シリンダーを160℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0101】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして測定した。結果を表7にあわせて示す。
【0102】
表7から明らかなように、得られた難燃剤錠剤は十分な強度を持ち、また加熱膨張性黒鉛の破砕もなく優れた難燃性が得られた。
【0103】
比較例15、比較例16
加熱膨張性黒鉛B(A2)100重量部に対し、ポリリン酸アンモニウム(B1)50重量部を混合した。
【0104】
次に、エチレン酢酸ビニル共重合樹脂ポリプロピレン(D2)100重量部に対して、当該難燃剤混合物を表9に示す難燃組成物の組成で、比較例2と同様の同方向二軸押出機を用い、樹脂をホッパーに当該難燃剤混合物をサイドフィーダーにそれぞれ投入し、ダイを150℃、シリンダーを150℃の条件で難燃性ペレットコンパウンドを作製した。当該コンパウンドをノズルを150℃、シリンダーを150℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0105】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。結果を表8にあわせて示す。
【0106】
【表8】
Figure 0003887896
【0107】
表8から明らかなように、難燃剤混合物を錠剤化しない場合、加熱膨張性黒鉛が破砕し、難燃性が劣った。
【0108】
比較例17、比較例18
加熱膨張性黒鉛B(A2)100重量部に対し、ポリリン酸アンモニウム(B1)50重量部を混合した。
【0109】
次に、低密度ポリエチレン(D3)100重量部に対して、当該難燃剤混合物を表9に示す難燃組成物の組成で、比較例2と同様の同方向二軸押出機を用い、樹脂をホッパーに、当該難燃剤混合物をサイドフィーダーにそれぞれ投入し、ダイを160℃、シリンダーを160℃の条件で難燃ペレットコンパウンドを作製した。当該コンパウンドをノズルを160℃、シリンダーを160℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0110】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして測定した。結果を表8にあわせて示す。
【0111】
表8から明らかなように、難燃剤混合物を錠剤化しない場合、加熱膨張性黒鉛が破砕し、難燃性が劣った。
【0112】
実施例30〜実施例33
表9に示す難燃剤錠剤の組成で原料を混合し、実施例1と同様の方法で錠剤化した。
【0113】
次に、エチレン酢酸ビニル共重合樹脂(D2)と当該難燃剤錠剤とを表9に示す難燃性樹脂組成物の組成で混合し、当該混合物をノズルを150℃、シリンダーを150℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0114】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして測定した。結果を表9にあわせて示す。
【0115】
【表9】
Figure 0003887896
【0116】
表9から明らかなように、得られた難燃剤錠剤は十分な強度を持ち、また加熱膨張性黒鉛の破砕もなく優れた難燃性が得られた。
【0117】
実施例34〜実施例37
表9に示す難燃剤錠剤の組成で原料を混合し、実施例1と同様の方法で錠剤化した。
【0118】
次に、低密度ポリエチレン(D3)と当該難燃剤錠剤とを表9に示す難燃性樹脂組成物の組成で混合し、当該混合物をノズルを160℃、シリンダーを160℃に設定した射出成形機のホッパーに投入し、実施例1と同様にUL94垂直燃焼試験の厚み1/8インチの試験片を成形した。
【0119】
得られた試験片の燃焼性、及び成形品中の加熱膨張性黒鉛の粒度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして測定した。また当該難燃剤錠剤の強度を実施例1と同様にして測定した。結果を表9にあわせて示す。
【0120】
表9から明らかなように、得られた難燃剤錠剤は十分な強度を持ち、また加熱膨張性黒鉛の破砕もなく優れた難燃性が得られた。
【0121】
以上のように、本発明の難燃剤錠剤を樹脂と直接混合して成形した難燃性樹脂組成物及びその成形品は、それと同一組成の溶融混練による難燃性樹脂組成物と比較した場合、破砕による粒径の微細化が少なく、難燃性にも優れることが分かる。また同等の難燃性を示す加熱膨張性黒鉛とポリリン酸アンモニウムの配合量も、本発明の難燃剤錠剤の方が少ないことも分かる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a flame retardant tablet obtained by tableting a mixture containing a flame retardant as an essential component, a method for making a resin flame retardant thereby, and a flame retardant resin composition formed by blending the same, and particularly flame retardant. A flame retardant resin composition having excellent properties and a molded product thereof are provided.
[0002]
[Prior art]
Heat-expandable graphite is a flame retardant aid such as red phosphorus, phosphorous compounds such as ammonium polyphosphate, metal oxides such as antimony trioxide and zinc borate, and metal hydroxides such as aluminum hydroxide and magnesium hydroxide. It is known that excellent flame retardancy is exhibited by a combination of the above or a combination of two or more of these flame retardant aids.
[0003]
As a method for producing a flame-retardant resin composition containing such heat-expandable graphite having excellent flame retardancy, a resin and heat-expandable graphite, and further the flame retardant aid, are mixed, a single-screw extruder, Kneading is performed by melt shearing using a kneading device such as a twin screw extruder, and first a flame retardant compound or a flame retardant masterbatch is manufactured, and then the flame retardant compound is directly used as a molding machine such as an injection molding machine, The master batch is generally molded with a molding machine such as an injection molding machine after mixing with the resin.
[0004]
[Problems to be solved by the invention]
The flame retardant masterbatch of heat-expandable graphite produced by such melt kneading has a limit of about 50% of the flame retardant concentration. Therefore, the resin component (hereinafter referred to as a binder) becomes very large, and the resin and master When the batch is molded after being mixed, the influence of the binder on the mechanical properties of the resin is large, and it is necessary to manufacture a master batch corresponding to each resin, which is very problematic.
[0005]
On the other hand, when heat-expandable graphite is produced, a flame retardant compound or a flame retardant masterbatch is subjected to shearing under melting by kneading with a resin and crushed to reduce the particle size, resulting in a decrease in flame retardancy. It was.
[0006]
Therefore, when producing a flame retardant resin composition containing heat-expandable graphite, in order to prevent crushing due to kneading with the resin, a method of kneading at an extremely low shear rate is tried in a single screw extruder or the like, and biaxial extrusion. In some machines, a method of supplying and kneading heat-expandable graphite with a side feeder has been attempted. However, in the former method, not only the productivity is low but also the dispersibility of the heat-expandable graphite is poor and sufficient flame retardancy cannot be obtained. On the other hand, the latter method can prevent the heat-expandable graphite from being crushed by kneading to some extent. The thing was not satisfactory enough.
[0007]
In addition, JP-A-6-25476, JP-A-6-25485, JP-A-6-73251, and the like describe the C-axis direction expansibility when heat-expandable graphite is rapidly heated, and an 80 mesh sieve. A method for defining the above particle size and imparting better flame retardancy is disclosed. However, even in these methods, it has not been possible to compensate for the reduction in flame retardance caused by crushing by kneading the heat-expandable graphite with a resin.
[0008]
The present invention has been made in view of the above problems, and its purpose is to minimize crushing of heat-expandable graphite by shearing under melting when producing a flame-retardant resin composition containing heat-expandable graphite. It is providing the flame-retardant tablet which can be suppressed to the limit, the flame-retarding method by it, a flame-retardant resin composition which mix | blends it, and its molded article.
[0009]
[Means for Solving the Problems]
The present inventors have obtained a flame retardant tablet obtained by granulating a flame retardant mixture containing heat-expandable graphite and a water-soluble flame retardant aid, or a flame retardant mixture further containing a water-insoluble flame retardant aid. Heading and mixing this with resin minimizes the crushing of heat-expandable graphite due to melt shear during the production of a resin composition containing heat-expandable graphite, and the composition of resin and flame retardant tablet The present inventors have found that the flame retardancy is excellent and have completed the present invention.
[0010]
That is, the present invention comprises (A) a heat-expandable graphite and (B) a flame retardant mixture containing a water-soluble flame retardant aid, or (A) heat-expandable graphite, (B) a water-soluble flame retardant aid, and ( C) A flame retardant tablet obtained by granulating a flame retardant mixture containing a water-insoluble flame retardant aid, and 5 to 60 parts of the flame retardant tablet is blended with 100 parts by weight of the resin. And a flame retardant resin composition.
[0011]
Hereinafter, the present invention will be described in more detail.
[0012]
In the present invention, the flame retardant tablet means powdery (A) heat-expandable graphite and (B) water-soluble flame retardant aid, or powdery (A) heat-expandable graphite, and (B) water-soluble difficulty. The granular thing with a fixed shape and magnitude | size containing a flame retardant and (C) water-insoluble flame retardant adjuvant. The shape of the flame retardant tablet is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, a prismatic shape, and a plate shape. Moreover, as a magnitude | size of a flame retardant tablet, an average particle diameter is a thing about 0.1-10 mm, a thing about 1-10 mm is preferable, and the thing about the same magnitude | size as the resin pellet to be used is especially preferable. . In the present invention, the average particle diameter refers to the average of the diameters when the shape of the flame retardant tablet is spherical, and refers to the average of the lengths of the columns when the shape is cylindrical or prismatic. In some cases, it means the average of the maximum diameter of the plate, and in the case of other shapes, it means the average of the maximum diameter of the particles.
[0013]
The component (A) of the present invention is heat-expandable graphite. Heat-expandable graphite is a substance derived from natural graphite or artificial graphite, and has the property of expanding with respect to the C-axis direction of the crystal (direction perpendicular to the cleavage direction of graphite) by rapid heating from room temperature to 800 to 1000 ° C. Say things.
[0014]
In the present invention, the heat-expandable graphite is particularly preferably expansible, that is, having a specific volume difference of 100 ml / g or more before and after rapid heating from room temperature to 800 to 1000 ° C. from the viewpoint of flame retardancy. This is because heat-expandable graphite that does not have an expansibility of 100 ml / g or more has a significantly lower flame retardancy than those having an expansibility of 100 ml / g or more. In addition, the expansibility in the present invention, that is, the difference in specific volume (ml / g) before and after heating from room temperature to 800 to 1000 ° C. is specifically measured by the following method. 2 g of heat-expandable graphite was put into a quartz beaker heated to 1000 ° C. in an electric furnace in advance, and the quartz beaker was quickly put into the electric furnace heated to 1000 ° C. for 10 seconds, and the weight of 100 ml of the expanded graphite was weighed. Measure the specific gravity (g / ml) of loosening,
Specific volume = 1 / apparent specific gravity
And Next, the specific volume of the heat-expandable graphite at room temperature not heated is obtained in the same manner,
Expandability = specific volume after heating-specific volume at room temperature
As described above, the expansibility of heat-expandable graphite is obtained.
[0015]
Examples of the method for producing heat-expandable graphite include a method for oxidizing scaly graphite, and examples of the method for oxidizing treatment include electrolytic oxidation in hydrogen peroxide / sulfuric acid, phosphoric acid and nitric acid, sulfuric acid and nitric acid, An oxidation treatment of a mixed acid of sulfuric acid and perchloric acid can be mentioned, but it is not limited to these methods.
[0016]
The water-soluble flame retardant auxiliary which is the component (B) of the present invention has a synergistic effect with the heat-expandable graphite of the component (A) in flame retardancy, and the solubility in water is 0.5 mg / 100 g. -More than water. If the solubility is less than 0.5 mg / 100 g-water, the strength becomes weak and granulation is not possible, and it is not suitable as a tablet.
[0017]
Although it does not specifically limit as a water-soluble flame retardant adjuvant, For example, the 1 type (s) or 2 or more types selected from the group which consists of a water-soluble phosphorus compound, a metal oxide, and a metal hydroxide are included. Can be mentioned. In the present invention, the metal oxide includes a metal complex oxide.
[0018]
The water-soluble phosphorus compound used as the component (B) of the present invention is not particularly limited as long as it has a synergistic effect with the heat-expandable graphite of the component (A). Acid (hereinafter referred to as “phosphoric acid”) derivatives, that is, phosphates, phosphate esters, phosphate esters, condensed phosphates, nitrogen-containing phosphorus derivatives, phosphonic acid derivatives, phosphinic acid derivatives, phosphorous acid derivatives Hypophosphorous acid derivatives, phosphonates, phosphinates, phosphine oxides, phosphites, phosphonites, phosphinites and phosphines are preferred. Specific examples include addition reaction products of dimethyl-methylphosphonate, ethylene oxide, and phosphorus pentoxide, ammonium polyphosphate, melamine-modified ammonium polyphosphate, melamine polyphosphate, and melamine phosphate. Of these, ammonium polyphosphate (solubility in water at 18 ° C .: 1 mg / 100 g-water) is most preferably used.
[0019]
The water-soluble metal oxide used as the component (B) of the present invention is not particularly limited as long as it has a synergistic action with the heat-expandable graphite of the component (A). Preferable examples include oxides and composite oxides of one or more metals selected from the group consisting of bismuth, zirconium, molybdenum, tungsten, boron, aluminum, magnesium, and zinc. Specific examples include magnesium oxide, boron oxide, molybdenum trioxide, alkali metal salts of boric acid, and alkali metal salts of molybdic acid. Of these, magnesium oxide (solubility in water at 18 ° C .: 0.62 mg / 100 g-water) is most preferably used.
[0020]
The water-soluble metal hydroxide used as the component (B) of the present invention is not particularly limited as long as it has a synergistic action with the heat-expandable graphite of the component (A). Is one or two or more selected from the group consisting of magnesium hydroxide, barium hydroxide, calcium hydroxide, strontium hydroxide and zinc hydroxide, and among these, magnesium hydroxide (for water at 18 ° C. Solubility: 0.9 mg / 100 g-water) is most preferably used.
[0021]
The water-soluble flame retardant auxiliary as component (B) of the present invention not only plays a role as a flame retardant in synergy with the heat-expandable graphite of component (A), but also granulates the flame retardant mixture to form a tablet. It plays the role of a binder when doing so. (B) The compounding quantity of a component is at least 1 weight part or more with respect to 100 weight part of (A) heat-expandable graphite. If it is less than 1 part by weight, the effect as a binder for granulating and tableting the flame retardant mixture may be small, and tableting may not be possible.
[0022]
In the present invention, a water-insoluble flame retardant aid may be used as the component (C).
[0023]
The water-insoluble flame retardant assistant as component (C) of the present invention has a synergistic effect with heat-expandable graphite in flame retardant, and has a solubility in water of less than 0.5 mg / 100 g-water. Say things.
[0024]
Although it does not specifically limit as a water-insoluble flame-retardant adjuvant, For example, 1 type or 2 chosen from the group which consists of red phosphorus, a water-insoluble phosphorus compound, a metal oxide, and a metal hydroxide More than species. In the present invention, the metal oxide includes a metal complex oxide.
[0025]
The water-insoluble phosphorus compound used as the component (C) of the present invention is not particularly limited as long as it has a synergistic effect with the heat-expandable graphite of the component (A). (1)-(4)
[0026]
[Chemical formula 5]
Figure 0003887896
[0027]
[Chemical 6]
Figure 0003887896
[0028]
[Chemical 7]
Figure 0003887896
[0029]
[Chemical 8]
Figure 0003887896
[0030]
The phosphorus compound shown by these is illustrated as a suitable thing.
[0031]
The water-insoluble metal oxide used as the component (C) of the present invention is not particularly limited as long as it has a synergistic action with the heat-expandable graphite of the component (A). Preferable examples include oxides and composite oxides of one or more metals selected from the group consisting of antimony, bismuth, zirconium, molybdenum, tungsten, boron, aluminum, magnesium, and zinc. Specific examples include antimony trioxide, aluminum oxide, dibismuth trioxide, zinc borate, sodium antimonate, and zinc molybdate. Of these, antimony trioxide (solubility in water at 18 ° C .: 0.16 mg / 100 g-water) and zinc borate are particularly preferred.
[0032]
The water-insoluble metal hydroxide used as the component (C) of the present invention is not particularly limited as long as it has a synergistic action with the heat-expandable graphite of the component (A). Aluminum hydroxide (water solubility at 18 ° C .: 0.104 mg / 100 g-water) is exemplified as a preferable example.
[0033]
In the present invention, the ratio of the water-soluble flame retardant auxiliary of the component (B) and the water-insoluble flame retardant auxiliary of the component (C) is effective as a binder if the weight ratio of the water-soluble flame retardant auxiliary is small. Since the strength of the tablet is small and the flame retardant tablet is easily destroyed during storage, transportation or mixing with a resin, (B) water-soluble flame retardant / (C) water-insoluble flame retardant ≧ 1 / 99 (weight ratio) is preferable.
[0034]
In the present invention, (A) a heat-expandable graphite and (B) a flame retardant mixture containing a water-soluble flame retardant aid, or (C) a flame retardant mixture containing a water-insoluble flame retardant aid is granulated. Granulate into tablets using a machine. The granulator is not particularly limited. For example, a rotating plate type, a rotating cylinder type, a rotating truncated cone type, etc., a rotating granulator, a fluidized bed format, a deformed fluidized bed format, a spouted bed format, etc. Fluidized bed granulators, stirring granulators such as Pagmill, Henschel, Eirich, etc., crushing granulators such as rotary knife type, rotary bar type, compression roll type, briquetting roll type, compression molding etc. Examples thereof include a granulator, a screw type, a rotary perforated die type, a rotary blade type extrusion granulator, and the like. Of these, a rolling granulator, a fluidized bed granulator, an extrusion granulator, or a compression granulator using water as a binder is preferable, and among these, the shape and size of the tablet are made constant. An extrusion granulator is most preferable because it has high tablet strength and excellent productivity.
[0035]
Next, the flame retardant method and flame retardant resin composition of the present invention will be described.
[0036]
In the present invention, with respect to 100 parts by weight of the resin, (A) a heat-expandable graphite and (B) a flame retardant mixture containing a water-soluble flame retardant aid, or (A) a heat-expandable graphite, (B) a water-soluble A flame retardant tablet obtained by granulating and tableting a flame retardant mixture containing a flame retardant auxiliary and (C) a water-insoluble flame retardant auxiliary can be used in the range of 5 to 60 parts by weight. This is because if the flame retardant tablet is less than 5 parts by weight, the resin is not sufficiently flame retardant, and if it exceeds 60 parts by weight, the mechanical strength of the resin is significantly reduced, and the flame retardant effect is saturated and economical. Is also disadvantageous.
[0037]
In the present invention, the water-soluble flame retardant auxiliary of component (B) and the water-insoluble flame retardant auxiliary of component (C) are subjected to surface treatment within the range that does not impair the effect and water solubility of the flame retardant auxiliary. May be. Examples of the surface treatment method include surface treatment with a thermosetting resin such as a phenol resin or a melamine resin, or a hydroxide or oxide such as magnesium or aluminum.
[0038]
The resin used in the present invention may be either a thermoplastic resin or a thermosetting resin. Specific examples of the thermoplastic resin include olefin resins such as polyethylene, polypropylene, ethylene-propylene copolymer resin, ethylene-acrylic acid ester copolymer resin, polystyrene, acrylonitrile-styrene copolymer resin, acrylonitrile-butadiene-styrene copolymer. Styrene resins such as resins, vinyl resins such as vinyl chloride resins, polymethyl methacrylate, ethylene-vinyl acetate copolymer resins, amide resins such as 6-nylon and 66-nylon, esters such as polyethylene terephthalate and polybutylene terephthalate Examples thereof include carbonate resins such as polycarbonate resins, polycarbonates, etc., and examples thereof include single or mixtures thereof, copolymers, and various resins obtained by modifying them. Specific examples of thermosetting resins include rubber elastic polymers such as styrene-butadiene rubber, acrylonitrile-butadiene rubber, and chloroprene rubber, phenol resins, unsaturated polyester resins, epoxy resins, silicone elastomers, and room temperature curable silicone rubbers. Such as polysiloxane resin, polyurethane resin and the like.
[0039]
In the present invention, the mixer for mixing the flame retardant tablet and the resin is not particularly limited, and examples thereof include a tumbler, a Henschel mixer, and a ribbon mixer.
[0040]
In the present invention, a method for molding a flame retardant resin composition in which a flame retardant tablet and a resin are mixed is not particularly limited. For example, an injection molding machine, extrusion molding (sheet molding, blow molding), etc. And a method of directly molding from pellets, a method of melt-kneading with a low shear extruder, and the like.
[0041]
In the present invention, other flame retardants can be used in combination as long as the effects of the present invention are not impaired. Further, various additives such as an inorganic filler, a colorant, and an antioxidant may be blended in the resin as necessary.
[0042]
【The invention's effect】
The flame retardant tablet of the present invention can suppress atomization due to crushing of the heat-expandable resin composition and the heat-expandable graphite at the time of manufacturing the molded product, and thus is extremely excellent in flame retardancy. Since there is almost no atomization, the compounding quantity of heat-expandable graphite can be reduced and it is economically excellent.
[0043]
【Example】
Hereinafter, although the effect of this invention is clarified by showing a specific example, this invention is not limited to these Examples.
[0044]
In the following examples and comparative examples, the following were used as raw materials.
[0045]
(A) Heat-expandable graphite
(A1): Heat-expandable graphite A (manufactured by Chuo Kasei Co., Ltd., 84% by weight on 80 mesh sieve, specific volume difference 180 ml / g before and after rapid heating from room temperature to 1000 ° C.)
(A2): Heat-expandable graphite B (manufactured by Chuo Kasei Co., Ltd., 96% by weight on an 80 mesh sieve, specific volume difference 200 ml / g before and after rapid heating from room temperature to 1000 ° C.)
(B) Water-soluble flame retardant aid
(B1): ammonium polyphosphate (Hoechst, HOSTAFLAM AP462)
(B2): addition reaction product of dimethyl-methylphosphonate, ethylene oxide and phosphorus pentoxide (manufactured by Akzo Kashima Co., Ltd., Pyrol 51, hereinafter referred to as phosphorus compound A)
(B3): Magnesium oxide (Kyowa Chemical Industry Co., Ltd., Kyowa Mag 150) (B4): Magnesium hydroxide (Kamishima Chemical Industry Co., Ltd., Magnesium hydroxide 200).
[0046]
(C) Water-insoluble flame retardant aid
(C1): Antimony trioxide (manufactured by Tosoh Corporation, frame cut 610R)
(C2): Zinc borate (Tonda Pharmaceutical Co., Ltd., zinc borate 2335)
(C3): Red phosphorus (manufactured by Tosoh Corporation, frame cut Novared 120)
(C4): Cresol condensed phosphate represented by the above formula (1) (Daihachi Chemical Industry Co., Ltd., PX-200; hereinafter referred to as phosphorus compound B)
(C5): Bisphenol-A skeleton phosphate represented by the above formula (2) (manufactured by Akzo Kashima Co., Ltd., Phosflex 580, hereinafter referred to as phosphorus compound C)
(C6): 9,10-dihydro-9-oxa 10-phosphanus phenanthrene 10-oxide represented by the above formula (3) (manufactured by Kohlon, HIRETAR 101, hereinafter referred to as phosphorus compound D)
(C7): Triphenyl phosphate represented by the above formula (4) (manufactured by Akzo Kashima Co., Ltd., Phosflex TPP, hereinafter referred to as phosphorus compound E).
[0047]
(D) Resin
(D1): Polypropylene (manufactured by Chisso Corporation, Chisso Polypro K7014) (D2): ethylene vinyl acetate copolymer resin (manufactured by Tosoh Corporation, Ultrasen 630)
(D3): Low density polyethylene (manufactured by Tosoh Corporation, Petrocene 203).
[0048]
Moreover, the method of the various tests implemented in the Example and the comparative example is as follows.
[0049]
<Strength of flame retardant tablet>
After the flame retardant tablet was shaken for 20 minutes on a 10 mesh sieve using a shaker, the amount (% by weight) broken and passed through the sieve was evaluated as the crushing rate.
○: Less than 10% by weight
Δ: Crushing rate of 10 to 20% by weight
X: The crushing rate is 20% by weight or more.
[0050]
<UL-94 flammability test>
Based on the vertical burning test method of Subject No. 94 of Underwriters Laboratory, the measurement was performed using five test pieces each having a thickness of 1/8 inch and 1/16 inch.
[0051]
<Particle size of heat-expandable graphite in molded product>
The injection-molded test piece was dissolved only in resin with hot xylene, and then the heat-expandable graphite was separated by a filtration device in which five 300-mesh stainless steel nets were stacked. The particle size of the heat-expandable graphite (80 mesh The ratio of those having a particle size that does not pass through a sieve) was measured.
[0052]
Example 1
A flame retardant mixture prepared by mixing 10 parts by weight of ammonium polyphosphate (B1) with 100 parts by weight of heat-expandable graphite A (A1) and adding 15% by weight of water to the total amount of the powder. Was granulated with a granulator (trade name “Disk Pelleter”, manufactured by Fuji Powder Co., Ltd.) and dried to obtain a cylindrical tablet having a diameter of 3 mm and a length of 4 mm.
[0053]
Next, with respect to 100 parts by weight of polypropylene (D1), 40 parts by weight of the flame retardant tablet is mixed with a tumbler, and the mixture is put into a hopper of an injection molding machine in which a nozzle is set to 200 ° C. and a cylinder is set to 200 ° C. A specimen having a thickness of 1/8 inch in the UL94 vertical combustion test was molded.
[0054]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured by the above methods. The strength of the flame retardant tablet was evaluated by the above method. The results are shown in Table 1.
[0055]
[Table 1]
Figure 0003887896
[0056]
As can be seen from Table 1, the obtained flame retardant tablets had sufficient strength, and excellent flame retardancy was obtained without crushing the heat-expandable graphite.
[0057]
Example 2 to Example 5
Heat-expandable graphite A (A1) and ammonium polyphosphate (B1) were mixed in the flame retardant tablet composition shown in Table 1, and tableted in the same manner as in Example 1.
[0058]
Next, with respect to 100 parts by weight of polypropylene (D1), 40 parts by weight of the flame retardant tablet is mixed with a tumbler, and the mixture is put into a hopper of an injection molding machine in which a nozzle is set to 200 ° C. and a cylinder is set to 200 ° C. A specimen having a thickness of 1/8 inch in the UL94 vertical combustion test was molded.
[0059]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0060]
As can be seen from Table 1, the obtained flame retardant tablets had sufficient strength, and excellent flame retardancy was obtained without crushing the heat-expandable graphite.
[0061]
Comparative Example 1
Only the heat-expandable graphite A (A1) was tableted in the same manner as in Example 1.
[0062]
Next, with respect to 100 parts by weight of polypropylene (D1), 40 parts by weight of the flame retardant tablet is mixed with a tumbler, and the mixture is put into a hopper of an injection molding machine in which a nozzle is set to 200 ° C. and a cylinder is set to 200 ° C. In the same manner as in Example 1, a test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was molded.
[0063]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0064]
As is apparent from Table 1, it was not possible to tablet with heat-expandable graphite alone, and the dispersion of the flame retardant in the molded article was poor and the flame retardancy was poor.
[0065]
Comparative Example 2 to Comparative Example 6
Heat-expandable graphite A (A1) and ammonium polyphosphate (B1) were mixed at a composition ratio of the flame retardant mixture shown in Table 2.
[0066]
Next, with 100 parts by weight of polypropylene (D1), 40 parts by weight of the flame retardant mixture, the resin is placed on the hopper of the same-direction twin screw extruder with the die set at 200 ° C. and the cylinder set at 200 ° C. The flame retardant mixture was charged into a feeder, and a flame retardant pellet compound was prepared by melt kneading. The pellets were put into a hopper of an injection molding machine having a nozzle set at 200 ° C. and a cylinder set at 200 ° C., and a test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was molded in the same manner as in Example 1.
[0067]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. The results are shown in Table 2.
[0068]
[Table 2]
Figure 0003887896
[0069]
As is clear from Table 2, when the flame retardant mixture was not tableted, the heat-expandable graphite was crushed and the flame retardancy was poor.
[0070]
Example 6 to Example 16
The raw materials were mixed with the composition of the flame retardant tablet shown in Table 3, and tableted in the same manner as in Example 1.
[0071]
Next, polypropylene (D1) and the flame retardant tablet are mixed with the composition of the flame retardant resin composition shown in Table 3, and the mixture is placed in a hopper of an injection molding machine in which the nozzle is set to 200 ° C. and the cylinder is set to 200 ° C. In the same manner as in Example 1, a test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was formed.
[0072]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was evaluated in the same manner as in Example 1. The results are shown in Table 3.
[0073]
[Table 3]
Figure 0003887896
[0074]
As is apparent from Table 3, the obtained flame retardant tablet had sufficient strength, and excellent flame retardancy was obtained without crushing the heat-expandable graphite.
[0075]
Example 17 to Example 21
The raw materials were mixed with the composition of the flame retardant tablet shown in Table 4, and tableted in the same manner as in Example 1.
[0076]
Next, polypropylene (D1) and the flame retardant tablet are mixed with the composition of the flame retardant resin composition shown in Table 4, and the mixture is put into a hopper of an injection molding machine in which the nozzle is set to 200 ° C. and the cylinder is set to 200 ° C. In the same manner as in Example 1, a test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was formed.
[0077]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was evaluated in the same manner as in Example 1. The results are shown in Table 4.
[0078]
[Table 4]
Figure 0003887896
[0079]
The obtained flame retardant tablet had sufficient strength, and excellent flame retardancy was obtained without crushing of heat-expandable graphite.
[0080]
Comparative Example 7 to Comparative Example 9
The raw materials were mixed with the composition of the flame retardant tablet shown in Table 4, and tableted in the same manner as in Example 1.
[0081]
Next, polypropylene (D1) and the flame retardant tablet are mixed with the composition of the flame retardant resin composition shown in Table 4, and the mixture is put into a hopper of an injection molding machine in which the nozzle is set to 200 ° C. and the cylinder is set to 200 ° C. In the same manner as in Example 1, a test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was formed.
[0082]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was evaluated in the same manner as in Example 1. The results are shown in Table 4.
[0083]
As is clear from Table 4, when the water-soluble flame retardant auxiliary as component (B) was not added, the strength of the tablet was weak, the dispersion of the flame retardant in the molded product was poor, and the flame retardancy was poor.
[0084]
Examples 22 to 25
50 parts by weight of ammonium polyphosphate (B1) was mixed with 100 parts by weight of heat-expandable graphite B (A2), and tableted in the same manner as in Example 1.
[0085]
Next, polypropylene (D1) and the flame retardant tablet are mixed at a ratio of the flame retardant composition shown in Table 5, and the mixture is put into a hopper of an injection molding machine having a nozzle set at 200 ° C. and a cylinder set at 200 ° C. In the same manner as in Example 1, a test piece having a thickness of 1/8 inch and a test piece having a thickness of 1/16 inch in the UL94 vertical combustion test were molded.
[0086]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was measured in the same manner as in Example 1. The results are shown in Table 5.
[0087]
[Table 5]
Figure 0003887896
[0088]
As is apparent from Table 5, the obtained flame retardant tablet had sufficient strength, and excellent flame retardancy was obtained without crushing the heat-expandable graphite.
[0089]
Comparative Example 10 to Comparative Example 14
50 parts by weight of ammonium polyphosphate (B1) was mixed with 100 parts by weight of heat-expandable graphite B (A1).
[0090]
Next, with respect to 100 parts by weight of polypropylene (D1), the flame retardant mixture is composed of the flame retardant composition shown in Table 6 and the same directional twin screw extruder as in Comparative Example 2 is used. The flame retardant mixture was put into a side feeder, and a flame retardant pellet compound was produced under the same conditions as in Comparative Example 2. The compound was put into a hopper of an injection molding machine having a nozzle set at 200 ° C. and a cylinder set at 200 ° C., and a UL94 vertical combustion test specimen having a thickness of 1/8 inch and a test of 1/16 inch were conducted in the same manner as in Example 1. A piece was molded.
[0091]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. The results are shown in Table 6.
[0092]
[Table 6]
Figure 0003887896
[0093]
As is clear from Table 6, when the flame retardant mixture was not tableted, the heat-expandable graphite was crushed and the flame retardancy was inferior.
[0094]
Example 26, Example 27
50 parts by weight of ammonium polyphosphate (B1, the same as in Example 1) was mixed with 100 parts by weight of heat-expandable graphite B (A2), and tableted in the same manner as in Example 1.
[0095]
Next, the ethylene vinyl acetate copolymer resin (D2) and the flame retardant tablet were mixed with the composition of the flame retardant composition shown in Table 7, and the mixture was set at 150 ° C for the nozzle and 150 ° C for the cylinder. The test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was molded in the same manner as in Example 1.
[0096]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was measured in the same manner as in Example 1. The above results are also shown in Table 7.
[0097]
[Table 7]
Figure 0003887896
[0098]
As is apparent from Table 7, the obtained flame retardant tablet had sufficient strength, and excellent flame retardancy was obtained without crushing the heat-expandable graphite.
[0099]
Example 28, Example 29
50 parts by weight of ammonium polyphosphate (B1) was mixed with 100 parts by weight of heat-expandable graphite B (A2), and tableted in the same manner as in Example 1.
[0100]
Next, the low density polyethylene (D3) and the flame retardant tablet were mixed at the composition ratio of the flame retardant composition shown in Table 7, and the mixture was mixed at a nozzle of 160 ° C. and a cylinder of 160 ° C. The sample was put into a hopper, and a test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was molded in the same manner as in Example 1.
[0101]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was measured in the same manner as in Example 1. The results are shown in Table 7.
[0102]
As is apparent from Table 7, the obtained flame retardant tablet had sufficient strength, and excellent flame retardancy was obtained without crushing the heat-expandable graphite.
[0103]
Comparative Example 15 and Comparative Example 16
50 parts by weight of ammonium polyphosphate (B1) was mixed with 100 parts by weight of heat-expandable graphite B (A2).
[0104]
Next, with respect to 100 parts by weight of ethylene vinyl acetate copolymer resin polypropylene (D2), the flame retardant mixture is composed of the flame retardant composition shown in Table 9, and the same direction twin screw extruder as in Comparative Example 2 is used. The flame retardant mixture was put into a hopper and the flame retardant mixture was put into a side feeder, respectively, and a flame retardant pellet compound was produced under conditions of 150 ° C. for the die and 150 ° C. for the cylinder. The compound was put into a hopper of an injection molding machine in which the nozzle was set at 150 ° C. and the cylinder was set at 150 ° C., and a test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was molded in the same manner as in Example 1.
[0105]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. The results are shown in Table 8.
[0106]
[Table 8]
Figure 0003887896
[0107]
As is apparent from Table 8, when the flame retardant mixture was not tableted, the heat-expandable graphite was crushed and the flame retardancy was poor.
[0108]
Comparative Example 17 and Comparative Example 18
50 parts by weight of ammonium polyphosphate (B1) was mixed with 100 parts by weight of heat-expandable graphite B (A2).
[0109]
Next, with respect to 100 parts by weight of the low density polyethylene (D3), the flame retardant mixture is composed of the flame retardant composition shown in Table 9, and the same direction twin screw extruder as in Comparative Example 2 is used. The flame retardant mixture was put into a hopper, respectively, and a flame retardant pellet compound was prepared under conditions of a die of 160 ° C. and a cylinder of 160 ° C. The compound was put into a hopper of an injection molding machine having a nozzle set at 160 ° C. and a cylinder set at 160 ° C., and a test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was molded in the same manner as in Example 1.
[0110]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was measured in the same manner as in Example 1. The results are shown in Table 8.
[0111]
As is apparent from Table 8, when the flame retardant mixture was not tableted, the heat-expandable graphite was crushed and the flame retardancy was poor.
[0112]
Example 30 to Example 33
The raw materials were mixed in the composition of the flame retardant tablet shown in Table 9, and tableted in the same manner as in Example 1.
[0113]
Next, ethylene vinyl acetate copolymer resin (D2) and the flame retardant tablet were mixed with the composition of the flame retardant resin composition shown in Table 9, and the nozzle was set to 150 ° C. and the cylinder was set to 150 ° C. The sample was placed in a hopper of an injection molding machine, and a test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was molded in the same manner as in Example 1.
[0114]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was measured in the same manner as in Example 1. The results are shown in Table 9.
[0115]
[Table 9]
Figure 0003887896
[0116]
As is apparent from Table 9, the obtained flame retardant tablet had sufficient strength, and excellent flame retardancy was obtained without crushing the heat-expandable graphite.
[0117]
Example 34 to Example 37
The raw materials were mixed in the composition of the flame retardant tablet shown in Table 9, and tableted in the same manner as in Example 1.
[0118]
Next, the low density polyethylene (D3) and the flame retardant tablet were mixed with the composition of the flame retardant resin composition shown in Table 9, and the mixture was set to a nozzle at 160 ° C and a cylinder at 160 ° C. The test piece having a thickness of 1/8 inch in the UL94 vertical combustion test was molded in the same manner as in Example 1.
[0119]
The combustibility of the obtained test piece and the particle size of the heat-expandable graphite in the molded product were measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was measured in the same manner as in Example 1. Further, the strength of the flame retardant tablet was measured in the same manner as in Example 1. The results are shown in Table 9.
[0120]
As is apparent from Table 9, the obtained flame retardant tablet had sufficient strength, and excellent flame retardancy was obtained without crushing the heat-expandable graphite.
[0121]
As described above, the flame retardant resin composition formed by directly mixing the flame retardant tablet of the present invention with a resin and the molded product thereof, when compared with the flame retardant resin composition by melt kneading of the same composition as that, It can be seen that there is little refining of the particle size due to crushing and it is excellent in flame retardancy. It can also be seen that the amount of the heat-expandable graphite and the ammonium polyphosphate having the same flame retardancy is smaller in the flame retardant tablet of the present invention.

Claims (12)

(A)加熱膨張性黒鉛と(B)水溶性難燃助剤を含有する難燃剤混合物を造粒してなる難燃剤錠剤。A flame retardant tablet obtained by granulating a flame retardant mixture containing (A) heat-expandable graphite and (B) a water-soluble flame retardant aid. (A)加熱膨張性黒鉛100重量部に対して、(B)水溶性難燃助剤を少なくとも1重量部以上含有する難燃剤混合物を造粒してなる請求項1に記載の難燃剤錠剤。The flame retardant tablet according to claim 1, which is obtained by granulating a flame retardant mixture containing at least 1 part by weight of (B) a water-soluble flame retardant aid with respect to (A) 100 parts by weight of heat-expandable graphite. (B)水溶性難燃助剤が、水溶性のリン化合物、金属の酸化物及び金属の水酸化物からなる群より選ばれる1種又は2種以上であることを特徴とする請求項1乃至請求項3のいずれかに記載の難燃剤錠剤。(B) The water-soluble flame retardant aid is one or more selected from the group consisting of a water-soluble phosphorus compound, a metal oxide, and a metal hydroxide. The flame retardant tablet according to claim 3. (B)水溶性難燃助剤が、ポリリン酸アンモニウム、ジメチル−メチルホスホナートとエチレンオキサイドと五酸化リンとの付加反応生成物、酸化マグネシウム及び水酸化マグネシウムからなる群より選ばれる1種又は2種以上であることを特徴とする請求項3に記載の難燃剤錠剤。(B) One or two water-soluble flame retardant aids selected from the group consisting of ammonium polyphosphate, addition reaction product of dimethyl-methylphosphonate, ethylene oxide and phosphorus pentoxide, magnesium oxide and magnesium hydroxide The flame retardant tablet according to claim 3, wherein the tablet is a seed or more. (B)水溶性難燃助剤が、ポリリン酸アンモニウムであることを特徴とする請求項4に記載の難燃剤錠剤。(B) The flame retardant tablet according to claim 4, wherein the water-soluble flame retardant aid is ammonium polyphosphate. (A)加熱膨張性黒鉛、(B)水溶性難燃助剤、及び(C)非水溶性難燃助剤を含有する難燃剤混合物を造粒してなる請求項1乃至請求項5のいずれかに記載の難燃剤錠剤。Any one of claims 1 to 5, wherein a flame retardant mixture containing (A) heat-expandable graphite, (B) a water-soluble flame retardant aid, and (C) a water-insoluble flame retardant aid is granulated. The flame retardant tablet according to Crab. (B)水溶性難燃助剤と(C)非水溶性難燃助剤との割合が、(B)水溶性難燃助剤/(C)非水溶性難燃助剤≧1/99(重量比)であることを特徴とする請求項6に記載の難燃剤錠剤。The ratio of (B) water-soluble flame retardant aid to (C) water-insoluble flame retardant aid is (B) water-soluble flame retardant aid / (C) water-insoluble flame retardant aid ≧ 1/99 ( The flame retardant tablet according to claim 6, wherein the tablet is a weight ratio). (C)非水溶性難燃助剤が、赤リン、非水溶性のリン化合物、金属の酸化物及び金属の水酸化物からなる群より選ばれる1種又は2種以上であることを特徴とする請求項6又は請求項7に記載の難燃剤錠剤。(C) The water-insoluble flame retardant aid is one or more selected from the group consisting of red phosphorus, water-insoluble phosphorus compounds, metal oxides and metal hydroxides. The flame retardant tablet according to claim 6 or 7. (C)非水溶性難燃助剤が、赤リン、下記式(1)〜(4)
Figure 0003887896
Figure 0003887896
Figure 0003887896
Figure 0003887896
で示されるリン化合物、三酸化アンチモン、ホウ酸亜鉛及び水酸化アルミニウムからなる群より選ばれる1種又は2種以上であることを特徴とする請求項8に記載の難燃剤錠剤。
(C) Water-insoluble flame retardant aid is red phosphorus, the following formulas (1) to (4)
Figure 0003887896
Figure 0003887896
Figure 0003887896
Figure 0003887896
The flame retardant tablet according to claim 8, wherein the tablet is one or more selected from the group consisting of a phosphorus compound, antimony trioxide, zinc borate and aluminum hydroxide represented by the formula:
樹脂100重量部に対して、請求項1及至請求項9のいずれかに記載の難燃剤錠剤を5〜60重量部配合することを特徴とする難燃化方法。A flame retardant method comprising blending 5 to 60 parts by weight of the flame retardant tablet according to any one of claims 1 to 9 with respect to 100 parts by weight of a resin. 樹脂100重量部に対して、請求項1及至請求項9のいずれかに記載の難燃剤錠剤を5〜60重量部配合してなる難燃性樹脂組成物。A flame retardant resin composition comprising 5 to 60 parts by weight of the flame retardant tablet according to any one of claims 1 to 9 with respect to 100 parts by weight of the resin. 請求項11に記載の難燃性樹脂組成物を成形してなる難燃性樹脂組成物の成形品。A molded product of the flame retardant resin composition obtained by molding the flame retardant resin composition according to claim 11.
JP21504997A 1996-08-13 1997-08-08 Flame retardant tablet, flame retardant method therefor, flame retardant resin composition containing the same, and molded product thereof Expired - Fee Related JP3887896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21504997A JP3887896B2 (en) 1996-08-13 1997-08-08 Flame retardant tablet, flame retardant method therefor, flame retardant resin composition containing the same, and molded product thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-213479 1996-08-13
JP21347996 1996-08-13
JP21504997A JP3887896B2 (en) 1996-08-13 1997-08-08 Flame retardant tablet, flame retardant method therefor, flame retardant resin composition containing the same, and molded product thereof

Publications (2)

Publication Number Publication Date
JPH10110169A JPH10110169A (en) 1998-04-28
JP3887896B2 true JP3887896B2 (en) 2007-02-28

Family

ID=26519824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21504997A Expired - Fee Related JP3887896B2 (en) 1996-08-13 1997-08-08 Flame retardant tablet, flame retardant method therefor, flame retardant resin composition containing the same, and molded product thereof

Country Status (1)

Country Link
JP (1) JP3887896B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212539A (en) * 1999-01-21 2000-08-02 Sumitomo Bakelite Co Ltd Interlaminar insulated adhesive for multi-layer printed circuit board
JP2000309708A (en) * 1999-04-26 2000-11-07 Kanegafuchi Chem Ind Co Ltd Curable resin composition and foamable resin composition
ATE307163T1 (en) * 1999-08-06 2005-11-15 Pabu Services Inc INTUMESTENCE POLYMER COMPOSITION
JP2002080612A (en) * 2000-09-05 2002-03-19 Tosetz Co Ltd Method of producing thermally expansive molded article, and the molded article
JP2006015677A (en) * 2004-07-05 2006-01-19 Achilles Corp Fire-retardant woody board
JP4908084B2 (en) * 2006-07-06 2012-04-04 名古屋油化株式会社 Sound absorbing surface material and molded article using the same
NZ592521A (en) * 2008-11-11 2014-02-28 Akzo Nobel Coatings Int Bv Intumescent coating composition
JP5698575B2 (en) * 2011-03-15 2015-04-08 エア・ウォーター株式会社 Flame retardant resin composition
EP2612876A1 (en) * 2012-01-03 2013-07-10 Basf Se Flame-proof polyurethane foams
JP6147101B2 (en) * 2013-01-22 2017-06-14 積水化学工業株式会社 Thermally expandable refractory resin composition
JP6374756B2 (en) * 2013-10-18 2018-08-15 積水化学工業株式会社 Thermally expandable joint material for outer wall
US10538616B2 (en) * 2014-08-27 2020-01-21 Sekisui Chemical Co., Ltd. Thermally expandable fire resistant resin composition

Also Published As

Publication number Publication date
JPH10110169A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US6124394A (en) Fire-retardant tablet, and fire-retarding method, fire-retardant polymer composition and molded article employing the same
JP3887896B2 (en) Flame retardant tablet, flame retardant method therefor, flame retardant resin composition containing the same, and molded product thereof
EP1710275B1 (en) Stabilized fire retardant
DE10241376A1 (en) Compacted flame retardant composition
US20090054698A1 (en) Granular Polymer Additives and Their Preparation
DE102004026799B4 (en) Press granulated flame retardant composition, process for its preparation and its use
DE10241375A1 (en) Granular flame retardant composition
EP2297240B1 (en) Rubber-modified flame-retardant molding compounds
EP1648958A1 (en) Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
JP2001055515A (en) Flame retardant tablet, flame retardation with same, flame-retardant resin composition containing same, and molded product of the composition
WO2019048307A1 (en) Flame-retardant polyester compositions and use thereof
US6515052B2 (en) Granular polymer additives and their preparation
JP2007113007A (en) Flame-retardant polymer having glow-wire resistance
WO2011039301A1 (en) Functionalized expandable graphite intercalation compounds
JPH1087875A (en) Flame retardant and flame-retardant resin composition containing the same
JPH01131262A (en) Plastic magnet composition
EP2821207A1 (en) Method and assembly for reaction injection moulding intumescent plastic parts and such a moulded plastic part
WO2011039292A1 (en) Method for producing functionalized expandable graphite intercalation compounds
JP2000169729A (en) Fire retardant resin composition and its preparation
JP2024009893A (en) Flame retardant granule, and manufacturing method and use of the same
JPH06256763A (en) Granular flame retardant composition
JPS63183932A (en) Production of molded flame-retardant thermoplastic resin article
JPH11172254A (en) Metallic compound-based flame retardant and flame-retardant resin composition therewith
JPH09169784A (en) Zinc phosphate containing diethylenetriamine, its production and flame retardant and flame retarded resin composition produced by using the compound
JPH04342765A (en) Molding of thermoplastic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

LAPS Cancellation because of no payment of annual fees